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ABSTRACT
Soil microbial processes are crucial for understanding the ecological functions of arid
and semi-arid lands which occupy approximately 40% of the global terrestrial
ecosystems. However, how soil microbial metabolic activities may change across a
wide aridity gradient in drylands remains unclear. Here, we investigated three
soil microbial metabolic indices (soil organic carbon (SOC)-based microbial
respiration, metabolic quotient, and microbial biomass as a proportion of total SOC)
and the degree of carbon limitation for microbial respiration along a 3,200 km transect
with a wide aridity gradient. The aridity gradient was customarily expressed using
the aridity index (AI) which was calculated as the ratio of mean annual precipitation
to mean annual evaporation, therefore, a lower AI value indicated a higher degree of
aridity. Our results showed non-linear relationships between AI values and the
metabolic indices with a clear aridity threshold for each of the three metabolic indices
along the aridity gradient, respectively (AI ¼ 0.13 for basal respiration, AI ¼ 0.17 for
metabolic quotient, and AI ¼ 0.17 for MBC:SOC ratio). These metabolic indices
linearly declined when AI was above the thresholds, but did not show any clear
patterns when AI was below the thresholds. We also found that soil microbial
respiration was highly limited by available carbon substrates at locations with higher
primary production and relatively lower level of water limitation when AI was above
the threshold, a counter-intuitive pattern that microbes were more starved in
ecosystems with more substrate input. However, the increasing level of carbon
limitation did correspond to the declining trend of the three metabolic indices along
the AI gradient, which indicates that the carbon limitation influences microbial
metabolism. We also found that the ratio of microbial biomass carbon to SOC in arid
regions (AI < 0.2) with extremely low precipitation and primary production were not
quantitatively related to SOC content. Overall, our results imply that microbial
metabolism is distinctively different in arid lands than in non-arid lands.
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INTRODUCTION
Arid and semi-arid lands cover 41% of the global land area, supporting the livelihoods of
more than two billion people on Earth. These drylands are also vulnerable to climate
change and other disturbances (Adeel, 2004; Reynolds et al., 2007). Scientific understanding
of these vulnerabilities is required for maintaining and improving the ecosystem services
and sustainability of these drylands. Soil microbial processes, such as heterotrophic
respiration and metabolic activities, are fundamental to ecosystem functions. Particularly,
understanding these soil microbial processes are critical for predicting changes in
the terrestrial ecosystems in response to global climate change (Schimel & Schaeffer, 2012;
Tian et al., 2014). Because inadequate water supply is a key feature of these drylands,
investigating patterns of change in soil microbial processes across an aridity gradient can be
informative for better understanding of these drylands (Yao et al., 2017; Jones et al., 2018).

Soil heterotrophic microbial respiration (commonly measured as the rate of CO2

production in root-free soil) is a key component of soil microbial processes. Based on a
recent study using data from mostly non-arid sites (Colman & Schimel, 2013), soil
microbial respiration is primarily influenced by a combination of climatic variables
(i.e., temperature and precipitation), soil organic carbon (SOC) concentration, microbial
biomass, and clay content, of which microbial biomass alone is responsible for
approximately 60% of the variation in soil microbial respiration. Other studies have also
shown that soil microbial respiration can be influenced by a number of biotic and
abiotic factors in drylands (Schlesinger & Pilmanis, 1998; Collins et al., 2014; Ahlstrom
et al., 2015; Chandregowda, Murthy & Bagchi, 2018). However, how soil microbial
respiration changes across a wide aridity gradient in drylands remains unclear
and warrants more studies.

Soil microbial metabolic activities normally increase in response to addition of readily
available carbon substrates, such as glucose (Anderson & Domsch, 1978). The level of
microbial respiratory response to glucose addition has been considered as an index
of microbial carbon limitation (Parkinson & Coleman, 1991; Cheng et al., 1996, Gershenson,
Bader & Cheng, 2009; Tian et al., 2014). The carbon-limitation of soil microbial activity has
been demonstrated by the 2–6-fold increases in soil respiration immediately after the
addition of a readily available substrate (glucose is the most commonly used one) at or above
the saturation level (Anderson & Domsch, 1978; Pang et al., 2015). The microbial respiration
after addition of available substrate at the saturation level has been referred as the
substrate-induced respiration (SIR), which remains nearly constant during the initial 4 h
period before any microbial growth is noted (Lin & Brookes, 1999; Mingorance & Pena,
2016). Logically, the higher the ratio of SIR rate to the basal respiration rate (respiration rate
without substrate addition), the higher the level of carbon limitation. Therefore, we
define this ratio as soil microbial carbon limitation index (CLI). How soil microbial CLI will
change across a wide aridity gradient in drylands remains an open question.

Hou et al. (2019), PeerJ, DOI 10.7717/peerj.6712 2/19

http://dx.doi.org/10.7717/peerj.6712
https://peerj.com/


Another microbial index is the metabolic quotient (qCO2), defined as the basal
respiration rate per unit of microbial biomass (Anderson & Domsch, 1985). Because SIR is
often linearly and positively correlated to microbial biomass (Anderson & Domsch,
1978), qCO2 should be inversely related to CLI. The qCO2 has been used as a crucial
parameter in recent models of soil carbon cycling (Allison, Wallenstein & Bradford, 2010;
Wang, Post & Mayes, 2013; Wieder, Bonan & Allison, 2013; Sulman et al., 2014), and
has been widely used in assessing soil microbial metabolic status (Wardle & Ghani, 2018).
A recent synthesis based on data gathered from 210 published papers demonstrated
large variability of the qCO2 across different biomes, especially between croplands and
natural ecosystems (Xu et al., 2017). Furthermore, this synthesis also showed that the qCO2

tends to increase with increased temperature, in accordance with an earlier study
(Insam, 1990). To what extent the qCO2 may vary with aridity has been inadequately
addressed. This inadequacy clearly requires more attention, considering that better
understanding of water regulation on soil microbial processes are highly needed for improving
global carbon models and land use strategies (Reynolds et al., 2007; Luo et al., 2017).

Overall soil microbial metabolic activity and microbial biomass carbon (MBC) are
ultimately connected to SOC because SOC is the primary substrate source supporting
microbial biomass (Insam & Domsch, 1988; Insam, Parkinson & Domsch, 1989;
Insam, 1990). The MBC:SOC ratio has been used as an indicator of microbial substrate
assimilation and metabolism (Xu et al., 2014). The ratio varies with climate conditions
(i.e., temperature, precipitation, and evapotranspiration) (Insam, Parkinson &
Domsch, 1989; Insam, 1990) and with the level of ecosystem disturbances (Insam & Domsch,
1988). Some studies have shown that the MBC:SOC ratio tends to be higher in relatively
dry ecosystems (Insam, Parkinson & Domsch, 1989; Xu et al., 2014). However, how
this ratio may vary across a wide aridity gradient has not been adequately investigated.

In this study, we aimed to explore the patterns and thresholds in the relationship
between soil microbial metabolism and climatic aridity by using soil samples taken from a
3,200 km transect, which covers a wide aridity gradient across arid and semi-arid regions
in Northern China. Microbial respiration, qCO2, and the MBC:SOC ratio were our
three main microbial metabolic indices, which were measured and used to assess
the overall microbial metabolism. To assess these three metabolic indices and microbial
carbon limitation, we also calculated soil microbial CLI. We quantified the aridity
gradient by calculating the Aridity Index (United Nations Environment Programme
(UNEP), 1992) (AI: the ratio of annual precipitation to annual potential evapotranspiration
(PET)) using long-term meteorological data. The AI as defined in this way has an inverse
relationship with the actual aridity; that is, a lower AI value indicates more dryness. We
further explored how these patterns and thresholds may relate to aboveground net primary
production and other soil properties.

MATERIALS AND METHODS
Study areas
This study was conducted along a 3,200 km west-east transect of arid and semi-arid
regions in northern China, which spans three regions (Xinjiang, Gansu, and Inner
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Mongolia) (Fig. 1). The longitude of this transect ranged from 96�40′ to 120�28′E, and the
latitude from 40�07′ to 50�1′N. Mean annual precipitation (MAP) ranged from 34 to 436
mm and mean annual air temperature (MAT) ranged from -5 to 10 �C. Annual PET
declined from about 1,200 mm in the west to about 710 mm in the east. MAT was
negatively correlated with MAP along the transect (R2 ¼ 0.889, P < 0.001, Fig. S1 in the
supporting information). By including both MAP and MAT, the AI provides an integrated
index of variation of climate (Eq. (1)) (Arora, 2002; Delgado-Baquerizo et al., 2013;
Luo et al., 2015). The AI of this transect ranged from 0.03 to 0.56 and was calculated
using the following equation:

AI ¼ MAP
PET

(1)

The main vegetation types were desert steppe in the western part, typical steppe in
the middle, and meadow steppe in the eastern part of the transect. The aboveground
net primary productivity (ANPP) ranged from 0 (no plants) in the desert steppe
to >400 g m-2 year-1 in the meadow steppe. Soil types were predominantly arid, sandy,
brown loess rich in calcium, which belonged to the order of Aridisols (for the dryer side
of the transect) and the order of Mollisols (for the relatively moist side of the transect)
in the USDA soil classification system.

Soil sampling
Sampling over the entire transect was conducted in July–August 2012. A total of 56
sampling sites were chosen, they were all under natural conditions without any significant
human disturbance. All longitudinal, latitudinal, and altitudinal data were obtained by
using a GPS system (eTrex Venture, Garmin, ±3 m accuracy). At each sampling site,
two large plots (50 � 50 m), 1.0 km apart from each other, were setup first, and

Figure 1 A sampling transect of 3,200 km across arid and semi-arid regions in Northern China. A sampling transect of 3,200 km across arid
and semi-arid regions in Northern China. A total of 56 sampling sites were selected (black dots) along this transect. Scale bar is 300 km.

Full-size DOI: 10.7717/peerj.6712/fig-1
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then five subplots (1 � 1 m each) (or five 5� 5 m subplots in are as dominated by shrubs)
were further located within each large plot randomly. In each subplot, all the aboveground
plants were harvested, sorted by different species, and stored for determining ANPP.
After harvesting, five random soil samples were collected with a soil core (0–10 cm deep,
2.5 cm diameter) and then bulked as one composite sample for further analysis. In this
way, we collected 10 replicated plant and soil samples at each site. We used these
10 soil samples at each site as analytical replicates and the mean of the 10 samples as
representing the site for all subsequent measurements. A total of 560 soil samples were
collected along the entire transect, but a smaller number of plant samples was collected
because there were sites without any vegetation. The distance between two adjacent
sites was kept at 50–100 km. All soil samples were brought to the laboratory and then air
dried, passed through a 2 mm sieve, and homogenized by hand mixing. Visible
organic debris was removed from each soil sample by hand-picking. All soil samples
were stored at 20 �C after air-drying until further analyses. Results from a relevant study
(Zornoza et al., 2007) indicated that air-drying soil samples from arid and semi-arid
ecosystems is appropriate for measuring MBC, basal respiration, metabolic quotient,
and water soluble carbon.

Climate data
The MAT (�C) and MAP (mm) data (1950–2000) were used for calculating AI values at
each sampling site, and were extracted from a global climate dataset with a resolution
of 0.0083� 0.0083� latitude by longitude (approximately one km2 at the equator, obtained
from WorldClim: http://www.worldclim.org/). The PET data (1950–2000) were extracted
from the CGIAR-CSI Global AI and Global Potential Evapo-Transpiration Climate
Database (http://www.cgiar-csi.org/data/global-aridity-and-pet-database).

Measuring soil basal respiration and SIR
For each site (Fig. 1), 10 field replicates for each soil sampling sites were pre-incubated for
21 days at 25 �C inside processor-controlled incubators (SHELLAB LI20-2; Sheldon
Manufacturing Inc., Cornelius, OR, USA, with a temperature control accuracy and
evenness of ±0.02 �C) before soil respiration measurements. Briefly, 100 g dry weight soil
was placed in a polypropylene random (PPR) plastic container (30 cm in height, and 2 cm
in diameter). Both ends of the PPR containers were closed by one-hole silicone rubber
stoppers. A piece of flexible plastic tubing was connected to each rubber stopper. The soil
moisture inside each container during incubation was carefully maintained at 60% water
hold capacity (WHC) by weighing regularly and adding with deionized water during
the preincubation time. Continuous aerobic condition in each pipe was maintained by an
automatic timer-controlled aeration system which aerated each pipe with room air at a rate
of 80 mL min-1 for 1 h at 4-h intervals.

After the pre-incubation, soil basal respiration was immediately measured directly in the
soil columns placed in the PPR plastic container by a soil respiration system originally
described by Cheng & Virginia (1993) and further modified by Zhang et al. (2017).This
system consists of a LICOR CO2 analyzer (Li-6262; Li-COR Biosciences, Lincoln, NE, USA)
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a water bath for maintaining a stable temperature at 25 �C, a mass flowmeter (GFM; Aalborg
Ltd, Orangeburg, New York, USA) for determining air flow velocity, and an air pump
connected with a soda-lime column which provided CO2-free air. The CO2-free air was
passed through a copper coil submerged in the water bath for equilibrating the air
temperature with the water bath temperature before reaching a manifold with 30 outflow
tubes. Each outflow tube had an inline fine metering needle valve for stabilizing the airflow
rate at 60 mL min-1 before the CO2-free air passed through the plastic pipe with pre-
incubated soil. One of the outflow tubes was connected to an empty plastic container and was
used as a blank reference. After a 1-h stabilizing period in the water bath, each individual air
out flow tube from each plastic pipe was connected in turn to a Li-COR 6262 infrared
gas analyzer with a mass flow meter, and the CO2 concentration and air flow rate were
recorded after approximately 5 min. The respiration rate for each sample was calculated using
the CO2 concentration, the air flow rate and the exact amount of soil in each pipe.

After measuring the soil basal respiration, glucose solution (60 g L-1 concentration) was
added to each PPR pipe using a syringe with a long needle to bring the soil water content
to 100% of the WHC. After a 2-h stabilizing period, the SIR was measured using the
same procedure as used for basal respiration described above. The amount of added
glucose to each sample ranged from 6 to10 mg glucose g-1 soil, which was at or above
the saturation level for a maximum microbial respiratory response (Cheng & Coleman,
1989). All measurements were conducted within 1 year after the initial soil sampling time.
After measurements for soil respiration, 20 g soil was taken out from the PPR tubes for
determining the dry weight and the water content of each soil sample.

Analysis of soil properties
Microbial biomass carbon was determined by using the chloroform fumigation-extraction
method after pre-incubation (Joergensen, 1996). Briefly, 20 g of pre-incubated fresh soil
was fumigated with pure chloroform for 24 h, then the chloroform was completely
removed from soil samples by repeated vacuuming. Both fumigated and unfumigated
subsamples from each soil sample were extracted with 40 mL 0.5M K2SO4 solution after
shaking for 1 h. The total organic carbon in the extract of each sample was analyzed using
a multi N/C� 3100 total organic carbon analyzer (Analytik Jena, Jena, Germany).
The MBC was calculated by using the difference in extracted organic carbon between
fumigated and unfumigated samples and divided by an efficient factor (KEC) of 0.45. SOC
and total nitrogen contents were determined using an elemental analyzer (Model CN;
Elementar Analysen Systeme GmbH, Langenselbold, Germany).

Calculations
The basal respiration rate and the SIR rate (respiration rate after glucose addition) of each
soil sample was calculated using the following equation from (Gershenson, Bader &
Cheng, 2009):

Rs ¼ 0:536� ðCc � Rf Þ
Ws

(2)

Hou et al. (2019), PeerJ, DOI 10.7717/peerj.6712 6/19

http://dx.doi.org/10.7717/peerj.6712
https://peerj.com/


Where Rs is the soil respiration rate as measured by the soil CO2 efflux rate (mg CO2-C g-1

dry soil h-1), Cc is the recorded CO2 concentration (mmol CO2 mol-1), Rf is the recorded
flow rate (mL h-1), and Ws is the dry weight (g) of the sample.

Using both the basal respiration rate and the SIR for each soil sample, we calculated
the CLI for the soil sample using the following equation:

CLI ¼ RGluþ
RGlu�

(3)

where RGlu+ and RGlu- are the respiration rates at 25 �C with and without added-glucose,
respectively (Cheng et al., 1996).

The qCO2 for each soil sample was calculated as the basal respiration rate per unit of
MBC (Anderson & Domsch, 1993):

qCO2 ¼ RGlu�
MBC

(4)

where qCO2 is the metabolic quotient, RGlu- is the respiration rate at 25 �C without
glucose addition.

Data analysis
To explore potential patterns and thresholds, we employed OriginLab 8.5 and R version
3.02 (R Core Team, 2013) for curve-fittings between AI and each soil microbial metabolic
index (respiration, CLI, qCO2, and the ratio of MBC to SOC). Linear correlation
analyses (SPSS 20.0; IBM SPSS Statistics 20, Armonk, USA) were used to further explore
the relationships between microbial metabolic rates and plant and soil variables. The
Piecewise (segmented) Linear Regression module (R 3.02, R Core Team, 2013) was used to
determine the potential AI threshold for each microbial metabolic index and other
measurements (e.g., basal respiration, SIR, CLI, qCO2, soil C:N ratio and MBC:SOC ratio).
Ordinary least squares regression analysis was conducted to examine all the linear
relationships between AI and soil characteristics. Differences in slopes of ordinary least
squares regressions were tested by one-way analysis of covariance.

RESULTS
Changes of basal respiration and SIR with aridity
Both soil mass-based microbial basal respiration and SIR (Fig. 2A) linearly increased with
increasing AI values (where a lower AI value indicates a higher level of aridity and vice
versa). However, when both respiration rates were expressed as CO2 production rate
per unit of SOC, the pattern of regression with AI reversed and became nonlinear (Fig. 2B).
There were AI thresholds at AI ¼ 0.13 and AI ¼ 0.10 for basal respiration and SIR,
respectively (Table S1). The SOC-based basal respiration was negatively and linearly
correlated with AI when AI > 0.13, and was not significantly correlated with AI
when AI < 0.13. Similarly, the SOC-based SIR was negatively and linearly correlated with
AI when AI > 0.10, and was not significantly correlated with AI when AI < 0.10.
Furthermore, microbial respiratory response to glucose addition was close to zero when
AI < 0.10, but was much apparent when AI > 0.10. In other words, the relationship between
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AI and SOC-based respiration rates showed a nonlinear pattern with AI thresholds, which
are close to the widely used AI¼ 0.2 as a boundary AI value between arid land and semi-arid
land (United Nations Environment Programme (UNEP), 1992).

Changes of CLI and qCO2 with aridity and other variables
The CLI increased with increasing AI (Fig. 3A), indicating that the degree of microbial
carbon limitation increased as the level of aridity decreased. More importantly, there
was a threshold at AI ¼ 0.15 (Table S1), showing that CLI increased linearly with AI when
AI > 0.15, while CLI remained low when AI < 0.15. In addition, CLI showed a positive

Figure 2 The variation of soil respiration rate (Rs) along the aridity gradient (AI) for soils from
56 locations along the sampling transect. The variation of soil respiration rates (Rs) along the aridity
gradient (AI) for soils from 56 locations along the sampling transect. In (A), the soil respiration rate is
expressed as the rate of CO2-C release per unit of soil mass. In (B), the soil respiration rate is expressed as
the rate of CO2-C release per unit of soil organic carbon. The black dots represent basal soil respiration
without glucose addition (Glu-) and the red dots represent substrate-induced respiration rate with
glucose addition (Glu+). The vertical dotted dash line indicates AI threshold value determined by the
break-point in segmented linear regression. The R2 and P-values were obtained from linear regressions.

Full-size DOI: 10.7717/peerj.6712/fig-2
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linear correlation with ANPP (Fig. 3B), indicating that soil microbial respiration became
more carbon-limited in ecosystems with higher primary production or more plant C input.
Besides, CLI increased linearly as SOC content increased up to 9.0 g C kg-1 of soil
(Fig. 3C; Table S1), and CLI tended to level off above 9.0 g C kg-1 of soil, indicating a
threshold at 9.0 g C kg-1 soil in the relationship between CLI and SOC content. There was
a weaker positive linear relationship between CLI and soil C:N ratio (Fig. 3D).

The relationship between qCO2 and AI again indicated a threshold at AI ¼ 0.17 (Fig. 4;
Table S1), where qCO2 decreased linearly as AI increased above the threshold, while it
decreased sharply as AI increased below the threshold of 0.17 (although in the latter
case the relationship was not statistically significant) (Fig. 4A). Because AI is negatively
related to mean annual temperature and positively related to MAP (Fig. S2), qCO2

was positively correlated with mean annual temperature and negatively correlated with
MAP (Figs. 4B and 4C). Furthermore, qCO2 showed a negative linear correlation with

Figure 3 Changes of CLI with AI, ANPP, SOC, and soil C:N ratio for soils from the 56 locations along the sampling transect. Changes of the
Carbon Limitation Index (CLI) with the aridity index (AI) (A), annual net primary productivity (ANPP) (B), soil organic carbon content (SOC) (C),
and soil C:N ratio (D) for soils from the 56 locations along the sampling transect. The vertical dotted dash line indicates the AI threshold value
determined by the break-point in segmented linear regression. The R2 and P-values were obtained from linear regressions.

Full-size DOI: 10.7717/peerj.6712/fig-3
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ANPP (Fig. 4D) and soil C:N ratio (Fig. 4E), but a non-linear inverse relationship with
SOC content (Fig. 4F) (high qCO2 values were associated with low SOC contents and
vice versa).

Changes of microbial biomass with aridity and other variables
Both ANPP and soil mass-based MBC increased linearly with increasing AI values
(Figs. S3A and S3B), indicating that climate aridity had important control over ANPP and
soil MBC. Similarly, SOC and SON content both increased curve-linearly with increasing
AI values (Figs. S3C and S3D), suggesting that higher ANPP at higher AI values
(higher water availability) would support higher soil MBC and maintain higher SOC and
SON contents. However, the relationship between soil C/N ratio with AI showed a
clear threshold at AI¼ 0.17 (Fig. S3E; Table S1). The soil C/N ratio increased linearly with
increasing AI values when AI > 0.17, while there was no clear relationship when AI < 0.17.

Similarly, the relationship between MBC:SOC ratio with AI showed a clear
threshold at AI ¼ 0.17 (Fig. 5A; Table S1), where the MBC:SOC ratio decreased linearly
with increased AI above the threshold; but tended to increase with increased AI below
the threshold. Similarly, the MBC:SOC ratio decreased linearly with increased SOC
content at SOC contents higher than 5.0 g C kg-1soil, but with no clear relationship at SOC
contents lower than 5.0 g C kg-1 soil (Fig. 5B; Table S1), showing a likely threshold
of SOC content at 5.0 g C kg-1soil. The MBC:SOC ratio also showed a linearly decreasing
trend with increasing soil C:N ratios (R2¼ 0.19, P < 0.001) (Fig. 5C) and ANPP (R2¼ 0.60,
P < 0.001) (Fig. 5D).

DISCUSSION
Soil basal respiration and substrate-induced respiration along the
aridity gradient
Soil microbial respiration is a central process in terrestrial ecosystems, which is
closely connected to virtually all biogeochemical cycles. Here, we made an attempt to
address the research question: how does soil microbial respiration change across a wide
aridity gradient? We found that soil mass-based respiration rates (both basal and SIR)
increased as AI values increased (Fig. 2A), largely because locations with higher AI values
had higher ANPP and SOC content, both of which were highly positively related to soil
mass-based respiration rates (Fig. S3). It should be noted that the AI is the ratio of
annual precipitation to annual PET, a lower AI value indicates a higher level of aridity. It is
widely known that soil microbial respiration rates are primarily driven by SOC contents,
which are supported by primary production (Raich & Schlesinger, 1992; Colman &
Schimel, 2013).

However, when we expressed basal and SIR rates as per unit of SOC, different patterns
emerged (Fig. 2B). SOC-specific basal and SIR rates decreased as AI value increased,
and each showed a threshold at AI ¼ 0.10 and 0.13, respectively (Fig. 2B; Table S1).
The SOC-based basal respiration and SIR were negatively and linearly correlated with
AI above the thresholds, and were not significantly related with AI below the thresholds.
It was also clear that the microbial respiratory response to glucose addition was very weak
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Figure 4 Variations and correlations of qCO2 with AI, MAT, MAP, ANPP, soil C:N ratio, and SOC for soils from the 56 locations along the
sampling transect. Variations and correlations of microbial metabolic quotient (qCO2) with aridity index (AI) (A), mean annual temperature
(MAT) (B), mean annual precipitation (MAP) (C), annual net primary productivity (ANPP) (D), soil C:N ratio (E), and soil organic carbon content
(SOC) (F) for soils from the 56 locations along the sampling transect. The vertical dotted dash line indicates AI threshold value determined by the
break-point in segmented linear regression. The R2 and P-values were obtained from either linear regressions or curve-linear regressions.

Full-size DOI: 10.7717/peerj.6712/fig-4
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when AI < 0.10, but was much stronger when AI > 0.10. Given that the SOC-specific basal
respiration rate is a surrogate for SOC decomposition rate that we measured under
standardized temperature and moisture conditions (temperature at 25 ºC and moisture at
60% WHC), this pattern indicates that this standardized microbial decomposition rate
of SOC decreases as aridity decreases (or as AI increases) when AI > 0.13. However, this
trend disappeared when AI < 0.13. Although the exact mechanisms behind this pattern
are unknown at this point, two possible explanations can be offered here. First,
microbes living under drought-dominant conditions (AI < 0.1) are expected to have
higher respiration rates and lower carbon use efficiencies due to drought-tolerance
(Schimel, Balser & Wallenstein, 2007), because all three known microbial physiological
features related to drought-tolerance involve releases of extra amount of energy
and nutrients (Harris, 1981; Schimel, Balser & Wallenstein, 2007). Therefore, microbial
drought-tolerance can be one of the mechanisms behind this pattern. Second, this

Figure 5 Variation and correlation patterns of the MBC:SOC ratio with AI, SOC, soil C:N ratio, and ANPP for soils from the 56 locations
along the sampling transect. Variation and correlation patterns of the MBC:SOC ratio with aridity index (AI) (A), soil organic carbon content
(SOC) (B), soil C:N ratio (C), and annual net primary productivity (ANPP excluding zero values) (D) for soils from the 56 locations along the
sampling transect. The vertical dotted dash line indicates AI threshold value determined by the break-point in segmented linear regression. The R2

and P-values were obtained from linear regressions. Full-size DOI: 10.7717/peerj.6712/fig-5
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SOC-specific respiration pattern along the AI gradient can result from differences in
microbial community composition driven by the aridity gradient (Goberna et al., 2014;
Yao et al., 2017; Ochoa-Hueso et al., 2018). This possibility is indirectly supported by
the results presented in Fig. 5B which showed that, when SOC content drops below
5.0 g kg-1 of soil (corresponds to AI value of 0.2), SOC is no longer the main substrate
basis for microbes: they live off of something else (e.g., chemo-autotrophs and/or
photo-autotrophs), which is supported by a recent finding that some microbes in
extremely try desert have the capability of using atmospheric trace gases as their energy
source (Bay, Ferrari & Greening, 2018). This point is further enforced by the recent finding
that desert microbial communities clearly have much lower network complexity
than semi-arid grasslands (Wang et al., 2017). Clearly, a better mechanistic understanding
about the SOC-specific respiration pattern along the AI gradient warrants more studies.

Microbial metabolic quotient and carbon limitation index along the
aridity gradient
Soil microbial metabolic quotient (qCO2) has become an important index in soil
microbiology and biogeochemistry since being introduced by Anderson & Domsch (1985).
Recently, qCO2 has been used as a crucial parameter in models of soil carbon cycling
(Allison, Wallenstein & Bradford, 2010; Wang, Post & Mayes, 2013; Wieder, Bonan &
Allison, 2013; Sulman et al., 2014), largely because qCO2 is a surrogate for both microbial
enzyme production rate and microbial biomass turnover rate, and both rates are difficult
to directly quantify. In this current study we aimed to address the question: what was
the pattern of change in qCO2 across the wide aridity gradient? We found that qCO2 was
positively related with mean annual temperature and negatively correlated with MAP
(Figs. 4B and 4C), which is in accordance with published reports (Insam, 1990; Xu et al.,
2017). More importantly, we found that qCO2 decreased linearly as AI increased when
AI > 0.17, and that qCO2 tended to decrease sharply as AI increased when AI < 0.17
(but the correlation was not statistically significant) (Fig. 4A). This pattern again indicated
a threshold at AI ¼ 0.17. This pattern of qCO2 change along the aridity gradient is
quite similar to the pattern with SOC-specific microbial respiration. Logically, the
two possible explanations behind this pattern given in the previous paragraph should also
apply to qCO2 here; that is, microbial tolerance to drought may result in higher qCO2

values when AI < 0.17, and the aridity gradient may have resulted in different microbial
community composition (Yao et al., 2017; Ochoa-Hueso et al., 2018) that sharply
differ in metabolic rates.

We found that the CLI increased as AI increased (Fig. 3A), indicating that the degree of
microbial carbon limitation increased as the level of climate aridity decreased. We also
found an AI threshold at AI¼ 0.15 for CLI. CLI increased linearly with AI when AI > 0.15,
and CLI remained low when AI < 0.15, indicating that soil microbial respiration was
not limited by available carbon substrates in arid regions. Furthermore, CLI showed a
positive linear correlation with ANPP (Fig. 3B). This indicates an apparent paradox in that
soil microbial respiration becomes more carbon-limited in ecosystems with increasingly
higher primary production or higher substrate supply. This raises more questions.
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Why do soil microbes display a higher level of carbon starvation at locations with
higher substrate input? Why do microbes at the very dry end of the gradient (AI < 0.15)
show little carbon limitation where primary production is very low? Is it because all
drought-tolerant microbes are oligotrophs which have much longer lag-time to respond to
substrate changes, and copiotrophs (which often show fast responses to substrate addition)
become more abundant as water availability improves (Hattori, 1984)? Is it because
the stronger competition between soil microbes and plants for mineral nutrients when
AI > 0.15 differentially selects for more carbon-starved microbes as predicted in a
theoretical analysis, which postulated that soil microbes must be carbon-limited and plants
much be nutrient-limited if both persist (Daufresne & Loreau, 2001)? Our data (Fig. 5A)
indeed implied that, when SOC content drops below 5.0 g kg-1 soil (corresponds to
AI < 0.15), SOC is no longer the main substrate basis for soil microbes. In other words,
microbes at the very dry end may consist of chemo-autotrophs and/or photo-autotrophs
which do not use SOC as their substrates (Bay, Ferrari & Greening, 2018), but indeed,
may form carbon substrates for heterotrophic microbes thereby alleviating their
carbon limitation. Ultimately, finding answers to these questions requires more investigations.

Microbial biomass carbon along the aridity gradient
One of our objectives in this study was to explore the relationship between soil microbial
biomass and climate aridity. We found that soil mass-based MBC increased linearly
with increasing AI values, and similarly, ANPP and SOC content also increased
as AI values increased (Figs. S3A–S3C). Climate aridity exerts a major control on soil
mass-based MBC, ANPP, and SOC content, suggesting that higher ANPP at higher
AI values (higher water availability) supports higher soil MBC and maintains higher SOC
content. These trends are in agreements with published results (Colman & Schimel, 2013;
Xu et al., 2014).

The MBC:SOC ratio, however, showed a non-linear relationship with AI (Fig. 5A): the
MBC:SOC ratio decreased linearly as AI increased when AI > 0.17, but, increased as
AI increased when AI < 0.17. Again, an AI threshold value was observed at 0.17 for the
relationship with MBC:SOC ratio. The trend shown at the right side of the AI
threshold (AI > 0.17, Fig. 5A) is in accordance with the result of Insam, Parkinson &
Domsch (1989), who also showed lower MBC:SOC ratios in ecosystems with relatively
higher AI values. Intriguingly, the trend shown at the left side of the AI threshold
(AI < 0.17, Fig. 5A) is new, as to the best of our knowledge, and requires more discussion.
Why does the MBC:SOC ratio scatter widely and tend to decrease as AI decreases, when
AI < 0.17 (the opposite trend to AI > 0.17)? According to the simulation (modeling)
results of Xu et al. (2014), the MBC:SOC ratio is primarily regulated by two variables:
(1) the quality of soil organic substrates (approximated with C:N ratio), and (2) cumulative
microbial activity index in days per year (primarily related to water and temperature
status). With their model, Xu et al. (2014) were able to accurately predict MBC:SOC ratios
at the biome scale, with higher ratios in ecosystems with lower soil C:N ratios and a lower
(or shorter) cumulative microbial activity index. In the case of our current study,
their model would predict higher MBC:SOC ratios as AI further decreases from 0.17,
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because lower AI values would directly translate to smaller (shorter) cumulative microbial
activity index and also correspond to lower soil C:N ratios or higher substrate quality
(AI values were positively correlated with C:N ratio, R2¼ 0.81, Fig. S2E). Apparently, the
model prediction does not fit with our empirical data when AI < 0.17, even though there
were a few data points of very high MBC:SOC ratios (Fig. 5A). The model would not
predict the scatter, nor the declining trend as AI further decreases from 0.17. Furthermore,
if chemo-autotrophs and/or photo-autotrophs are an important component of the
microbial community in soils with an AI < 0.17, this would also result in relatively
high MBC:SOC ratios, higher than predicted based on the regression shown for AI > 0.17.
It is clear that more studies are required to affirm the real mechanisms driving this pattern.

CONCLUSIONS
We identified aridity thresholds for each of the three soil microbial metabolic indices
(SOC-based respiration, qCO2, and the MBC:SOC ratio) along the aridity gradient.
These metabolic indices linearly declined when AI values were above the corresponding
thresholds, but did not show any consistent patterns when AI values were smaller than the
threshold of 0.1. We also found an apparent paradox: soil microbes showed a higher
level of carbon limitation at locations with higher substrate supply and relatively lower
level of water limitation when AI was above the corresponding threshold, that is,
soil microbes become more starved when they live in ecosystems with more substrates for
them. The mechanistic causes of this paradox warrant further studies. Nevertheless,
the increasing level of carbon limitation did correspond to the declining trend of the
three metabolic indexes along the AI gradient, which indicates that the carbon limitation
may exert a major control on microbial metabolisms. Overall, microbial metabolisms
under extremely dry condition were fundamentally different than under semi-arid
conditions.
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