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Abstract

Viewed through the lens of complex systems science, one
may conceptualize problem-solving as a complex adaptive
activity. Theories of biological evolution point to an
analogical equivalence between problem solving and
evolutionary processes and, thus, introduce innovative
methodological tools to the analysis of problem-solving
processes. In this paper, we present a methodological
framework for characterizing and analyzing these processes.
We describe two measures that characterize genetic
evolution—convergence and persistence—to characterize the
problem-solving process, and instantiate them in a study of
problem-solving interactions of collaborative groups in an
online, synchronous environment. We conclude with a
discussion of issues relating to reliability, validity, usefulness,
and limitations of the proposed methodology.

Introduction

This proposal springs from a shared, situative,
epistemological belief that learning and, particularly,
problem solving, function as continuous, dynamic processes
distributed in space and time over multiple actors, actions
and artifacts, influencing and being influenced by the
environment in a complex, adaptive, and iterative manner.
Understanding this process ranks among the most important
challenges facing cognitive (particularly educational)
research (Akhras & Self, 2000; Barab, Hay, & Yamagata-
Lynch, 2001). While researchers have accounted for several
cognitive, metacognitive, and socio-cultural factors, theories
and models of problem solving remain unable to account for
multiple, interrelated, and dynamically changing actors,
contexts, processes, and outcomes. Thus, measures and
methods for tracking the evolution of problem-solving
processes in ways that account for changing conditions
within a problem space are needed (Barab et al., 2001;
Derry, Gance, Gance, & Schlager, 2000). The proposed
methodology is a step in that direction.

The Nature and Processes of Problem Solving

Humans engage in a myriad of purposeful, goal-directed
behaviors (Anderson, 2000): from negotiating traffic, to
negotiating contracts, to implementing disaster relief. Even

a seemingly mundane task may involve numerous variables
connected in ways that are indirect, recursive, and time-
dependent (Simon, 1978; Funke, 1991). Further, the
problem solver can combine and recombine these variables
to form multiple trajectories to multiple outcomes (Quesada,
Kintsch, & Gomez, 2001). In such an intractable problem
space, a solution evolves through processes akin to organic
evolution: instead of exhaustive searches, the problem
solver iteratively charts, follows, and modifies a trajectory
to an ever-shifting destination (Newell & Simon, 1972),
ignoring or setting aside other trajectories and destinations.
Sometimes the iterative operations perform optimally; more
often, a problem solver on an equivalent trajectory must
settle for satisfactory results (Simon, 1978). How, where,
and why do certain processes succeed and others fail?

Latent Problem Solving Analysis (LPSA) approaches the
modeling of problem-solving processes without a priori
assumptions about the contours of the problem space, the
trajectories through that space, nor about the final
destination (Quesada et al., 2001). LPSA tries to discern
each of these from the data; comparing the problem-solving
processes—operations and/or problem states—from
multiple trials (Quesada et al., 2001). While LPSA avoids
the teleological fallacy, a full account of evolution may
require additional methodological tools. Evolution implies
not only change but change over time; Quesada et al. (2001)
indicate that LPSA does not discern the order in which
operations and/or problem states occur and, thus, it cannot
discern the effect of time. To this end, some researchers
have pointed to Complex Systems Science as a framework
for understanding the evolutionary dynamics of human
problem solving (Mitchell, 1998; Port & van Gelder, 1995).

Complex Systems Science (CSS)

CSS provides a both a theoretical and methodological
framework for studying how interactions among the parts of
any given system change over time and culminate in the
behaviors of the system as a whole (Bar-Yam, 1997,
Crutchfield, 1994). CSS identifies adaptation as one
macroscopic behavior shared across systems—biological,
physical, and cognitive. A complex adaptive system (CAS)
changes its behavior in response to environmental and self-
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generated feedback, often in an attempt to achieve a goal;
goal-seeking adaptations that occur on a collective scale
and/or over multiple iterations emerge as evolution (Bar-
Yam, 1997). Problem solving, too, involves iterative goal-
seeking adaptations (or operations) through which an
individual or a collective tries to reduce discrepancies
between an initial state and goal state (Newell & Simon,
1972). Thus, one can view the problem solver (individual or
collective) as a complex adaptive system that evolves as
problem operations develop and change over time. CSS,
therefore, facilitates a strong two-way analogy between
adaptive problem solving and evolutionary process.

Measures for Characterizing the Problem-Solving
Process

CSS has aggregated several mathematical methods for
measuring evolution, including measures for convergence,
persistence, and phase transition. Convergence and
persistence measures have been used to study cultural and
conceptual evolution (Cavalli-Sforza & Feldman, 1981);
they may prove informative for describing and explaining
problem-solving processes.

Convergence, here, involves three component
measures—number, function, and fitness of problem states
(Heylighen, 1988). When one imagines the problem-solving
process as a sequence of problem states, the number of
states from initial to goal state serves both as a temporal and
spatial measure: a tick on the evolutionary clock or step
along the evolutionary path (Heylighen, 1988). In biological
evolution, each mutation reconfigures the gene. Similarly, in
problem solving, each operation reconfigures the problem
state. This reconfiguration may increase or decrease the
difference between the reconfigured and goal states and,
thus, the distance (number of ticks or steps) required to
reach the goal state. Each operation, then, has a positive or
negative impact on the problem-solving process; it increases
or decreases the difference between the current, problematic
state and a specified goal state. However, with the exception
of the initial operation, the configuration of a problem-state
and its distance from the goal state reflects the cumulative
impact of all the operations up to that particular state. If
problem solving means minimizing this distance, then
cumulative impact reflects the fitness of the problem-solving
process at the given state (Heylighen, 1988).

Persistence measures are based on the intuitive idea that a
component (e.g. a gene, genetic trait, concept, or strategy)
that gets used, again and again, over time has proven itself
useful. Bedau & Packard's (1992) measure of persistence,
evolutionary activity, proves informative on this
componential level—measuring the extent and intensity
with which each component gets used over time—as well as
systemic level—the extent and intensity with which the
system can generate persistent components. Evolutionary
activity emerged from Artificial Life, where it was used to
study the vitality of an artificial biosphere, but can apply to
any adaptive system in which one can identify and isolate
components and their usage statistics, including natural
biospheres, chemical systems, computational systems, and
mental systems (Bedau & Packard, 1992). For example, in
biological evolution, the components are genes or genetic

traits. In problem solving, concepts, strategies, or functional
categories can serve as components. As with convergence,
each operation and each configuration of the problem state
will affect the dynamics of these problem-solving
components (Bedau, Snyder, & Packard, 1998); conversely,
the dynamics of these components inform the evolutionary
activity structures of the problem-solving process. When
added to convergence analyses, persistence may reveal how
multiple evolutionary processes converge on similar paths
without implying a single best path.

Methodology

To illustrate the proposed methodology, we describe and
demonstrate how it was used in a study of computer-
supported, collaborative, problem-solving interactions.

Research Context and Data Collection

Participants included sixty 11" grade students (46 male, 14
female; 16-17 years old) from the science stream of a co-
educational, English-medium high school in Ghaziabad,
India. They were randomized into 20 groups of three and
instructed to collaborate with their group members to solve
two problem scenarios. Both presented an authentic car
accident scenario that required the application of Newtonian
kinematics to solve. The study was carried out in the
school’s computer laboratory, where group members
communicated with one another only through synchronous,
text-only chat. The chat archived the transcript of each
discussion as a text file. These 20 transcripts, containing the
problem-solving interactions and solutions produced by the
groups, formed the data used in our analyses.

Coding Problem-solving Interactions

Quantitative Content Analysis (QCA) (Chi, 1997) was used
to segment and code interactions using an interaction coding
scheme developed by Poole and Holmes (1995), namely the
Functional Category System (FCS) (see Table 1). Two
trained doctoral students independently coded the
interactions with an inter-rater reliability of .85.

Table 1: Functional Category System (FCS)
(Adapted from Poole & Holmes (1995), p. 104)

1. Problem Definition (PD)
la. Problem Analysis: Statements that define or state the
causes behind a problem
1b. Problem Critigue: Statements that evaluate problem
analysis statements

2. Orientation (0O0O)
2a. Orientation: Statements that attempt to orient or guide the
group’s process.
2b. Process Reflection: Statements that reflect on or evaluate
the group’s process or progress

3. Solution Development (SD)
3a. Solution Analysis: Statements that concern criteria for
decision making or general parameters for solutions
3b. Solution Suggestion: Suggestions of alternatives
3c. Solution Elaboration: Statements that provide detail or
elaborate on a previously stated alternative.
3d. Solution Evaluation: Statements that evaluate alternatives
and give reasons, explicit or implicit, for the evaluations.
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3e. Solution Confirmation: Statements that state the decision
in its final form or ask for final group confirmation of the
decision.

4. Non-Task (NT)
Statements that do not have anything to do with the decision
task. They include off-topic jokes and tangents

5. Simple Agreement (SA)

6. Simple Disagreement (SDA)

The unit of analysis was semantically defined as the
function(s) that an intentional statement served in the
problem-solving process. Therefore, each statement was
segmented into one or more interaction unit(s) and coded
into the functional categories of the FCS. Once coded, a
time-ordered sequence of functional categories or codes
represented each problem-solving discussion.

Measuring Convergence & Fitness

Convergence of problem-solving interactions may be
broadly defined as the extent to which the group discussion
leads to a solution as perceived by the group. To model the
telic aim of problem-solving interactions and develop a
measure for convergence, we used a two-state Markov
model (Ross, 1996). An a posteriori impact value of 1, -1,
or 0 was assigned to each interaction unit depending upon
whether it pushed the group discussion towards (impact = 1)
or away (impact = -1) from the goal, or maintained the
status quo (impact = 0). This was done with an inter-rater
reliability of .93.

More formally, let the problem space be defined by n
interaction units; each assigned an impact value of 1, -1, or
0. Further, let n,, n_, and n, denote the number of
interaction units assigned the impact values 1, -1, and 0
respectively such that n, +n_, +n, =n. Then convergence,

n

C(n), may be defined as C(n)= % 7" The number of

n +n,
zeros is not factored into the calculation of convergence
because interaction units assigned a zero impact, by
definition, maintain the convergence level of the discussion.
It is easy to see that the convergence value will always lie
between -1 and 1.
Note that the numerator in the formulation of C (n) is a

measure of position, P(n)= n, —n_, . In other words, if the

problem-solving process is a sequence of steps along a
straight line - some forward (impact = 1) and others
backward (impact = -1) - then the difference between the
total number of forward and backward steps gives the
position relative to (or distance from) the starting point, i.e.,
the start of the discussion. Convergence then is the mean
distance from the starting point.

Convergence can also be conceptualized as measure of
fitness of the entire discussion. The higher the convergence,
the higher the fitness of the discussion. Extending this
conceptualization to all problem states and not just the final
one, we can define fitness as the temporal measure of
convergence, i.e., at any point in time in the discussion, how
close a group is to reaching the goal state — an ideal solution
to the problem. Therefore, the fitness statistic at an arbitrary

point in time in the problem-solving process is defined as
the convergence value up to the interaction unit at that point
in time, with the final fitness level of the entire problem-
solving process being the convergence value itself.
Recalling that time refers to ficks on the evolutionary clock
(i.e. an arbitrary time ¢ corresponds to, say, the i™ interaction
unit), the fitness F (t) at time ¢ in the discussion may be

defined as F(r)=C()= M

n (t)"' n. (t)

n_ (t) represents the number of interaction units coded as 1

where n, (t) and

and -1 respectively, up to and including the i™ interaction
unit. Plotting the fitness value on the vertical axis and time
(as defined above) on the horizontal axis, provides a
representation (also called the fitness curve) of the problem-
solving process as it evolves in time. Figures 1 and 2, drawn
to the same scale, present four major types of fitness curves
that emerged from the 20 problem-solving discussions in
our study.

Group 1

(VV/ Group 2

Figure 1: Fitness curves of two short discussions

Group 3

Group 4

Figure 2: Fitness curves of two long discussions

Interpreting Fitness

In our view, there are five aspects to interpreting the fitness
analysis. First, because the fitness value at a given time
indicates proximity to an ideal solution (with higher values
indicating greater proximity), fitness curves that trend
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upwards indicate problem-solving processes that are getting
closer to an ideal solution (fitness = 1), and vice versa.
Hence, fitness curves provide a quick snapshot of the entire
problem-solving process in terms of how short or long it
was as well as how close or far the discussion was from an
ideal solution at any given point in time.

Second, the shape of the fitness curve is informative
about the paths respective groups take toward problem
solution. For example, groups 1 and 2 converged at
approximately the same fitness levels (about 0.65, indicating
positive movement toward an ideal solution), but their paths
to this point were quite different. Group 1's discussion
moved toward an ideal solution immediately when
compared to group 2, whose initial approach seemingly took
them away from the goal (indicated by the negative fitness
initially) only to recover later. Similarly, comparing groups
3 and 4, we can see them settling into different plateaus of
fitness albeit after some chaos (fluctuations in fitness levels)
initially. Further, comparing groups 1 and 2 with groups 3
and 4, we can see that the discussions of groups 1 and 2
ended quickly whereas those of groups 3 and 4 settled into
an “equilibrium” after the initial fluctuations. What is most
interesting is that this interpretation of fitness curves
provides a view of paths to a solution that are lost in
analysis systems that consider only a given point in the
solution process, thus assuming that similar behaviors or
states at a given point are arrived at in similar ways. As
different paths can lead to similar results, uni-dimensional
analyses that consider only single points in time (often only
the solution state) are not consistent with what we know
about problem-solving processes and are not informative
about movement toward a goal.

Third, the fitness curve of groups 3 and 4 also highlight
the notion of “fitness inertia,” i.e., having settled into fitness
equilibrium, these groups found it difficult to move in new
directions. Of course, group 3 did not have a need to do so,
as their high fitness value indicates movement toward an
ideal solution. But implications of fitness inertia for groups
that equilibrate at low fitness levels indicating no or very
little movement toward higher fitness levels, such as what
occurred with group 4, are grave. It follows from this that
the eventual performance of groups exhibiting fitness inertia
can be predicted early on in the discussion. Because our
analyses showed convergence (and not the position) to be a
significant predictor of group solution quality (¥ = 50.245, p
< .0001), it preliminarily suggests that the net number of
positive steps (the position) is not as critical to the success
of a discussion as convergence is. This can be explained by
the fact that convergence, being a ratio, is designed to be
more sensitive to initial steps, both positive and negative,
than steps that are taken later on in the process. Hence,
convergence takes into account not only the number of
positive and negative steps, but also the order in which they
are taken. Many studies of problem solving typically focus
on the number of positive steps (such as instances of higher-
order thinking, questioning, etc.) as an indicator of the
quality of the discussion and learning. Our methodology
reveals that a simple frequency count needs to be combined
with a measure that takes into account the temporality and
order of the steps as well.

Fourth, the end-point of the fitness curve represents the
final fitness level or convergence of the discussion. From
this, the extent to which of a group was able to solve the
problem can be deduced. In other words, we can deduce
that, comparatively, group 3 did the best followed by group
1, group 2, and finally group 4. Furthermore, the final
fitness levels can also be compared with the maximum
fitness level of 1. One might imagine that an ideal fitness
curve is one that has all the pushes in the right direction, i.e.,
a horizontal straight line with fitness equaling 1. However,
the data suggests that, in reality, some level of divergence of
ideas may in fact be a good thing. Note that, at present, one
can only extract a comparison either between groups or with
the upper and lower bounds of fitness (1 or -1). But, with
repeated application in other research contexts and settings
and over multiple studies, norms for absolute values of
convergence and fitness will begin to emerge.

Finally, based on the above analysis of the characteristics
of fitness curves and what they tell us about the problem-
solving process, we can begin to conceptualize how
problem-solving processes (individual or collective) may be
scaffolded to achieve optimal outcomes. For example, the
fitness curves of groups 2 and 4 suggest a need for
scaffolding early on in the discussion.

Persistence

In addition to looking at the fitness characteristics of a
discussion as a whole, one can also examine how ideas or
families of ideas emerge and persist during the course of the
problem-solving discussion. In our study, these families of
ideas are represented by the 6 major functional categories -
problem definition, orientation, solution development, non-
task, simple agreement, and simple disagreement—into
which all interactions were categorized. Treating each
functional category as a component of the problem-solving
system, its usage (or persistence) can be tracked as a
measure of evolutionary activity. The central assumption is
that components of a complex system that persist and
continue to be used make greater contribution to the system.
Equivalently, functional categories that persist and get used
repeatedly make a greater contribution to the problem-
solving activity. Therefore, by examining the persistence of
functional categories, we can gain insights into the problem-
solving process that would otherwise remain elusive.

More formally, let f,\¢) denote whether the A"
functional category exists in the problem-solving system at
time

1 if component k exists at time ¢

1 (t)={

I (t) is simply an activity indicator function that

0 otherwise

“switches on” each time an interaction unit belonging to a
particular functional category exists in the discussion. In
order to measure the usage of a functional category, we can
define a corresponding function — an activity incrementation
function — that increases by 1 each time the indicator
function “switches on.” Then, the value of the
incrementation function for the k" functional category at

time ¢, say a, (t ), reflects its cumulative usage up until time
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t, i.e., the persistence of the functional category up until
!
time ¢. Formally, a, (t)= 2 fe (t)

Figure 3 shows the persistence curve of the problem
definition and solution development functional categories
for two groups. We decided to illustrate persistence using
these two categories because they had the most manifest
interactions compared to the other four categories.

SD: Group 1

PD: Group 2

1 SD: Group 2
PD: Group 1

Figure 3: Persistence curves of Problem Definition (PD)
& Solution Development (SD) functional categories

Interpreting Persistence

First, being a cumulative function, it is a non-decreasing
curve whose end-point indicates the total activity in a given
functional category, i.e., the number of interaction units in
that functional category. Often, it is this number that is used
as a measure in quantitative content analysis. However, the
number alone does not indicate anything about the
evolutionary activity of the functional category it represents.
Persistence curves provide that trajectory from which
meaningful insights may be drawn.

Second, a plateau on the persistence curve of a functional
category indicates a period in a discussion where no
interactions of the type that the functional category
represents take place. Therefore, persistence curves that
plateau often and for long periods are indicative of a passive
functional category. Similarly, a persistence curve that does
not plateau is indicative of an active functional category.
For example, the problem definition (PD) functional
category for group 1 is an example of a passive functional
category whereas the PD functional category for group 2 is
an active one. In other words, this suggests that group 1
either did not see the need to define the problem or was able
to define it quickly and move on, whereas group 2 seemed
to need much more time and discussion for problem
definition. Note that, in either case, this does not indicate
whether or not the problem definition was correct, which
can be revealed by cross-validating persistence curves with
fitness curves.

Third, persistence curves bring out the notion of
competition among functional categories. For group 1, only
the SD functional category is active whereas both PD and
SD functional categories are active for group 2. This
suggests that the problem-solving process was by and large
linear for group 1: they defined the problem early on and

then worked on developing a solution. There was little or no
competition between the PD and SD functional categories.
However, the process was quite the opposite for group 2:
their attempts to define the problem and develop a solution
were iterative and intermingled making the process non-
linear and chaotic. There was high competition between the
two functional categories. At this point, it is difficult to use
the level of competition to make inferences about the quality
of the discussion or the resulting solution. However,
repeated application in other research contexts and settings
and over multiple studies will provide greater validity for
the inferences.

Usefulness and Limitations

Reliability and Validity

The inferences that one can draw from the new measures are

strong in so far as the coding scheme is reliable and valid. In

this study, we opted to use an existing coding scheme,
namely the functional category system (FCS) developed by

Poole and Holmes (1995). The reasons for choosing the

FCS as the interaction coding protocol include:

i. The FCS was developed specifically for the purpose of
studying small-group, collaborative interactions in
problem-solving contexts,

ii. The FCS categories are theoretically well-grounded in
the cognitive and educational theories of problem
solving thereby increasing their content validity, and

iii. The FCS has been tried and tested in several research
studies (e.g. Jonassen & Kwon, 2001) making it
inherently more reliable than developing an entirely new
coding scheme (Rourke & Anderson, 2004).

Limitations

As with any new methodology, its repeated application and
modification over multiple data sets is needed before strong
and valid inferences about the underlying cognitive
processes can be made (Rourke & Andersen, 2004).
Another limitation includes the requirement of capturing
rich and meaningful data in which there is ample
opportunity for evolutionary structures and goal-seeking
adaptations to occur. In our study, we ensured this by
making the objects of the activity—the problems—rich in
context. While capturing the data was made easy due to the
technology, data analysis proved time consuming. As such,
this approach is a useful analytical framework for
researchers but not for classroom teachers. However,
inferences drawn by researchers using our methodology
may have implications for the classroom, work-group, or
organization especially with regard to the design and
scaffolding of instruction and learning environments for
problem-solving tasks.

Usefulness of the Methodology

A major strength of the methodology is in its potential
application to other problem-solving settings and contexts.
We argue that the proposed methodology would be
applicable to the analysis of any process that is a) goal-
directed, b) complex and adaptive, and c¢) well-manifested
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through rich and meaningful artifacts (which we broadly
define to include not only physical behaviors, actions, and
products but also conceptual artifacts such as concepts and
ideas). As such, the methodology may be applied to
individual or collaborative problem-solving, in domains
other than physics, with other populations, in a modality
other than online, synchronous chat, and using other
categorization coding schemes.

Future Directions

In an extension of this research, we are developing and
testing new measures, especially at a macroscopic level of
analysis. In particular, we are focusing on isolating the
phases through which the problem-solving process moves.
Such sequences of phases often alternate between stable
phases, interspersed with chaotic phases. One can then
calculate and predict the probabilities of moving from one
phase to another using Hidden Markov Models (HMM). As
a result, one may begin to understand when and why phase
transitions, cascades and catastrophes (sudden, mass
change), as well as stable phases emerge; more importantly,
one may begin to understand how the configuration of one
phase may influence the likelihood of moving to any other
phase. Whether one can control or temper these phases, or
whether such control or temperance might prove an unwise
practice remains an open question which, even if only
partially answered, will be a major breakthrough in
characterizing and modeling the problem solving process.

Through such an endeavor, cognitive and education
researchers who wish to study the problem-solving process
will find choices among several lenses at several
resolutions. With measures to analyze number, function,
fitness, sequencing, and transition of states, as well as the
evolutionary activity of components (concepts, strategies, or
functional categories), one can zoom from the micro- to
macroscopic properties and behaviors of the problem-
solving process.
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