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Abstract

Molecular Orbitals and Where to Find Them

by

Abdulrahman N. Aldossary

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Martin Head-Gordon, Chair

In this thesis, new ways of generating orbitals to accelerate quantum mechanical calculations
or gain chemical insight from such calculations are presented. While antibonding orbitals are
integral to our understanding of chemistry, finding them is not trivial because they cannot be
uniquely defined. A new way to find them is demonstrated along with many uses they have in
valence space methods such as complete active space self-consistent field (CASSCF) theory.
New molecule-adapted atomic orbitals can also be obtained from the antibonding orbitals
which is used for atomic charge analysis. Furthermore, new oxidation state localized orbitals
(OSLOs) for assigning oxidation states are also presented and assessed across a wide range of
systems to demonstrate improved performance on challenging systems. Lastly, an approach
to decompose the intermolecular forces based on the absolutely localized molecular orbital
energy decomposition analysis (ALMO-EDA) is described. This force decomposition analysis
(FDA) separates different physically distinct contributions (such as those from permanent
electrostatics and Pauli repulsion, those from the effect of induced electrostatics, and those
from charge transfer or dative interactions). A series of chemical examples ranging from ion
water interactions to activation of carbon dioxide by gold (and silver) anions are studied
to explore the chemical insight that can be gained. The FDA may also be useful for the
development and testing of molecular mechanics force fields. As an example, we use force
decomposition to further validate the promising polarizable MB-UCB force field for water.
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Chapter 1

Introduction

1.1 Quantum Mechanics Review

Quantum chemistry involves making predictions (energies, molecular geometries, and other
observables) about molecules using the principles of quantum mechanics. Here we will go
through the relevant principles and their ramifications in chemistry.

Principles of Quantum Mechanics

In the early 20th century, experiments such as the double-slit experiment, photoelectron
effect, and Stern-Gerlach made it clear that on the atomic scale, particles behave differently
than predicted by classical mechanics. Most notably, the particle-wave duality in quantum
mechanics means that one needs a wavefunction to describe particles. These wavefunctions
need to obey other quantum mechanical postulates, such as:

1. The wavefunction often denoted by Ψ describes the state of the system completely.

2. Observables are described by Hermitian operators, Ô. The expectation value of mea-
suring operator Ô for a system in state Ψ is

∫
Ψ∗ÔΨ.

3. The position and momentum operators are x̂ = x and p̂ = −ih̄∇, respectively, in the
position representation, where h̄ is the reduced Planck’s constant.

4. The possible outcomes of measuring a Hermitian operator are the eigenvalues of the
operator, ÔΨ = ϵiΨ. Upon a measurement of Ψ yielding ϵi, the wavefunction collapses
into the corresponding eigenstate.

5. Wavefunctions with Hamiltonian Ĥ evolve in time according to the Schrödinger equa-
tion, ih̄ ∂

∂t
Ψ = ĤΨ.

6. Exchange of two fermionic particles in the wavefunction results in a change of sign of
the wavefunction.
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Based on the third postulate, other operators are taken from classical mechanics and directly
used in quantum mechanics. For example, the classical kinetic energy, p2/2m, is now an
operator T̂ = p̂2/2m. The kinetic energy of a particle with some known wavefunction is∫

Ψ∗T̂Ψ. Another relevant quantity is the electric potential energy between two charged

particles given by V̂ = q1q2/r4πϵ0, where q1 and q2 are the charges of the two particles, r is
the distance between them, and ϵ0 is the vacuum permittivity. These two operators lay the
groundwork for the forthcoming sections.

Molecular Hamiltonian

The molecular Hamiltonian operator contains all the energy terms in a molecule. It is simply
the sum of the kinetic and electric potential energies of nuclei and electrons and is given by

Ĥ = T̂e + T̂n + V̂ee + V̂ne + V̂nn, (1.1)

where T̂e and T̂n are the kinetic energy of the electrons and nuclei, respectively, and V̂ee, V̂ne,
and V̂nn are the electron-electron, electron-nuclei, and nuclei-nuclei electric potential energy,
respectively. The fourth postulate stipulates that solving the Hamiltonian of a system means
finding all the possible energies and states of that system. The solution for the eigenvectors
and eigenvalues of Eq. 1.1 solves all of chemistry and is why the famous physicist Paul Dirac
in 1929 declared [1]:

“the underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble.”

It has since been the duty of chemists to study these equations, their approximations, and
their consequences.

Hydrogen Atom and Atomic Units

The simplest form of the Eq. 1.1 is for a system consisting of one electron and one nucleus.
Transforming the nucleus’ coordinates into the frame of reference makes the Hamiltonian

Ĥ = − h̄2

2µ
∇2 − 1

4πϵ0

e2

r
, (1.2)

where e is the elementary charge of an electron or a proton, and µ is the reduced mass
which is half the harmonic mean or inverse of the sum of mass inverses. Note that we are
ignoring relativity, as it will not be discussed in this thesis. We shall introduce another form
of Eq. 1.2 using atomic units before moving forward. In atomic units, we set h̄, e, me, and
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the Bohr radius, a0 = 4πϵ0h̄
2/mee

2 to unity. Using this system of units is very effective in
writing equations, and Eq. 1.2 for instance is now

Ĥ = −1

r
− 1

2
∇2. (1.3)

The solution to the time-independent Schrödinger equation of the hydrogen and hydrogen-
like atom is well known and discussed in many standard quantum mechanics textbooks [2].
In brevity, we show the general form of the solution,

ψn,l,m(r, θ, ϕ) = Cn,lr
lL2l+1

n−l−1(r)e
−r/na0Ym

l (θ, ϕ) (1.4)

where n, l, and m are the principal, angular, and magnetic quantum numbers, Cn,l is some
normalization constant, L2l+1

n−l−1(r) is the generalized Laguerre polynomial, and Ym
l (θ, ϕ) is a

spherical harmonic.

Born-Oppenheimer Approximation

Up to this point, the Schrödinger equation for any molecule is(
−

∑
i

1

2
∇2

i −
∑
A

1

2mA

∇2
A +

∑
i>j

1

rij
−
∑
i,A

ZA

riA
+

∑
A>B

ZAZB

rAB

)
Ψ(r,R) = EΨ(r,R) (1.5)

where i and j are indices of electrons, A and B are indices of nuclei, mA is the mass of atom
A, rxy is the euclidean distance between the coordinates of particles x and y, ZA is the nuclear
charge of atom A, r and R correspond to positions of electrons and nuclei, respectively, and
E is the energy eigenvalue of the system. The solution to this partial differential equation
gives us the energy, E, and the state of any molecular system, Ψ(r,R), but the solution is
far too difficult. Invoking the Born-Oppenheimer approximation allows for factorizing the
wavefunction into electronic and nuclear parts [3]. This is justified because the forces acting
on electrons and nuclei are similar, yet they have masses that are different by more than
three orders of magnitude. This vast difference in their masses is reflected in their velocities,
hence why we treat nuclei as fixed charges compared to electrons.

Under the Born-Oppenheimer approximation, we consider the solution for the electronic
part of the wavefunction where the nuclei are at fixed positions then consider the nuclear
wavefunction for a fixed electronic wavefunction. The first part of this yields the electronic
Schrödinger equation,(

−
∑
i

1

2
∇2

i +
∑
i>j

1

rij
−
∑
i,A

ZA

riA

)
Ψ(r;R) = Eelec(R)Ψ(r;R) (1.6)

where Ψ(r;R) is the electronic wavefunction for a given set of (clamped) coordinates of the
nuclei, referred to hereafter as Ψ(r) or just Ψ. Changing the nuclear coordinates and evalu-
ating the energy produces hypersurfaces, often called potential energy surfaces in chemistry.
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Given the electronic wavefunctions of the system, one can evaluate the vibrational and ro-
tational energies and states of the system. The study of these quantities is important for
spectroscopic measurements and thermodynamics but is not relevant to this thesis. The
potential energy surfaces define adiabatic states that can intersect each other. When two
surfaces come close in energy, the adiabatic approximation breaks down [3] for example in
the stretching of the LiF molecule. Treatments of nonadiabatic effects will not be discussed
in this thesis as well.

Slater Determinant

Consider a permutation operator, P̂12 that swaps the coordinates of two electrons in a two-
electron wavefunction, Ψ(r1, r2). Since the particles are identical, swapping the dummy
indices does not change the Hamiltonian eigenstate. That is, the permutation operator
commutes with the Hamiltonian, [Ĥ, P̂12] = 0. Thus, the action of P̂12 on some eigenstate
of the Hamiltonian,

P̂12Ψ(r1, r2) = λΨ(r2, r1), (1.7)

where λ is some unknown eigenvalue. The repeated action of this operator recovers the
original wavefunction,

P̂12λΨ(r2, r1) = λ2Ψ(r1, r2) = Ψ(r1, r2). (1.8)

Hence, λ2 has to be equal to unity, with two possible solutions, λ = ±1. Particles with λ = 1
are bosons and have symmetric wavefunctions, whereas particles with λ = −1 are fermions
and have antisymmetric wavefunctions, following from the sixth postulate discussed above.
Most relevant here, electrons are fermions and can have wavefunctions of the form

Ψ(r1, r2) =
1√
2

(ψA(r1)ψB(r2) − ψA(r2)ψB(r1)). (1.9)

Notice that this form produces a negative sign upon permutation of the coordinates. Also
notice that the wavefunction vanishes when ψA = ψB, i.e., two electrons occupy the same
space, which is colloquially known as the Pauli exclusion principle. The product of the two
single-electron wavefunctions, ψAψB, is often called a Hartree product.

The action of a permutation operator of two electrons on an arbitrary many-electron
wavefunction produces a change of sign, i.e.,

P̂ijΨ(r1, r2, · · · , ri, · · · , rj, · · · , rn) = −Ψ(r1, r2, · · · , rj, · · · , ri, · · · , rn). (1.10)

Taking the sum of all possible permutations of a system gives the antisymmetrizer

A =
1

N !

∑
π∈SN

P̂π, (1.11)
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where SN is the group of all permutations for N particles and π is an element of the group.
Applying the antisymmetrizer operator on a Hartree product of many spin-orbitals (wave-
function with position and spin, vide infra) produces a Slater determinant which enforces the
antisymmetry. Slater determinants are the simplest form of an antisymmetric (fermionic)
many-electron wavefunction and describe one configuration of the electrons and are referred
to as a “configuration” [4]. They take the form

Φ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) χ1(x2) . . . χ1(xN)
χ2(x1) χ2(x2) . . . χ2(xN)

...
...

. . .
...

χN(x1) χN(x2) . . . χN(xN)

∣∣∣∣∣∣∣∣∣ , (1.12)

where χ(xi) is a spin-orbital. These are defined to be

|χi(x)⟩ = |ψi(r)σi(ω)⟩ , (1.13)

where ψi(r) are spatial orbitals with coordinate r that spans the real space, i.e., r ∈ R3,
while σi are spin functions with coordinate ω, spanning two values: α and β, i.e., ω ∈ {α, β}.
It is then understood that coordinate x in Eq. 1.13 spans both spatial and spin coordinates.
The spin function, |σ(ω)⟩, are orthogonal with respect to their argument, i.e.,

⟨σ(ωi)|σ(ωj)⟩ =

{
0 if ωi ̸= ωj

1 otherwise.
(1.14)

1.2 Wavefunction-Based Methods

Hartree-Fock

The electronic Schrödinger equation in Eq. 1.6 for more than one electron is very difficult
to solve and no analytical solution exists to date. One often reverts to mean-field approx-
imations where the exact electron-electron interaction is approximated. Consider a trial
wavefunction (ansatz) that is a Slater determinant and minimize the expectation value of
the energy, i.e.,

EHF = min
C

⟨Φ0(C)|
∑
i

−1

2
∇2

i −
∑
i,A

ZA

riA
+
∑
i>j

1

rij
|Φ0(C)⟩ , (1.15)

where C is the coefficient matrix describing the spin-orbitals of the trial wavefunction. Note
that the minimization must be performed subject to the orthonormality constraint, ⟨χi|χj⟩ =
δij. The first two operators in Eq. 1.15 are one-electron operators, and, combined, they are

called the core Hamiltonian, ĥ. The last operator is a two-electron operator of the electron-
electron interaction.
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Evaluating a one-electron operator for a Slater determinant, such as the core Hamiltonian,
gives [4]

⟨Φ0| ĥ |Φ0⟩ =
∑
i

⟨χi| ĥ |χi⟩ =
∑
i

hii, (1.16)

where the hii is a diagonal element of the core Hamiltonian. Meanwhile, two-electron oper-
ators evaluate to [4]

⟨Φ0|
∑
i>j

1

rij
|Φ0⟩ =

∑
i>j

⟨χi(x1)χj(x2)|
1

r12
(1 − P̂12) |χi(x1)χj(x2)⟩ =

1

2

∑
i

Jii −Kii, (1.17)

where the P̂12 is the permutation operator introduced earlier, and it shows up here due to the
antisymmetry of the trial wavefunction, Φ0. Furthermore, J is the Coulomb matrix which
describes a simple charge density interaction with another, while K is called the exchange
matrix due to exchanging the two coordinates of the ket side. Both J and K matrices
describe the potential of the trial wavefunction and are a function of it. Evaluating the
energy of one Slater determinant using Eq. 1.16 and Eq. 1.17 produces

⟨Φ0(C)| ĥ+
∑
i>j

1

rij
|Φ0(C)⟩ =

∑
i

hii +
1

2

(
Jii −Kii

)
. (1.18)

For a Slater determinant, the energy associated with one electron in orbital χi can be
calculated with the Fock operator, F̂ ,

⟨χi| F̂ |χi⟩ = Fii, (1.19)

where Fii is the diagonal element of the Fock operator in matrix form, where the Fock matrix
is

F = h + J−K. (1.20)

Finding the eigenstates of the Fock operator (the mean-field Hamiltonian operator) consti-
tutes the eigenvalue problem:

F̂ |χi⟩ = ϵi |χi⟩ (1.21)

where χi is the eigenstate (eigenvector) or simply the orbital, and ϵi is the orbital energy
(eigenvalue). To solve the eigenvalue problem in Eq. 1.21, one can project it onto a set of
basis functions (Galerkian projection), producing the Roothaan-Hall equations,

F(C)C = SCE, (1.22)

where F is the Fock matrix evaluated for the basis functions, C is the coefficient matrix
(eigenvector matrix) describing the molecular orbitals in the basis functions, S is the overlap
between the basis functions, and E is a diagonal matrix of orbital energies (eigenvalues).
Once the generalized eigenvalue problem is solved, the orbitals are filled in ascending order
of their energies following the aufbau principle, creating the occupied space, while the empty
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ones are called virtual orbitals. The occupied orbitals from the new coefficient matrix,
C, constitute the new trial wavefunction, Φ0(C), and the procedure is repeated until the
density does not change. Although Eq. 1.22 is a generalized eigenvalue problem, the Fock
matrix F(C) is a function of C, and only upon self-consistency, the total energy, EHF, is
made stationary. This is called the self-consistent field or the Hartree-Fock (HF) method in
quantum chemistry [4–6].

The HF method is a simple self-consistent method that minimizes the energy of one
Slater determinant. It is often used as a starting point for more advanced methods and is
very important in quantum chemistry. Most importantly, it obeys the variational principle,
i.e.,

EHF ≥ E . (1.23)

In other words, the HF energy cannot be lower than the ground-state electronic energy. In
fact, the difference between them was termed the correlation energy by Löwdin [7] and is a
non-positive quantity

Ecorr = E − EHF ≤ 0. (1.24)

To recover the correlation energy, consideration of more than one Slater determinant is re-
quired. In particular, once an HF wavefunction is obtained, excited determinants can be
constructed by the promotion of an electron from an occupied orbital (indexed i, j, k, ...)
into a virtual (empty) orbital (indexed a, b, c, ...). These substituted or excited Slater de-
terminants are commonly denoted by the notation |Φabc...

ijk...⟩ to describe electrons occupying
orbitals ijk... being promoted to virtual orbitals abc.... Then, the correlation energy can be
recovered either by perturbation theory, exact diagonalization, or other methods that will
be discussed further below.

Basis Sets

To produce the generalized eigenvalue problem in Eq. 1.22, a set of basis functions, i.e. a
finite basis set, must be introduced. The basis functions must be capable of describing any
electron in the Hilbert space which is infinite. Because electrons in molecules ‘feel’ the field
of multiple atoms, a common choice for chemists is a linear combination of atomic orbitals
(LCAO). The simplest form of the atomic orbitals (AOs) is Slater-type orbitals STOs which
are the hydrogen-like orbitals introduced in Eq. 1.4 but without the Laguerre polynomials.
Using a linear combination of Gaussian-type orbitals (GTOs), to describe one Slater orbital
has proven to be very efficient, especially for evaluating matrix elements of J or K from
Eq. 1.17 since the multiplication of two Gaussian orbitals yields another Gaussian orbital
[4]. Gaussian-type orbitals have the form

ψn,l,m(r, θ, ϕ) =
∑
k

ckr
le−ζk|r−RA|2Ym

l (θ, ϕ), (1.25)

where ck and ζk are optimizable parameters and RA is the coordinate of the atom that the
basis function is centered on. Many techniques have been developed for producing the set
of ζk’s and ck’s to reproduce the electronic energy efficiently [8].
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The set of atomic orbitals that can describe simple bonding includes each atom’s outer-
most valence shell, often called the minimal basis set. Since the early days of quantum chem-
istry, it has been noted that atomic orbitals change upon bonding and named the modified
atomic orbitals by Mulliken [9, 10]. Atoms with stronger electronegativity attract electrons
more and result in orbitals polarized towards them. Hence, even for the HF method, many
more basis functions are required beyond the minimal basis set to accurately describe the
wavefunction. To capture that polarization, basis sets often include the next shell of atomic
orbitals, often called double-ζ (DZ), or N more additional shells, N -ζ. The Hartree-Fock
energy converges with the exponential of the cardinal number of extra valence shells in the
basis, ∼ e−N , while the correlation energy converges with the inverse of the cube, ∼ N−3

[11, 12].
Many basis sets (or sets of GTOs) have been optimized and made to allow custom inclu-

sion of different parts of the Hilbert space as necessitated by the chemistry in question. For
example, calculations involving core electrons require the addition of extra core (very large ζ)
basis functions, while long-range interactions benefit from the addition of diffuse (very small
ζ) basis functions. This customizability allows chemists to achieve the highest accuracy with
the lowest computational cost. Although GTOs are advantageous in many ways, they are
not required. Plane waves [13] (eigenfunctions of the kinetic energy operator) or real-space
[14] methods are not uncommon choices of basis functions. All of these incomplete bases
converge upon expansion to the complete basis set (CBS) limit.

Two dimensions of the accuracy of approximate electronic energy have been discussed. To
get the exact energy, one needs not only to use methods capable of capturing more correlation
but also one needs to use large basis sets to recover the exact result. The two dimension
graph of accuracy is often referred to as Pople’s diagram [15] and is shown in Fig. 1.1.
This leaves the third dimension for correction to some of the approximations already made,
such as relativistic correction, the Born-Oppenheimer approximation, or reserving the third
dimension for time propagation of the wavefunction or nuclei. To estimate the exact answer
(top right of Fig. 1.1), composite methods popularized by Pople and coworkers exploit energy
differences between methods of increasing correlation accuracy with decreasing size of the
basis set [16]. For example, the “composite method” in Fig. 1.1 uses the energy of the HF
in the QZ basis, MP2 in the TZ basis, and CCSD in the DZ basis to estimate the full CI
energy, where these correlation methods are discussed in detail below.

Full Configuration Interaction

To recover the correlation energy for a given basis, we minimize the energy of Ψ that is a
linear combination of all other substituted determinants, producing

HC = CE (1.26)

where the matrix H is known as the configuration interaction (CI) Hamiltonian with matrix
elements,

Hpq = ⟨Φp| Ĥ |Φq⟩ (1.27)
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Figure 1.1: Pople’s diagram where the x-axis is the basis set (“one particle”) and the y-axis is
the correlation energy recovered (“many particle”) with the scaling of each method indicated
underneath it. The horizontal arrows indicate the convergence with the basis set, where N
is the cardinal number of the basis set. The “Exact” in the top-right corner denotes the
exact non-relativistic Born-Oppenheimer electronic energy.

where Φp and Φq are determinants. In Eq. 1.26, C is a matrix with a coefficient for each
true state of the exact Hamiltonian, with each column called the CI vector. The matrix E
in Eq. 1.26 is a diagonal matrix with exact eigenenergies, in which the lowest is the exact
ground state energy. This method of exact diagonalization is called the full configuration
interaction (full CI) method. Taking the eigenvector of C with the lowest eigenvalue allows
us to express the ground state wavefunction as a linear combination of determinants,

Ψ = c0Φ0 +
∑
ia

ciaΦ
a
i +

∑
ijab

cijabΦ
ab
ij + · · · . (1.28)

Notice that the choice of constructing excited determinants from the same orbitals is not
required, but preferable to maintain orthogonality between all excited determinants. Break-
ing that assumption gives rise to a generalized eigenvalue problem [17] as the overlap will be
needed in Eq. 1.26.

How many elements are in the matrix H like the one shown in Eq. 1.27? The answer is

too many. For a system with M orbitals and N electrons, it is possible to construct

(
M

N

)
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determinants, which scales factorially with the system size. Luckily, many of these terms
evaluate to zero trivially by the Slater-Condon rules [18, 19], which include Hpq = 0 if the two
determinants differ by more than two orbitals since our Hamiltonian couples two particles
at most. The size of the H matrix, however, is still factorial. As a consequence, for a given
AO basis set, the compute effort to solve the full CI problem grows exponentially with the
molecule size. This unfortunate fact of nature gives rise to many interesting endeavors to
solve the many-body problem.

Truncated Configuration Interaction

The simplest and earliest solution to improve upon the HF energy is to consider a small set of
excitations. For example, it is possible to include only single and double excitations, named
configuration interaction singles and doubles (CISD) [4, 6, 11]. Although such treatment is
variational, they suffer from a lack of size consistency. A method is called size consistent
when it recovers the sum of individual molecules’ energies upon infinite separation. A CISD
wavefunction overentangles two molecules by requiring one molecule to be fully unexcited for
the other molecule to be doubly excited, for example. This is often resolved by adding some
quadruply excited determinants as in QCISD [20]. However, other methods were introduced
that capture more correlation with similar cost [21], surpassing truncated CI methods in use.

Møller-Plesset Perturbation Theory

All hope is not lost. Perturbation theory is a very effective approach capable of recovering
some of the correlation energy. Consider a small perturbation, λ, to the Hamiltonian, i.e.,

Ĥ = Ĥ0 + λĤ ′, (1.29)

which modifies the eigenvectors and eigenvalues of Ĥ0 slightly, such that(
Ĥ0 + λĤ ′

)(
Ψ(0) + λΨ(1) + · · ·

)
=

(
E(0) + λE(1) + · · ·

)(
Ψ(0) + λΨ(1) + · · ·

)
. (1.30)

Collecting powers of λ, gives the following sets of equations

Ĥ0Ψ
(0) = E(0)Ψ(0) (1.31a)

Ĥ0Ψ
(1) + Ĥ ′Ψ(0) = E(0)Ψ(1) + E(1)Ψ(0) (1.31b)

Ĥ0Ψ
(2) + Ĥ ′Ψ(1) = E(0)Ψ(2) + E(1)Ψ(1) + E(2)Ψ(0) (1.31c)

...

Ĥ0Ψ
(n) + Ĥ ′Ψ(n−1) =

n∑
k=0

E(k)Ψ(n−k), (1.31d)

showing up to the second-order expansion explicitly and the general form in Eq. 1.31d. Left
projection by different orders of the wavefunction, Ψ(n), allows solving the perturbation series
in ascending order, with increasing corrections of the wavefunction and the energy.



CHAPTER 1. INTRODUCTION 11

So far, this formalism is the Rayleigh-Schrödinger perturbation theory. In the many-
body perturbation theory, we choose the 0th order wavefunction as the HF wavefunction,
i.e., Ψ(0) = Φ0, while higher order wavefunctions are to be the excited determinants. The
Møller-Plesset perturbation theory [22] makes a special choice of the 0th order Hamiltonian,
Ĥ0, to be the Fock operator, F̂ , of Eq. 1.19. This choice is very important as it makes the
method size extensive, yet problematic since the perturbation is not small for this formalism
to be suitable. The Ĥ ′ of Eq. 1.29 following from that choice becomes

Ĥ ′ = Ĥ − F̂ . (1.32)

Using Eq. 1.31a, the zeroth order of the energy is

E(0) = ⟨Φ0| F̂ |Φ0⟩ =
∑
i

ϵi, (1.33)

which is higher than the HF energy since it double counts the electron-electron repulsion.
Using the next power in Eq. 1.31b gives the first order of the energy,

E(1) = ⟨Φ0| Ĥ − F̂ |Φ0⟩ = EHF − E(0), (1.34)

where the first term is identical to Eq. 1.18, while the second one is identical to the one in
Eq. 1.33. Left projecting Eq. 1.31b by an excited determinant, Φq, which are also eigenvectors

of F̂ ,
F̂ |Φp⟩ = E(0)

p |Φp⟩ , (1.35)

and expanding Ψ(1) in terms of other Φp’s,

|Ψ(1)⟩ =
∑
p

tp |Φp⟩ , (1.36)

yields

⟨Φq| F̂
∑
p

tp |Φp⟩ + ⟨Φq| Ĥ ′ |Φ0⟩ = E0 ⟨Φq|
∑
p

tp |Φp⟩ (1.37)

where the summation index p goes over all excited determinants. After rearranging, the
famous t amplitudes emerge,

tq =
⟨Φq| Ĥ |Φ0⟩

E0 − ⟨Φq| F̂ |Φq⟩
. (1.38)

Lastly, the second-order Møller-Plesset perturbation theory (MP2) energy can be ob-
tained through the left projection of Eq. 1.31c by the HF wavefunction Φ0. It has the form,
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E(2) = ⟨Φ0| Ĥ − F̂ |Ψ(1)⟩ (1.39a)

= ⟨Φ0| Ĥ
∑
p

tp |Φp⟩ (1.39b)

=
∑
p

⟨Φ0| Ĥ |Φp⟩ ⟨Φp| Ĥ |Φ0⟩
E0 − ⟨Φp| F̂ |Φp⟩

(1.39c)

=
∑
i>j

∑
a>b

| ⟨ij| |ab⟩ |2

ϵi + ϵj − ϵa − ϵb
, (1.39d)

where ⟨ij| |ab⟩ are the matrix elements of the electron-electron interaction given by

⟨ij| |ab⟩ =

∫ ∫
χi(x1)χj(x2)

1

r12
(1 − P̂12)χa(x1)χb(x2)dx1dx2. (1.40)

Since our molecular orbitals are constructed from M LCAOs, each term like Eq. 1.40 requires
M4 integrals to be evaluated, resulting in N2(M −N)2M4 scaling, for a wavefunction of N
electrons. This scaling is typically brought down by a common “trick” of reusing the M4

integrals and doing the transformation one at a time. By doing so, we have four O(M5)
operations to make. This reordering of summations to reduce scaling is one example of
dynamic programming.

There are a few things to note about the MP2 method. One, it is not variational and
thus does not obey Eq.1.23. This drawback is not usually relevant for chemistry since the
relative energy is improved. Furthermore, the MP series equation tends to oscillate above
and below the exact energy [23]. This has led to the development of methods that take the
mean between MP2 and MP3 [24]. Recent advances in MP2 include multiplying the same
spin and opposite spin by scalar factors deduced empirically [25, 26] as well as regularizing
the denominator to avoid the singularity in case of the degeneracy of the occupied and virtual
molecular orbitals such as level shift [27, 28] and κ- and σ-MP2 [29].

Notice that Eq. 1.39d is obtained by applying the Slater-Condon rules, leaving only
double excitations. The second assumption is that the different excited determinants, which
are each made of orthogonal orbitals, are orthogonal. In some instances of MP2, breaking
this convention is advantageous for faster calculations as is discussed in the next section.

Hylleraas Functional

The Hylleraas functional is a different way to solve the equations of the perturbative series
[11, 30–32]. First, consider the general form of the perturbative series in Eq. 1.31d,

Ĥ0Ψ
(n) + Ĥ ′Ψ(n−1) −

n∑
k=0

E(k)Ψ(n−k) = 0. (1.41)
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By some algebraic manipulation, Wigner’s 2n+ 1 rule can be found

E(2n+1) = ⟨Ψ(n)| Ĥ ′ |Ψ(n)⟩ −
n∑

k,l=0

E(2n+1−k−l) ⟨Ψ(k)|Ψ(l)⟩, (1.42)

which asserts that the nth order wavefunction is the highest order wavefunction needed to
calculate the (2n+ 1)th order of the energy. Hylleraas was the first to apply the variational
principle back into Eq. 1.41 with Lagrange multipliers [30, 31], assuming the nth wavefunc-
tion is some trial wavefunction. Taking the derivative of the Lagrangian reproduces Eq. 1.42,
making it a formal upper bound to the 2n+ 1th order energy, E(2n+1).

Although the formalism developed by Hylleraas has been around since the 1930s [30,
31], it was not common in the quantum chemistry literature until the seminal work of Peter
Pulay and Svein Saebø in the 1980s [33, 34]. Realizing that this formalism can be adapted
to any set of orbitals, Pulay and Saebø were able to reproduce MP2 energy at a much lower
cost. Here we show the second-order energy functional

h2[Ψ
(1)] = ⟨Ψ(1)| Ĥ0 − E(0) |Ψ(1)⟩ + 2 ⟨Ψ(1)| Ĥ ′ − E(1) |Ψ(0)⟩ (1.43a)

=
∑
ijab

∑
i′j′a′b′

tijab(H0)ijab,i′j′a′b′ti′j′a′b′ + 2
∑
ijab

tijab ⟨ij| |ab⟩ ≥ E(2) (1.43b)

Notice that taking the derivative with respect to t reproduces the MP2 energy expression in
Eq. 1.39d, which is the minimum of the Hylleraas functional.

Coupled Cluster

As an alternative to the MP series, the coupled cluster (CC) method was developed in the
1970s [11, 35–37]. It uses an exponential ansatz

|Ψ⟩ = eT̂ |Φ0⟩ (1.44)

where T̂ is the excitation operator, which can be written in second quantization

T̂ = T̂1 + T̂2 + T̂3 + · · · (1.45a)

=
∑
ia

tiaa
†
aai +

∑
ijab

tijaba
†
ba

†
aajai +

∑
ijkabc

tijkabca
†
ca

†
ba

†
aakajai + · · · , (1.45b)

where a†a and ai are the raising and lower operators of the ath and ith orbitals, respectively,
and the t’s are expansion coefficients of the excited determinants. The excitation operators
T̂1, T̂2, T̂3, etc. are called singles, doubles, triples, etc. excitation operators. Minimizing the
energy of this exponential ansatz produces,

min
t

⟨Φ0| eT̂
†
ĤeT̂ |Φ0⟩ = EVCC (1.46)
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the variational coupled cluster equations and energy. Despite being variational, it scales
worse than full CI and is never used in practice.

Because the exact ground state is expected to have a high overlap with the HF wave-
function, Φ0, the conventional coupled cluster energy is evaluated as

⟨Φ0| ĤeT̂ |Φ0⟩ = ECC (1.47)

leaving all the t-amplitudes unknown. A subspace projection onto the space of excited
determinants can produce

⟨Φabc...
ijk...| ĤeT̂ |Φ0⟩ = ECC ⟨Φabc...

ijk...| eT̂ |Φ0⟩ (1.48)

which is the usual (or conventional) coupled cluster equations. Since the exponential oper-
ator contains infinite order excitations, the equations are only soluble upon truncating the
number of T̂ operators and limiting the set of excited determinants projected from the left.
The equations resulting from that are non-linear and require iterations until convergence is
achieved. Upon limiting the excitation operators to only T̂1 and T̂2, this method is called
CCSD, while inclusion of T̂3 operator makes it CCSDT, and so on.

Unfortunately, this conventional CC approach is no longer variational, but it is very
useful for its size consistency, size extensivity, and ability to capture more correlation than
CISD at the CCSD level. CCSD is capable of reproducing full CI results for 2-electrons,
which makes it exact for the simplest bond in chemistry, H2. Furthermore, this approach
is polynomially scaling for different truncations of the excitation operator, e.g., CCSD is
O(M6) while CCSDT is O(M8), etc. Lastly, perturbative corrections have been successfully
derived and implemented, most famously the coupled cluster singles and doubles with triple
corrections, known as CCSD(T) [38]. This method is very accurate for a wide range of stable
organic compounds and earned the name of the “gold standard” of quantum chemistry.

Other Wavefunction-Based Methods

There are a few approaches to reduce the work needed for ab initio methods like CI, MP,
and CC. One approach discussed above is to limit the work to a specific order of excitation,
such as CISD or CCSD, etc. The next simple thing to do is to restrict the set of correlated
orbitals, for example by constraining the summation on the occupied or virtual orbitals. This
approach can be justified by the denominator of the MP2 energy term, Eq. 1.39d, being only
appreciable for occupied and virtual orbitals close in energy. Such methods are named active
space methods whereas including all excitations (singles, doubles, triples, etc.) in an orbital
active space is called complete active space, for example, complete active space CI (CASCI).
These approaches clearly reduce the prefactor, but not the exponents of the scaling of these
methods. Lastly, a class of active space (and other) methods emerges where the molecular
orbitals are variationally optimized to reduce the overall energy. Application of these on
CASCI gives rise to complete active space SCF (CASSCF) [39–41], while applying them to
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MP2 and CCD gives rise to orbital optimized MP2 (OOMP2) [29, 42] and optimized doubles
(OD) [43, 44], respectively.

One way to reduce the work of calculating the correlation energy is the independent
electron pair approximation (IEPA) [45–48]. It treats every pair of electrons independently
from every other pair (decoupling), and a CID matrix with only two electrons promoted is
diagonalized. Because the equations are solved for each pair independently, this method is
relatively cheap. It however suffers from serious drawbacks including poor accuracy among
others discussed elsewhere [4, 49]. Most importantly, the method is not invariant to occupied-
occupied orbital mixing, unlike all the methods discussed so far. A better and more accurate
alternative is the coupled electron pair approximation (CEPA) [50], which reintroduces an
approximate coupling between different pairs, while keeping the equations linearized, making
the method still size extensive.

Valence bond theory offers an alternative picture to the molecular orbital theory discussed
so far [51]. While molecular orbitals tend to spread over the whole molecule and take
its symmetry, valence bond theory is pivoted around atomic orbitals combining to form
bonds. Despite not becoming as popular as the molecular orbitals theory, the history of its
development is very interesting [52, 53]. It was Heitler and London [54] who explained H2

bond formation by combining two hydrogen atomic orbitals,

Φ0 =
1

2
(ψAψB + ψBψA)(σ(α)σ(β) − σ(β)σ(α)), (1.49)

where the order of the orbitals (spatial and spin) indicates the electron in question. Heitler
and London showed that the exchange energy is important for obtaining a qualitatively
accurate bond length and energy of H2. To get a quantitative answer, it is important to
include the ionic (antibonding) wavefunction (doubly excited determinant),

ΦI =
1

2
(ψAψA + ψBψB)(σ(α)σ(β) − σ(β)σ(α)). (1.50)

Together, the overall wavefunction becomes,

Ψ = c0Φ0 + cIΦI, (1.51)

where c0 and cI are variational parameters. Coulson and Fischer [55] proposed using new
atomic orbitals, ϕA, ϕB with a variational parameter, c, to improve the Heitler-London wave-
function, Φ0,

ϕA = ψA + cψB (1.52)

ϕB = ψB + cψA. (1.53)

Rewriting Eq. 1.49 with the new modified orbitals recovers Eq. 1.51, i.e.,

Ψ =
1

2
(ϕAϕB + ϕBϕA)(σ(α)σ(β) − σ(β)σ(α)) (1.54a)

= N
(
(ψA + cψB)(ψB + cψA) + (ψB + cψA)(ψA + cψB)

)
(σ(α)σ(β) − σ(β)σ(α)) (1.54b)

= N
(
(1 + 2c2)Φ0 + 2cΦI

)
, (1.54c)
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where N is a normalization constant. Optimizing the atomic orbitals produces a wave-
function capable of describing bond dissociation. However, this uses only two basis function
orbitals (minimal basis set), which is typically insufficient to describe highly polarized bonds.
Hurley and co-workers [56] in the 50s developed the perfect pairing (PP) approach which
works for multiple bonds each with its singlet excitation. Later, Goddard and co-workers
[57] in the 70s generalized this approach for any basis set, i.e. Eq. 1.52 included all basis
functions. This method was called generalized valence bond (GVB) theory, while Gerratt
et al. developed an almost identical formalism named spin-coupled valence bond (SCVB)
[58, 59] at about the same time. Note that the spin-coupling between pairs is added as
an additional variational parameter, and removing the spin-coupling parameters from the
GVB/SCVB gives back the PP method [60] which had a reduced compute cost compared to
the “full GVB”. Cullen reformulated the PP wavefunction using the (conventional) coupled-
cluster ansatz [61]. Head-Gordon and co-workers explored reviving other GVB methods and
variants with the coupled-cluster ansatz allowing more practical calculations [61–65].

VB methods without the coupled-cluster approach resemble CASSCF in their compu-
tational cost. Yet, they offer the advantage of being closely related to chemical concepts,
allowing chemical interpretation of accurate wavefunctions [66]. Both VB methods and
CASSCF recover the static correlation [67], which is the part of the correlation associated
with bond breaking or the polyradical nature. Static correlation usually resides in the va-
lence space and is characteristic of the system, while dynamic correlation requires many
virtual orbitals and is more universal [11, 68]. Nonetheless, many definitions exist for the
difference between the two types of correlation [69]. Although VB methods describe single
bond breaking very well, they suffer from missing the dynamic correlation and dispersion,
making these methods not widely used for chemical applications.

Accordingly, there have been many efforts to reproduce the energy of the methods dis-
cussed to any arbitrary accuracy [47, 68] by exploiting the locality of the electron-electron
integrals, which are the basis of the difficult term in the Hamiltonian, r−1

12 . Note that these
methods are only applicable to insulating systems where the occupied and virtual energies
are well separated. Such treatments are capable of reducing the asymptotic scaling of any of
the methods mentioned earlier to linear in principle while achieving that is rather daunting
in practice.

1.3 Density Functional Theory

Density functional theory (DFT) starts with two Hohenberg-Kohn (HK) theorems [70]. The
first asserts that there is a one-to-one mapping between any Vext potential and the ground
state density. This means knowing the potential gives the density and vice versa. The second
applies the variational principle, proving that the ground state density is unique for a given
potential.

The formulation for DFT is somewhat different from the wavefunction-based methods
discussed earlier, and we will only give a brief summary here and refer interested readers to
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Refs. [71–76]. It is implied from the first HK theorem that the ground state wavefunction is
implicitly described by its density. As such, the exact ground state energy can in theory be
obtained from the density, ρ(r), by evaluating the energy functional of the density. In this
formalism, the electronic Schrödinger equation from Eq. 1.6 is replaced by

E0 = min
ρ
E[ρ] = min

ρ

(
T [ρ] + Vee[ρ] + Vext[ρ]

)
, (1.55)

where Vext is the external potential energy, normally the mere nuclear attraction energy.
Without knowing the exact form of the electron-electron interaction energy functional, Vee[ρ],
it is possible to partition it to:

Vee[ρ] = VJ[ρ] + Vx[ρ] + Vc[ρ], (1.56)

where VJ is the known classical Coulomb repulsion, while Vx and Vc are the unknown exchange
and correlation energy functionals, respectively, which are the quantum terms. These two
terms are often combined into one exchange-correlation functional, Vxc.

Early attempts estimated different parts of the functional for the uniform electron gas
(UEG), most famously the Thomas-Fermi-Dirac model for the UEG [77–79]. In that limit,
the kinetic energy and the exchange energy can analytically be shown to be:

T [ρ] =
3

10
(3π2)2/3

∫
ρ(r)5/3dr (1.57)

Vx[ρ] = −3

4

( 3

π

)1/3 ∫
ρ(r)4/3dr (1.58)

Exciting at first, these models failed to do any useful chemistry, primarily because of large
errors in the kinetic energy density functional. Using the Hohenberg-Kohn energy functional
is known as orbital-free DFT since treatment has been limited to the density, with no care
to orbitals.

In a similar spirit, a breakthrough was made by Kohn and Sham (KS) reintroduced
fictitious orbitals [80]. Kohn-Sham DFT (KSDFT) formalism is based on minimizing the
energy of one Slater determinant, ΦKS, made of orbitals, yet the energy evaluation uses a
functional that is blind to these orbitals. The orbitals are found by modifying the Fock
operator to be (

− 1

2
∇2 + V̂ext + Ĵ [ρ] + V̂xc[ρ]

)
|χi⟩ = ϵi |χi⟩ , (1.59)

where V̂ext(r) is the external potential, Ĵ(r) is the Coulombic potential to the density, and V̂xc
is the exchange-correlation potential. The kinetic energy is evaluated using the KS orbitals,

Ts = ⟨ΦKS| − 1

2
∇2 |ΦKS⟩ =

∑
i

⟨χi| −
1

2
∇2 |χi⟩ , (1.60)

which is the exact kinetic energy of electrons of the non-interacting system. The exchange-
correlation functional takes the form

V̂xc[ρ] =
δ

δρ

(
T [ρ] − Ts[ρ] + Vx[ρ] + Vc[ρ]

)
(1.61)
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which can in principle recover the exact energy. Note the subtraction between the two
terms on the right-hand side to substitute the approximate Ts in Eq. 1.60. The Kohn-Sham
formalism is transformative because it gives exact Vext, J , and Ts, leaving only the Vxc to be
unknown.

Exchange-correlation functional

Many attempts have been made to approximate the exchange-correlation functional. The
different functionals are usually thought of as rungs on Jacob’s ladder as suggested by John
Perdew [81]. The rungs ascend from the “hell of Hartree” with no exchange or correlation
onto the “heaven of chemical accuracy” of 1 kcal/mol. The rungs are briefly discussed below.

The first rung up from hell is to include some local density information, which initially
used the Slater exchange, Vx in Eq. 1.58. While the simplest form of the local density
approximation (LDA) is the Thomas-Fermi-Dirac model, now LDA refers to functionals
that use a local function of the density, ρ(r), to attain exactness for the UEG. Indeed, the
next two rungs on Jacob’s ladder are the generalized gradient approximation (GGA) [82–84]
and meta-GGA (mGGA) [85–87], which use the first and second gradient of the density.
Such information can in principle permit exactness for other systems, such as slowly varying
electron gases. These three take the general forms

VLDA[ρ] =

∫
ρ(r)f(ρ(r))dr (1.62)

VGGA[ρ] =

∫
ρ(r)f(ρ(r),∇ρ(r))dr (1.63)

VmGGA[ρ] =

∫
ρ(r)f(ρ(r),∇ρ(r), τ)dr, (1.64)

where f() is a function of the density or its gradients with some parameters, and τ is the
kinetic energy density. This covers the first three rungs of the ladder. These three rungs
scale O(N3) with system size since they are dressed Hartree models with a larger prefactor
arising from the numerical integration of the exchange-correlation functionals.

The fourth rung on the ladder contains hybrid functionals which add exact exchange
to the exchange-correlation functional in Eq. 1.59. The purpose of the exact exchange is
to counter-act the self-interaction error in DFT, where the electron interacts with its own
density through Ĵ that is not guaranteed to cancel with V̂xc. The self-interaction error is
also referred to as the delocalization error since infinitely-separated molecules can spuriously
have a fractional number of electrons. To remedy this error, some of the exact exchange is
added as an extra term in Eq. 1.59 as is done in global hybrids [88]. While global hybrids
suffer from less self-interaction error, the problem persists. Using the HF wavefunction and
evaluating the DFT energy, as is done in density-corrected DFT [89, 90], can improve cases
suffering from this error [91, 92]. Alternatively, the long-range exact exchange can be added
to recover the HF limit for distant electrons [93, 94]. Known as range-separated hybrids, they
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interpolate between the short-range exchange functional and the long-range exact exchange
of HF using a smooth continuous function. This approach, despite being somewhat empirical,
has been successful in making the most accurate density functionals based on large datasets
of reactions [95]. Impressively, methods in this rung still scale similarly to HF at O(N4)
scaling because of the exact exchange, yet have mean errors lower than correlated methods.
Of this rung, ωB97X-D [96] and ωB97X-V [97] have demonstrated very high accuracy [95]
and are used in Chapter 3 and Chapter 4 of this thesis.

The fifth rung on our ascension to heaven is the inclusion of parameters that depend not
only on the occupied orbitals but also on the virtual orbitals. These typically include some
parametrized component of the MP2 contributions as is done in double-hybrid functionals
[98]. These offer some of the highest accuracies for modern DFT although they have higher
scaling at O(M5) from the MP2 part. Methods in this rung are difficult to optimize due to the
double-counting of the correlation energy. This has not stopped even more challenging recent
proposals to minimize a multi-determinant wavefunction using the Kohn-Sham Hamiltonian
[99, 100]. A depiction of Jacob’s ladder with the five rungs discussed is shown in Fig. 1.2.

Figure 1.2: Jacob’s ladder as proposed by Perdew. Figure adapted from Ref. [97].

The exchange-correlation functionals so far relate to the short-range of the correlation
through approximate damping of the electron-electron repulsion. The long-range correlation
such as dispersion requires a different treatment. There have been two very important
advances in the non-local correlation. First, Grimme’s empirical “-D” functionals, whose
form is borrowed from the force field community, add an r−6

AB attractive term between atoms
(damped at a short distance), parametrized for each atom [101–103]. The second approach
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was to design a van der Waals density functional (vdW-DF) which relies completely on the
density [104, 105]. These take the form

Vnlc[ρ] =

∫ ∫
ρ(r)Φ(r, r′)ρ(r′)drdr′ (1.65)

where Φ(r, r′) is the non-local correlation kernel. An important functional of that class was
developed by Vydrov and Van Voorhis [106–108] which contains only 3 empirical param-
eters. This is an impressive accomplishment considering some exchange-correlation func-
tionals contain more than 50 parameters [109, 110]. The parametrization fever culminated
with the development of DM21 [111], training an exchange-correlation functional with neural
networks containing thousands of parameters. More parameters are not necessarily better
when it comes to density functional approximations [112] although today’s most accurate
functionals are semi-empirical and parameterized. Much work in recent years has explored
the transferability to systems not seen in the training process [95] as well as the ability to
produce the correct energy derivatives [113].

On the philosophical difference between ab initio and empirical methods in
quantum chemistry: Initial developments within wavefunction-based methods and DFT
were both motivated by ideal cases where the theory works exactly. The Slater exchange in
Eq. 1.58 is exact for the non-interacting uniform electron gas, for example. The HF energy
in Eq. 1.15 is the exact energy for one Slater determinant, the simplest form of an antisym-
metrized wavefunction, and is exact for non-interacting electrons (as exploited in KSDFT).
It is an unfortunate fact of the universe that molecules are neither uniform electron gases
nor made of one Slater determinant; we have an exact answer for a different question. That
exactness at one limit while deviating at others gives chemists an assessment tool for the
correctness of these answers by examining the physics. For example, the natural orbital
occupation numbers of the true wavefunction are a non-biased measure of the correctness of
the Hartree-Fock energy. Similar arguments can be made with GVB or CASSCF when, for
example, the number of electrons unpairing is known upon varying some coordinate of the
chemical system or for MP2 in the weak-correlation regime presumed in the perturbative
treatment. This very important indicator may potentially be lost to the supremacy of epis-
temology and empiricism. Parameterizing a method, whether done for the MP2 correlation
or the exchange-correlation functionals, has only statistical significance, and nothing can be
said about the correctness of these methods for a particular system. In other words, the
dichotomy between the physics and the DFT parameters means little can be said about the
correctness of a given approximation from the physics of a given system, aside from the one
Slater determinant treatment. However, more can be said by the extensive benchmarking
of density functionals giving us strong statistical confidence in their accuracy within certain
areas of chemistry. This fundamental difference makes parameterized methods more useful
as black-box methods for a wide range of chemical systems, while some wavefunction meth-
ods require a certain level of quantum chemistry knowledge and understanding to apply and
extract information for a specific chosen system. It is unsettling to think that even the most
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statistically accurate density functionals developed are not exact for any system, not even a
hypothetical one.

1.4 Wavefunction Analysis

The previous sections were concerned with evaluating the energy of a many-electron system.
Once that is known, the derivatives of the energy can tell us many properties (observables)
of the system, that are difficult or impossible to evaluate accurately without quantum me-
chanics. Another evolving feature of quantum chemistry is to run numerical experiments
to understand why a system exhibits the chemistry it does. While the first of these rea-
sons relies on experimental observables, the chemical understanding is rather murky as it
lacks numerical falsifiability. Although parsimony is one of the tenets of science, chemical
frameworks such as Lewis structures and chemical reaction arrows have been powerful pre-
dictive tools for chemists long before the advent of modern quantum chemistry. This entices
quantum chemists to quantify these chemical frameworks and make them more robust, and,
perhaps, more extensible.

Give us insight, not numbers.

Charles Coulson [114, 115]

Population Analysis

The simplest description of the wavefunction for chemists is the effective charge on each
atom. An early attempt made by Mulliken [116] who proposed

QA = ZA −
∑
µ∈A

(
PS

)
µµ
, (1.66)

where QA is the effective charge on atom A with nuclear charge ZA, P is the electronic
density matrix in a given atom-centered basis and S is the overlap of those basis functions.
The trace of PS gives the number of electrons, and the Mulliken population partitions the
density between different atoms depending on which atoms the basis function is centered on.
Since the trace is invariant to cyclic permutation, Eq. 1.66 can be also written as

QA(α) = ZA −
∑
µ∈A

(
SαPS1−α

)
µµ

(1.67)

where α can be any real number. Löwdin chose α = 0.5, similar to symmetric orthogo-
nalization [117]. Both of Mulliken and Löwdin population analyses suffer from a strong
dependence on the basis set used, and in general, become worse as S deviates from the
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identity. This naturally occurs as the rank of the GTO basis set is expanded towards com-
pleteness. Another failure mode can be constructed by providing disproportionately more
basis functions to some atoms, consequently assigning more charge to these atoms, with a
single-center expansion being the extreme limit.

The failure of Mulliken and Löwdin population analyses has led to the emergence of two
schools of thought. First, improve the way in which orbitals are assigned to atoms, which
in essence changes the representation of P and in particular the summation condition (basis
tagging) in Eq. 1.66. Two, assign electrons to atoms through spatial numerical integration
of the density, ρ(r). The latter offers the nice property of removing the dependence on the
basis set, at the expense of requiring a partition of space into atomic volumes, which itself
contains an element of arbitrariness.

Of the first school of thought, Weinhold’s natural population analysis is a popular one
[118]. Each atom gets its own natural atomic orbitals formed by diagonalizing the block
of the density matrix P of the basis functions of that atom. Then, occupancy-weighted
symmetric orthogonalization is used instead of Löwdin’s population analysis in Eq. 1.67.
Mayer’s effective atomic charges [119] differ by treating the atomic subblocks of P and S
differently. Another subclass of methods uses a minimal basis set to assign the density, where
the overlap becomes small and both Mulliken and Löwdin populations provide very similar
results [120–122]. A recent method known as intrinsic atomic orbitals has gained a lot of
popularity [122]. This method employs an exact projector of the density into a minimal basis
set. This method is discussed in further detail in Chapter 3 of this thesis. Alternatively, the
molecular atomic orbitals method makes a minimal basis with no reference minimal basis
set. Its development and results are discussed in great detail in Chapter 2.

Of the density-based partitioning methods, many interesting approaches have been devel-
oped. Most prominent is Bader’s quantum theory of atoms in molecules (QTAIM) approach
[123, 124]. Between every pair of bonded atoms, there exists a point at which the gradient of
the density is zero. This point is called the bond critical point, and it divides the electronic
density between the two atoms in question. This method is very interesting and had many
further developments [125] and critiques in the literature [126, 127]. Another approach is to
find the charges that provide the least squares fit of the electrostatic potential grid [128]. The
electrostatic potential is evaluated on the van der Waals radius of atoms, which makes atoms
not represented in the molecular van der Waals radius (buried inside the chemical system)
have undetermined charges. Last but not least, Hirshfeld’s charges [129, 130] are found by
fitting the molecular density to the density of the isolated atoms. The least squares fit in-
terpolates between the different states of the atom, neutral and charged, with the constraint
of the total charge of the system.

Although the methods discussed above were for reproducing effective charges (the atomic
monopoles), they often require minimal changes to also reproduce higher moments predic-
tions [131]. Atomic dipoles, quadrupoles in particular are of interest for molecular mechanics
applications, as they better approximate the quantum mechanical density compared to sole
atomic charges.
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Oxidation State

Oxidation state is the effective integer number of electrons on an atom or ligand in a com-
plex. In other words, every electron pair is assigned to a center or group following established
rules such as those recommended by IUPAC [132, 133]. It is very useful in understanding
the reactivity of metals in inorganic chemistry and catalysis. Although the concept is very
prevalent in introductory chemistry courses, it is not observable and cannot be measured in
the lab. However, many chemical properties relating to reactivity and spectroscopy depend
directly on the commonly accepted oxidation state, making it a very relevant and respected
concept in chemistry [134]. Many different approaches in quantum chemistry attempt then to
give predictions that match our chemical intuition and what is taught in chemistry courses.
These approaches are discussed (and extended) in Chapter 3 of this thesis. Note that round-
ing up (or down) the atomic charge alone is not the same as the atomic oxidation state. This
is simply due to the fact that rounding a sum of numbers is not necessarily the sum of the
rounded numbers.

Molecular Orbitals

If the eigenfunctions of the hydrogen atom Hamiltonian are the famous atomic orbitals,
then what are the eigenfunctions of the molecular Hamiltonian? The answer is rather more
difficult since the many-body wavefunction does not possess simple functions. In the case
of a single Slater determinant, the eigenfunctions of the Fock operator are the canonical
molecular orbitals. The energies of these orbitals describe electron ionization or affinity from
these orbitals in the zeroth-order picture by Koopman’s theorem [4, 135]. Similarly, the
eigenfunctions can be thought of as the empty space (“hole”) left by an ionized electron or
the new state of (“particle”) an attached electron. Both of these are approximate connections
since they are missing orbital relaxation and electron correlation. The Dyson orbitals are
more rigorously based in exact quantum mechanics because they incorporate both of the
missing effects back and relate to observables of excited states and ionized systems [136].

A generalization of these orbitals is common in the quantum chemistry literature. By
diagonalizing the 1-particle density matrix (1PDM) of any wavefunction,

P = CΛC† (1.68)

the natural orbitals can be found as columns of the matrix C. Note that in Eq. 1.68
the matrix P is assumed to be in an orthogonal representation. Otherwise, a generalized
eigenvalue problem is used. The diagonal matrix Λ of occupation numbers is strictly 1’s
for occupied orbitals and 0’s for the virtual orbitals of a single Slater determinant, such as
the HF or KSDFT wavefunction. For correlated methods, this is not true, and all of the
natural orbitals exhibit some occupancy. The eigenvalues of Λ can therefore indicate the
multi-determinant nature of the chemical system. It is worth mentioning that methods like
the correlated orbital theory fold the excitations back to the occupied orbitals to contain
some amount of correlation [137].
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Canonical orbitals tend to spread over the whole system and transform as the irreducible
representations consistent with the symmetry of the system. Since the virtual orbitals are
related to the attachment of electrons to the system, they may couple to the continuum [138,
139]. For example, in a GTO basis, the lowest unoccupied molecular orbital (LUMO) in the
complete basis set limit corresponds to a free particle, of which there is an infinite number
of. The canonical virtual orbitals of KSDFT contain some correlation and tend to be better
behaved although their energies have a different picture [71, 140]. The description of KS
canonical orbitals and energies is often discussed in the context of Janak’s theorem [141].

Since the HF and KSDFT energies are invariant to occupied-occupied unitary rotations,
many alternative pictures can emerge by specifying a quantity to optimize and fixing these
degrees of freedom. Boys localization minimizes the variance of orbitals [142], Pipek-Mezey
localization minimizes the population spread of orbitals [143], and Edmiston-Ruedenberg
maximizes the orbital’s self-repulsion [144], to name a few. Interestingly, all of these lo-
calization procedures give core, lone pair, and bonding orbitals, restoring the valence shell
electron pair repulsion (VSEPR) picture that is taught in introductory chemistry courses
to predict molecular geometries and interactions. The use of these bonding orbitals is very
relevant to the VB theory discussed earlier. Since orbitals are not observables, quantum
chemists often say: “orbitals are not real.” Some have even called bonding orbitals unicorns,
often talked about but never observed [145]:

“The problem was that the physical picture of a chemical bond in terms of the
complicated wave function did not appeal at all to the imagination of chemists
who were used to living with unicorns. The heuristic chemical bonding models
were easy to write and they had proven to be very helpful as classification system
and as predictive tools for experimental chemistry. Chemists had become so
intimate with their unicorns that they attained the status of real living beings.”

Localizing virtual orbitals is of great importance in correlation methods. For GVB the-
ory, antibonding orbitals are needed to start and converge the calculation [146, 147] as will
be discussed and demonstrated in Chapter 2. In other methods where all excitations are
involved, localization of the virtual orbitals can reduce the scaling of the methods by cal-
culating asymptotically fewer two-electron integrals. The earliest of these attempts was the
work by Pulay, where the complementary projector of the occupied space is used [33, 34].
Subotnik et al. have produced orbitals that best resemble the atomic orbitals after project-
ing out the valence virtual orbitals [148]. Most recent attempts are occupied-specific virtual
orbitals [149] and the domain-based local pair natural orbitals [150, 151]. Many more local-
ization methods for occupied and virtual orbitals are in the literature and are discussed and
contrasted elsewhere [152–162].
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1.5 Non-covalent Interactions

The difference in energy between a non-covalently (or covalently) bonded complex and the
infinitely separated constituent fragments is the binding energy. It determines the amount of
energy required to separate the system as well as the relative population of the bonded species
according to a Boltzmann distribution. While most covalent bonds are stable at ambient
conditions, non-covalent interactions are typically much weaker, and with binding energies
of only a few kBT at room temperature, they are relevant to condensed phase simulations
such as self-assembly, crystal engineering, and biological systems [163–166].

Non-covalent interactions are often explained by the permanent and induced electro-
statics between the two fragments which can be approximated classically. Other important
interactions such as charge donation and van der Waals have no classical analog [167]. While
the tendency of the different interactions to increase or decrease can be predicted from ob-
servables of the system, exact numbers are more difficult to discern. For example, a larger
dipole moment or polarizability typically results in a larger electrostatic interaction, and
ionization potential and electron affinity give indicators of the direction and magnitude of
charge donation. However, quantifying the different components of interaction can be dif-
ficult and even contentious at times. Although the ‘correct’ decomposition of the energy
may be difficult (or even impossible) to unfold, a method with clearly erroneous predic-
tions should not be considered. By this process of elimination, one can get to methods that
give reasonable predictions for many systems. Below, we discuss two common methods for
decomposing non-covalent interactions.

SAPT

In the limit where the molecules interact weakly, perturbation theory is a reasonable approx-
imation to the interaction terms [168–170]. A common choice is the symmetry-adapted per-
turbation theory (SAPT) where the Hamiltonian is split between inter- and intra-molecular
interactions. The double perturbation theory Hamiltonian between fragment A and B is
then

Ĥ = F̂A + F̂B + λ
(
ĤA − F̂A + ĤB − F̂B

)
+ ξV̂AB (1.69)

This formalism is similar to that of MP2 in Eq. 1.29, except for separating the Hamiltonian
into on-fragment terms and the intermolecular interaction term given by

V̂AB = −
∑

i∈A,b∈B

Zb

rib
−

∑
a∈A,j∈B

Za

raj
+

∑
i∈A,j∈B

1

rij
, (1.70)

where here the indices i, j run over electrons and indices a, b run over nuclei. Since there are
two powers of expansion, energy terms are donated by E(mn), where m is for expanding in
powers of ξ (intermolecular interaction) while n is for expanding in powers of λ (correlation).
Furthermore, the wavefunction of the two fragments should be antisymmetrized,

Ψ = AΨAΨB (1.71)
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where A is the antisymmetrizer of Eq. 1.11, and ΨX is the HF wavefunction of fragment
X, antisymmetrized on X. Energy terms relevant to the antisymmetrized wavefunction are
donated by ‘exch’ as will be discussed below.

Depending on the level of perturbation theory used, many variants exist such as SAPT0,
SAPT2, SAPT2+, etc., and the interested reader should refer to Refs. [170–173]. Here we
will limit the discussion to the simplest form, the SAPT0 energy,

ESAPT0 = E
(10)
elst + E

(10)
elst−exch + E

(20)
ind + E

(20)
ind−exch + E

(02)
disp + E

(02)
disp−exch + δEHF (1.72)

Energy terms recovered from different powers of λ are correlation terms, such as dispersion,
E

(02)
disp . Meanwhile, expanding in powers of ξ, the first-order energy recovers electrostatics,

E
(10)
elst , and the second-order recovers induction, E

(20)
ind . Each ‘exch’ term is the difference

between the energy from the Hartree product wavefunction and the antisymmetrized wave-
function as in Eq. 1.71. Because the perturbative energy is not guaranteed to be equal to the
HF interaction energy, the difference in energy without correlation terms is required. This
term is given by,

δEHF = EHF −
(
E

(10)
elst + E

(10)
elst−exch + E

(20)
ind + E

(20)
ind−exch

)
(1.73)

where EHF is the HF energy of the two fragments. This treatment is for the HF wavefunction
but has been extended to other correlated methods and KSDFT [171, 174]. Note that there
have been two main uses for SAPT. The relevant one for our discussion is decomposing
the interaction energy between two fragments. Alternatively, many have used SAPT to
efficiently calculate the interaction energies of large clusters of weakly-interacting molecules,
where calculating the interaction energy is too computationally expensive by accurate CC
methods [175].

Intermolecular Interaction

In the long-range, SAPT energy terms are in agreement with how intermolecular interactions
should be described [167]. The electrostatics term is the Coulombic interaction between two
densities. By multipole expansion of the densities, multipole-multipole interactions can be
obtained. These electrostatic terms take the form

Eelst =
∑
l,l′

QA
l ·Cll′ ·QB

l′

r1+l+l′
(1.74)

where QX are multipole expansion of the charge of fragment X, l, l′ are the angular mo-
menta of the multipolar expansion of the two fragments, and Cll′ is some tensor connecting
the two multipolar expansions involving the orientation information between the different
fragments. The main takeaway from this is the denominator, r1+l+l′ , that can tell us about
the range of the interaction. For example, a charged species interacting with a neutral frag-
ment with a dipole will have an interaction with the leading term of r−2 of the inter-fragment
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distance. The interaction in Eq. 1.74 is exact if the summation index is taken to infinity
but often truncated to dipoles, quadrupoles, and rarely octupoles. Moreover, the dipoles
and quadrupoles are observables, and hence the interaction energy can be calculated from
observables. Alternatively, the quantum mechanical densities can be used to obtain the
permanent electrostatics term.

Because a charge can increase the magnitude of a dipole, there is more Coulombic energy
to be included. In particular, the multipoles inducing each other is a higher-order term and
describes the polarization energy. The dipole polarizability describes how easily a dipole can
be induced and is very relevant to the polarization energy. Again, expanding the density in
multipoles, one can estimate the polarization energy to be,

Eind ∝
∑
l,l′

QA
l ·Tll′ · αB

l′

r2+2l+2l′
+
αA
l ·Tll′ ·QB

l′

r2+2l+2l′
(1.75)

where the α’s correspond to vector field polarizabilities and Tll′ are non-trivial coupling
tensors relating to the orientations of the two fragments. Notice that this treatment arises
from the second-order perturbation theory, very similar to E

(20)
ind in SAPT. The induction of

the multipoles gives rise to higher-order inductions, and thus a self-consistent field formalism
can be used [176].

Dispersion is a quantum mechanical effect often described as instantaneous dipoles be-
tween molecules. The charge density fluctuation is attractive when aligned, so configurations
with simultaneous polarization contribute to the ground state energy. Although the London
dispersion force resembles polarization in its dependence on polarizability and the intermolec-
ular distance dependence, it is purely quantum mechanical. Indeed, the leading dispersion
term is r−6 analogous to the instantaneous dipoles. The generalization of London dispersion
is the Casimir-Polder equation [177, 178], which can describe the experimentally observed
attraction between two neutral metal slabs [179], known as the Casimir effect. The simplest

description of dispersion in SAPT is the genuine dispersion, E
(02)
disp , and exchange dispersion

E
(02)
disp−exch, similar to MP2.

The last attractive term is the charge transfer (CT) where some charge is delocalized
from one fragment to another. Typically the highest occupied molecular orbital (HOMO) or
other high-energy orbitals can be donated to an empty orbital of the other fragment, such as
antibonding orbitals. Partial charge donation to a σ∗ orbital destabilizes the bond and raises
the σ orbital energy, resulting in bond elongation observable in X-ray diffraction experiments
[180, 181]. Although attempts have been made to recover CT from SAPT [182], the CT term
does not naturally emerge from the SAPT formalism. Instead, it gets distributed between
induction and the δEHF term. This shortcoming of the method has resulted in many studies
denying the existence of CT, attributing the interaction to σ-hole, the electropositive area
associated with the empty σ∗ (virtual) orbital. The description of antibonding orbitals is
further discussed in Chapter 2.

While all the terms mentioned above are attractive, molecules repel each other at the
short range due to Pauli repulsion. Because electrons cannot occupy the same space, they
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are pushed out from their ground state configuration as the molecules attract. This effect is
purely quantum mechanical and is captured in SAPT by the exchange term, E

(10)
elst−exch, which

is non-negative. It scales exponentially with the intermolecular distance. In general, a higher
Pauli repulsion and being in the overlapping region means different energy decomposition
analysis methods will typically yield different results. In this region, all the exch terms
become appreciable and the perturbative treatment becomes less accurate.

ALMO-EDA

Variational alternatives of SAPT have been developed. Most relevant here is the absolutely
localized molecular orbital energy decomposition analysis (ALMO-EDA) [183–185]. In the
ALMO-EDA framework, the interaction energy is split into 3 components upon successive
releasing of constraints. First, the electronic energy is evaluated after the fragments are put
into one antisymmetrized wavefunction. This defines the frozen energy which consists of
dispersion, Pauli repulsion, and permanent electrostatics. Allowing each fragment to relax
within its own virtuals gives rise to polarization energy. Finally, removing this constraint
gives back the energy lowering due to the charge transfer. This method is discussed in further
detail in Chapter 4.

1.6 Outline

To find fantastic molecular orbitals, this thesis starts with how to generate and identify
antibonding orbitals in Chapter 2. Further, by combining the antibonding orbitals with the
rest of the occupied orbitals, modified atomic orbitals can be obtained and are discussed also
in Chapter 2. A new way to localize the occupied orbitals is presented in Chapter 3, which is
used for oxidation state assignment relevant to chemical understanding and insight. Lastly,
the force decomposition analysis is developed by using the analytical nuclear displacement
derivatives of the energy decomposition analysis (EDA) and is presented in Chapter 4. This
method is used to get chemical insight as well as to validate a force field method. A brief
summary is given below for each chapter of this thesis.

Chapter 2: Valence Antibonding Orbitals And Molecular Atomic
Orbitals

While bonding molecular orbitals exhibit constructive interference relative to atomic or-
bitals, antibonding orbitals show destructive interference. When full localization of occupied
orbitals into bonds is possible, bonding and antibonding orbitals exist in 1:1 correspondence
with each other. Antibonding orbitals play an important role in chemistry because they
are frontier orbitals that determine orbital interactions, as well as much of the response of
the bonding orbital to perturbations. In this Chapter, we present an efficient method to
construct antibonding orbitals by finding the orbital that yields the maximum opposite spin
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pair correlation amplitude in second-order perturbation theory (AB2) and compare it with
other techniques with increasing the basis set size. We conclude the AB2 antibonding or-
bitals are a more robust alternative to the Sano orbitals as initial guesses for valence bond
calculations, due to having a useful basis set limit. The AB2 orbitals are also useful for
efficiently constructing an active space, and work as good initial guesses for valence-excited
states. In addition, when combined with the localized occupied orbitals, and relocalized, the
result is a set of molecule-adapted minimal basis functions that is built without any reference
to atomic orbitals of the free atom. As examples, they are applied to population analysis
of halogenated methane derivatives, H-Be-Cl, and SF6 where they show some advantages
relative to good alternative methods.

This work has been published [186] in The Journal of Chemical Physics.

Chapter 3: Oxidation State Localized Orbitals

Oxidation states represent the ionic distribution of charge in a molecule and are significant
in tracking redox reactions and understanding chemical bonding. While effective algorithms
already exist based on formal Lewis structures, as well as using localized orbitals, they
exhibit differences in challenging cases where effects such as redox non-innocence are at
play. Given a density functional theory (DFT) calculation with chosen total charge and spin
multiplicity, this Chapter reports a new approach to obtaining fragment-localized orbitals
that are termed oxidation state localized orbitals (OSLO), together with an algorithm for
assigning the oxidation state using the OSLOs and an associated fragment orbital localization
index (FOLI). Evaluating the FOLI requires fragment populations, and for this purpose, a
new version of the intrinsic atomic orbital (IAO) scheme is introduced in which the IAOs
are evaluated using a reference minimal basis formed from on-the-fly superposition of atomic
density (IAO-AutoSAD) calculations in the target basis set, and at the target level of theory.
The OSLO algorithm is applied to a range of challenging cases including high valent metal
oxide complexes, redox non-innocent NO and dithiolate transition metal complexes, a range
of carbene-containing TM complexes, and other examples including the potentially inverted
ligand field in [Cu(CF3)4]

−. Across this range of cases, OSLO produces generally satisfactory
results. Furthermore, in borderline cases, the OSLOs and associated FOLI values provide
direct evidence of the emergence of covalent interactions between fragments that nicely
complement existing approaches.

This work has been published [187] in Journal of Chemical Theory and Computation.

Chapter 4: Force Decomposition Analysis

Computational quantum chemistry can be more than just numerical experiments when meth-
ods are specifically adapted to investigate chemical concepts. One important example is the
development of energy decomposition analysis (EDA) to reveal the physical driving forces
behind intermolecular interactions. In EDA, typically the interaction energy from a good-
quality density functional theory (DFT) calculation is decomposed into multiple additive
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components that unveil permanent and induced electrostatics, Pauli repulsion, dispersion,
and charge-transfer contributions to non-covalent interactions. Herein, we formulate, im-
plement and investigate decomposing the forces associated with intermolecular interactions
into the same components. The resulting force decomposition analysis (FDA) is potentially
useful as a complement to the EDA to understand chemistry, while also providing far more
information than an EDA for data analysis purposes such as training physics-based force
fields. We apply the FDA based on absolutely localized molecular orbitals (ALMOs) to an-
alyze interactions of water with sodium and chloride ions as well as in the water dimer. We
also analyze the forces responsible for geometric changes in carbon dioxide upon adsorption
onto (and activation by) gold and silver anions. We also investigate how the force compo-
nents of an EDA-based force field for water clusters, namely MB-UCB, compare to those
from force decomposition analysis.

This work has been submitted to The Journal of Physical Chemistry.
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Chapter 2

Valence Antibonding Orbitals And
Molecular Atomic Orbitals

2.1 Introduction

Virtual orbitals are important in chemistry as they play a central role in molecular orbital
theory. From a computational standpoint, orbital mixing between occupieds and virtuals
determines the optimal occupied orbitals in mean-field Hartree-Fock theory [4–6] and Kohn-
Sham density functional theory [71, 72, 75, 95]. In wavefunction theory, electron correlation
is typically described by amplitudes such as the pair correlations describing the simultaneous
promotion of two electrons from occupied to virtual orbitals. The virtual orbitals span the
unoccupied space, and the choice of representation is important. Canonical virtual orbitals
are delocalized levels that are appropriate for electron attachment. Localized virtuals, such
as the redundant non-orthogonal basis of atomic orbitals projected into the virtual space [33,
34], permit development of efficient local correlation methods, because the amplitude tensors
describing correlation become sparse [188]. Other prescriptions for localized orthogonal
virtuals exist [148, 158, 189], as well as proposals to form sets of virtuals that are specifically
optimized for correlations that involve a given occupied level, as will be discussed below.

The virtual orbitals span the entire unoccupied space, which can be contrasted with
the intuitive notion of antibonding orbitals that exist in 1:1 correspondence with bonding
orbitals. The 1:1 correspondence is evident from constructive and destructive interference of
a pair of 1s-type functions on two hydrogen atoms in H2:

σ = N (1sA + 1sB) (2.1)

σ⋆ = N⋆ (1sA − 1sB) (2.2)

Antibonding orbitals themselves play a central role in describing chemical reactivity [190–
195] of one molecule with another through donor-acceptor interactions between a high-lying
occupied of one species with a low-lying antibonding orbital of the other. Frontier orbital
theory is constructed on these ideas. Antibonding orbitals also play an important role in
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describing strong electron correlations. A simple example is the stretching of the H-H bond
which leads, in a minimal basis, to a strong increases in the amplitude for σσ̄ → σ⋆σ̄⋆

excitation which breaks the bond.
While the antibonding orbitals are intuitive [192–194, 196], it is nonetheless not routine

to extract them from modern quantum chemistry calculations performed in extended basis
sets, which return canonical orbitals. By contrast, in a minimal basis description of hy-
drocarbons, the space of antibonding orbitals is naturally spanned by the canonical virtual
orbitals. In larger basis sets however, different methods have been developed to extract the
antibonding orbitals, often by relying on projection back onto some chosen minimal basis
[147, 189, 197–200], typically a tabulated one for a specific free-atom Hartree-Fock energy
eigenstate. For example, Schmidt et. al. found antibonding orbitals by performing an SVD
of the overlap between the virtual orbitals and a minimal basis to produce valence virtual
orbitals [189]. Some methods have been developed to produce a minimal basis specifically
adapted to a molecular environment [121, 201], but those are non-linear optimization pro-
cedures that are often iterative and costly. One famous method that does not rely on a
reference minimal basis is the Natural Bond Orbital (NBO) procedure [190, 191], where
the density matrix coupling between multiple atom-tagged orbitals is utilized to produce
bonding and anti-bonding orbitals. However, atom tagging of basis functions plays a critical
role in the NBO procedure – in fact, the standard NBO method is specific to atom-centered
orbital (AO) basis calculations. Few methods cut the umbilical cord to the minimal basis in
producing antibonding orbitals. Aside from the Sano antibonding orbitals [146] (discussed
below), Foster and Boys [152] suggested oscillator orbitals which are virtual orbitals with
the maximum dipole from localized occupied orbitals.

Local correlation has been intensively studied [33, 34, 151, 200, 202–209], leading to the
conclusion that dynamic correlation can be well approximated using domains of localized
virtual orbitals that are in the same spatial region as a localized occupied orbital [33, 34].
This reduces the 4th rank tensor of pair correlation amplitudes to an asymptotically linear
number of significant elements. Nevertheless, all virtual orbitals are required for post-SCF
methods such as coupled cluster theory that recover dynamic correlation, rather than just
the much smaller set of valence virtual orbitals. By contrast, static or strong correlation,
resides mostly in the valence virtuals (i.e. the antibonding orbitals). Thus complete active
space (CAS) methods that seek to describe strong correlation require only a description of
the valence virtuals. Methods in this class include CASSCF, [6, 39–41, 210] spin-coupled
valence bond (VB) [53, 67, 211, 212], and approximations such as generalized valence bond
(GVB) [57], coupled cluster valence bond (CCVB) [61, 64, 65], etc. CAS, GVB and CCVB
methods thus need an initial guess for the antibonding orbitals. We do note that the orbitals
associated with key amplitudes for strong correlation are not necessarily spatially localized
[213–216].

One method used to obtain initial guess antibonding orbitals is the so-called Sano pro-
cedure [146]. In brief, after localizing a set of occupied orbitals using standard methods
[142–144, 158], the Sano procedure finds the virtual orbital that has maximum exchange
interaction with each given localized occupied orbital. The idea of maximizing exchange is
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very old [138, 139] and comes from its predecessor, the modified virtual orbitals [217, 218]
(note that modified virtual orbitals have been since used to refer to any non-canonical set of
virtual orbitals [219]). The resulting orbitals are symmetrically orthogonalized to yield a set
of valence antibonding orbitals. This method has worked quite well for GVB-PP and CCVB
calculations in moderately sized basis sets [64, 65, 213, 220, 221]. In this work we will show
that the Sano procedure shows undesirable behavior with increasing the size of the AO basis
set. This motivates the need for a better behaved alternative. We suggest that finding the
antibonding orbital which gives the largest first order perturbation amplitude for exciting
an electron pair from a given bonding orbital is a suitable alternative. A range of numerical
results confirm this to be the case. These antibonding orbitals can be viewed as a specific
instance of orbital specific virtual [205–207].

2.2 Theory

Defining the set of antibonding orbitals

Solving the mean field Hartree-Fock (HF) equation self consistently gives the lowest energy
single Slater determinant electronic wave function. To solve the many-body problem, one
needs to include the missing correlation energy [222]. Second order Møller-Plesset (MP2)
perturbation theory [22, 223] offers a useful and computationally inexpensive approximation
to treat the correlation yielding the following expression in the case of restricted HF orbitals:

E(2) =
occ∑
ij

virt∑
ab

τabij (ia|jb) (2.3)

where

τabij =
2(ia|jb) − (ib|ja)

ϵi + ϵj − ϵa − ϵb
(2.4)

This expression folds together contributions from the correlation of two electrons of opposite
spin (OS), with amplitudes:

tabij =
(ia|jb)

ϵi + ϵj − ϵa − ϵb
(2.5)

together with the contribution of correlations of electrons with the same spin. The two-
electron repulsion integrals (ERIs) over spatial orbitals describing the interaction of each
occupied with each virtual are:

(ia|jb) =

∫
dr1ϕi(r1)ϕa(r1)

∫
dr2r

−1
12 ϕj(r2)ϕb(r2) (2.6)

Let us collect the ERIs associated with occupied orbital i into the symmetric matrix Ki,
where:

Ki
ab = (ia|ib) (2.7)
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Ki is positive semi-definite, and thus the eigenvector belonging to its largest eigenvalue will
correspond to the virtual level with the strongest exchange interaction with occupied level
i. That is the Sano prescription [146] for finding the antibonding orbital associated with i.

We can likewise define a matrix of second order pair correlation amplitudes, Ti, associated
with a given occupied orbital:

T i
ab = tabii (2.8)

This matrix is negative semi-definite since the denominators are negative for the ground
state determinant. We can therefore find the largest OS pair-correlation amplitude as the
lowest eigenvalue, timax of Ti, and the associated virtual orbital, |i∗⟩ =

∑
a |a⟩ cai∗ is the

eigenvector, with expansion coefficients cai∗ in the original virtual basis:∑
b

T i
abcbi∗ = timaxcai∗ (2.9)

Upon repeating for each occupied level, most naturally in a localized representation,
and using similar arguments to Kapuy’s zeroth in the Fock and 2nd order in correlation
approximation [224, 225], we suggest that this is an appropriate non-iterative way to find a set
of antibonding orbitals in 1:1 correspondence with the bonding orbitals. This approach may
be contrasted with Sano’s suggestion to obtain the virtual orbital with maximum repulsion
from the bonding orbital by solving the eigenvalue problem for each orbital using Ki rather
than Ti. Inclusion of orbital denominators in Eq. 2.9 provides a clear physical meaning of the
antibonding orbital as having strongest pair correlation amplitude with its parent bonding
orbital. As will be demonstrated numerically later, this property also dramatically improves
basis set convergence relative to the Sano definition.

We will refer to these virtual orbitals as “second order antibonding” (AB2) MOs to
emphasize their second order origins, and their 1:1 correspondence with bonding MOs. In
terms of existing literature, the AB2s are directly related to the “orbital-specific virtual”
(OSV) orbitals [205, 206] that are sometimes used to evaluate the correlation energy. Each
AB2 orbital is the most important OSV for a given localized bonding orbital. Of course the
reason for selecting the amplitudes associated with MP2 is computational efficiency. The
exact limit of this procedure would be to diagonalize the corresponding exact (i.e. from Full
CI) doubles amplitudes; T i

ab, via Eq. 2.9.
A closely related alternative that has some advantages over Eq. 2.9 above is to define the

space of valence antibonding orbitals from the virtual-virtual block of the MP2 one-particle
density matrix [226, 227]:

Pab =
∑
ijc

tacij t
bc
ij (2.10)

Upon diagonalizing, the (M − O) eigenvectors with largest occupation numbers span the
valence antibonding orbital space, and, together with the occupied space, complete the span
of a molecule-adapted minimal basis. Localization of these valence virtual orbitals will then
yield an alternative to the localized virtuals above. The advantage of this approach is for
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cases where there is no simple 1:1 mapping between bonding and antibonding orbitals, as
discussed more later.

The virtual orbitals obtained this way are the valence subset of the “frozen natural
orbitals” (FNO) [226, 227], and we emphasize that they are not generally localized in contrast
to the AB2 MOs. They are close to the virtual natural orbitals associated with PMP2 as
defined by the gradient of the MP2 energy [228–230], with the caveat that only the virtual-
virtual block is diagonalized.

Population analysis using the effective minimal basis

Finding a suitable set of antibonding orbitals provides the missing part of the valence space
not spanned by the occupied orbitals. Thus the union of the occupied space and the space
of antibonding orbitals spans the space of an effective minimal basis. It is well accepted
that full valence CASSCF wavefunction is spanned by an effective minimal basis within the
molecule for this reason [39, 40]. Accordingly, localizing the union of the occupied orbitals
with the antibonding orbitals reveals a set of molecule-adapted atomic orbitals (MAOs) [9,
10]:

CMAO = {Cnon-bonding} ⊕ {Localize(Cbonding ⊕Cantibonding)} (2.11)

For a given pair of well-localized bonding and antibonding orbitals (say σ and σ∗), this
procedure amounts to inverting Eqs. 2.2 to discover the corresponding MAOs even though
we may be using a very extended basis, or even a non-atom-centered basis, such as plane
waves or a real-space grid, to perform the calculations.

The resulting MAOs, χ are thus expressed in terms of the AO’s, ω, as χ = ωCMAO

. The MAOs are orthogonal, and typically localize onto atoms. The MAOs exactly span
the space of the occupied orbitals, and can be used for population analysis among other
things [40, 116, 201, 231–236]. Let us denote p as an MAO label for χp, which is centered at
rp = ⟨χp|r|χp⟩. Using A,B as atom labels, and given that the density matrix in the MAO

basis is PMAO = C†
MAOSPSCMAO, one can make a population analysis as follows:

p ∈ A ⇐⇒ |rp −RA| = min
B

(|rp −RB|) (2.12)

QA = ZA −
∑
p∈A

PMAO
pp (2.13)

where QA and ZA are the atomic charge and the nuclear charge, respectively. Such a pop-
ulation analysis has no dependence on atom-tagging of the underlying basis, and does not
rely upon a reference minimal basis. Therefore it generalizes nicely to plane wave basis and
real space methods. If the orbitals are unrestricted, we construct antibonding pairs and the
MAOs for the alpha and beta spin spaces independently.

This approach to generating an MAO representation does have some limitations. First,
it assumes that there is a 1:1 mapping between bonding and antibonding orbitals. One class
of exceptions can be found in electron deficient molecules (e.g. LiH will not recover 2p-like
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orbitals on Li, and BH3 will not recover a 2pz orbital on B). Such species can be said to
have “virtual lone pairs”, whose identification is a problem that we shall not address here.
A second class of exceptions lie in species such as cyclopentadiene anion, where there are 3
semi-localized π occupied orbitals, but the valence space only admits 2 antibonding orbitals.
Thirdly, in symmetric systems with multiple Lewis structures (e.g. C6H6), the MAOs will
derive from localized bond and antibonding orbitals corresponding to a single Lewis structure
and may not reflect the indistinguishability of the atoms. Broadly, we can say that this MAO
approach is readily applicable to neutral molecules with a single dominant Lewis structure.

Implementation details

Computational efficiency is very important for quantum chemistry in order treat molecules
that are as large as possible for given computational resources (computer speed, memory
size, etc). Our AB2 implementation uses exact 4-center integrals in a basis of Gaussian-type
atomic orbitals (other alternatives such as using auxiliary basis expansions can also be readily
implemented). Each step with its computational complexity is shown in Fig. 2.1. Note that
for the figure and the discussion here we use O, V , and N for the number of bonding orbitals,
virtual orbitals, and AO basis functions, respectively. We start by making a pseudo-density
Pi = CiC

†
i for each bonding orbital, i. To generate the two-electron integrals (µν|λσ), Q-

Chem [237] only generates significant µν (i.e. AO basis) pairs to some target numerical cutoff,
yielding a total that we term as (NN)cut. (NN)cut scales quadratically (i.e. (NN)cut ≈ N2)
for small systems but approaches linear scaling (i.e. (NN)cut ∝ N) in the limit of large
system size. The integrals are made and contracted on-the-fly with the bonding orbitals’
pseudo-densities to make bonding-specific exchange integrals Ki

µν with compute effort scaling
as O(O(NN)2cut). The Ki

µν matrices are then transformed into the virtual space as Ki
ab in

Eq. 2.7 with compute cost scaling as O(OV N2+OV 2N). Asymptotically this is the dominant
step in this method unless more careful thresholding is considered [238]. Then, we divide
by the appropriate denominator to get T i

ab in Eq. 2.8 (with O(OV 2) effort). Lastly, we
diagonalize Ti for each bonding orbital to get the AB2 antibonding orbitals as in Eq. 2.9
with O(OV 3) effort. Note that the last step can in principle be made O(OV 2) since we are
only solving for the eigenvector with the largest amplitude in each matrix. We can contrast
this procedure with the modified FNO approach which has a dominant computational step
that scales as the 5th power of molecule size: constructing Pab in Eq. 2.10 with complexity
of O(O2V 3).
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Figure 2.1: A chart illustrating the mathematical steps needed to construct AB2 orbitals
with the appropriate computational complexity for each step indicated. Here, O, V , N , and
(NN)cut refer to the number of occupied orbitals, virtual orbitals, AO basis functions, and
significant AO pairs, respectively.

One reason for the efficiency of the AB2 approach compared to FNO comes from focusing
on the bonding orbitals one at a time rather than the whole occupied space at once. It is
then important to start by localizing the occupied space, which is known to be a cubic
scaling iterative procedure for e.g. the Boys and Pipek-Mezey localization measures [239,
240]. Then, one must also distinguish between localized orbitals with different character:
specifically core, bonding, and non-bonding, e.g. lone pairs. Our implementation uses an
automatic bonding detection option that runs before AB2. The detection process is simply
determined by Pipek’s delocalization measure [241] on Mulliken charges, where measures
amounting to 1 indicate an orbital localized on an atom (core or non-bonding) and measures
around 2 correspond to orbitals split between two atoms.

Computational details

All methods discussed here were implemented in a developer version of Q-Chem 5 [237]. The
geometries used for molecular calculations were optimized at the ωB97X-D/def2-TZVPD
level of theory. All geometries are included in the Supplementary Material (SI).

2.3 Results and discussion

We will compare different approaches to generating effective antibonding orbitals: in par-
ticular we are interested in whether the second order antibonding (AB2) MOs significantly
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improve upon the Sano antibonding orbitals, as measured by usage-relevant metrics obtained
from a set of numerical experiments. We will first examine orbital plots, orbital energies, and
orbital variances. We then test the applicability of Sano and AB2 MOs to several valence
correlation methods: coupled cluster valence bond (CCVB) [64, 65], complete active space
configuration interaction (CASCI) [242–245], and complete active space self-consistent field
(CASSCF) [39–41, 210]. Next, we look into their uses for describing valence excited states.
For basis set, we are using the Dunning basis set family [246] and Ahlrichs [247]. These are
available in Q-Chem 5.3 with an automated detection of bonding orbitals.

Orbitals, orbital Energy, and orbital variance

We start by looking at the σ∗ orbital of H2, as shown in Fig. 2.2, evaluated by the Sano
procedure, the AB2 approach, and CAS(2,2) (performed as 1-pair perfect pairing). It is
visually clear that the Sano σ∗ orbital is contracting as the basis set is improved. Fig. 2.3
displays the orbital energy (diagonal matrix element of the Fock operator) and the variance
(⟨r2⟩ − ⟨r⟩2) of the σ bonding orbital, and the Sano and AB2 models of the antibonding
orbital. The variance confirms that the size of the Sano σ∗-orbital contracts with basis size,
while its orbital energy increases (reflecting increasing electron confinement) unsatisfactorily.
By contrast the behavior of the AB2 orbital is very close to the bonding orbital, with pleasing
stability in both energy and variance as the basis set is converged towards completeness.
The stark difference is due to Sano orbitals including high energy orbitals to maximize
the exchange interaction whereas AB2 biases against those higher energy orbitals with the
denominator penalty in Eq. 2.8.
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Figure 2.2: Comparison of σ∗ orbitals predicted by Sano, AB2, and CCVB in H2 with
increasing size of the basis set. For this problem, CCVB is identical with (2,2) CASSCF.
Orbitals were plotted with 10 contour isovalues logarithmically spaced [0.1,10], 5 for each
phase.
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Figure 2.3: Comparison of orbital energy (diagonal matrix element of the Fock operator)
for σ, Sano, and AB2 orbitals for H2 with increasing size of the basis set. Bottom graph
compares the variance.

Next we look into C2H4, where the localization scheme of Boys produces mixed σ − π
orbitals (sometimes called banana bonds), while Pipek-Mezey predicts separate σ and π
orbitals. We will therefore use Pipek-Mezey orbitals whenever we encounter π orbitals.
Inspecting the σ C-C bond in C2H4 in Fig. 2.4 shows that the shape of the occupied Pipek-
Mezey and converged CCVB bonding orbitals both do not change much upon increasing
the size of the basis set. By contrast, when looking at σ∗ in Fig. 2.4 we see even poorer
behaviour of the Sano C-C antibonding orbital as a function of basis set size than we did
for H2. This is confirmed in Fig. 2.5 where we compare the orbital energy and the orbital
variance of the bonding and the antibonding C-C σ orbital in C2H4. The Sano σ∗ orbital
does not converge with the size of the basis set, with the variance decreasing, and the energy
increasing. By contrast, the AB2 σ∗ orbital converges rapidly both in terms of energy and
variance for similar reasons to before.
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Figure 2.4: Comparison of σ orbitals predicted by Pipek-Mezey localization with those found
by converging CCVB (top row) and σ∗ orbitals predicted by Sano, AB2, and CCVB (bottom
row) in C2H4 with increasing size of the basis set. Orbitals were plotted with 10 contour
isovalues logarithmically spaced [0.1,10], 5 for each phase.

In Fig. 2.5 we compare the orbital energy and the orbital variance of the bonding and the
antibonding orbitals for the C-C π in C2H4. The shortcomings of Sano seem to be much less
severe in π∗ orbitals. We believe this is due to the diffuse nature of the π orbitals making
the maximum exchange, thus spatial locality, sufficient to describe the π∗. However, we can
still see that the orbital energy and variance do not converge for Sano while they do for AB2,
and converge to drastically different orbital energy and orbital variance.
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Figure 2.5: Comparison of orbital energy (diagonal matrix element of the Fock operator) for
the C-C σ orbital with the σ∗ (left) and π orbital with the π∗ (right) predicted by Sano and
AB2 in C2H4 with increasing the size of the basis set. It can be seen that Sano orbitals do
not converge with increasing the basis set cardinality whereas AB2 converges much quicker
especially for the σ orbital. Bottom graphs compare the spatial variance for the same orbitals
where Sano contracts orbitals further with increasing the basis set, less so for the π orbital.
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The quantitative advantage of the AB2 antibonding orbitals relative to the Sano orbitals
seen so far can also become qualitative advantages in systems with more complex electronic
structure. One such example is Cu2, which, considering that the valence state of Cu can
be taken as 3d104s1, is isoelectronic to H2. The σ orbital (HOMO) of Cu2 is shown in the
upper panel of Fig. 2.6, along with the optimized correlating orbital from CCVB, as well as
the Sano and AB2 antibonding orbitals. Maximizing exchange results in a Sano antibonding
orbital that resembles an empty π-bond between the two metals. By contrast, the AB2 and
CCVB orbitals look qualitatively identical.

Figure 2.6: Comparison of the shape of the orbitals in Cu2 where the σ bond is used to
produce Sano and AB2 antibonding orbitals. While the AB2 method produces very similar
orbitals to CCVB, the Sano approach fails to give a qualitatively correct antibonding orbital.

CCVB iterations

The CCVB method is a simple low-scaling approximation [64, 65, 213] to exponentially
scaling spin-coupled valence bond theory that can separate a system of 2n electrons into
fragments with spin purity, provided that UHF can also reach the dissociation limit. One
price to be paid for these advantages is a challenging orbital optimization problem: the CCVB
orbitals have no invariances to rotations within the active space, in contrast to CASSCF.
Hence a good initial guess is very important. Sano orbitals [146] have been commonly as a
starting guess for valence bond methods [63, 213] such as CCVB due to their resemblance
to antibonding orbitals. For simple alkanes, we examine how many iterations are needed
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to converge a CCVB calculation with Sano and compare with AB2 shown in Fig. 2.7 with
increasing the molecule size and the basis set size (using the Dunning cc-pVXZ sequence of
basis sets [246]). Since the double-zeta basis set does not involve many high energy orbitals,
both methods converge almost at the same speed. Upon increasing the size of the basis
set, overly-contracted Sano orbitals deviate more from the optimal antibonding orbitals, and
therefore require far more iterations to converge. For this reason, we recommend using AB2
orbitals as a starting guess for valence bond methods instead of the Sano orbitals.

Figure 2.7: Number of iterations needed to converge CCVB calculations on alkanes of in-
creasing size, with increasing ζ of the basis set. This shows a relatively constant number
of iterations needed for AB2 regardless of system size, while the number of iterations rise
unfavorably for the Sano guess in large basis sets. Geometric direct minimization (GDM)
[63, 248] is used to determine the steps.

CAS methods

The relative fraction of correlation energy recovered using AB2, Sano, FNO or other choices
for antibonding orbitals to complete an active space can help us discern which ones are most
appropriate to use for configuration interaction with fixed orbitals, as well as for a CASSCF
initial guess. As a simple example, we stretch the C-C bond in C2H4 while keeping the
geometry of the methylene groups fixed at those of the equilibrium ground state geometry
of ethene. Looking at Fig. 2.8, we see that canonical virtual orbitals capture less and less
correlation as the def2 basis set is improved from SVP to TZVPP to QZVPP. We also observe
that the gap between Sano and AB2 orbitals increases with increasing the size of the basis
set. Finally, we can see that FNO and AB2 orbitals perform almost identically and are the
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best choices, with AB2 having lower compute costs. Nonetheless, it is encouraging that both
follow the CASSCF energies closely.
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Figure 2.8: CAS-CI (12e,12o) for C2H4 using canonical, Sano, AB2, and frozen natural
orbitals in three different basis sets. Restricted HF (RHF) and Unrestricted HF (UHF)
curves without any correlation correction are shown for comparison.
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Since the AB2 and FNO orbitals seem to capture quite a lot of the static correlation,
we sought to compare them to CASSCF orbitals. In Fig. 2.9 we are comparing the smallest
singular value of the overlap matrix between the CASSCF orbitals and those of canonical,
Sano, AB2, and FNO, at the optimized geometry of C2H4. Once again, the canonical orbitals
become dramatically worse with increasing the basis set size. Sano and FNO both become
very slightly worse with increasing the size of the basis set, namely by increasing zeta, while
AB2 seems to be nearly basis set-independent.

Figure 2.9: The smallest singular value from the overlap of CASSCF (12e,12o) orbitals with
those from Sano, AB2, FNO and canonical orbitals. Canonical orbitals with the lowest
energy and FNOs with the highest occupancy were selected. Canonical orbitals are differ
strongly from optimized CASSCF orbitals while AB2 orbitals have the highest agreement.

Excited States

Since the AB2 orbitals seem to be good guesses for GVB methods, and yield orbitals close
to converged CASSCF orbitals, this led us to believe that they could also provide a good
description of valence excited states. State-specific methods, such as orbital-optimized DFT
(OO-DFT) [249] need a suitable starting guess, as convergence is typically to the nearest
stationary point [250], so we used Sano and AB2 guesses for the π → π∗ excitation in
methanal (H2CO). For our purposes we employed the square gradient minimization method
[250] which looks for saddle points in the orbital Hilbert space to converge restricted open-
shell Kohn-Sham (ROKS) [249, 251, 252]. In Fig. 2.10 we compare the overlap of the π∗

orbital from converged singlet open shell HF calculations with Sano and AB2 orbitals. For
this excitation, AB2 orbitals overlap the optimized orbital by at least 0.9, and vary minimally
with the size of the basis set. We note here that aside from the double-zeta case, converging
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the excited state starting from the Sano orbital sometimes lands on a Rydberg excited state,
while AB2 landed on the correct π∗ state in all cases.

Figure 2.10: The overlap of the converged ROKS-HF antibonding orbital with the Sano and
AB2 initial guesses in H2CO for the π → π∗ excitation. The π∗ orbital is well described by
AB2 regardless of basis set size.

Population Analysis

Antibonding orbitals belong to the valence space, and contribute to making a minimal basis
that can be used to gain insight into chemistry, for instance via population analysis to assign
effective charges on each atom. The population analysis we present here is constructed from
the union of the occupied space and the antibonding orbitals without dependence on the basis
set used. To study our atomic charge predictions and compare it to some other methods in
the literature, we look into fluoro- and chloro-substituted methanes which have been studied
theoretically [253–255] and experimentally [256, 257]. These simple systems are nonetheless
interesting because they manifest the effect of substituting electron withdrawing halogen
atoms of different sizes and electronegativities for hydrogen in methane. How consistent or
inconsistent are different atomic population analysis schemes as descriptors of these chemical
substitutions?

In Fig. 2.11 we examine the effect of progressive substitution of hydrogen by chlorine and
fluorine in the methane molecule on the computed net charge at the C atom. We consider
some commonly used methods, specifically charges on electrostatic potential grid (ChElPG)
[128], iterative Hirshfeld (Iter-Hirsh) [129, 130], intrinsic atomic orbitals (IAO) [122, 258], and
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the method presented in this work, molecular atomic orbitals (MAO). Most obviously, the
charge transferred upon halogen substitution will depend strongly on the electronegativity
difference between X and H. Furthermore, while halogens are more electronegative than
hydrogen (or carbon), the electron donating capacity of C is not unlimited, and so we expect
the first halogen substituted to pull away a greater fraction of an electron from C compared
to the next, and so forth. Such a change will also have some dependence on the X vs H
electronegativity difference. With these preambles aside, atomic charges are not observables
and therefore no single answer should be viewed as strictly correct. Nevertheless, we can
examine the results of each population analysis for signs of incorrectness relative to physical
intuition.

Figure 2.11: The charge on the carbon atom for successive chlorination and fluorination of
methane predicted using four different population analysis methods (see text for the names).
The triangle, square, hexagon, and octagon correspond to charges using def2-SV(P), def2-
SVPD, def2-TZVPD, and def2-QZVPD, respectively.

For instance, while all methods agree that the C–H bonds of CH4 are polarized Cδ−Hδ+,
and all likewise agree that the C–F bonds of CF4 are polarized Cδ+Fδ−, different methods
predict different polarities for the C–Cl bond in CCl4. Perhaps the most counterintuitive
result is that the population on C becomes more negative via ChElPG upon going from
CHCl3 to CCl4 despite the higher electronegativity of Cl vs H. At the other extreme, iterative
Hirshfeld suggests that the change in C population with successive halogenation is linear,
as if the electron-donating capacity of C does not saturate. This is especially striking for
chlorination, and we suspect, as unreasonable as the ChElPG result for CCl4. By contrast,
we find no obvious fault with the MAO values, or with the IAO values for these interesting
test cases, although we prefer the slight negative charge for Cl in CCl4 predicted by MAO
(recalling the electronegativity of chlorine is 3.5 versus carbon at 2.5 on the Pauling scale)
relative to the slight positive charge predicted by IAO.
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Finally we examine an unusual linear molecule, which is the result of insertion of Be
into HCl, yielding H–Be–Cl [259, 260]. While H–Cl is polarized as Hδ+Clδ−, Be has lower
electronegativity than H, and so there will be substantial charge transfer. Indeed the ionic
limit would be H–Be2+Cl– . What then, is the actual charge distribution when we consider
the covalent character of the molecular orbitals? The calculated populations are shown in
Fig. 2.12, and it is immediately evident that predicted charges on Be vary widely. The
least polar picture comes from ChElPG and MAO, with q(Be)≈+0.5, while the IAO scheme
suggests q(Be)≈+1.35. How should we understand this dramatic difference and suggest
which might be more correct?

Figure 2.12: The charges on each atom in the BeHCl molecule predicted by the four methods
mentioned in the text. The triangle, square, hexagon, and octagon correspond to charges
using def2-SV(P), def2-SVPD, def2-TZVPD, and def2-QZVPD, respectively.

From the MAO perspective, there are two σ bonds involving Be, one with H and one
with Cl. Each is made from sp hybrid orbitals on Be, meaning that the p orbitals of Be are
at play in this σ bonding, as shown in Fig. 2.13. These bonds are both polarized away from
Be, as expected. The origin of the much larger IAO charge can now be understood. The IAO
reference minimal basis set, known as ’MINAO’ [122], does not include 2p orbitals for Be,
and therefore we are instead seeing essentially only the Be(2s) charge via the IAO approach!
Iterative Hirshfeld evidently struggles with a similar issue, leading to similar overestimation
of Be charge. Overall, this case nicely illustrates the advantages of the MAO population
scheme that is based entirely on the system at hand, rather than some reference atomic
orbitals or states.
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Figure 2.13: The union of the Boys localized bonding orbitals and their AB2 counterparts in
BeHCl forms a complete valence space. Performing a Boys localization on this set of valence
orbitals leads to molecule-adapted atomic orbitals that are intuitive and centered on atoms,
which can then be used for population analysis.

Next we study the hypervalent molecule, SF6, which has Oh symmetry, and whose chem-
ical bonding has long been of interest [261]. While empty 3d functions on sulfur are needed
to form 6 equivalent sp3d2 hybrids, the energetic cost of promoting electrons to the 3d shell
is too high for d-orbital participation in the bonding to be chemically important [67, 262–
265]. Rather, the bonding may be thought of as resonance between Lewis structures with
4 covalent S-F bonds, and 2 F− anions, with a formal charge of +2 on S [266]. Using Boys
localization produces 6 equivalent σSF orbitals, as shown at the left of Fig. 2.14. As expected,
these σSF bonds are strongly polarized towards the more electronegative fluorine atom. The
AB2 antibonding orbitals, also shown on the left of Fig. 2.14 are fascinating because contrary
to simple chemical expectations, they are not strongly polarized towards the sulfur atom.

Localizing the union of bonding and antibonding sets produces atom-centered MAOs,
where the sulfur valence orbitals are a set of 6 equivalent orbitals that are strongly polarized
towards the fluorine atoms, as shown in the third image of Fig. 2.14. These 6 functions are
linearly independent (though non-orthogonal), and combine with the conventional hybrid
orbital on each F to form the strongly polarized σSF orbitals. This hypervalent bonding
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problem is treated very naturally by the MAO analysis, while a minimal basis is insufficient
to describe the occupied space since one in principle needs a set of 6 sp orbitals on sulfur.
As measures of polarity, the calculated charges on S are +2.9 (IAO), +2.1 (Iter-Hirsh), and
+1.6 (MAO) in the def2-QZVPPD basis set. The IAO charge may overestimate the polarity
due to its minimal basis on S, while the MAO charge surely underestimates it, because the
MAO orbital assigned to S is actually quite strongly polarized towards F. So while the MAOs
themselves provide interesting chemical insight, they cannot resolve intrinsic limitations of
population analysis.

Figure 2.14: The union of the localized σSF bonding orbitals and the corresponding AB2 σ∗
SF

antibonding orbitals in SF6 forms a complete valence space describing the SF bonds (and
excluding the F lone pairs). Localizing the set of valence orbitals leads to 6 molecule-adapted
atomic orbitals on S (one is illustrated), showing no visual signs of d orbital participation.

There are some limitations associated with reducing the union of the localized occupied
orbitals and the AB2 antibonding orbitals to a set of MAOs that should be mentioned. First,
some conjugated π systems, such as benzene and C5H5

– , present a multiple minimum solu-
tion problem for orbital localization methods. Since our method relies on the localization
procedure heavily, we expect there will be inconsistencies in these systems. For example,
in benzene, there are different sets of solutions for the localized π orbitals, nominally cor-
responding to the two different Kekule structures. Using the Boys localized orbitals yields
populations that reflect D6H symmetry, while the Pipek-Mezey scheme gives alternating
charges on successive carbons going around the ring. There is a second class of molecules
that are inaccessible in our method. These are anions where the natural valence minimal
basis is too small to provide an antibonding orbital for each bonding orbital. One such
example is C5H5

– , the cyclopentadienyl anion. Forming the set of AB2 valence orbitals and
taking the union with the occupied space leads to a set of orbitals that cannot be localized
to atoms. Broadly, we can say that neutral species with a single Lewis structure are well-
handled by the approach described here; as well as some more complex bonding situations
like SF6 discussed above.
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2.4 Conclusion

We presented a relatively cheap, non-iterative procedure to produce a set of antibonding
orbitals that vary minimally with the size of the atomic orbital basis set from which they are
constructed. Specifically, antibonding second order (AB2) orbitals show far less variation
with basis than the Sano orbitals which are sometimes used as valence antibonding orbitals.
We showed that use of AB2 rather than Sano orbitals as initial guesses provides improved
convergence for valence bond methods (specifically CCVB), as well as for CASSCF. The
AB2 orbitals were successfully used as guesses for state-specific ROKS calculations of excited
states, where they better resemble the converged orbitals than does the corresponding Sano
orbital guess. We have shown how these AB2 orbitals can be used with the localized occupied
orbitals to construct an effective minimal basis that can be used for population analysis
among other things. Population analysis on the substituted fluormethane and chloromethane
sequence shows the method is stable and consistent with other common methods that accord
with chemical intuition. For the insertion of Be into HCl, the resulting charges show some
advantages. Overall, the AB2 antibonding orbitals are relatively efficient to compute and
quite useful for a variety of applications in quantum chemistry.
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Chapter 3

Oxidation State Localized Orbitals

3.1 Introduction

The oxidation state (OS) [134] is a venerable concept reaching back to the early days of
chemistry where the “oxydationsstufe” was introduced to rationalize the products obtained
from reactions with oxygen. The electron-gathering tendency of oxygen is captured via its
normal OS of −2 in compounds with ionic interactions, which is but one of the generally
accepted counting rules to assign the OS. After a thorough revision of the concept, the
IUPAC defines the OS of an atom as the charge of this atom after ionic approximation of its
hetero-nuclear bonds [132]. They further recommend that this is accomplished by writing
the Lewis structure of the compound of interest, and partitioning the electron pairs such
that each shared electron pair is given to the more electronegative of the two associated
atoms [133]. The IUPAC procedure is simple and generally effective, and for these reasons
should be the first resort in assigning OSs in new compounds of interest.

While the OS is a chemical concept of enduring value, it must be stressed that never-
theless, the OS of an atom is not itself a precisely defined observable. It may correlate with
observables such as x-ray absorption spectral shifts, but this requires calibration. Ultimately,
the validity of the OS depends on the extent of ionicity in the bonding. Thus the OS be-
comes less well-defined as the chemical bonding approaches the covalent limit of electron
pair sharing. Other situations such as ligand non-innocence [267] also can defeat normal OS
conventions. Indeed the IUAPC report on OSs in chemistry states that there are “limits,
beyond which OS ceases to be well-defined or becomes ambiguous”. This situation is no dif-
ferent than other valuable chemical concepts such as aromaticity [268–270], and should not
be viewed as a reason to discard the OS as something that cannot be measured. Instead, it
is a reason to have tools that go beyond electron counting to assess the electron distribution
in interesting and challenging borderline cases.

Electronic structure calculations directly yield the electron density, and therefore offer an
ideal starting point for probing the borderline cases. Thus the assignment of OSs in molecular
systems has drawn continuing attention in recent years [271–279]. Beyond the electron
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density itself, there is particular interest in the development and application of specific
schemes to extract OSs from electronic structure calculations, going beyond the (simple but
clearly not satisfactory) use of partial atomic charges or atomic spin densities [280–283].
Most electronic structure approaches to OS assignment are predicated on assigning each
electron pair (or individual electrons in case of open-shell systems) to one atom or ligand
within the system based on some strategy that generalizes simple counting approaches such
as the IUPAC definition. While we will concentrate on molecular systems in this work, it
must be mentioned that precisely the same issue exists for oxidation state assignments in
solid state materials [284–286].

Some years ago, Ramos-Cordoba et al. introduced a general OS elucidation method appli-
cable to any molecular system and wavefunction (single-determinant or correlated) [282] that
relies on Mayer’s effective fragment orbitals (EFOs) and their occupations [287, 288]. The
EFOs are obtained by diagonalization of the fragment’s density matrix, according to some
atom-in-molecule definition. For instance, in the case of QTAIM they lie spatially within the
fragment’s boundary, so they represent natural domain orbitals. The spin-resolved EFOs are
obtained independently for each user-defined fragment (typically the transition metal (TM)
and its ligands). They are sorted by decreasing occupation number, and electrons (or elec-
tron pairs for closed-shell systems) are assigned to them until one reaches the total number of
electrons. The fragment OS is then obtained by subtraction from the corresponding nuclear
charges. This effective oxidation states (EOS) analysis, also provides a measure to quantify
the extent to which the OS assignment is clear-cut, based on the difference in occupancy
between the last occupied and first unoccupied EFOs. EOS analysis has been successfully
applied to a wide range of systems [289]. The method notably deviates from the IUPAC
approach [132, 133] because individual bonds are never explicitly considered. That per-
mits EOS analysis to formally consider more than one Lewis structure at a time (i.e. treat
multireference wavefunctions) on an equal footing.

Single-determinant wavefunctions are invariant to unitary transformations within the
occupied molecular orbitals. While the canonical orbitals are typically delocalized (because
they are appropriate for ionization), this invariance can be exploited to generate a set of
localized orbitals (LO) based on some criterion [162]. This is directly possible within Kohn-
Sham density functional theory (DFT), which is the dominant electronic structure approach
[95]. The LO representation often produces orbitals that resemble the individual bonds in
the dominant Lewis structure, and it is then natural to apply the ionic approximation to
each LO individually, following the IUPAC definition more closely. However, since there is no
unique way to define localization, there is a slew of different localization schemes to produce
localized orbitals, namely Boys [290] Pipek-Mezey (PM) [143], Edminston-Ruedenberg (ER)
[144], or more recent realizations based on Cholesky decomposition of the density matrix
[158] and the fourth moment [160] or Knizia’s intrinsic bond orbitals (IBOs) [122], to name
a few.

This avenue has been explored by a number of methods [280, 281, 283]. Thom et al. [280]
first coupled orbital localization with population analysis in the localized orbitals bonding
analysis (LOBA) to assign the electrons associated with each LO. The LOBA method starts
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with orbital localization by a chosen scheme, and then obtains the atomic populations from
each localized orbital. Using either PM or ER localization together with Löwdin population
analysis produced quite robust results [273, 280]. In the original paper, the OS assignment
focused on the TM of the complex. A threshold of 60% in the atomic population was used
to decide whether the electron pair is assigned to the TM or not. Recently, some of us [291]
described an extension to the method, loosening the weight of the aforementioned threshold
in the OS determination, to allow the possibility of covalent assignment (split between two
atoms/fragments), and introducing a confidence measure for the assignment (either ionic or
covalent) of each electron pair.

In that work [291] we observed that for some of the most challenging systems such as
TM-carbenes, the LOBA method struggled to reach the accepted OS. Careful inspection
of the localized orbitals indicated that the first step of the procedure, namely the orbital
localization, was not always producing orbitals one could easily relate to a Lewis structure.
The LOs often involve several atomic centers with appreciable contributions, which hinder
the process of OS assignment. Moreover, using a different localization scheme could also
lead to different OS assignments in some controversial cases. We concluded that a different
orbital localization scheme, tailored for the purpose of OS assignment, was necessary to make
progress in such cases.

A maximally robust procedure to assign OSs should rely on separating the localized
orbitals into fragments, for which the degree of locality of core or valence orbitals within each
fragment has no special relevance. Indeed there has been much development of specialized
methods that aim to specifically localize orbitals onto fragments [258, 292–299] rather than
maximizing a global measure of localization. Such methods have considerable value in energy
decomposition analysis of intermolecular interactions [185, 300], as well as for fragment
methods and embedding [258, 297, 301]. In our context there is a different need for fragment
localization. For instance, if two fragments A and B, each formally bearing nA and nB

electron pairs, are linked via a single bond with ionic character, then the OS should solely
depend on a single localized orbital involving both A and B, leading either to A+-B− or
A−-B+. On the other hand, since standard system-optimal orbital localization schemes do
not make a distinction between the contact atoms of the A-B bond and the remaining atoms
of A and B, a potentially better localization of the critical A-B bonding orbital may be
sacrificed for better overall localization of all nA + nB orbitals.

In light of the above considerations, there are several new components that are presented
here to enable assignment of OSs. First, we put forward a robust fragment-based orbital
localization scheme. For a given fragment, the resulting oxidation state localized orbitals
(OSLOs) comprise a full set of orbitals spanning the occupied space that are ordered by
spatial locality in the fragment. Second, to further characterize each orbital, given a set of
fragment populations, we introduce a Fragment Orbital Localization Index (FOLI) which
measures the population of each OSLO on a per-fragment basis. Third, to obtain the frag-
ment populations, a more robust Hilbert-space based population analysis based on Knizia’s
intrinsic atomic orbitals (IAOs) [122] is also introduced. Fourth, we use the above compo-
nents to develop an iterative algorithm to best select a subset of the OSLOs for each fragment
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to span the full occupied space. The oxidation state of a given fragment is then determined
by its number of assigned OSLOs relative to its total nuclear charge. Finally, with the new
procedure in hand, we turn to exploration of a variety of interesting borderline cases, with
focus on examples where LOBA was previously demonstrated to have some issues [291].

3.2 Methods

Oxidation States from Localized Orbitals (OSLO)

Starting with a single-determinant wavefunction built of nocc spin orbitals, the fragment
localization procedure is based on minimizing the radial spread functional from a given
reference point for fragment F , RF . For a TM atom, RF will be the atomic position; for a
ligand, RF will be its center of charge or charge. The minimization can be easily achieved
in the molecular orbital (MO) basis by building a spread matrix, LF , with elements

LF
ij =

∫
ψi(r)(r−RF )2ψj(r)dr, (3.1)

where ψi is the ith occupied MO. Eq. 3.1 simplifies to

LF
ij =

∫
ψi(r)r

2ψj(r)dr− 2RF ·
∫
ψi(r)rψj(r)dr + R2

F δij, (3.2)

where the first term contains the isotropic quadrupole moment matrix elements, the second
term involves the dipole matrix elements, and the third term is a merely a constant diago-
nal offset. The required matrix elements are readily available in many quantum chemistry
software packages. Diagonalization of the matrix LF

LFUF = UFΛF (3.3)

yields eigenvalues λFi = ΛF
ii and a corresponding set of nocc localized orbitals centered around

RF

ϕloc,F
i (r) =

∑
k

UF
kiψk(r), (3.4)

with their (squared) spreads given by the λXi values. When RF corresponds to an atomic
position, the localized orbitals obtained by this procedure reproduce the shell structure of
the atom, with core orbitals having the smaller spread values.

The target is to define the OS of M user-defined fragments of a molecular system, such
as the metal(s) and ligands of a TM complex. We localize around each fragment’s center of
nuclear charge and get nocc OSLOs for each of them (Mnocc altogether). Note that in cases
like polydentate or hapto ligands the ligand’s centroid may be far from the ligand’s nuclei, or
even coincide with that of the metal (e.g. TM-porphyrin compounds). Minimizing the spread
function is simple, non-iterative (no multiple minimum problem [240]), independent of any
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population assignment, and appealing. However, the OSLOs most strongly associated with
a fragment cannot always be chosen based on the smallest spread. For instance, in the case
of a TM center with some coordination sphere, OSLOs dominated by ligand contributions
can exhibit lower orbital spreads than the most diffuse TM orbitals (e.g. a 4s-type orbital
for a 3d metal). Similarly, when RF is the center of a ligand, some compact ligand-centered
OSLOs have a significant contribution from the neighboring TM center.

We therefore need a complementary measure to identify those OSLOs that are most
localized on a fragment. Using Pipek’s delocalization measure, [241] defined in terms of
fragment populations, N i

F =
∑

A∈F n
i
A, rather than atomic populations, ni

A, is a suitable
starting point:

Di = {
∑
F

(N i
F )2}−1, (3.5)

When an orbital is localized on a single fragment, then Di = 1. If the ith orbital is perfectly
delocalized across two fragments F and F ′ then N i

F = N i
F ′ = 1/2 and Di = 2, and so on.

Out of the OSLOs generated from fragment F with low delocalization measure, we are
interested in those that are also highly localized on fragment F . For this purpose, we
introduce the fragment orbital localization index (FOLI)

DF
i =

√
Di

N i
F

, (3.6)

The FOLI, DF
i , is 1 when orbital i is perfectly localized on that fragment (Di = N i

F = 1). The
FOLI DF

i → 2 when the orbital is perfectly delocalized over two fragments (Di = 2, N i
F =

N i
F ′ = 0.5). The FOLI gradually increases for OSLOs that are more delocalized and less

centered on fragment F . Note that while a FOLI value of DF
i = 1 means perfect fragment

localization, higher FOLI values can result from different instances of delocalization. For
example a FOLI value of 2 can also arise from 3 fragments with Di = 2.339 via NF = 0.584,
NF ′ = NF ′′ = 0.208.

How should one select the n most fragment-localized OSLOs from amongst the redundant
set of M · n candidates? One could select the nocc OSLOs with the smallest FOLI values
and assign them to their parent fragments. However, we have observed that this procedure
sometimes leads to linear dependencies among the selected OSLOs. We instead prefer the
iterative scheme depicted in Fig. 3.1. On the first iteration, the best localized orbital (in
the sense of smallest FOLI value) is selected and projected out from the occupied space for
the next iteration. The 2nd iteration begins by constructing a new set of M · (nocc − 1)
localized orbitals, followed by selecting and removing the best localized orbital. Iterations
continue until a total of nocc optimal fragment-localized orbitals are selected. In the case of
an unrestricted Slater determinant, the procedure is carried out for the α and β occupied
spaces separately, and individual α and β OSLOs are thus produced and assigned to each
fragment.

The basic algorithm is modified by introducing a tolerance (typically 10−3) associated
with the lowest FOLI values so that all OSLOs with DF

i values within the tolerance are
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Figure 3.1: Flowchart of the iterative OSLO algorithm, where the most strongly fragment-
localized orbitals (core and valence spectator orbitals) are projected out from the occupied
space before the least fragment-localized orbitals that are most relevant to OS assignment
are generated and inspected. This procedure has the desirable side-effect of improving the
fragment-localization of orbitals that are not selected on later iterations.
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selected in a given iteration. These orbitals are symmetrically orthogonalized and then
projected out from the occupied space for the next iteration. This strategy avoids the
problem that for symmetric systems, projecting out individual localized orbitals may result
in a symmetry-broken density matrix for the next iteration.

There are a number of aspects of the procedure that are worth discussing in some detail.
The localized orbitals obtained in the first few iterations are basically the atomic core orbitals
of the fragment’s atoms. As the iterative process advances, on-fragment localized valence
orbitals are produced. They correspond to orbitals not particularly involved in the bonding
between fragments, i.e. spectator orbitals. In the later iterations, the least-fragment localized
valence orbitals are eventually selected. They correspond to bonds (or dative bonds) between
fragments (e.g. TM-ligand orbitals). A nice side effect of the iterative procedure is that,
by first removing the more fragment-localized orbitals from the occupied space, the relevant
across-fragment orbitals are better localized on fragments (i.e. their FOLI values are smaller
than those obtained in the first iteration using the whole occupied space). The final result
thus depends to some extent on the order in which OSLOs are selected.

In borderline cases (where the FOLI-based selection is a close call) this may affect OS
assignment. The algorithm allows the user to explore alternative outcomes in borderline
cases by flagging when the OSLO selection procedure could branch into 2 (or more) paths.
Consider a simple case with a single bond between fragments F and G. At some point
in the iterative procedure, the corresponding bond localized orbital centered on F will be
produced. At the same time, a similar bond localized orbital will be produced in the OSLOs
associated with fragment G. The one with the smaller FOLI value is selected and projected
out from the remaining occupied space. In the following iteration, this bond orbital will be
absent from the new set of OSLOs obtained for both fragment F and G. If the F −G bond
is very non-polar (rare in TM complexes), the DF

i and DG
i values would be very similar, and

one can argue that instead choosing the OSLO associated with G would produce a plausible
alternative solution to selecting the one associated with F .

Our iterative algorithm automatically detects these (borderline) cases as follows. At
each iteration, linear dependencies are checked between the OSLO that is selected and that
with the second smallest FOLI value that is not selected (there may be multiple selected
and non-selected localized orbitals if their FOLI values are within the tolerance). If near
linear dependencies are indeed found and the difference in DF

i values is small enough, our
algorithm will print a diagnostic message. This allows the user to rerun the calculation,
toggling a branching flag that selects the OSLO with the somewhat larger FOLI value, and
proceed to obtain a second distinct solution.

To turn to OS assignment, we recall that each of the selected localized orbitals was
generated from a fragment center with a low FOLI value. This makes it natural to assign
the fragments’ oxidation states based on the originator fragment. That is the procedure
followed in the results reported here, and represents a “winner-takes-all” approach to the
OS, similar to the IUPAC rules. However, once the optimal set of orthogonal fragment-
localized orbitals are obtained, each orbital’s allegiance may be reassigned according to
the fragments’ populations, either in a “winner-takes-all” fashion again, or alternatively by
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allowing covalent assignments in non-polar cases, as described elsewhere [291].
An atomic partitioning scheme is necessary to evaluate the FOLI values. In this work,

we use two very different partitioning approaches to demonstrate that different reasonable
choices in fact work very similarly. First, we use the so-called Topological Fuzzy Voronoi Cells
(TFVC) atomic definition [302], a real-space scheme that is used in the effective oxidation
states (EOS) approach [282]. Second, we introduce a Hilbert-space based procedure based on
Knizia’s intrinsic atomic orbitals (IAOs) [122], where the reference minimal basis is obtained
on-the-fly at the chosen level of theory. This IAO-AutoSAD procedure is described below.

The IAO-AutoSAD Reference Minimal Basis

Hilbert-space methods to assign atomic or fragment populations so that the results do not
artificially depend on the underlying AO basis set often rely on using a minimal basis to
exactly span the occupied space [120, 121, 201]. Amongst many such possibilities, Intrinsic
Atomic Orbitals (IAOs) are perhaps the simplest, and have been shown to be robust for
population analysis [122, 258, 303]. The basic idea of IAOs is to rely on a projection onto a
reference minimal basis to facilitate atom-tagging.

Starting from a converged SCF solution, one projects the occupied MO coefficients, Cocc,
into the small reference minimal basis set and back to the big one as follows:

C̃occ = ortho(RlsRslCocc), (3.7)

Rsl = s−1Ssl projects from the big basis into the small basis, given that S and s are the overlap
matrices in the large and small basis sets, and Ssl is the matrix of overlaps between functions
in the small and large basis sets. In the same notation, Rls = S−1Sls projects from the small
basis into the big basis. After symmetric orthogonalization to restore orthonormality, the
so-called de-polarized orbitals are gathered in the matrix C̃occ.

The rectangular transformation matrix, A, from the large basis, {ωµ}, to the minimal
IAO basis, χIAO

α =
∑

µ ωµAµα, is produced by the following double projection step:

Als = ortho(PSP̃Sls + QSQ̃)Sls) (3.8)

P = CoccC
†
occ and P̃ = C̃occC̃

†
occ are the density matrices (i.e. occupied projectors) associ-

ated with the original occupied MOs and the de-polarized occupied MOs, respectively. Their
orthogonal complements are Q = S−1−P and Q̃ = S−1− P̃. Once the orthogonal IAOs are
available, the IAO atomic population of atom B is obtained as

NB =
∑
β∈B

(
PIAO

)
ββ

=
∑
β∈B

(
A†SPSA

)
ββ
. (3.9)

The reference minimal basis originally used [122] for construction of the IAOs is the
co-called “MinAO” set, which is the standard cc-pVTZ AO basis manually truncated to
a minimal basis. When the molecular calculation uses effective core potentials (ECPs),
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“MinAO-PP” was employed, which is cc-pVTZ-PP truncated to a minimal basis (i.e. ex-
cluding core AOs). However, this reference minimal basis fails to be valid for ECPs of other
sizes (i.e. larger or smaller core). These limitations that result from the MinAO reference
minimal basis are particularly relevant when dealing with transition metals and heavier
elements.

A universally applicable reference minimal basis is made on-the-fly from appropriate free
atom density matrices obtained with the same functional and basis set as the molecular
calculation. This is done using Q-Chem’s [237] so-called AutoSAD functionality, which
is normally employed to construct superposition of atomic density (SAD) initial guesses
for DFT calculations at the target level of theory. Sphericalization is necessary to ensure
proper shell structure in the reference minimal basis, since many atoms have partly occupied
degenerate orbitals. For simplicity as well as to avoid ambiguity, we use the ground state
of the neutral atom, although for some atoms, a case can be made for using different spin
or charge states. For open shell atoms, the unrestricted SCF equations are solved, and the
resulting α and β density matrices are spin-averaged as well as sphericalized.

The IAO-AutoSAD procedure first solves the following generalized eigenvalue problem
separately for each free atom, A:

PAcAα = SAcAαλα (3.10)

Each matrix is defined in the full basis of the free atom (rank nA), and PA is the sphericalized
and spin-averaged density matrix. The reference minimal basis set on atom A is defined by
choosing mA orbitals, corresponding to the fully and fractionally occupied atomic orbitals
(with λα ≥ 1

14
, such that the f shell is selected even for a cerium atom with a single f

electron). The set of selected column vectors {cAα} defines an nA×mA transformation to the
MBS, CA

MBS. The reference minimal basis has rank M =
∑

AmA with functions defined by
the direct sum of the atomic transformations:

T =
⊕
A

CA
MBS (3.11)

Given the N ×M transformation from the AO basis to the reference minimal basis, T, all
quantities needed to evaluate the IAOs with this MBS are available. For instance, referring
back to Eqs. 3.7 and 3.8, we see that s = T†ST and Ssl = T†S.

One must be aware that IAO orbitals and atomic charges do depend on the underlying
choice of reference minimal basis. Fortunately, our IAO-AutoSAD procedure shows results
that are generally very similar to using MinAO for problems where the latter can be applied
(i.e. no pseudopotentials). Some examples are shown in Fig. 3.2, for a wide range of AO
basis sets. This is encouraging, and sets the stage for the results we report for the OSLO
procedure in the following section. However, IAO charges do exhibit some dependence on
the reference minimal basis. For instance, the O atomic charge in H2O changes by 0.25e−

when using STO-3G as the reference minimal basis instead of MinAO or AutoSAD. For
IAO-AutoSAD applied to transition metals, the choice of atomic state also has an impact.
These issues may deserve further study in the future, as IAOs become more widely used.
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Figure 3.2: IAO atomic charges for H2O, CH4, and HCN where the crosses are charges from
calculations using the AutoSAD reference minimal basis, while the circles used the MinAO
basis [122]. All calculations are done with Hartree-Fock wavefunctions, and it is evident that
the two sets of results are nearly indistinguishable.

Implementation and Computational Details

We have completed two independent implementations of the OSLO method, which serves
as validation that both are correct, and also provides the opportunity to employ two differ-
ent approaches to evaluate the fragment populations. Adopting the IAO-AutoSAD Hilbert
space approach to charges described above, one of our implementations of the OSLO method
is within the Q-Chem program package [237], and consequently uses OSLO fragment pop-
ulations and FOLI values that are obtained analytically. Our second implementation uses
the Topological Fuzzy Voronoi Cells (TFVC) real-space atomic definition [302], within the
APOST-3D [304] package. The numerical evaluation of the TFVC charges used the atom-
centered Becke multicenter quadrature scheme [305] with 40 × 146 grid points (per atom).

Geometry optimizations were performed by using the ωB97X-V density functional [97]
with the def2-TZVP basis set (all electron for light atoms (through Kr) and with def2-ECP
for heavier atoms) [247]. The ωB97X-V functional performs very well for both main group
[95, 306] and transition metal compounds [307, 308]. Vibrational frequency calculations, to
confirm minima on the potential energy surface, were computed at the same level of theory.
Wavefunctions, energies and orbital localizations were also evaluated at the same level. All
DFT calculations were performed with the Q-Chem package [237], while the OSLO analysis



CHAPTER 3. OXIDATION STATE LOCALIZED ORBITALS 64

was performed with both the Hilbert space and real-space implementations described above.

3.3 Results and Discussion

We evaluate the performance of the OSLO approach for a number of challenging systems,
including high-valent oxides, TMs with non-innocent ligands, sulfur dioxide adducts with
different bonding patterns, a Zn-based porphyrinic system and TM carbenes of different
types (Schrock, Fischer and Grubbs 1st and 2nd generation). We apply both IAO-AutoSAD
and TFVC atomic population schemes, to test the robustness of the OSLO procedure to the
definition of fragment charges. The full set of results obtained are summarized in Table 3.1.
The OS of the TM and the relevant ligand are reported, together with the FOLI values of
the last selected OSLO, which is the least localized one (i.e. largest FOLI value among all
selected OSLOs). In fact, once nocc − 1 localized orbitals have been projected out from the
density matrix, there is only one (localized) orbital left. This last OSLO is associated with
the fragment with the smallest FOLI value.

In many cases the last FOLI value is close to its smallest value of 1, indicating very
good orbital localization and, consequently, a clear-cut OS assignment. In cases where the
last FOLI value is larger than 1, it is very instructive to examine the ∆-FOLI value (the
difference between the smallest and second smallest FOLI values) to see how clear-cut the
OS assignment is: the larger the better. Cases with ∆-FOLI > 1 suggest clear-cut ionic
character. Overall, the formal OS assignments using both fragment charge schemes agree in
almost all cases (30 out of 33). The very few discordant cases have associated ∆-FOLI values
below 0.2, which is probably smaller than can be meaningfully associated with application
of the ionic approximation (this will be discussed more later).

We will discuss a few of the more clear-cut cases only briefly. For the high-valent oxides
ranging from TiO2 to IrO4

+, the OS obtained with OSLO are in full agreement with LOBA,
EOS and also with IUPAC’s ionic approximation [291]. Clear-cut formal oxo (O2−) ligands
are obtained in all cases, resulting in OS as high as Ir(+9).

The PtO4
2+ system deserves particular attention. We treat the case of the spin-restricted

solution, which is stable in orbital space, and leads to the optimized Td geometry. There are
lower energy spin-polarized solutions but we do not consider them here. The valence MO
diagram can be found elsewhere [309]; there are eight π and four σ-type doubly-occupied
MOs. In a Td environment, the 5d orbitals of Pt split into E and T2 symmetries, while the
6s orbital is A1. The four symmetry-equivalent O atoms lead to σ- and π-type symmetry-
adapted orbitals, with symmetries Γσ = A1 + T2 and Γπ = E + T1 + T2. Towards the end of
the iterative procedure, the E type OSLOs on Pt are very close in FOLI with the eight Γπ

of the O centers, due to the significant covalent character of the Pt-O bonds. When using
TFVC, the FOLI value of O atoms (1.67) is smaller than that of Pt’s E OSLOs (1.84), so
they are selected and projected out of the P matrix for the next iteration. Since there is
only one set of E orbitals in the occupied space, the aforementioned E-type OSLOs on Pt
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Table 3.1: Summary of the OSLO results for the molecular systems studied, obtained with
the IAO-AutoSAD and TFVC (in parenthesis) population analysis. OS for TM and selected
ligand (L) in bold. tBu = tert-butyl, Cp = cyclopentadienyl, Ar = 2,6-diisopropylphenyl,
Ar1 = 2,6-dimethylphenyl, Cy = cyclohexyl, IMes = 1,3-Dimesitylimidazol-2-ylidene. (a)

IAO-AutoSAD alternative solution. (b) TFVC results using tolerance value of 10−4.

Complex M OS L OS ∆-FOLI Last FOLI

[TiO2] +4 (+4) -2 (-2) 3.453 (3.367) 1.321 (1.372)
[VO4]

3− +5 (+5) -2 (-2) 1.548 (1.748) 1.466 (1.461)
[FeO4]

2− +6 (+6) -2 (-2) 1.598 (1.682) 1.569 (1.623)
[ReO4]

− +7 (+7) -2 (-2) 1.806 (1.829) 1.470 (1.480)
[OsO4] +8 (+8) -2 (-2) 1.415 (1.363) 1.592 (1.609)
[IrO4]

+ +9 (+9) -2 (-2) 1.529 (1.084) 1.705 (1.742)

[PtO4]
2+(a) +10 (+10) -2 (-2) 1.023 (0.707) 1.859 (1.904)

FeCp2 +2 (+2) -1 (-1) 1.800 (2.343) 1.313 (1.437)
Zn(porphyrin) +2 (+2) -2 (-2) 0.958 (1.470) 1.509 (1.319)
[Ni(S2C2Me2)2]

0 +2 (+2) -1 (-1) 0.000 (0.000) 2.000 (2.245)
[Ni(S2C2Me2)2]

1− α +2 (+3) -1.5 (-2) 0.603 (0.913) 1.634 (1.656)
[Ni(S2C2Me2)2]

1− β 0.000 (0.110) 2.000 (1.901)
[Ni(S2C2Me2)2]

2− +2 (+2) -2 (-2) 1.085 (1.374) 1.482 (1.509)
[Cu(CF3)4]

1− +3 (+3) -1 (-1) 0.373 (0.728) 1.516 (1.531)
[Cu(CF3)4]

2− α +2 (+2) -1 (-1) 4.823 (4.845) 1.075 (1.152)
[Cu(CF3)4]

2− β -1 (-1) 2.528 (2.867) 1.267 (1.270)
[Cu(CF3)4]

3− +1 (+1) -1 (-1) 4.383 (4.581) 1.084 (1.145)
Rh(SO2)Cl(PH3)2 (L-type) +1 (+1) 0 (0) 1.421 (1.209) 1.402 (1.509)

Rh(SO2)Cl(CO)(PH3)2 (Z-type) +1 (+1) 0 (0) 1.064 (1.688) 1.606 (1.516)

Ru(SO2)Cl(NO)(PH3)2 (π-type) (b) 0 (0) 0 (0) 0.514 (0.339) 2.432 (2.550)
[Fe(CN)5NO]2− +2 (+2) +1 (+1) 0.981 (0.802) 1.573 (1.827)
[Fe(CN)5NO]3− α +2 (+2) 0 (0) 0.839 (0.674) 1.688 (1.987)
[Fe(CN)5NO]3− β 2.638 (2.162) 1.375 (1.436)

(CO)5W=CHN(CH3)2 (1) (Fischer) 0 (0) 0 (0) 3.069 (2.205) 1.920 (3.196)
(CO)5W=CHOCH3 (2) (Fischer) 0 (0) 0 (0) 1.860 (1.148) 2.037 (3.311)

(CO)5W=CF2 (3) (Fischer) 0 (0) 0 (0) 1.567 (0.893) 2.017 (3.232)
(CO)5W=CH2 (4) (Fischer) 0 (+2) 0 (-2) 0.612 (0.194) 2.279 (3.142)

NAr(OtBu)2W=CHtBu (5) (Schrock) +6 (+6) -2 (-2) 0.283 (0.659) 1.924 (1.933)
NAr(OtBu)2W=CH2 (6) (Schrock) +6 (+6) -2 (-2) 0.455 (0.806) 1.845 (1.908)

NAr1(OtBu)2Mo=CHCMe2Ph (7) (Schrock) +6 (+6) -2 (-2) 0.253 (0.565) 1.916 (1.917)
NAr1(OtBu)2Mo=CH2 (8) (Schrock) +6 (+6) -2 (-2) 0.203 (0.487) 1.956 (2.018)
NAr1(OtBu)2Mo=CHPh (9) (Schrock) +6 (+6) -2 (-2) 0.153 (0.430) 1.986 (2.042)

PCy3Cl2Os=CH2 (10) (Grubbs) +2 (+4) 0 (-2) 0.048 (0.044) 2.089 (2.278)
H2IMesCl2Os=CH2 (11) (Grubbs) +4 (+4) -2 (-2) 0.192 (0.259) 2.375 (2.709)
PCy3Cl2Ru=CH2 (12) (Grubbs) +2 (+2) 0 (0) 0.222 (0.150) 1.964 (2.199)
H2IMesCl2Ru=CH2 (13) (Grubbs) +2 (+2) 0 (0) 0.276 (0.306) 2.013 (2.149)
(PH3)2Cl2Ru=CH2 (14) (Grubbs) +2 (+2) 0 (0) 0.241 (0.090) 1.961 (2.153)
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are now absent, and the OSLOs with smaller FOLI value become those corresponding to the
Γσ of the O centers, leading to a fairly clear Pt(+10) assignment (see Table 3.1).

When using IAO-AutoSAD, however, at the same step of the process the situation is
reversed. The FOLI value of the Pt E OSLOs is smaller (1.50) than that of the eight Γπ

(1.69). When the former are selected and projected out from the P-matrix, the eight π-type
OSLOs of the O centers become rank deficient for the next iterations. This leads to two
undesirable outcomes. First, the localized orbitals on the O are mixed-up by the canonical
orthogonalization process. Second, a last OSLO of A1 symmetry delocalized over the four
O centers remains left in the last iteration, leading to a huge FOLI value (4.63) and a split
of the electron pair among the four equivalent O centers. By applying the branching option
on the IAO-AutoSAD calculation, the Pt(+10) picture obtained with TFVC is recovered,
with similar ∆-FOLI value. Selecting OSLOs with a higher FOLI value at a given step of
the iterative process ends up providing a final solution where the sum of the FOLI values of
the selected OSLOs is smaller (36.34 vs 33.22).

The Zn-porphyrin system is potentially challenging for OSLO because, due to its sym-
metry, the center of charge of the porphyrin ligand exactly coincides with the position of
the Zn nucleus. Nevertheless, as a result of using the FOLI values, the OSLO procedure
performs smoothly, yielding the expected Zn (+2) OS with ∆-FOLI value close to or even
larger (TFVC) than 1. The OSLO results for the nitroprusside anion ([Fe(CN)5NO]2−) and
its reduced form are also very clear, leading to a formal Fe(+2) species and a ligand-based
reduction, in line with the well-known non-innocent nature of the nitrosyl ligand. The IAO-
AutoSAD population yields larger ∆-FOLI values as compared to TFVC.

Ferrocene (see Fig. 3.3) is a nice example because it shows the utility of the OSLOs
themselves. The cyclopentadienyl anion OSLOs are shown in panels (a) through (c), and the
fragment localized π orbitals are particularly pleasing because they resemble the delocalized
π orbitals of the isolated anion. In other words, this shows the advantage of fragment
localization over global localization (see also the recent treatment via intrinsic fragment
orbitals [258]). The 3 occupied Fe (3d) orbitals emerge as expected, and the OS assignment
is very clear based on the small FOLI value of the last orbital as well as the large ∆-FOLI
gap.

The redox series of nickel diothiolate complexes, [Ni(S2C2Me2)2]
n− with n = 0, 1, 2, is

particularly interesting. The n = 0 complex is a closed shell singlet. Fig. 3.4 gathers the
most relevant OSLOs and the corresponding FOLI values. For Ni, four well-localized d-type
orbitals (Fig. 3.4a) are obtained, leading to a Ni(+2) OS. Then, for each thiolate ligand, one
finds two S lone pairs and two σ-type orbitals associated with the two S-Ni σ bonds (see
Fig. 3.4b). Since each thiolate is a fragment, these two sets of orbitals are not localized into
individual S lone pair and S-Ni bonds, but form two in-phase (+,+) and out-of-phase (+,-)
localized orbitals within the fragment. The σ(+,−) OSLO exhibits a relatively large FOLI
value (∼ 1.7), indicating some partial contribution from the Ni center. The σ(+,+) orbital
shows a minor Ni contribution, leading to a smaller FOLI value (∼ 1.3). In addition, each
thiolate exhibits a well localized π-type orbital on the two sp2 carbon atoms, with FOLI ∼ 1.
The last OSLO, in Fig. 3.4b (bottom right), corresponds to a π-type orbital delocalized over
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(a)

(b)

(c)

(d)

Figure 3.3: Valence OSLOs for the FeCp2 complex as produced by the algorithm shown in
Fig. 3.1. The lower cyclopentadienyl ligand’s σC−H OSLOs are shown in panel (a), its σC−C

OSLOs are shown in panel (b), and its π OSLOs in panel (c). The 3 d-type OSLOs on Fe
are shown in panel (d). The isosurface value is 0.075 a.u.
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the two thiolate ligands, consistent with the FOLI value (∼ 2). Moreover, the ∆-FOLI value
is exactly zero for both population schemes. This indicates a formal split of the electron
pair between the two ligands (in other words, a covalent assignment), leading to two thiolate
(-1) moieties to accompany the Ni (+2) center. We can envisage similar situations with
the OSLO procedure when dealing with mixed-valence compounds. Visual inspection of the
critical localized orbital/s will confirm or deny mixed valence or covalent character suggested
by very small ∆-FOLI values.

The two-electron reduction of [Ni(S2C2Me2)2] leads to the S = 0 closed-shell species
[Ni(S2C2Me2)2]

2−. The OSLO procedure yields essentially the same valence localized orbitals
as in the previously discussed oxidized form (i.e. four d-type localized orbitals on Ni, two
lone pairs and two σ type S-Ni orbitals), except that the last delocalized orbital is replaced
by two well-localized π-type orbitals, one on each thiolate ligand, as shown in Fig. 3.4c. The
∆-FOLI value is larger than 1, clearly pointing to ligand-based reduction, and in turn, Ni
(+2) and two thiolate (-2) moieties.

One-electron reduction to [Ni(S2C2Me2)2]
1− is more tricky. The system is an open-shell

doublet (S = 1
2
), and the α and β parts are treated separately. The α part is rather clear cut,

yielding similar localized orbitals as in the fully reduced n = 2 species, with ∆-FOLI > 0.6.
For the β part, using IAO-AutoSAD populations leads to localized orbitals comparable to
those of the oxidized form (n = 0): four d orbitals on Ni and a last π orbital delocalized
over the two thiolate moieties, with FOLI ∼ 2 and ∆-FOLI= 0. These OLSOs suggest a
mixed-valence situation with Ni(+2) and two partially-reduced thiolates (-1.5), from equal
sharing of the last beta electron between the thiolates. This result, as well as those for
the closed-shell species, agrees with the experimental evidence [310, 311] and with the EOS
scheme [291].

However, the results for the β part of the S = 1
2

species are somewhat different when
using TFVC populations. In the iterative process, two equivalent π-type orbitals centered on
each thiolate with significant contribution from the Ni center (see Fig. 3.4d) are selected over
the d-type orbital centered on Ni (which also exhibits significant mixing with the ligands).
The FOLI values are 1.901 and 2.011, respectively, indicating a large degree of delocalization
of these last orbitals. As a consequence, the picture obtained is a Ni(+3) with two fully
reduced thiolate (-2) ligands, with a ∆-FOLI value of merely 0.11. This very small ∆-FOLI
value argues for equal sharing of the last electron pair.

In Naumann’s ion [312], [Cu(CF3)4]
−, Cu OS and role of the CF3 ligands has been

debated for more than 25 years [313–318]. Based on the DFT frontier molecular orbitals,
Snyder considered that the metal center is best described as Cu (+1) (i.e. d10), instead of
a d8 Cu (+3) as would follow if all CF3 ligands were formally anionic (-1) [313]. According
to Snyder, the anion features an “inverted” ligand field [318], where the lowest unoccupied
molecular orbital (LUMO) exhibits dominant ligand character. This assignment has been
questioned by others, who support the latter, more conventional, view of four CF−

3 ligands
[314, 315]. Most recently, the Lancaster group have put forward further experimental and
computational arguments in favor of d10 [316, 317]. Other arguments supporting the Cu
(+1) and Cu (+3) picture have also been given [318].
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Figure 3.4: Valence LOs of the [Ni(S2C2Me2)2]
0 system with IAO-AutoSAD and TFVC (in

parenthesis) FOLI values. d-type orbitals on Ni (a), ligand’s σ, lone pair (LP) and π obitals
(b). Last localized ligand π orbital for [Ni(S2C2Me2)2]

2− (c). Last localized ligand π orbital
from the beta density of [Ni(S2C2Me2)2]

− using TFVC (d). The isosurface value is 0.075 a.u.
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These conflicting views are rooted in the relatively non-polar character of the Cu-C
bond. In recent work, some of us showed that both the LOBA and EOS schemes give OS
assignments consistent with a formal Cu (+3) species [291]. While the LOBA results were
rather clear, the R (%) = 51.7 value of the EOS assignment indicated a very close call. The
OSLO procedure (with either population analysis) points towards formal anionic CF3 (-1)
ligands and hence a Cu (+3) species, as shown on Table 3.1. One can identify four well-
localized d-type orbitals centered on Cu (Fig. 3.5a), while the σ-type interaction between
Cu and each CF3 is captured by four equivalent ligand-centered orbitals with non-negligible
contribution from the Cu (Fig. 3.5b). Notice also the mixing of p-type orbitals from the F
atoms of the CF3 moiety. These localized orbitals provide a much clearer picture as compared
to those obtained with PM localization for the same wavefunction [291]. Encouragingly. the
FOLI values of the last orbitals are virtually the same with both atomic population schemes
(∼ 1.5). The ∆-FOLI value for the assignment is somewhat smaller using IAO-AutoSAD
(0.373) as compared to TFVC (0.728), but the same picture emerges in both cases. Finally,
OSLO results for the one- and two-electron reduction of [Cu(CF3)4]

− indicate that both
processes are metal based, as expected given the Cu (+3) assignment of the anion.

In TM carbenes a double bond is formed between the TM and the carbene. The σ bond is
understood as originating from σ-donation of a sp2 lone pair on the carbon atom to the TM.
The nature of the π-type interaction is much more system-dependent, leading to two well-
established situations. In the so-called Fischer carbenes, the π electrons formally sit on the
TM d-type orbital, which back-donates to a formally neutral carbene moiety. In Schrock-type
carbenes, the π electrons are formally associated with the carbene moiety, which becomes
anionic (-2). Previous experience indicated that OS assignment in TM-carbene complexes
is challenging. Often, EOS analysis yields low R(%) values rather close to 50, driven by
nearly equal populations of the π-type EFOs on the TM and the carbene moiety. With
LOBA, Pipek-Mezey localized orbitals do not readily correspond with the σ and π bonds
[291]. We studied a set of fourteen TM carbenes [319]. The set includes four conventional
W-based Fischer carbenes (1–4), five Schrock W- and Mo-based catalysts (5–9) and five Ru-
and Os-based 1st and 2nd generation Grubbs catalysts (10–14).

Referring again to Table 3.1, the OSLO procedure combined with IAO-AutoSAD pop-
ulations correctly identifies all prototypical Fischer and Schrock carbenes, while all Grubbs
catalysts but 10 are pictured as formal neutral Fisher-type carbenes. Notice the ∆-FOLI
values are mostly below 0.3 (especially for nominal Schrock and Grubbs carbenes), with
FOLI values around 2.0, indicating significant delocalization of the last orbital. Such values
could support a covalent division of charge, and, at the very least, call for inspection of the
relevant σ-type and π-type TM-carbene OSLOs. To this end, Fig. 3.6 shows two examples of
OSLOs involving the TM and the carbene unit. The FOLI values of the σ-type bonds (left)
are noticeably smaller than those of the π-type bonds (right), which exhibit a very similar
contribution from both fragments. Yet, one can see that the OSLO procedure produces nice,
chemically interpretable localized orbitals for the σ and π bonding.

For the two cases shown in Fig. 3.6, the IAO-AutoSAD and TFVC fragment charges
lead to different OS assignments, despite yielding almost identical sets of localized orbitals.
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Figure 3.5: Selected LOs of [Cu(CF3)4]
− with IAO-AutoSAD and TFVC (in parenthesis)

FOLI values for Cu (a) and the CF3 ligand (b). The relatively non-polar character of the
σ Cu-CF3 interaction is clearly evident. However the FOLI value (∼ 1.5) as well as visual
inspection indicates that this orbital has greater CF3

− character than Cu (3d) character so
that in a winner-take-all assignment, the ligands emerge as CF3

− and the metal adopts a
Cu (+3) OS. The isosurface value for the plots is 0.075 a.u.
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Figure 3.6: σ and π TM-carbene OSLOs for (a) the Fischer-type (CO)5W=CH2 complex
(species 4), and (b) the Grubbs-type PCy3Cl2Os=CH2 complex (species 10). The FOLI
values for each orbital are shown using IAO-AutoSAD (with the corresponding TFVC values
in parentheses). The large FOLI values (> 2) for the π-type TM-carbene interaction, as well
as visual inspection show the shared electron character of this interaction. The isosurface
value is 0.075.

The σ-type OSLO belongs to the carbene, with FOLI values of ∼ 1.5 and ∼ 1.8 for the
Fischer-type (CO)5W=CH2 complex (4), and the Grubbs-type PCy3Cl2Os=CH2 complex
(10), respectively. The π-type OSLO is the origin of the discrepancy. Since this is the
last selected orbital in the OSLO procedure, its allegiance is based on the FOLI values
for each fragment. In the case of 10, TFVC provides FOLI values of 2.28 for the carbene
and 2.32 for the TM, while for IAO-AutoSAD the values are 2.14 and 2.09, respectively.
Consequently, ionic assignment leads to a neutral CH2 according to IAO-AutoSAD and to
an anionic CH2 (-2) according to TFVC. Notice that ∆-FOLI values are below 0.05 in both
cases, the smallest seen in this study. The genuinely covalent nature of this π bond precludes
meaningful classification of this system as Fischer or Schrock: instead the electron pair is
shared.
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On the other hand, the different OS assignment for 4 is rather unexpected, as both
population methods produce virtually the same set of OSLOs. With IAO-AutoSAD, (4) is
quite clearly a neutral Fischer-type carbene with a ∆-FOLI value of 0.61. However, when
using TFVC, the assignment is not only reversed, with a small ∆-FOLI (0.19), but also the
FOLI values of the last π-type OSLO are significantly higher (3.14 and 3.34 for the carbene
and TM metal, respectively). The fragment TFVC populations on the carbene and the W
atom are 0.76 e− and 0.66 e−, respectively. Hence, the remaining 0.58 e− belongs to the
spectator CO ligands, which explains the large FOLI value obtained. By contrast, with
IAO-AutoSAD, the population of the carbene and W are 0.64 and 1.03 e−, so the electron
pair is more clearly on W (although covalent character is visually evident in Fig. 3.6).

As a last example, let us consider the species described in IUPAC’s technical report
illustrating three different bonding modes of the SO2 ligand [132, 133]. Karen showed that
when acting as a Z-type ligand (i.e. as a Lewis acid), the electronegative-acceptor caveat
had to be applied to the ionic approximation so that the SO2 ligand remains neutral. With
EOS analysis the expected neutral SO2 ligand was recovered in all three cases [289]. The
OSLO results of Table 3.1 also clearly identify a neutral SO2 moiety for both the L-type
and Z-type configurations, with large ∆-FOLI values of over 1.0. In the case of the π-type
bonding configuration, the SO2 is once again clearly identified as neutral, but there is a
close-call situation involving Ru and a non-innocent nitrosyl ligand trans to the SO2, that
calls for visual inspection of the OSLOs. The last three OSLOs (from IAO-AutoSAD results)
belong to Ru, with FOLI values of 1.44, 1.88 and 2.43, and are depicted in Fig. 3.7. The
admixture of contributions from the SO2 and NO ligands is indeed significant for the last
OLSO (Fig. 3.7b), but the ∆-FOLI value of 0.51 suggests that an ionic assignment to Ru
remains justified. Overall, this results in a Ru (0), SO2 (0) and NO (+1) OS assignment.

When using TFVC populations with the default tolerance of 10−2, the last two localized
orbitals, one centered on Ru and another on NO, have FOLI values within the tolerance
and are therefore selected together in the last step of the iterative procedure, leading to a
different OS assignment. However, the linear-dependency check indicates significant overlap
between these two orbitals. As a consequence, their shape substantially changes after or-
thogonalization, leading to a pair of localized orbitals very similar to those of Fig. 3.7. In
this case, being a non-symmetric system, a tighter tolerance of 10−4 affords the selection
of the last orbitals in the iterative process one by one, readily producing the same results
obtained with IAO-AutoSAD.

3.4 Conclusions

The purpose of this work was to report a new oxidation state localized orbital (OSLO) scheme
that performs orbital localization based on molecular fragments, after a DFT calculation
with chosen total charge and spin state. The user should select a fragmentation of the target
complex, such as separation into one (or more) metal centers and individual ligands. After
an iterative process to select the most strongly fragment-localized OSLOs, each molecular
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Figure 3.7: Selected Ru-centered OSLOs for Ru(SO2)Cl(NO)(PH3)2 (π-type), with IAO-
AutoSAD and TFVC (in parenthesis) FOLI values. The isosurface is 0.075 a.u. for panel
(a) which shows the 3rd and 2nd last OSLOs to be selected. In panel (b), which shows the
last OSLO selected, there are also significant ligand contributions as evident from the larger
FOLI value, and visual inspection of the orbital isosurface of 0.075 a.u. (left), which can be
clarified by choosing a larger value of 0.125 a.u. for the isosurface (right).

fragment is associated with a set of localized orbitals derived from a simple orbital spread
criterion. This association, in turn, determines the fragment’s formal charge or oxidation
state (OS) in a natural manner.

We introduced a new index, namely the fragment orbital localization index (FOLI),
to quantify the degree of locality of each OSLO (or any input orbital) on each fragment.
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As examples, the lowest possible FOLI value of 1 corresponds to complete localization on
that fragment, while perfect delocalization between 2 fragments yields a FOLI value of 2.
Evaluation of FOLIs requires fragment populations. Two distinct population schemes have
been tested for this purpose, namely a real-space approach (TFVC) and a new version of
the intrinsic atomic orbitals (IAO-AutoSAD) that uses on-the-fly evaluation of the reference
minimal basis based on superposition of atomic densities (SAD).

The OSLO iterative procedure selects the orbital with lowest FOLI value on each iter-
ation, so that the last OSLO produced has the largest FOLI value (and is least strongly
fragment-localized) among the whole set. The ∆-FOLI value for the last localized orbital
measures the gap with the second smallest FOLI value among the fragments. ∆-FOLI mea-
sures the reliability of the OS assignment, such that a ∆-FOLI value larger than 0.5 usually
indicates a clear OS assignment. Smaller values suggest increasingly covalent character in
the least localized OSLO.

Numerical tests of the new scheme shows that the OSLOs are in much better agreement
with the expected Lewis structure than those obtained with other global localization schemes
such as Pipek-Mezey (apart from straightforward cases). As a result, previously identified
limitations of the localized orbital bonding analysis (LOBA) procedure for OS assignment
that originate in the use of global orbital localization methods are overcome with the OSLO
approach. Transition metal carbenes are one such class of examples.

The OSLOs themselves carry significant chemical information, and their visualization
helps to clarify borderline OS assignments. One such example discussed here is the Cu(CF3)4

−

anion, where the OSLO corresponding to the σ(Cu–CF3) interaction exhibits some cova-
lent character, but supports a conventional d8 Cu configuration rather than d10. Another
example is the Grubbs catalyst, PCy3Cl2Os=CH2, where the OSLO corresponding to the
Os-carbene π bond is almost perfectly covalent, thus rendering the conventional Fischer and
Schrock classifications inapplicable.

We find the IAO-AutoSAD population scheme performs well in combination with OSLO,
outperforming the TFVC scheme that is conventionally used in the framework of effective
oxidation state (EOS) analysis. IAO-AutoSAD represents a promising all-round general,
fast, analytical, basis-set independent Hilbert-space based atomic population scheme.
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Chapter 4

Force Decomposition Analysis

4.1 Introduction

Intermolecular interactions are important for understanding chemistry as they affect struc-
tures, properties, and reactivity of chemical systems. Examples include red- or blue-shifts
in vibrational frequencies when forming hydrogen bonds [320–326], wavelength tuning of
organic chromophores by the solvation or protein environment [327–333], and modulation of
the catalytic performance of molecular CO2RR catalysts through interactions with ligands
in complexes’ second coordination sphere [334–341].

Decomposing the non-covalent interactions has been increasingly important to under-
standing the origins of these interactions as well as the development of classical force fields
for the simulation of chemical and biochemical systems [163, 342–349]. Moreover, to obtain
statistical mechanical ensembles of a condensed phase chemical system, molecular dynamics
simulations are required, for which accurate and efficient evaluation of intermolecular forces
is important for systems where quantum chemical calculations are impractical.

Many energy decomposition analysis (EDA) methods have been proposed for separating
different physical contributions to the non-covalent interaction energy, which are reviewed
elsewhere [170, 174, 185, 300, 350–352]. In this work, we are using the absolutely localized
molecular orbitals EDA (ALMO-EDA) [183–185, 353, 354], which divides the interaction
energy into frozen (interaction between unrelaxed monomers), polarization (energy lowering
due to intra-fragment relaxation of monomer wavefunctions), and charge transfer (energy
lowering due to electron delocalization between fragments) contributions. The adiabatic
EDA [355] optimizes the geometry successively on each of the intermediate potential energy
surfaces (frozen, polarized, and fully relaxed), in essence attributing geometric changes and
shifts in other molecular properties upon the formation of intermolecular complexes to the
same terms as in ALMO-EDA. The adiabatic EDA has been successfully used to understand
geometric changes arising from intermolecular interactions in a wide variety of systems [325,
355–360]. For example, the ̸ N-B-H angle in the ammonia-borane complex only bends when
charge is allowed to flow from the ammonia to the borane molecule [355, 360]. The adiabatic
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EDA thus attributes changes in observables to the different EDA contributions, which can
be crucial for connecting to experimental results.

Many fixed-charge and polarizable force fields have been developed over the years for
condensed-phase molecular simulations [345–347, 349, 361–367]. Recently, the T. Head-
Gordon lab developed the MB-UCB many-body force field for water-water and water-ion
interactions [347, 349], which employs terms that resemble those produced by ALMO-EDA
of quantum mechanical calculations. For example, the polarization energy in the second-
generation ALMO-EDA allows electrons to move to the space of dipolar and quadrupolar
density response to an external electric field, while MB-UCB uses distributed multipole
analysis of classical anisotropic dipolar polarization to evaluate the polarization energy. Im-
pressively, the two terms co-validate each other for a wide variety of water dimer geometries
[347]. Similarly, the other terms are also related to each other as will be described below.
While the total interaction energy and its breakdown given by MB-UCB and ALMO-EDA
are in very good agreement, the forces remain to be compared to ensure the quality of
dynamics driven by MB-UCB within a large ensemble of configurations.

In this work, we decompose the forces of an intermolecular interaction into constituent
terms that directly correspond to those within the ALMO-EDA. After presenting the relevant
theory, we demonstrate the usefulness of this decomposition for understanding chemistry
with proof-of-concept examples of water interacting with sodium and chloride ions as well
as the water dimer. We transform these forces to the internal coordinates using Wilson’s
B-matrix [368], allowing us to see forces that are more intuitive and relatable to vibrational
spectroscopy. For example, the H-O-H bending in the water molecule is used to understand
the molecular environment [369]. We then study CO2 adsorption and activation on Au
and Ag anions and compare the two systems’ forces within internal coordinates. The force
decomposition is also applied to validate the forces produced by the MB-UCB force field. The
force decomposition results, based on high-quality DFT calculations of the forces, may also
be useful for future force-field training. This work builds on the adiabatic EDA to advance
the idea of “property decomposition” analysis, in which not only the interaction energy
is broken down, but also other derivatives of the energy, which are molecular properties.
This general approach can be extended to the effect of intermolecular interactions on other
properties of interest, such as the hessian matrix, NMR chemical shieldings, dipole moments
or polarizabilities, etc. The observable changes in properties associated with non-covalent
interactions can then be attributed to the different physical effects at play.

4.2 Theory

Energy Decomposition Analysis

In the ALMO-EDA, the total binding energy of an intermolecular complex is broken down
into four components coming from the successive removal of constraints to minimize the
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energy of the supersystem:

∆Ebind = ∆Egd + ∆Efrz + ∆Epol + ∆Ect (4.1)

The geometry distortion term (∆Egd) refers to the energy consumed for each fragment to
change its geometry from the equilibrium structure in isolation to that in the complex. The
frozen (FRZ) interaction energy, ∆Efrz, is defined by the energy of the frozen wavefunction
[370], relative to that of the isolated non-interacting fragments (in distorted geometries). It
corresponds to the energy change upon moving the isolated fragments into their positions in
the complex while keeping their own electronic structure unchanged. The frozen wavefunc-
tion is the antisymmetric product of the isolated fragment wavefunctions, whose associated
one-particle density matrix (1PDM), Pfrz, is given by

Pfrz = (Co)frzσ
−1
frz (Co)

T
frz, (4.2)

where (Co)frz is the direct sum of the (occupied) AO-to-MO coefficient matrices of the isolated
fragments and σfrz is the overlap matrix of the orbitals coming from the (Co)frz matrix. This
1PDM definition gives us the frozen interaction energy definition:

∆Efrz = E[Pfrz] −
∑
A

E[PA]. (4.3)

The next contribution, the polarization energy (∆Epol), arises from allowing the occupied
orbitals on each fragment to mix with the virtuals only on the same fragment. Minimizing
the energy subject to this constraint, also known as the SCF-MI procedure [292, 294, 295,
371, 372], leaves the AO-to-MO coefficient matrix still block-diagonal and the corresponding
MOs ”absolutely localized” on each fragment while also polarized in the presence of each
other. The resulting electronic wavefunction is referred to as the polarized state, whose
1PDM is denoted as Ppol. The polarization energy is then defined as the energy lowering of
the polarized state relative to the frozen state:

∆Epol = E[Ppol] − E[Pfrz]. (4.4)

Since the polarization density comes from variationally minimizing the energy, ∆Epol is
negative semi-definite. Lastly, by removing the ALMO constraint, we obtain the fully relaxed
state for the intermolecular complex. The energy lowering due to electron delocalization is
defined as the charge transfer term (∆Ect):

∆Ect = E[Pfull] − E[Ppol], (4.5)

where Pfull is the 1PDM for the fully relaxed state.
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Force Decomposition Analysis

Within a variational EDA scheme like the ALMO-EDA, the analytic nuclear forces associ-
ated with each of the intermediate (including the initial and final) states can be obtained.
Following the derivations in our previous work [355], namely the adiabatic EDA scheme
where the nuclear forces were used to optimize the complex geometry on the frozen, po-
larized, and fully relaxed surfaces, here we introduce the ALMO-based force decomposition
analysis (FDA) method, where the nuclear derivatives of the frozen (∆Efrz), polarization
(∆Epol), and charge transfer (∆Ect) components of the interaction energy, as well as that
of the classical electrostatics component of the frozen interaction (∆Ecls-elec), are obtained.
Note that many of the derivations here can be applied to other variational EDA schemes.

Just as ALMO-EDA decomposes an interaction energy, the ALMO-based FDA decom-
poses intermolecular forces into frozen, polarization, and charge transfer components:

∆Fint = ∆Ffrz + ∆Fpol + ∆Fct (4.6)

The frozen component of the intermolecular forces (∆Ffrz) can be obtained by differen-
tiating Eq. (4.3) with respect to the nuclear coordinates:

∆Ffrz = Ffrz[Pfrz] −
∑
A

FA[PA] (4.7)

where Ffrz denotes the forces on the frozen PES, and the term being subtracted on the
right-hand side is the collection of isolated fragment forces that arises from the distortion
of fragment structures within the complex. Note that these isolated fragment forces can be
compared to the nuclear derivatives of the bonded terms in molecular mechanical force fields,
while in this work we focus on the intermolecular force components. With superscripts “x”
signifying derivatives with respect to the x-th nuclear coordinate (and superscripts “S” and
“∆A” in the same fashion), based on the derivation in our previous work [355], the x-th
component of forces on the frozen surface, (Ffrz)x, is given by

(Ffrz)x = −

[
V x
nn + Pfrz · hx +

1

2
Pfrz · IIx ·Pfrz + Ex

xc + ES
frz · Sx +

∑
A

(
E∆A

frz ·∆x
A

)]
, (4.8)

where Vnn is the nuclear-nuclear coulomb repulsion potential, h is the core Hamiltonian
(kinetic energy and nuclei-electron attractions), II is the AO two-electron integrals, Exc

is the Kohn-Sham (KS) exchange-correlation energy, S is the AO overlap matrix, and ∆A

is the matrix of occupied-virtual orbital rotations (variational parameters) within a given
fragment. The first four terms are identical to those in the KS-DFT nuclear forces, while the
last two terms require treatments that are specific to the frozen PES. The reader is referred
to Ref. [355] for details.

Similarly, the polarization contribution to the intermolecular forces can be evaluated by
differentiating Eq. (4.4):

∆Fpol = Fpol[Ppol] − Ffrz[Pfrz] (4.9)
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The derivation of Fpol depends on the definition of fragment polarization subspaces in the
SCF-MI calculation [373], i.e., the degrees of freedom for each fragment’s occupied-virtual
mixing to occur. In the simplest case where the full AO space of each fragment is active in
the polarization (SCF-MI) calculation as in the 1st-generation ALMO-EDA [183], Fpol has
a similar expression to Eq. (4.8) except that the last term vanishes due to the stationary
condition of SCF-MI (E∆A

pol = 0):

(Fpol)x = −
[
V x
nn + Ppol · hx +

1

2
Ppol · IIx ·Ppol + Ex

xc + ES
pol · Sx

]
(4.10)

Note that in this simplest case, ES
pol has an identical form to that in the standard SCF energy

gradient [355]. Finally, the charge-transfer contribution to the intermolecular forces can be
obtained by differentiating Eq. (4.5):

∆Fct = Ffull[Pfull] − Fpol[Ppol] (4.11)

where Ffull stands for the standard KS-DFT forces for the fully relaxed complex.
The frozen interaction term in ALMO-EDA comprises contributions from permanent

electrostatics, Pauli repulsion, and dispersion [374]. To improve the interpretability of FDA
results and to facilitate comparison with terms in polarizable force fields, here we intro-
duce how one can evaluate forces arising from “quasi-classical” electrostatics (∆Fcls-elec),
i.e., coulomb interactions between charge distributions (nuclei and electrons) of different
fragments, which can be employed to benchmark forces arising from permanent charge and
multipole interactions in a force field. The remainder of ∆Ffrz then incorporates contribu-
tions from the non-electrostatic components of the frozen interaction (Pauli repulsion and
dispersion), which we refer to as the van der Waals (vdW) contribution since it corresponds
roughly to the sum of attractive and repulsive vdW potential in a force field:

∆Ffrz = ∆Fcls-elec + ∆Fvdw (4.12)

The quasi-classical electrostatic interaction among N fragments can be expressed in the
following compact form:

∆Ecls-elec =
1

2

N∑
A ̸=B

[
PA ·VB

ee+en + V AB
nn

]
(4.13)

where PA is the AO-basis 1PDM of isolated fragment A, VB
ee+en is the coulomb potential

(nuclear and electronic) arising from fragment B, also in the AO basis, and V AB
nn is the

nuclear-nuclear repulsion potential between fragments A and B. Differentiating Eq. (4.13)
yields

(∆Fcls-elec)x = −1

2

∑
A ̸=B

[
(PA)x ·VB

ee+en + PA · (VB
ee+en)x + (V AB

nn )x
]
, (4.14)
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where the derivative of isolated fragment density PA can be further expanded based on its
dependence on fragment A’s AO overlap matrix (SA) and occupied-virtual orbital rotation
(∆A):

(PA)x = PSA
A · (SA)x + P∆A

A · (∆A)x (4.15)

Note that the detailed forms of PSA
A and P∆A

A have been derived in our previous work [355,
375]. For completeness here we show the mathematical details regarding these two derivatives
in SI Sec. A1.

The MB-UCB Force Field

The MB-UCB force field [347, 349] was developed based on the principles of the many-body
expansion combined with ALMO-EDA variational energy decomposition analysis for each of
the terms of the total intermolecular energy

Einter = Eelec + Epol + ECT + Edisp + EPauli (4.16)

This advanced non-reactive force field introduced anisotropic atomic polarizability of the
water molecule [376], as well as explicit treatment of charge transfer and charge penetration
contributions for both water and aqueous alkali metal and halogen ions [347, 349].

The permanent electrostatics for the MB-UCB force field uses atom centered point mul-
tipoles

Eelec =
∑
i<j

MT
i TijMj (4.17)

where MT
i is the multipole coefficient vector and Tij is the multipole interaction tensor

that consists of appropriate associated derivatives of 1/rij. The monopole-monopole term
is modified to describe charge penetration (CP) via separation of the atomic charge into
a core nuclear charge, Zi and smeared electron cloud charge Z − qi. Hence the modified
charge-charge electrostatic interactions between two atoms A and B with atomic charges qA
and qB are expressed as

Eq−q
elec =

ZAZB

r
− ZA (ZB − qB)

r
fdamp −

ZB (ZA − qA)

r
fdamp

+
(ZA − qA) (ZB − qB)

r
f overlap
damp

(4.18)

The two damping functions,

fdamp = (1 − exp(−αr))
f overlap
damp = (1 − exp(−βAr))(1 − exp(−βBr))

(4.19)

require two parameters, α and β, to control the damping of core–electron and electron–electron
interactions, respectively, in order for the charge penetration effects to vanish rapidly and to



CHAPTER 4. FORCE DECOMPOSITION ANALYSIS 82

recover the classical Coulombic multipolar interactions at longer distances. We use the CP
model parameterization due to Piquemal and co-workers [377].

Many-body polarization is explicitly incorporated by point induced dipoles, µind, at each
atomic center [361]

µind
i = αi

[∑
j

TijMj −
∑
j ̸=i

Td−d
ij µind

j

]
(4.20)

where αi is the atomic polarizability and TijMj formulates the permanent electric field.
T d−d
ij is the dipole-dipole interaction tensor in which the off-diagonal blocks of Td−d are Thole

damped [378] Cartesian interaction tensors between induced dipoles of two polarizable sites
i and j. Unlike other polarizable force fields such as AMOEBA and AMOEBA+ that use
rotationally invariant isotropic atomic polarizabilities [346, 366, 372], MB-UCB uses a rank
two anisotropic atomic polarizablity tensor. The polarization energy can expressed in terms
of induced dipoles as

Epol = −1

2

∑
i

µind
i Ei (4.21)

and the induced dipoles at each multipole site are obtained by solving Equation 4.20 self-
consistently [379, 380].

MB-UCB uses an empirical many-body function similar to the polarization energy in-
duced multipoles to incorporate the many-body charge transfer energy [182].

ECT−ind = −1

2

∑
i

µct−ind
i Ect

i

µct−ind
i = αct

i

[∑
j

Tct
ijMj −

∑
j ̸=i

T
ct[d−d]
ij µct−ind

j

] (4.22)

where αct
i controls the charge transfer energy between two multipole sites through a response

to the permanent electrostatics, and the multipole interaction matrix (T ct) elements are
damped with an exponential damping function.

Tct
ζ = −

[
1 − d exp

(
−bu3

)] rζ
r3ij
, ζ = x, y, z u =

rij(
αct
i α

ct
j

)1/6 (4.23)

The three parameters αct, b and d are responsible for the fast exponential decay of the charge
transfer energy, which should be more short-ranged than polarization [347, 349].

The remaining energy terms are Pauli repulsion and dispersion, and are modeled in MB-
UCB as a van der Waals interaction using a buffered 14-7 pairwise-additive function proposed
by Halgren [381] and utilized in all AMOEBA force fields [361, 366, 372].

EvdW =
∑
i<j

ϵij

(
1 + δ

σij + δ

)7(
1 + γ

σ7
ij + γ

− 2

)
(4.24)
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where ϵ defines the energy scale, σ = R0/r is the distance between two atoms, and R0 is
the distance corresponding to the minimum energy. Like AMOEBA [166], we set the two
constants δ and γ to 0.12 and 0.07, respectively. Given the total functional forms of the
energy terms of MB-UCB, the corresponding force terms are easily defined through the
usual chain rule formulations and easily compared to the FDA analysis proposed here.

Computational details

The force decomposition analysis method discussed here was implemented in a developer
version of Q-Chem 5 [237]. The geometries used for molecular calculations were optimized
and run at the ωB97X-D [96]/def2-TZVPPD [382] level of theory, with exception to the
gold/silver CO2 complex, where ωB97X-V [97] density functional instead along with the
appropriate def2-ECP [383]. To diagnose the atomic forces of MB-UCB, we use the same
level of theory used in the original paper [347], namely ωB97X-V [97]/def2-QZVPPD [382].
DFT numerical integration was performed on (99,590) grid for XC functional and SG-1 [384]
for non-local correlation. All geometries are included in the Supplementary Material (SI).

Fifty water dimer geometries were used to compare the atomic force contributions be-
tween FDA and MB-UCB. The geometries were taken from the iAMOEBA training data set
[364], where pairs of molecules were randomly picked from AMOEBA liquid water simulation
between 257.15 - 373.15 K such that it is representative of a wide range of the phase space.
The geometries are provided in the supplementary information.

Forces are turned into internal coordinates by a linear transformation using the pseudo-
inverse of Wilson’s B matrix [368, 385, 386]. The B matrix was generated using Q-Chem 5
[237] with a minor modification of connecting intra-fragment atoms first and then minimally
connecting the inter-fragment atoms to avoid non-intuitive bonds and angles. Details are
included in SI Sec. A2

4.3 Results and discussion

H2O · · ·Na+, Cl– · · ·HOH and the water dimer

First we look at the water molecule interacting with an innocent cation, Na+, and a simple
anion, Cl– . Aside from the importance of these examples in understanding water-ion inter-
actions, they will illustrate the nature of the FDA information, as well as its representation
in internal coordinates. We use geometries where the position of the ion is optimized rel-
ative to a water molecule constrained to its isolated geometry. This is a convenient choice
because Ftot = ∆Fint since FA = 0 for A = H2O. As a result, the interfragment degrees of
freedom will have zero net force, as well as zero resultant force in the FDA in order to see
how the FDA components cancel each other out. By contrast, there will be nonzero ∆Fint

for intramolecular degrees of freedom, which will indicate how such internal coordinates will
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deform in a fully optimized complex. The FDA will reveal which component contributions
are primarily responsible for such changes.

At equilibrium, the Na+ –O vector is aligned with the water dipole vector, optimizing the
charge-dipole interaction. With C2v symmetry, there are only three non-redundant internal
coordinates, namely O–H, O–Na, and ̸ HOH. The FDA is shown in the left panel of Fig. 4.1.
By far the most interesting result is ∆Fint(O − Na+), which is overall zero, as a result of a
strong force of extension due to Pauli repulsion (the van der Waals term in Fig. 4.1) being
compensated by an equally strong force of contraction due to electrostatic attraction. The
electrostatic attraction force is about 80% due to the permanent electrostatics, and only 20%
due to polarization (of water by Na+). There is negligible contribution from charge transfer,
emphasizing the innocent nature of Na+ as an ineffective Lewis acid. The O–H bonds are
remote from Na+, so the forces distorting the optimal monomer geometry in the complex
are small. The largest formation force is ∆Fint(O−H), which has a small force of extension
driven by polarization. We can understand this effect as a result of promotion of a fraction
of an electron from the σOH orbitals to antibonding orbitals, presumably with σ∗

OH character.
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Figure 4.1: FDA results in the internal coordinates for H2O interacting with Na+ (left) and
Cl– (right). These forces are evaluated at the PES minima, keeping the water molecule at
its isolated geometry. The tables at the bottom replicate the data with numbers for easier
comparison.

FDA for the hydrogen bonded complex formed between water and the chloride anion, as
given in the right panel of Fig. 4.1, presents an interesting contrast with the H2O · · ·Na+

case, which was previously analyzed by the ALMO-EDA [375, 387]. Despite on-going debate
[195, 388–391], it is fairly well-established that hydrogen-bonds involve significant contri-
butions from permanent and induced electrostatics, and charge transfer [184, 355, 391], in
competition with Pauli repulsion. Focusing first on the inter-fragment Hd –Cl– force, which
is optimized to zero, we see three forces of contraction (permanent electrostatics > charge
transfer > polarization) balanced by the extension force due to Pauli repulsion. From a
force equilibrium perspective, this very nicely illustrates the “driving forces” that give rise
to the hydrogen bond. The other interfragment coordinate, ̸ OHdCl, is optimized as a bal-
ance between permanent electrostatics (attempting to shrink the angle), and Pauli repulsion
(attempting to enlarge the angle). This competition is controlled by the frozen part of the
interaction energy, as previously noted for the water dimer [355]. Within the water molecule,
there is a strong force of extension along the OHd bond. Its primary origin is charge trans-
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fer, followed by Pauli repulsion, induced electrostatics and permanent electrostatics. Both
CT and polarization can be readily understood in terms of partial occupation of the σ∗

OHd

orbitals.

Figure 4.2: FDA results in the internal coordinates for the water dimer at the minimum-
energy distance, with the monomers fixed in their isolated geometries. The table at the
bottom replicates the data with numbers for easier comparison.

Next, we examine FDA for the hydrogen-bonded water dimer, as shown in Fig. 4.2; this
system has also been carefully analyzed previously by the ALMO-EDA [195, 375]. The zero
net force on the hydrogen-bond coordinate, O1Hd, shows the FDA view of this characteristic
hydrogen-bond interaction. Classical electrostatics dominates the forces seeking to further
shorten the hydrogen bond, consistent with force-field viewpoints. Intermolecular charge
transfer is the second strongest force of contraction, followed by polarization. Pauli repulsion
provides an exactly balancing force of extension. Within the proton-donor water molecule
(which of course is the electron pair acceptor), the intramolecular O2Hd bond constrained
to the geometry of the free water molecule experiences a force of extension to which all
components contribute with the same sign. Similar to the water-chloride complex, charge
transfer and polarization partially occupy the antibonding σ∗

OHd
orbitals and are the leading

drivers of O2Hd bond elongation.

Assessing force components of an advanced water force field

Generating the force vectors corresponding to each energy term in the ALMO-EDA yields a
greatly augmented set of data at each geometry. Such data can in principle be employed to
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aid in the development or validation of advanced force fields, perhaps in conjunction with
powerful existing tools such as Force Balance [372, 392] or machine learning [393, 394]. To
illustrate the use of FDA data, we assess the forces that are obtained from a recently re-
ported force field for water, MB-UCB [347]. Although the energies of MB-UCB have already
shown to be in excellent agreement with ALMO-EDA [347], no comparable assessment of
the decomposed forces has yet been done, although total and force components of the com-
plete energy derivative have been assessed for other force fields such as iAMOEBA [364]
and AMOEBA14 [366] to which we compare below. The term-by-term force contributions
from the FDA against MB-UCB has been assessed for a set of 50 water dimer geometries
extracted from finite temperature MD trajectory as described in the computational details
section. For these snapshots, the ALMO-EDA energy components and the corresponding
contributions for MB-UCB, shown in SI Sec. A3, show excellent agreement, as expected
based on our previous work [347].

We begin our assessment by comparing the FDA and MB-UCB force components on the
center of mass (CoM) of each water molecule in the data set broken down by interaction.
The COM forces are a sum of all atomic forces on a molecule, also referred to as molecular
forces or net forces [364, 395]. The results are shown as correlation plots in Fig. 4.3 in which
the RMS error in the total CoM force is ∼8 kJ/mol/Å. This is a reasonably small error
when considering the fact that a DFT geometry optimization is considered converged at a
maximum force of ∼1-2 kJ/mol/Å, and is comparable to the ∼10 kJ/mol/Å RMS error in
AMOEBA and iAMOEBA forces versus ab initio forces reported for water clusters [364, 366].
Perhaps the most important point that emerges from Fig. 4.3 is the fact that the RMSD in
each non-bonded



CHAPTER 4. FORCE DECOMPOSITION ANALYSIS 88

Figure 4.3: Correlation between FDA decomposed forces and the corresponding MB-UCB
forces on the centers of mass of each water molecule for a sample of 50 water dimer ge-
ometries. The force decompositions considered are electrostatics (ELEC), van der Waals
(vdW), polarization (POL), and charge transfer (CT), and the total intermolecular interac-
tion (TOT). The color bins indicate the distance to the closest atom of the other fragment,
i.e., small numbers indicate the dimer is in the compressed region. The equilibrium water
dimer closest contact atoms sit at 1.9 Å, which corresponds to the data points colored in
blue. The dashed line corresponds to a least squares fit of the errors, where the line fit
equation is shown in the legend of each plot.
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contribution to the MB-UCB CoM force is smaller than the RMSD in the MB-UCB total
force. Even the very large ELEC and vdW forces exhibit RMSD values of only 4.7 and
5.4 kJ/mol/Å, respectively. The largest deviations are associated with the largest forces,
as expected, where short-range damping, such as Thole damping of polarization [378], are
likely to exert an influence. Overall, we can conclude that the decomposed contributions to
the CoM forces via MB-UCB are as good or better behaved than the total MB-UCB CoM
forces.

A more stringent FDA test is to assess the errors in the Cartesian forces on each atom,
for which a correlation plot between the FDA and MB-UCB decompositions is shown in
Fig. 4.4. The overall RMSD value is increased by only ∼10% for the atomic forces vs
the CoM forces, rising to ∼8.8 kJ/mol/Å, which is encouragingly good performance when
compared to iAMOEBA or AMOEBA, in which atomic forces showed RMS errors more than
twice as large as CoM forces [364]. Although the RMS of the ELEC atomic forces increases
relative to the COM electrostatic forces, they are still comparable to the total atomic force
errors.

However, the vdW term shows a significantly larger atomic force error compared to the
total or COM force error. It is pertinent to mention that MB-UCB situates the vdW centers
for the hydrogen atoms at a fixed fraction (0.91) of the OH bond length, rather than at
the atomic centers themselves. Hence the virtual site forces must be redistributed over
the particles with mass in a consistent way, which only guarantees that the total force is
preserved, and may explain some of the vdW force deviations observed. Even so, there is
some error cancellation between ELEC and vdW atomic forces as seen in the ELEC+vdW
plot in Fig. 4.4, which was not the case in the CoM force components. Finally, the more
challenging nature of the atomic force components (and the total atomic force) is also evident
in the fact that the largest errors no longer occur predominantly at the largest absolute force
values. Fig. 4.4 shows RMS errors when either MB-UCB predicts near zero atomic forces
compared to finite FDA forces (such as for POL or CT) or that finite MB-UCB atomic forces
are found when FDA forces are near zero (for example, vdW).
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Figure 4.4: Correlation between FDA decomposed component forces and the corresponding
MB-UCB forces on the atomic centers of each water molecule for a sample of 50 water dimer
geometries. Other details are as defined in Fig. 4.3.
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One more way to compare MB-UCB forces against the FDA results is to separately
evaluate the RMS deviations in the total CoM force (left panel) and the atomic forces (right
panel) as a function of the closest intermolecular distance in Fig. 4.5. These plots make it
clear that errors decay rapidly as a function of intermolecular separation. The plots also serve
to emphasize the fact that the quality of the individual MB-UCB decomposed CoM force
is statistically better than the MB-UCB total force. On the other hand, at intermolecular
distances of 2 Å and shorter, errors in the MB-UCB vdW force contribution are larger than
the total MB-UCB RMSD; in other words, there is partial error compensation with the
ELEC term in particular. It is encouraging that the errors associated with the MB-UCB
description of charge transfer and polarization contributions remain relatively low even in
the compressed region for both the atomic force and CoM force, although their magnitude
increases with the reduction of the closest contact distance. The CT term shows more scope
for improvement, which is likely to be a result of the less physically appropriate form that
was employed within MB-UCB [347].

Figure 4.5: Mean absolute deviations in the total CoM force (left panel) and the atomic
forces (right panel) as a function of the closest intermolecular distance. The mean errors in
MB-UCB forces plotted against the closest contact between the two water molecules broken
down into the non-bonded components of interaction. The left panel applies to the CoM
force on each water molecule, while the right panel applies to the atomic forces. Values
plotted are the RMSDs for all data points within each 0.1 Å bin of closest intermolecular
distance. The error bars indicate 95% confidence interval.

Interaction of CO2 with Au– and Ag–

The reduction of CO2 to CO2
•– is the first step on the pathway towards conversion of CO2

into fuels, of which the simplest is 2-electron reduction to CO2 [396]. The reverse reaction,
CO oxidation to CO2, is also well-studied [397]. At the level of model systems, negatively
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charged gold oxide clusters have been shown to react with CO to yield CO2 [398], via reactions
as simple as AuO– + CO −−→ Au– + CO2. The exit channel complex, [Au · · ·CO2]

– , has
been studied as part of that reaction [398], as well as characterized by separate experiments
and computations [399–401]. Remarkably, as shown in Fig. 4.6(a) and (b), there are two
local minima in the exit channel: a strongly bound chemisorbed structure, which exhibits
significant activation (i.e., reduction) of the CO2 ( ̸ OCO = 143◦), and a physisorbed complex
where CO2 is not activated ( ̸ OCO = 172◦).

Figure 4.6: A diagram showing the different configurations of the Au–CO2 with the labeled
bond distances and angles; due to C2v symmetry, there are only 3 non-redundant internal
coordinates, which are the Au–C distance, the C–O bond length, and the CO2 bending
coordinate. (a) the chemisorbed species at R(AuC) ∼ 2.2 Å, (b) the physisorbed species
at R(AuC) ∼ 3.2 Å, (c) a constrained geometry (R(AuC) optimized with CO2 fixed at its
optimal isolated geometry) exhibiting a minimum at R(AuC) ∼ 3.4 Å, (d) the charged anion
of CO2

•– .

On the other hand, the silver anion was reported experimentally to exhibit only the
physisorbed species [401], perhaps reflecting the smaller size of the gold atom compared to
silver due to relativistic contraction. We show a fully relaxed potential energy scan along
the M–C distance with the energy decomposition analysis results in Fig. 4.7. General
agreement with the experimental facts is evident in the PES scan. The size effect is already
clear with Ag showing more repulsive van der Waals interactions (sum of Pauli repulsion and
dispersion) at 4 Å and stronger electrostatic attraction than Au. Despite charge transfer
being a dominant contribution to the interaction, CT is very comparable for Au and Ag at
shorter M–C distances, although Ag’s CT is stronger than Au’s at longer distances due to
size. With an ionization energy of only 126 kJ/mol [402], Ag– is a stronger electron donor
(Lewis base) than Au– , whose ionization energy is 223 kJ/mol [403].
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Figure 4.7: Fully relaxed potential energy surface scans (kJ/mol) for Au–CO2 (black dashes)
and Ag–CO2 (black dots) with the EDA components (dashes for Au–CO2 and dots for
Ag–CO2).

Next, we look into the forces for both the physisorbed and chemisorbed species. For
easier comparison, we take the geometries of two minima for the gold complex and use these
same geometries for silver. Since the CO2 molecule in these geometries is distorted compared
to the isolated molecule, we will refer to that difference in energy as a preparation (Prep)
energy. Similarly, we refer to the forces that arise from the preparation energy (which will
cause the CO2 to relax back to its isolated geometry) as the preparation force. The FDA
results at the physisorbed geometry are shown in Fig. 4.8, while results at the chemisorbed
geometry are shown in Fig. 4.9.
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Figure 4.8: Comparison of the EDA components (in kJ/mol) and the decomposed
forces (in kJ/mol/Å) in internal coordinates for physisorbed Au– · · ·CO2 (left panel) and
Ag– · · ·CO2 (right panel) complexes, both evaluated at the nuclear coordinates optimized for
Au– · · ·CO2. The energies and forces are decomposed into preparation (Prep), electrostatics
(ELEC), van der Waals (vdW), polarization (POL), and charge transfer (CT), and the total
intermolecular interaction (Total). The table summarizes the same data with additional
significant figures.

We first discuss the physisorption results shown in Fig. 4.8. The larger size of Ag–

versus Au– results in a more attractive electrostatic interaction as well as stronger Pauli
repulsion in the van der Waals term, with no significant difference in polarization and charge
transfer terms. As we use the optimized Au– · · ·CO2 nuclear coordinates, the net force
along each internal coordinate is exactly zero for the Au– · · ·CO2 complex. Thus inspection
of the FDA reveals an exact force balance. Along the Au–C coordinate, van der Waals
repulsion is primarily balanced by electrostatics, with small contributions from polarization
and CT also favoring shorter bonds. The fact that those latter contributions are so small
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indicates that CO2 is scarcely activated, consistent with the near linearity of its optimized
geometry. The preparation force favors removing the slight lengthening of the CO bond
and very slight bending of the CO2. In opposition, the drive for CO bond lengthening
comes almost entirely from CT, while van der Waals and CT both favor increased angle
bending. Comparing Ag– · · ·CO2 against Au– · · ·CO2 shows relatively subtle differences
associated with the stronger Pauli repulsion forces in the Ag system, which favor longer
Ag–C separation, and extension of the C–O distance as a result of its stronger CT (due
to better donor-acceptor overlap, as well as Ag– being a stronger Lewis base). Finally, as
regards the physical driving forces behind the physisorbed complex, both EDA and FDA
reveal it to be synergy between dispersion (as indicated by the net binding provided by
ELEC+vdW), charge transfer, and polarization.

For the chemisorbed Au– –CO2 and Ag– –CO2 species shown in Fig. 4.9, at the coordi-
nates of the optimized Au– –CO2 complex, there is a binding energy difference of 24 kJ/mol
in favor of the Au complex. Note that the scale for Fig. 4.9 is 10 times larger than for
the physisorbed structures given in Fig. 4.8. By far the dominant driving force behind the
chemisorption geometry is charge transfer. The smaller gold anion exhibits stronger binding
from electrostatics, polarization, and charge transfer as well as more repulsive van der Waals
interaction compared to the more diffuse silver anion. Despite the lower ionization energy
of Ag– vs. Au– , the compactness of the gold anion makes charge transfer in Au– –CO2

significantly more attractive than that in Ag– –CO2 in which the anion is more diffuse.
Accordingly, FDA on Ag– –CO2 shows a net force for Ag–C elongation. Turning to FDA
within the CO2 subunit, CT (elongation) vs. Prep (contraction) determine the net force on
the C–O bond. On the other hand, the net ̸ OCO force displays an interesting synergy
between the van der Waals repulsion and charge transfer (both favoring bending), versus the
preparation force (favoring linearization). To sum up, the compactness of the gold versus
silver anion trumps the stronger Lewis basicity of the silver anion in leading to much stronger
chemisorption in the Au complex.
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Figure 4.9: Comparison of the EDA components (in kJ/mol) and the decomposed forces (in
kJ/mol/Å) in internal coordinates for chemisorbed Au– –CO2 (left panel) and Ag– –CO2

(right panel) complexes, both evaluated at the nuclear coordinates optimized for Au– –CO2.
The energies and forces are decomposed into preparation (Prep), electrostatics (ELEC), van
der Waals (vdW), polarization (POL), and charge transfer (CT), and the total intermolecular
interaction (Total). The table summarizes the same data with additional significant figures.

4.4 Conclusions

We have reported theory, implementation, and model applications of an extension to the
adiabatic energy decomposition analysis [355] to perform force decomposition analysis of the
force components obtained from an EDA method. In particular, the variational absolutely
localized molecular orbital EDA (ALMO-EDA) approach [185] is used to analyze Kohn-Sham
density functional theory calculations on molecular complexes by differentiating key interme-
diate energies associated with each non-bonded term. The result is a more information-rich
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vector of how the different physical driving forces of intermolecular interactions affect each
atomic or internal coordinate force within a complex. We expect that our FDA approach
can be readily applied to other variational EDA schemes and extended to other molecular
properties besides nuclear forces.

More specifically, the net force on either each atom or each internal coordinate of a
molecular complex is decomposed into the following physically interpretable contributions.

1. A preparation force (Prep), which results from deforming a fragment optimized in
isolation to its geometry in the complex. The Prep force will always favor restoring
the fragment to its isolated geometry.

2. Forces associated with quasi-classical electrostatics (ELEC), and van der Waals (vdW)
interactions (including attractive dispersion and repulsive Pauli interactions) are ob-
tained which sum to the net force resulting from the frozen interaction energy [374] of
the ALMO-EDA method. For strongly interacting complexes ELEC and vdW forces
are strong and opposite in sign, and it can be advantageous to instead examine the
frozen force.

3. Forces associated with the polarization (POL) of the complex [373], as described by
the self-consistent field for molecular interactions (SCF-MI) approach [292, 294, 295,
371, 372] in the basis of fragment atomic orbitals.

4. Forces associated with charge delocalization or charge transfer [375, 404] between the
fragments comprising the complex, which represent the final increment to obtain the
total forces.

The model applications presented here are of some intrinsic interest, as well as serving
to illustrate the future utility of the FDA for more advanced problems. We presented three
sets of examples:

1. We used FDA to examine the Na+H2O and Cl–H2O complexes, keeping H2O con-
strained to its free-molecule geometry. The resulting force balance along the inter-
molecular distance revealed a greater role for CT in the chloride complex. The net
forces within the water molecule showed the role of different components on the inter-
molecular interaction in distorting the geometry.

2. To illustrate the potential value of FDA to the advanced force field development com-
munity, we assessed the fidelity of contributions to the MB-UCB water force field
against the FDA components on snapshots of the water dimer. The results showed
very good performance for the total atomic forces, and particularly good performance
for the center of mass force decompositions, whose RMSD vs FDA components was
smaller than the total RMSD.

3. The FDA was also employed to analyze the physisorbed and chemisorbed complexes
formed between Au– and CO2, and to compare them against the corresponding Ag–CO2
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complexes. The results showed that while Ag– is a stronger electron donor than Au– ,
the smaller size of Au– is crucial to the stronger chemisorption of CO2 to it.
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Appendix A

Additional Information on the Force
Decomposition Analysis

A.1 Derivation of classical electrostatics derivative

In the derivation below, we follow the steps and notation of the adiabatic energy decom-
position analysis paper [355]. We skip steps that were derived explicitly and explained
sufficiently. In passing, the notation below uses µ, ν, λ, .. for AO basis functions, p, q, r, ... for
molecular orbitals, i, j, k, .. for occupied orbitals, a, b, c, .. for virtual orbitals, and A,B,C, ..
for fragments.

In the ALMO-EDA, the quasi-classical electrostatic energy uses the isolated densities of
each fragment, A:

Ecls.elec. =
1

2

∑
A,B ̸=A

∫ ∫
ρA,iso(r1)ρ

B,iso(r2)

|r1 − r2|
dr1dr2 (A.1)

where
ρA,iso(r) =

∑
µν

PA,iso
µν ϕµ(r)ϕν(r) +

∑
a∈A

Zaδ(r −Ra) (A.2)

where Piso = CoccC
†
occ are the isolated electronic densities, in terms of fragment MOs that
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are non-orthogonal between fragments. In matrix form this interaction is simply:

Ecls.elec. =
1

2

∑
A,B ̸=A

V AB
ee + V AB

Ne + V AB
NN (A.3a)

=
1

2

∑
A,B ̸=A

∑
µν∈A

(
PA,iso
µν

∑
λσ∈B

(µν|λσ)PB,iso
λσ

)
+
(
PA,iso
µν (V B

Ne)µν
)

+ V AB
NN (A.3b)

=
1

2

∑
A,B ̸=A

∑
µν∈A

PA,iso
µν

( ∑
λσ∈B

(µν|λσ)PB,iso
λσ + (V B

Ne)µν
)

+ V AB
NN (A.3c)

=
1

2

∑
A

PA,iso ·VA +
1

2

∑
A,B ̸=A

V AB
NN (A.3d)

where VA is the electric field (Coulombic potential) experienced by fragment A from other
fragments. The dot products are element-by-element multiplication.

The derivative with respect to the nuclear displacement of a nucleus on fragment A, in
one of its components, call it x, is only non-zero if fragment A is involved in the interaction.
The term V AB

NN and its derivative are the usual ones in quantum chemistry and won’t be
discussed here. The force is the negative of the derivative of the nuclear displacement and
it looks like:

∂

∂x
Ecls.elec =

1

2

(∂PA,iso

∂S

∂S

∂x
· V A +

∂PA,iso

∂∆

∂∆

∂x
· V A + PA,iso ·VAx)

+
1

2

∑
B ̸=A

V AB
NN

x
(A.4)

where the coulombic term derivative, VAx
, is the usual one in quantum chemistry and ∆

is the orbital rotation matrix. Below we deal with the classical density derivative, PA,isox,
starting with the overlap chain,

∂PA,iso

∂S

∂S

∂x
·VB = −1

2
(PSxP + PSxP) ·VA = −(PVAP) · Sx (A.5)

where the matrices were rearranged for easier evaluation with other terms as will be seen
below.

Now for the orbital response chain where we have

∂PA,iso

∂∆

∂∆

∂x
· V A =

∑
µν∈A

∑
pq

∂PA,iso
µν

∂∆pq

∂∆pq

∂x
V A
µν (A.6a)

=
∑
µν∈A

∑
ia

(CµiCνa∆
x
ia + CµaCνi∆

x
ai)V

A
µν (A.6b)

= VA ·∆x + c.c. (A.6c)

= VA ·
(
−E∆∆−1

E∆x
)

+ c.c. (A.6d)

= z · E∆x + c.c. (A.6e)
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where z is the usual z-vector technique here defined as:

E∆∆z = −VA, (A.7)

where E∆∆ is the usual orbital hessian. We solve the z with the conjugate gradient method.
Now we only need to evaluate z · E∆x:

z · E∆x = z · ∂

∂∆

(∂E
∂h

hx +
∂E

∂II
IIx +

∂E

∂S
Sx

)
(A.8a)

= Pz · hx + Pz · IIx ·P−PzFP · Sx −P(Pz · II)P · Sx −PFPz · Sx (A.8b)

where

Pz = z · ∂P
∂∆

=⇒ Pzµν = zia(CµiCνa + CµaCνi) (A.9)

Putting it together: The classical electrostatics force due to a change in coordinate,
x, of a nucleus on fragment A is:

Ex
cls.elec =

1

2

(
Pz · hx + Pz · IIx ·P

)
−

(
PzFP + P(Pz · II)P + PFPz + PVAP

)
· Sx

+
1

2
PA ·VAx

+
1

2

∑
B ̸=A

V AB
NN

x (A.10)

A.2 Details on Internal Coordinates Transformation

Wilson’s B matrix linearizes the internal to Cartesian coordinate transformation, i.e.,

B =
∂q

∂x
. (A.11)

The internal coordinates used here are the ones used in Q-Chem, which are taken from
standard procedure in the literature. The procedure is

1. Connect every two atoms with distance < the sum of their van der Waals radii.

2. Connect Hydrogen atoms to atoms < hydrogen-bond distance away.

3. Connect every set of connected atoms (called fragment) to all other fragments, starting
with the shortest distance first. This is done using Kruskal’s algorithm.

We modify the procedure by applying it separately on each fragment (user-defined fragments,
as is required for ALMO-EDA calculations). Then, we repeat the last step to connect all frag-
ments minimally. This produces internal coordinates that are more useful for understanding
fragment-fragment interaction.

Finally, we use the pseudo-inverse of Wilson’s B matrix as follows,

Fq = B+Fx, (A.12)

where Fq and Fx are the forces in internal coordinates and Cartesian coordinates, respec-
tively while B+ is the pseudo-inverse of B using the Armadillo package.
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A.3 MB-UCB vs. ALMO-EDA energy comparison

Below, we show the comparison of the energies for the same 50 water dimers used for the
force comparison shown in the main paper. These MB-UCB energies show excellent accuracy
as was demonstrated in the original MB-UCB paper [347].
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Figure A.1: Comparing the energies of MB-UCB with those of EDA shows very good agree-
ment, as already established in the original MB-UCB paper.[347]
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A.4 Forces in a smaller basis

The energy components of MB-UCB were compared against the second generation of ALMO-
EDA [184], which uses a truncated virtual space for the description of polarization [373]. The
truncated virtual space consists of fragment electric-field response functions (FERFs), which
produces the correct basis set limit of the polarization energy, and thus the charge transfer
energy. However, the polarization energy derivative using FERFs has not been implemented
yet, and as a proxy to it, we repeat the procedure in a smaller basis, namely def2-TZVPD,
as recommended in early EDA papers [183].

Figure A.2: Upon reducing the basis set used, MB-UCB forces perform significantly better.
This may be because they were trained on ALMO-EDA-2.

A.5 Gold and silver complexes PES

Relative energies for these systems may depend quite a bit on the treatment of dynamic
correlation, and we provide here a comparison of the performance of the density functional
we use to CCSD(T). Here we do a constrained optimization using ωB98X-V, and then run
HF, MP2, CCSD, and CCSD(T) on the same geometry for both gold and silver complexes.
In the silver case, the restricted Hartree-Fock wavefunction is not a stable solution and we
use the unrestricted solution instead. We see that the performance of ωB98X-V is on par
with that of CCSD(T) for this system.
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Figure A.3: Evaluating the energy on the intrinsic reaction coordinate using some wavefunc-
tion based methods to compare against our DFT answer.
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