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Abstract

Performance in the template-based modeling (TBM) category of CASP13 is assessed

here, using a variety of metrics. Performance of the predictor groups that participated

is ranked using the primary ranking score that was developed by the assessors for

CASP12. This reveals that the best results are obtained by groups that include

contact predictions or inter-residue distance predictions derived from deep multi-

ple sequence alignments. In cases where there is a good homolog in the wwPDB

(TBM-easy category), the best results are obtained by modifying a template.

However, for cases with poorer homologs (TBM-hard), very good results can be

obtained without using an explicit template, by deep learning algorithms trained

on the wwPDB. Alternative metrics are introduced, to allow testing of aspects of

structural models that are not addressed by traditional CASP metrics. These

include comparisons to the main-chain and side-chain torsion angles of the target,

and the utility of models for solving crystal structures by the molecular replace-

ment method. The alternative metrics are poorly correlated with the traditional

metrics, and it is proposed that modeling has reached a sufficient level of maturity

that the best models should be expected to satisfy this wider range of criteria.

K E YWORD S

CASP, molecular replacement, structure prediction, template-based modeling

1 | INTRODUCTION

Even though the worldwide Protein Data Bank1 (wwPDB) continues

to expand quickly, growth in this database is outpaced by the growth

in genomic information, leading to an escalation in the need for pro-

tein structure modeling. Around the turn of the century the wwPDB

archive was doubling every 3 to 4 years with apparent exponential

growth, but in recent years it has taken about 7 years to double2; in

contrast, genome databases are currently doubling about once every

7 months.3

A large fraction of proteins lacking an experimental structure will

be at least distantly related to a protein of known structure, which

can serve as a template for modeling. Template-based modeling

(TBM) plays a key role in leveraging genomic data—but as the level of

sequence identity drops, TBM becomes progressively more challeng-

ing. In the early days of the CASP experiments, it is probably fair to

say that many attempts to improve on the best template actually

turned it into a worse model. However, great advances have been

made over the years, aided in part by improved understanding of

the energetics of protein folding4 but also largely by taking advan-

tage of the growing databases. In CASP12, substantial improve-

ments over CASP11 were attributed to several factors: better use

of multiple templates; improved model refinement methods; and

better methods for estimating model accuracy, which allowed the
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best alternative model to be chosen and focus limited computational

resources on regions to refine.5 It was of interest to see whether

CASP13 would reveal continued progress and, if so, what was driving it.

We have also taken the opportunity to look at some less conven-

tional measures of quality. The traditional scoring metrics are defined

primarily based on the deviation between model and target in Carte-

sian space, and for historical reasons are somewhat lenient—in early

CASP rounds simply getting most Cα positions reasonably close to the

target was a substantial achievement.6,7 However, as the field

matures the number of groups achieving high scores on any given

model is steadily increasing. It is sensible to start considering more

stringent measures of model quality, preferably orthogonal to those in

current use. Thus, we have developed some measures based on how

well the torsion angles describing the conformation of the structure

are reproduced in the model. While torsion-based analyses have been

previously used in assessing CASP rounds 3,8 49 and 910 they have

not been widely adopted—perhaps because such metrics only become

truly meaningful once the majority of the fold is essentially correct.

The conventional metrics, and the new torsion metrics, evaluate

respectively the correctness of the predicted folds and the adherence of

predicted fine-scale features to those observed in the target structures.

However, users of such models will primarily be interested in their utility

for particular purposes, such as providing targets for the design of new

therapeutics or explaining the impact of mutations found in inherited

diseases. In addition to such applied research, predicted structures can also

be very useful as initial models when determining new experimental struc-

tures. Arguably, the most common example of this is in X-ray crystallogra-

phy structure phasing through molecular replacement (MR).11 In MR, an

atomicmodel derived from a related protein structure is rotated and trans-

lated in a search for the position occupied by the true structure in the crys-

tal; phases calculated from the model are combined with data to produce

an electron density map that reveals new features, if the model is suffi-

ciently accurate. MR, when it succeeds, allows a structure to be deter-

mined from a data set from a single native crystal, without requiring the

preparation of heavy-atom derivatives or the accurate measurement of

anomalous scattering data.12 TBM methods that improve significantly on

the original template can therefore shortcut the process of structure

determination and improve throughput in X-ray crystallography. In recog-

nition of this, in CASP7 we introduced a metric scoring individual model

predictions based on their usefulness in MR.6 As a result of continuing

improvement in structure prediction, the use of TBM to improve MR

models has been greatly expanding in recent years.13-16 Although TBM is

the focus of this work, it should also be noted that free modeling of whole

proteins or fragments can also yield useful models forMR, under favorable

circumstances of relatively small proteins and high-resolution data.17-20

2 | MATERIALS AND METHODS

2.1 | Target classification and scope of this work

Target classification is described in detail elsewhere in this volume.

Briefly, in CASP13 as in earlier exercises, targets for structural model-

ing were divided when appropriate into evaluation units, which were

categorized by difficulty. The difficulty category addressed here, TBM,

broadly covers cases in which a good template can be found in the

PDB. It is further subdivided into TBM-easy and TBM-hard. For the

most part, we will not be discussing the targets lacking good tem-

plates, which are categorized as free modeling (FM) or, for borderline

cases, TBM/FM. For CASP13, there were 40 evaluation units defined

as TBM-easy and 21 defined as TBM-hard.

2.2 | Traditional evaluation measures

Over the years, a large number of evaluation measures have been

developed to assess different aspects of model quality. A detailed

description, classification and review of a number of these metrics has

been published recently21; they differ for instance in whether or not

they depend on structure superposition and whether they depend on

global or local measures. Most of these metrics are computed, col-

lated, and analyzed by the Prediction Center (http://predictioncenter.

org),22 making them much more convenient for assessors and others.

In this work, our primary ranking has adopted the same over-

all ranking score used for TBM models in CASP12,5 which is

based on five metrics computed by the Prediction Center.

GDT_HA is the high-accuracy version of the Global Distance

Test, which assesses the overall fold in a way that gives greater

reward for parts of the target reproduced with high precision.23

The local difference distance test, lDDT, evaluates how well

models reproduce an all-atom distance map.7 The contact area

difference score, CADaa, is based on comparing residue contact

surface areas.24 Sphere-Grinder (SG) measures how well local

environment is conserved between the model and target.25

Finally, the accuracy self-estimate measure, ASE, evaluates the

degree to which the coordinate error estimates predict positional

differences from the target.22 The overall ranking score combin-

ing these measures is given by the following:

SCASP12 =
1
3
zGDT HA +

1
9

zlDDT + zCADaa + zSGð Þ+ 1
3
zASE

This scheme assigns equal overall weight to global fold quality

(GDT_HA), local structure quality (split over lDDT, CADaa, and SG),

and quality of model accuracy estimates (ASE). In the ranking equa-

tion, z indicates the adjusted z-score over all models under consider-

ation for a given target, with the subscript denoting the particular

underlying evaluation measure. The adjusted z-score (essentially the

number of standard deviations (SD) above the mean of the full set of

models) is computed using the following protocol common to recent

CASPs. A set of initial z-scores is evaluated based on the mean and

SD of scores from all the models under consideration. All models

yielding initial z-scores below −2 are omitted as potential outliers and

the z-scores are recomputed using the mean and SD from the pruned

set of models. Finally, negative z-scores are reset to zero, with the

goal of reducing the penalty on predictors who test novel methods.

When comparing with other metrics it was sometimes more sensi-

ble to exclude the ASE component, leading to:
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SCASP12−ASE =
1
2
zGDT HA +

1
6

zlDDT + zCADaa + zSGð Þ

2.3 | Geometric model quality metrics

Note: the geometric scoring functions we used were changed in

response to suggestions from a reviewer. Our manuscript on assess-

ment of refinement (Read et al, this issue) made use of the original

functions and referred to this manuscript for their definitions.

We have therefore provided the definitions for the original scoring func-

tions in the Supplementary Information. The effects of the change are

quite modest, with some reordering of closely spaced scores.

Here, we have implemented new metrics measuring the corre-

spondence of predicted torsion angles to the target, separately evalu-

ating local backbone and sidechain conformations, and applied them

to compare both model and template (where a template was named)

to the target structure. The score for a given dihedral was defined

based on the metric previously used for protein dihedral analysis by

North et al26 (the squared length of the chord on a unit circle resulting

from the angular deviation from the target), normalized to the range

(0…1):

Γtorsion =
1−cos Δtorsionð Þ

2

For each residue present in both model or template and target,

the backbone score was defined as:

Sbackbone =
Γφ +Γψ +Γω

3

where φ and ψ are the characteristic Ramachandran torsion angles27

and ω is the torsion across the peptide bond. Instances where the ω

torsion was more than 30� from planar or flipped relative to the target

(ie, trans to cis or vice versa) were separately recorded.

Devising a useful and fair score for sidechain conformations was

somewhat more challenging. In experimental models, the sidechain

conformation is often inherently less certain than the backbone, and

in fact in highly solvent-exposed locations there is often effectively

no experimental evidence for any given configuration, and hence no

true correct answer. Further, the certainty of a given sidechain torsion

tends to reduce with distance from the backbone. To complicate

matters further, the relevance of each torsion is dependent on those

preceding: if the first torsion is completely wrong, then the values

of the remaining torsion angles are effectively meaningless. The

sidechain score for rotameric residues was thus defined as:

Ssidechain =

β Γχ1

� �
ifnχ =1

β 1−
2
3

1−Γχ1

� �
−
1
3
e−

Δχ1
τð Þ2 1−Γχ2

� �� �
otherwise

8><
>:

where χi is the ith sidechain torsion from the backbone, nχ is the num-

ber of sidechain torsions in the given target residue, τ defines the

contribution of χ2 to the score as a function of Δχ1, and β is a “burial

score” defined as:

β =min
nclose
3nsc

,1

� �

where nclose is the number of heavy atoms from other residues within

4 Å of any heavy atom in the given residue (based on the target struc-

ture), and nsc is the number of heavy atoms expected in the sidechain.

Sidechains with no χ torsions in the target (ie, glycine or alanine resi-

dues and truncations) did not receive a score. For any χ torsions pre-

sent in the target but not in the model (eg, not modeled by the

depositor, or mutated in the case of a template structure), Δχ was

given the maximum possible value of 180�. Any torsions present in

the model but not in the target were ignored. We set the value of τ to

30�, such that the contribution of Γχ2 becomes negligible when

Δχ1 > ≈50�. Values of the score range from 0 (Δχ1 = Δχ2 = 0) to

1 (Δχ1 = 180�). A residue with χ1 perfectly matching the target and

Δχ2 = 180� would receive a score of 1/3.

For ranking of models, we found it convenient to define two dif-

ferent combined scores: a “torsion-only” score, and a “geometry-

weighted” score combining torsion differences with more standard

metrics. These are defined as:

Storsion =
2
3
zbackbone +

1
3
zsidechain

Sgeom =

1
16

zlDDT + zCADaa + zSG + zsidechainð Þ

+
1
8

zMolPrb−clash + zbackboneð Þ

+
1
4

zGDT HA + zASEð Þ

0
BBBBBB@

1
CCCCCCA

where z-scores were calculated as described in the previous section.

These analyses were implemented as Python scripts using tools

from ChimeraX28 and ISOLDE.29

2.4 | Evaluation by utility in molecular replacement
calculations

In the high-accuracy TBM assessment for CASP7, we tested each

model for selected targets to determine whether it could have been

used to solve the structure by molecular replacement.6 Model quality

was measured by the log-likelihood-gain (LLG) score that measures

agreement between atomic model and experimental diffraction data,

for the best solution found by our likelihood-based MR program

Phaser.30 In order to keep the computing requirements within practi-

cal limits, targets were used and their submitted models were evalu-

ated only if experimental diffraction data had been made available by

the authors and there was only one copy of one component in the

asymmetric unit of the crystal. To assess added value, the calculations

were repeated using template structures available at the time of pre-

diction in the PDB.
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For this round, we used Python scripts prepared by Gábor

Bunkóczi, subsequent to CASP7, for potential use in the CAMEO con-

tinuous automated model evaluation.31 In these scripts, a full MR sea-

rch is not carried out; rather, the model is superimposed on each copy

of the corresponding component in the crystal structure and sub-

jected to rigid-body refinement. This yields an appropriate LLG score

regardless of whether the model is sufficiently accurate to succeed in

the MR search. Because the LLG score becomes more sensitive as a

model progressively becomes more complete, the test model is added

to a background structure comprising the other components of the

target structure, and the LLG score recorded is the difference

between the LLG computed using the model and the LLG just with

the background (if relevant). These changes to the LLG calculation

allow us to use targets that are complexes or have multiple copies of

molecules in the asymmetric unit, and the computing requirements

are much less demanding than carrying out full MR searches. None-

theless, a new understanding of the LLG score allows us to predict

whether a full search would have succeeded, as searches that yield an

increase in the LLG score of 60 units or more are almost always

successful.32

Since CASP7, it has become much more common for predictors to

submit local error estimates in the B-factor fields of submitted models.

As suggested at the time of the CASP7 evaluation,6 and as demon-

strated in tests with models from CASP10,33 the use of error estimates

to inflate local B-factors of models, and thereby downweight the contri-

butions of unreliable segments of the model at higher resolution, can

dramatically increase the utility of models for MR. Increasing an atom's

B-factor by 8π2/3 times the square of the estimated RMS coordinate

error has the effect of smearing the atom's electron density over its dis-

tribution of possible positions. To test the quality of error estimates,

therefore, we evaluated models both using constant B-factors and

interpreting the B-factor column as an RMS coordinate error estimate;

as a control, a third calculation interpreted the B-factor column as a B-

factor. The MR calculation is relatively inexpensive compared to model-

ing algorithms, and crystallographers tend to test multiple alternative

models in practice. In accordance with this, we tested all five submitted

models for each target and chose the best for each group.

To assess the value added from the modeling, we compared the

results from the submitted models with what could have been

achieved without modeling, using templates available in the PDB. For

this comparison, we followed a protocol that would be recommended

for users of Phaser (https://www.phaser.cimr.cam.ac.uk/index.php?

Top_Ten_Tips). Sensitive sequence alignments, obtained at the time

of prediction using HHpred,34 were downloaded from the Prediction

Center and up to the five top hits (if significant at the level of E-value

< .0005) were tested as models, both as individual models and as

ensembles. Models, pruned first to match the evaluation units, were

prepared using the program Sculptor,35 which prunes atoms from

loops and side chains that the sequence alignment implies are unlikely

to be present in the target. Ensembles were prepared by super-

imposing models with the program Ensembler,36 activating the option

to trim parts of the ensemble that are not conserved among the

different ensemble members.

Preliminary trials indicated that the calculations could be unstable

for models that reproduced the structure very poorly or when the

coordinate error estimates were infeasibly large. For this reason,

models with a GDT_TS score less than 30 or with a median coordinate

error estimate greater than 3 Å were omitted from the calculations

and assigned an LLG score of zero.

An additional complication was encountered for two of the targets

for which diffraction data were available, T0960 and T0963. The crystal

structures for these targets display translational noncrystallographic

symmetry (tNCS), in which more than one unique copy of a molecule is

found in a similar orientation in the crystal. The presence of tNCS leads

to a systematic modulation of the diffraction intensities, as the contri-

butions from the tNCS-related molecules can interfere constructively

or destructively. If not accounted for, this seriously degrades the reli-

ability of the MR calculations. Phaser has been adapted to characterize

and account for the effects of tNCS,37 but because the Python scripts

we were using have not yet been updated to take advantage of this

new feature, we omitted these two targets from our calculations.

2.5 | Model visualization

Models were visualized in ChimeraX,28 using validation markup pro-

vided by ISOLDE.29

3 | RESULTS

3.1 | Assessment of progress

As noted in previous CASP rounds it is difficult to assess progress, in

no small part because the targets are different ones each time. This

will add random noise to any comparison, but there are potential sys-

tematic effects as well. Most notably, the operational definition of

an evaluation unit has a subjective element that could possibly

mask some of the improvements that are being made: one of the

considerations in defining an evaluation unit is whether or not any

predictors succeeded in finding a good relative orientation between

two segments of structure that might otherwise have been classi-

fied as separate domains. As predictors improve in this aspect, eval-

uation units may thus tend to become larger and more complex. In

addition, the target structures since CASP11 have tended to be

substantially larger; CASP13 even includes a few extremely large

structures determined by cryo-EM. This means that predictions of

evaluation units might have become more difficult because there

are more unknown environmental influences of neighboring parts

of the complex structure.

With those provisos in mind, a consistent measure of target diffi-

culty can be used to compare results with different targets. In line

with previous rounds including CASP12, we use here a linear combi-

nation of coverage by the best structural template and the sequence

identity between the target and the best template.5 Using this mea-

sure of difficulty, progress in improving overall fold accuracy as judged

by GDT_TS had seemed to stall around the time of CASP11.38 How-

ever, substantial improvements were seen again in CASP12.5 Figure 1
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shows that this progress has continued for CASP13. Note that the

marked outlier from CASP13 in Figure 1D, T0999-D2 (a TBM-hard

target), is an example of the challenges involved in designating

evaluation units. This target is from a family of proteins that undergo

a large conformational change upon ligand binding; since good tem-

plates exist in both ligand-bound and -free states, the resulting

F IGURE 1 Overall trends in model difficulty and accuracy over time. A, The average difficulty of TBM targets in CASP13 was somewhat
lower than in CASP12, with templates of both higher sequence identity and coverage available. B, The distribution of GDT_TS scores for TBM
models has shifted toward higher values since the first four rounds of CASP, with a further substantial shift from values below 50 to very good
values above 80 between CASP12 and CASP13. C, The accuracy of sequence alignments has improved significantly since CASP11, particularly
for low homology templates. D, In keeping with (C), GDT_TS scores appear to still be improving for harder targets. T0999-D2 is an outlier due to
ambiguity in the definition of a “domain,” as discussed in the main text. In (C) and (D), individual data points are shown for CASP12 and −13, with
only trend lines shown for earlier meetings. Each point represents the best model submitted by any group for a given target

F IGURE 2 A, T0999-D2; B, wwPDB
entry 5xwb (ligand-free open
conformation43); and C, wwPDB entry
3nvs (ligand-bound closed conformation;
ligand shown in space-filling
representation). All three structures are
aligned to superimpose the bottom
domain. Only models based on an open
conformation as in 5xwb will resemble
the target. There may be additional
flexibility in the open state, as the relative
orientations of the domains in T0999-D2
and 5xwb differ somewhat
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GDT_TS score for a given model was primarily dependent upon the

specific choice of template (Figure 2).

3.2 | Group rankings

For the primary rankings, predictions were scored by the SCASP12

score discussed above. For group rankings, we considered only the

scores for the “model 1” models rather than the best of the potential

five models submitted for each target. This is the approach generally

taken in CASP assessment, and the ability of the group to rank their

models forms an implicit part of the ranking score. Any ranking score

that assigns comparable weights to a combination of metrics measur-

ing global fold, local fold, and estimated model accuracy is likely to

lead to a similar overall ranking, as the metrics within these general

categories tend to be highly correlated to one another.21 Because the

ASE accuracy self-estimate score measures an orthogonal characteris-

tic of the models (and to assess the possibility that a good ASE score

could be attained by assigning large errors to poor models), we also

tested the effect on ranking of excluding the ASE measure.

Figure 3A shows an overview of the group rankings across all

TBM targets, while Figure 3B focuses on the 20 top-ranked groups.

Figure 3C further breaks down the performance of the top four

groups as a function of target difficulty (extended to include the

TBM/FM and FM categories to give a wider range), and clearly illus-

trates the usefulness of machine learning methods where available

templates are poor or nonexistent (see below).

Three of the top five ranked predictor groups (Zhang, Zhang-

server, and QUARK in positions 1, 3, and 5) are from the same

research group. The methods share a step in which a deep multiple

sequence alignment is used for contact prediction by a deep neural

network, and expected contacts are added to the potential function

used in modeling, starting from templates. Seok-refine (position 2) is a

meta-server that uses quality assessment to choose the best CASP

server model (potentially including Zhang-server and QUARK), which

is then further refined. Group A7D (position 4) is unusual in not using

explicit template models. Instead, deep multiple sequence alignments

are used in a deep convolutional neural network (CNN) to predict a

distance histogram for pairs of residues, instead of a binary contact

classification, then these form part of a statistical potential trained on

the PDB using another deep CNN. Further details are presented in

the contribution from the A7D group in this volume. The results echo

the conclusion from CASP12 that the introduction of contact predic-

tion was a key advance,5 and the introduction of further deep learning

algorithms is providing additional power.

Inclusion of the ASE metric in SCASP12 is seen to affect the rank-

ings by changing the local ordering, but assigning large estimated

errors to inaccurate models does not appear to improve their ranking

dramatically. Excluding the ASE metric, the top five groups are

A7D > Zhang > MULTICOM > Seok-refine > McGuffin, which leaves

three of the top five groups still in the top five. We believe that it is

appropriate to include ASE with a substantial weight, because know-

ing how confident you should be in what you know is nearly as impor-

tant as what you do know. As shown below, in the context of MR,

this has a practical value in real applications of models.

3.3 | Server models

Nonexpert users are relatively unlikely to install modeling software

locally. Modeling servers are therefore of great importance to a large

user community, so it is encouraging to note the good performance of

a substantial number of servers in this category. The following server

groups are ranked in the top 20 of 99: Zhang-server (position 3),

QUARK (5), RaptorX-DeepModeller (7), RaptorX-TBM (9), Seok-server

(11), and BAKER-ROSETTASERVER (19).

3.4 | Geometric model quality

The SCASP12 score is based primarily on global (GDT_HA) or local

(lDDT, SG, CADaa) Cartesian distance-based metrics. While useful for

assessing the match of a given model to the overall fold of a domain,

(A)

(B)

(C)

F IGURE 3 A,B, Overview of TBM rankings for (A) all 99 groups
and (B) top 20 groups. Rankings are based on the sum of sCASP12
scores for all models designated “model 1” submitted in the TBM-easy
and -hard categories. C, Performance across difficulty categories for
top four TBM groups. While template-based methods performed best
in the TBM-easy category, the template-free machine learning
methods of the A7D group clearly outperformed in categories where
template homology was weak or nonexistent
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it was not clear to us whether these are sufficient to distinguish

between models for which the predicted fold is essentially correct.

Beyond this point, the next most important challenge is arguably

matching the fine details—that is, the disposition of each residue's

peptide bond and (where applicable) sidechain atoms.

As a complement to the standard scoring metrics, for each individ-

ual model submitted we therefore assessed the conformational similar-

ity to the target on a per-residue basis. Specifically, for each residue

present in both model and target we computed two scores: Sbackbone

based on the average error in the three diagnostic backbone torsions φ,

ψ , and ω, and Ssidechain based on errors in the first two sidechain χ

torsions. We also recorded common serious errors revealed in the ω

torsion, namely cis/trans peptide bond isomer disagreement, and

peptide bonds twisted more than 30� out of plane. While cis peptide

bonds are rare (found in approx. 5% of proline residues and 0.03% of

non-prolines), stable twists of more than 30� can be considered essen-

tially impossible, having almost never been observed in experimental

structures.27 If a model named one or more template(s), we analyzed

the template most closely corresponding to the target domain in the

same manner, to assess if and where the modeling improved the result.

An example summary chart for a model in the TBM-hard category

is shown in Figure 4. A particularly notable feature of this particular

case is the region around residue 150: here the modeling has

corrected a cis/trans disagreement between template and target,

while significantly increasing both the backbone conformational

agreement and Cα positioning of the surrounding eight residues.

On the other hand, this comes at the expense of two severely twisted

peptide bonds nearby.

F IGURE 4 Example summary chart from torsion-space comparison of template and model to target for T0965-D1 (TBM-hard). Top panel:
per-residue backbone torsion deviations from the target (lower is better). Second panel: difference between template and model results from top
panel—negative values indicate the model has improved agreement compared to the template. Background coloring indicates the residual
differences in Cα positions between template (green) or model (purple) and target after rigid-body alignment. Sites with potentially problematic
peptide bonds (cis/trans disagreement or twisted more than 30� from planar) are indicated with crosses and triangles respectively. Third panel:
sidechain dihedral errors, weighted for degree of burial and distance from backbone as described in the main text. Bottom panel: difference
between template and model sidechain results—negative indicates improvement
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It is clear that modeling of sidechains onto scaffolds based on dis-

tant homology remains a significant challenge. The sidechain score for

this model (0.383) is very close to the mean of 0.367 for all models

submitted for this target. In contrast, the A7D group (who, as detailed

elsewhere in this volume, eschewed all template-based information in

favor of using ROSETTA39 to build energetically favorable sidechains

onto a folded poly-Gly scaffold) achieved the lowest sidechain score

for this target (0.241). On the other hand, in the presence of strong

homology, sidechain information in the template is clearly far more

useful. In TBM-easy target T0961-D1, for example, the best model

from A7D (0.217) is only slightly better than the all-model average

(0.247), and significantly worse than the best performing model

(Kiharalab, 0.156).

In order to compare the results of this analysis we derived a “tor-

sion-only” ranking score Storsion based on a weighted combination of

backbone and sidechain errors (see section 2). Comparing this to the

SCASP12-ASE score aggregated over all models (Figure 5) revealed that

high TBM scores are no guarantee of good local geometry—indeed,

the otherwise field-leading contributions from the Zhang lab15 score

in the bottom quintile of all groups by the torsion-only metric.

It is also interesting to note that neither score correlates particu-

larly well with the suitability of models for MR (discussed below).

While the top 10 groups by this MR score (highlighted in red) are

found for the most part in the upper-right quadrant of the plot, they

share this space with a much larger number of similarly scoring groups

whose models were not as effective for MR.

The disparity between Cartesian and torsional scoring metrics is

illustrated further in Figure 6 using T0981-D5 (TBM-hard) as an

example. By SCASP12 it appeared that A7D and Zhang-Server did

comparably well on this model, with z-scores of 1.76 and 1.55

respectively. By SCASP12-ASE these remained the leading models, but

the gap was markedly widened (z-scores of 1.77 and 0.98 respec-

tively). In torsion space, however, the A7D model remained the

leader (z = 1.49; Sbackbone = 0.123; Ssidechain = 0.234) while the

Zhang-Server model received the minimum possible z score (z = 0;

Sbackbone = 0.211; Ssidechain = 0.370). Inspecting more closely rev-

ealed that many sites in the latter were not simply incorrect relative

to the target but were physically highly implausible: 36 (28%) of

peptide bonds were either twisted >30� from planar or flipped into

cis conformation; 33 sidechains (26%) were rotamer outliers; and

65 residues (51%) were outside of favored Ramachandran space.

3.5 | MR model quality

Suitable diffraction data were available for 20 of the TBM target

structures, which contributed 27 of the 61 evaluation units in this

category. Groups were ranked by mean LLG z-score, choosing the

best model for each target. As shown in Figure 7A, the very best

results were achieved for models that were accompanied by good

error estimates, although not all groups provided error estimates that

improved the utility of their models for MR. These results provide a

concrete illustration of the concept that it is just as important to know

how accurate your predictions are as to have accurate predictions in

the first place. For instance, the models from group A7D on the whole

gave the highest LLG scores without error weighting, by a narrow

margin, but with error weighting the BAKER-ROSETTASERVER

models were significantly more useful. (As discussed below, problems

with the error estimates from group A7D probably arose from ambi-

guity in whether the error estimates were meant to apply to the com-

plete structure or just within an evaluation unit.)

One of the best examples of the utility of error weighting for MR

comes from target T1002-D3 (TBM-easy). For this target, the best

model using constant B-factors is model 2 from the YASARA group,

yielding an increase of 1053 in LLG from the background. By compari-

son, model 3 from the BAKER-ROSETTASERVER group yields an

increase in LLG of 989 when evaluated with constant B-factors, which

increases dramatically to 3186 when B-factor weighting is applied.

Panels b and c of Figure 7 illustrate the success with which the

unreliable parts of the structure have been identified by assigning

large estimated errors.

Results from the group Seder3mm reveal a complication in evalu-

ating the effect of changes to the B-factor used in the MR calcula-

tions. The perfect model would be one in which both the coordinates

and the B-factors are correct. For a model with errors in the coordi-

nates, the optimal B-factors will be ones in which the correct B-factor

is inflated to compensate for the coordinate error, thus smearing the

density of the atom over the correct position. Predictors are not asked

to predict the actual B-factors, so the only clear choices for evaluation

are to use constant B-factors or B-factors derived from the predicted

F IGURE 5 Torsion-based scoring metrics reveal issues not
captured by standard scores. Horizontal axis: sum of all positive z-
scores by standard ranking formula. Vertical axis: sum of all positive z-
scores by torsion-only formula. Each point represents the aggregate
of all models submitted by a single group in the TBM-easy and TBM-
hard categories. Points are colored according to change in ranking
going from SCASP12-ASE to Storsion. The top 10 groups in molecular
replacement trials disregarding error estimates (see Figure 7A) are
marked in red. The three points at lower-right (each originating from
I-TASSER15) demonstrate that it is possible to achieve excellent
(indeed, field-leading) scores by default metrics while still suffering
from severe distortions at the local level
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coordinate errors. Nonetheless, LLG values were computed as a con-

trol interpreting the B-factor columns as B-factors, and the results for

Seder3mm were extreme outliers in this calculation, yielding a mean

z-score of 1.38. This would have placed the group in third place in

Figure 7A, rather than ninth place. The improvement apparently

comes not from predicting errors but rather from predicting the B-

factors themselves, using a formula based on depth of burial of a resi-

due and an entropy factor computed taking account of the secondary

structure (Eshel Faraggi, personal communication).

A comparison of Figure 7A with Figure 3 reinforces the impression

from Figure 5 that the ranking by utility for MR is very different from

the one obtained with SCASP12. As discussed in the evaluation for

high-accuracy TBM in CASP7,6 utility for MR depends on a substantial

fraction of all atoms being placed reasonably accurately, but once an

atom is far from the correct position, a larger error will not reduce the

score further. In contrast, the more conventional measures focus on

the trace of the fold, and penalties increase as errors increase.

Finally, the results show that substantial progress has been made

since CASP7, when this metric was last used in assessing the TBM

category. At that time, the very best model improved on the best

template for only 5 of 12 evaluation units. This time, the best model

improves on the best template for 26 of the 27 evaluation units

(Figure 8). The single exception is T0999-D2 (TBM-hard) for which, as

discussed above, the relative orientation of two domains is uncertain

in the absence of knowledge about ligand-binding state. In fact, the

bar was set higher in this evaluation, because ensemble models were

included among the templates used for comparison. In nine cases, the

best template model was actually an ensemble model.

F IGURE 6 Target T0981-D5 (TBM-hard) presents a particularly stark example of the importance of carefully considering model
stereochemistry. A, The two leading models by SCASP12-ASE (horizontal axis) (i: A7D; ii: Zhang-Server) appear at opposite extremes according to
Storsion (vertical axis). Note: the corresponding SCASP12 scores (including the ASE measure) for these two models are 1.79 and 1.55, respectively.
B, The Cα correspondence to the target is quite similar in both cases: close in the core fold while deviating substantially on the two extended
hairpins at right. Gray = target; cyan = A7D; green = Zhang-Server. C, Summary of markup used in panels D through F. (i) Severe sidechain outlier
(P < .05%). Less severe outliers appear as smaller, yellow-orange versions of the same motif. (ii, iii) Ramachandran outlier (P < .05%) and marginal
(P < 2%) respectively. (iv) Peptide bond twisted more than 30� out of plane. D-F, While the A7D model (E) contains a similar number of
Ramachandran outliers to the target (D), more than half of all residues in the model from Zhang-Server (F) contain Ramachandran, sidechain
and/or peptide bond planarity outliers
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4 | DISCUSSION

4.1 | Error self-assessment requires clearer criteria

The intention when requesting the estimated coordinate error was for

it to be an estimate of local error—in essence, what would be the error

of this atom after rigid-body alignment of its local domain (the evalua-

tion unit) to the target? However, we now realize that this has not

been unambiguously communicated to participants, the instructions

provided on the CASP website being simply, “In place of temperature

factor field, the error estimates, in Ångstroms, should be provided.”

Nevertheless, the majority of groups applying template-based

methods appear to have used the desired interpretation—probably

because this form of error estimate is the most natural for this

approach. However, an equally valid interpretation is, “how sure are

we of the coordinates of this atom relative to the entire chain?” While

identical to the former interpretation for single-domain proteins, this

F IGURE 7 A, Top 10 groups ranked by mean
z-scores for LLG calculations. Groups are sorted
by the maximum of the mean z-score computed
using the calculations where the B-factor column
is interpreted as an RMS coordinate error
estimate for each atom (blue bars) or where
constant B-factors are used (orange bars). (B,C)
Effect of B-factor weighing on MR utility for
BAKER-ROSETTASERVER model of T1002-D3.
Both panels show the experimental structure of
T1002-D3 in blue. Panel (B) shows the best model
(number 3) submitted by BAKER-
ROSETTASERVER in gold. Panel (C) shows the
same model in salmon, but only including the
residues for which the estimated coordinate error
was less than 2 Å

F IGURE 8 Value added for utility in MR. For 26 of 27 evaluation
units, the best model is better than the best template previously
available from the PDB
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yields vastly different results in the case of large, multi-domain chains

where the relative domain orientation is uncertain. In this round,

group A7D (quite reasonably) applied this latter interpretation, leading

to error estimates that were in many cases 1-2 orders of magnitude

larger than expected. For future CASP rounds, the definition of coor-

dinate error estimates should be more carefully specified.

4.2 | Geometry-weighted scoring metric

As we have shown, under the current-standard SCASP12 scheme it is

possible to generate a top-scoring model that nevertheless contains a

very large number of physically implausible or impossible local confor-

mational features. It thus seems reasonable to suggest an alternative

scoring scheme incorporating these. The weighting of these must be

carefully considered, however. Relying purely on torsions is inadvis-

able: as a simple illustration, for a target consisting of a bundle of

alpha helices a model built as a single long helix will score almost as

well as the correct fold by this metric. It is also wise to consider that

the experimental structure itself is not perfect, and that torsions (par-

ticularly in elements without defined secondary structure) tend to be

substantially more error-prone than Cα and overall sidechain posi-

tions. On the other hand, inclusion of torsion-based scoring will

reduce the effect of the (not uncommon) case where some portion of

the target is likely flexible in solution but has been captured in a single

conformation. In such cases, distance-based metrics will unfairly

reward models which happen by chance to replicate the specific loca-

tion of the flexible element, whereas torsion-based metrics remain

largely unaffected.

Here we describe one possible such scheme, Sgeom, combining the

existing ASE, GDT_HA and local distance-based methods (lDDT, SG,

and CADaa), backbone and sidechain torsion errors, and the

MolProbity clashscore (a strong determinant of general model quality

which is not captured by other metrics). Re-rankings according to this

scheme are shown in Figure 9.

(A) (B)

(C) (D)

F IGURE 9 Rankings by geometric quality for (A,B) TBM-easy and (C,D) TBM-hard categories. A,C, Scores for top 20 groups in each category.
B,D, comparison of Sgeom vs the standard SCASP12. It is particularly notable that A7D, the top group in TBM-hard—by either metric—did not in fact
use a template-based method
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4.3 | Care is needed when choosing templates

The models deposited in the wwPDB cover an extraordinarily wide

range of both resolution and quality, from essentially-perfect struc-

tures built into sub-Ångstrom resolution maps to ones that are essen-

tially just homology models rigid-body docked into domain-scale

“blobs”. Between these extremes factors such as variations in data

quality, ability of the practitioner, and the progressive improvement in

software over time can mean that even models of comparable resolu-

tion may have dramatically different stereochemical quality.40 One

measure of stereochemical quality widely used in experimental struc-

tural biology is the MolProbity score,27 a single log-scale value sum-

marizing unfavorable backbone/sidechain conformations and the

number of badly-overlapping nonbonded atoms. A score less than 1.5

typically indicates a “good” model (ie, of a quality that one would

expect from atomic-resolution data) while scores greater than about

2.5 are cause for caution. The maximum possible MolProbity score

(for a hypothetical model where every atom is clashing, and every res-

idue is both a Ramachandran and rotamer outlier) is approximately

6.1. The Ramachandran, rotamer, and clashscore statistics necessary

to calculate a MolProbity score may be conveniently parsed from the

XML-format validation files provided on the wwPDB FTP server,

avoiding the need for computationally intensive reanalysis.

In this CASP round, 1651 individual models were identified as

templates in the submitted model files. Of these, 15 could not be

retrieved from the wwPDB—11 due to having been obsoleted and

replaced with newer models, one withdrawn entirely, one apparently

nonexistent and two unreleased at the time of writing. Model 1wb1,

for example, was used as a template for target 1022 by five groups,

despite having been obsoleted and replaced by 4ac9 more than

5 years before the beginning of this CASP round. This is a problem

that is likely to be compounded in future by the (otherwise positive)

recent decision by the wwPDB steering committee to begin allowing

authors to deposit updated versions of coordinates under their origi-

nal accession ID: given that the wwPDB is a rapidly-growing and

ever-more-dynamic database, any static template library is doomed to

quickly become outdated.

Nine templates were of resolutions lower than 10 Å. For the

remainder that could be retrieved from the wwPDB, a plot of

MolProbity score vs resolution is shown in Figure 10. For the most

extreme low-resolution and/or low-quality templates in this cohort,

we searched for better models of similar or identical sequence with

release dates of 2017 or earlier (ie, those that were available for this

CASP round). Of the approximately 50 cases inspected, we were able

to find demonstrably better models for 21 (Table 1). Eighteen of these

were >90% identical in sequence to the template, and 12 were never

used as templates by any group. In Figure 10A, red lines connect each

template to the identified alternative.

Our observations here suggest that an easy way for some groups

to significantly improve their TBM results will be to introduce some

simple extra heuristics in the selection of templates. Our recommen-

dations are:

F IGURE 10 Importance of considering model quality when selecting templates. A, Scatter plot of resolution vs MolProbity score for all PDB
entries identified as templates used in this CASP round (excluding models with resolutions below 10 Å). Red lines connect selected templates to
similar models with significantly better resolution and/or MolProbity score. Alternative models were selected from those with better than 90%
(solid lines), 70% (dashed line), or 50% (dotted lines) sequence identity to the template chain. B, Representative fragment of chain F from 5mqf
(5.9 Å resolution cryo-EM model used as a template for T0954 by six groups). The density is uninterpretable on the atomic scale—this chain is a
homology model, truncated to poly-Ala and rigid-body docked into patchy density. C, Equivalent region from the 100% sequence-identical 5xjc
(3.6 Å cryo-EM model, used by only two groups). All sidechains are present and for the most part modeled into strong, convincing density. The
lower MolProbity score for 5mqf arises simply because truncated sidechains do not contribute to clashscore nor count as rotamer outliers

1124 CROLL ET AL.



• Only use templates with resolution poorer than 5 Å with extreme

caution, and if no other option exists. At these resolutions the

model is likely to be little more than a Cα trace and/or set of rigid-

body fitted homology domains (see for example Figure 10B).

Sidechains are effectively invisible, and the backbone path is typi-

cally extremely vague with the possible exception of long helices.

Replace with a higher-resolution template wherever possible, even

at the expense of significantly lower sequence homology.

• Resolution 3.5-5 Å: while most of the fold is typically correct at

these resolutions, it is common for stretches of up to a few dozen

residues to be out of register (ie, systematically shifted one or more

positions toward their N- or C-terminus). MolProbity scores higher

than ~3 are cause for substantial caution. If an alternative exists

with higher resolution but lower sequence homology, consider

using that instead. Favor models with complete sidechains over

those with truncated ones.

• Resolution 2.5-3.5 Å: a “transition zone” where most of the model

is usually correct. Most sidechains are at least partially visible and

regions with defined secondary structure will usually be well-modeled,

but loop regions are often problematic.

• Resolution <2.5 Å: except in very rare cases (or very old models)

these are generally trustworthy.

• Favor newer models over older ones—data collection, computa-

tional methods, and validation statistics have all improved dramati-

cally, particularly over the past 15 years. The two oldest models

used in this round were 2hhb and 4hhb, two models of human

deoxyhemoglobin deposited in 1984; 209 newer, and 28 higher-

resolution, experimental models of this protein exist.

• All else being equal, choose the model with the highest resolution,

followed by the lowest MolProbity score. Wherever possible, avoid

models with MolProbity scores greater than about 3 and ideally

aim for those with scores below 2. Developers might also consider

using properties at the residue level such as difference from the

mean B-factor for that structure (a useful proxy for local effective

resolution and/or coordinate error), Ramachandran and rotamer

probabilities, and local clashes to assign finer-grained confidence

scores to templates.

• Reduce or remove reliance on static template libraries in favor of

selection directly from the wwPDB. Software and server devel-

opers should consider making use of the extensive query APIs pro-

vided by the RCSB PDB41 and/or PDBe42 to select up-to-date

templates directly from the master wwPDB database.

4.4 | MR score could inspire a more general metric

The MR LLG score has a substantial potential advantage in providing

a numerical measure of the utility of a model for one of the purposes

to which models are put, that is, solving new crystal structures. It

assesses not only a measure of all-atom accuracy but also provides a

tangible reward for good estimates of coordinate accuracy.

However, there are serious drawbacks to this metric as it stands.

The most obvious is that it can only be used when diffraction data

have been made available. Even when diffraction data are available,

the scores for models of different targets are not on the same scale,

because the LLG values depend on the number of reflections in the

data set, and the sensitivity to model errors depends on the resolution

TABLE 1 Details of alternative templates for the cases pictured in Figure 10A

Template (alternative) Identity Resolution Å Clashscore /1000 Rama outliers % Rotamer outliers % MolProbity score

5l5g_A (5l56) >50% 10 (4.0) 29.3 (10.1) 0.96 (1.20) 1.14 (5.12) 2.27 (2.59)

3j2t_A (5juy) >90% 9.5 (4.1) 15.9 (15.6) 2.09 (0.45) 0.81 (0.71) 2.18 (2.15)

4kss_A (4ksr) >90% 7.58 (4.2) 5.52 (4.47) 0.39 (0.46) 1.05 (1.28) 1.59 (1.59)

5nrl_H (5gap) >90% 7.2 (3.6) 22.6 (7.13) 0.32 (1.47) 0.19 (4.23) 2.56 (2.43)

5li2_A (5li4) >90% 6.2 (4.2) 163 (92.1) 5.32 (7.11) 3.58 (2.75) 3.83 (3.52)

5l59_A (5l56) >90% 6.0 (4.0) 13.3 (10.1) 1.34 (1.20) 3.74 (5.12) 2.6 (2.59)

5mqf_F (5xjc) >90% 5.9 (3.6) 11.0a (23.6) 0.81 (1.82) 0a (8.13) 2.17 (2.99)

4rvw_A (4rdr) >90% 4.48 (2.47) 1.36 (15.32) 0.33 (0.14) 1.79 (5.94) 1.53 (2.72)

2qfi_A (3h90) >90% 3.8 (2.9) 118 (13.4) 27.1 (2.85) 30.5 (20.41) 4.66 (3.28)

2etn_A (2f23) >90% 3.3 (1.6) 68.7 (12.33) 12.4 (0.00) 35.1 (0.77) 4.33 (1.60)

1bgy_D (2a06) >90% 3.0 (2.1) 61.3 (11.3) 4.0 (0.66) 19.3 (1.62) 3.96 (1.95)

1ubv_A (4nua) >50% 2.5 (1.43) 46.9 (4.03) 5.2 (0.00) 24.1 (1.62) 3.93 (1.35)

1msc_A (4zor) >90% 2 (2.2) 44.1 (2.31) 12.6 (0.16) 21.7 (1.34) 3.93 (1.11)

3s4d_A (3rrs) >90% 3.3 (1.7) 83.0 (4.25) 1.10 (0.00) 15.7 (1.45) 3.91 (1.62)

4hhb_D (2dn2) >90% 1.74 (1.25) 141 (4.64) 1.24 (0.00) 8.7 (3.7) 3.89 (1.67)

1nqg_A (2guf) >90% 3.31 (1.95) 64.6 (11.1) 3.7 (0.37) 17.3 (8.0) 3.83 (2.25)

2ziy_A (4ww3) >90% 3.7 (2.8) 50.5 (28.9) 8.4 (2.3) 9.7 (7.1) 3.81 (3.21)

1g59_A (1j09) >90% 2.4 (1.8) 46.3 (10.5) 1.72 (0.21) 26.9 (3.6) 3.79 (1.96)

1dcl_A (5wca) >90% 2.3 (1.37) 47.5 (3.1) 4.4 (0.46) 19.6 (1.34) 3.76 (1.30)

1unx_A (4hjb) >90% 2.4 (1.25) 30.4 (5.4) 4.9 (0.00) 33.9 (0.00) 3.76 (1.29)

4ih4_A (3w04) >70% 3.5 (1.45) 42.0 (7.2) 7.5 (0.00) 10.1 (1.76) 3.68 (1.65)

a5mqf is a poly-alanine model only, causing rotamer and clashscore statistics to become misleading.
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to which the data extend. When targets are subdivided into evaluation

units, different fractions of the full structure will provide the back-

ground for the LLG calculation covering an evaluation unit; because of

the quadratic dependence of the LLG on the completeness of the

model,32 the calculations will all be on different scales. Data pathologies

such as anisotropic diffraction or tNCS add further complications.

What is needed is a metric that reflects utility in MR but can be cal-

culated on the same scale for any evaluation unit. Such a metric could be

based on the correlation of electron densities between the model and

the target, determined in shells of resolution. These correlations are

closely related to the σA values used in the likelihood calculations, from

which we can infer that the LLG should be proportional to an integral

over resolution of the fourth power of the electron density correlation

(deduced from the functional form of the expected LLG calculation32),

weighted by the square of the inverse resolution (to account for the den-

sity of Fourier terms as a function of resolution). In future work, we hope

to implement and test such a metric. Because both crystallography and

cryo-EM methods involve fitting 3D atomic models to maps, either by

correlating their electron density (X-ray crystallography) or their electric

potential (cryo-EM), this metric would be highly useful in optimizing

modeling procedures that assist in experimental structure determination.

5 | CONCLUSIONS

The progress in the TBMcategory thatwas seen in CASP12 has continued

in CASP13. As noted for CASP12, the use of contact (or inter-residue

distance) predictions derived from deep multiple sequence alignments is

an important ingredient. One surprise, found in the work from the group

A7D that used deep convolutional neural networks, is that explicit use of

template models is not essential, though it is still valuable when there are

closely related templates available in thewwPDB.

We were also surprised to find that few predictors appear to be

taking account of measures of experimental structure reliability

when choosing templates to use as starting models (or presumably

to train structure prediction methods in general). Applying some

simple rules when choosing templates should have an immediate

impact on model quality.

Given the progress that has been achieved in the TBM category

since the inception of the CASP experiments, we believe that this is a

good time to raise the level of expectations for good quality models. The

results from some predictors show that it is possible not only to predict

the general outline of a protein fold but also to predict more of the

details in terms of the main-chain and side-chain torsion angles, as well

as to evaluate the local reliability of their models. To encourage develop-

ment along these lines, we present a new suggested ranking score that

future assessors might wish to consider as a basis for their work.
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