
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Feedforward MLSE Equalization for High Speed Serial Links

Permalink
https://escholarship.org/uc/item/36h7b8rw

Author
Kwon, Paul

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/36h7b8rw
https://escholarship.org
http://www.cdlib.org/

Feedforward MLSE Equalization for High Speed Serial Links

By

Paul Kwon

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Vladimir Stojanovic, Co-chair
Professor Elad Alon, Co-chair

Professor Ali Niknejad
Professor Martin White

Summer 2023

Feedforward MLSE Equalization for High Speed Serial Links

Copyright 2023
by

Paul Kwon

1

Abstract

Feedforward MLSE Equalization for High Speed Serial Links

by

Paul Kwon

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Vladimir Stojanovic, Co-chair

Professor Elad Alon, Co-chair

An ever-increasing demand for high data rate wireline links must be met to support the con-
tinual scaling of computing and communication systems. Typical serial link architectures use
feedback-based channel equalization schemes, which can be challenging and even infeasible
to realize for data rates beyond 100 GBaud/s. To alleviate this feedback-induced latency
bottleneck, this thesis explores feedforward equalizers inspired by the maximum likelihood
sequence estimation (MLSE) algorithm. Targeting short-reach, die-to-die links, a 1-tap fully
feedforward MLSE architecture is shown to achieve comparable error statistics with the
conventional 1-tap decision feedback equalizer (DFE).

A 160 Gb/s NRZ receiver implementing the 1-tap MLSE equalizer is taped out in a 16 nm
FinFET process to evaluate the future promise of the proposed approach. The feedforward
MLSE is time-interleaved to achieve the desired throughput. Current integration techniques
provide energy-efficient analog latches used in the MLSE datapath. The datapath is designed
using the Berkeley Analog Generator (BAG) framework. Both the top level datapath and
its subblocks are created using parameterizable circuit schematic and layout generators.
Measurement and design scripts identify the impact of inter-subblock routing parasitics,
facilitating agile subblock design iteration with top level floorplanning in mind.

As the channel characteristics are unknown a priori, the coefficient settings of the MLSE
must be adapted in real time. An adaptation scheme for the feedforward MLSE equalizer is
proposed with separate loops for each interleaved MLSE slice to account for process variation.
The receiver is taped out along with a corresponding 160 Gb/s NRZ transmitter and tested
over an on-package loopback channel of 8.5 mm, which incurs 3 dB of loss at the Nyquist
frequency. The receiver is simulated to operate at an energy efficiency of 2.08 pJ/bit, with
the datapath itself consuming 0.72 pJ/bit.

i

To my family

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Background . 1
1.2 Channel Equalization . 2

1.2.1 Continuous Time Linear Equalizer (CTLE) 4
1.2.2 Feedforward Equalizer (FFE) . 5
1.2.3 Decision Feedback Equalizer (DFE) 6

1.3 Thesis Organization . 7

2 Statistical Analysis and Architecture Exploration 8
2.1 Maximum Likelihood Sequence Estimation 8

2.1.1 Overview . 8
2.2 Statistical Analysis Framework . 11
2.3 Explored Architectures . 16

2.3.1 Window Length 1 . 16
2.3.2 Window Length 2 . 18

2.3.2.1 Majority Vote . 22
2.3.2.2 Single Window . 24

2.3.3 Window Length 3 . 26
2.4 Equalizer Comparison and Conclusions . 28

3 Design Techniques for a 160 Gb/s 1-Tap MLSE Datapath 31
3.1 Overview . 31
3.2 Analog Datapath Architecture . 32
3.3 Current Integrating Circuits . 34

3.3.1 Intersymbol Interference Design Considerations 36
3.3.2 Output Linearity Design Considerations 37

iii

3.3.3 Integrating Latch Design Flow . 40
3.4 8-Way Interleaved T&H . 40
3.5 8:16 Deserializer . 43
3.6 Integrating Latched Summer . 44
3.7 Backend Sampler . 45
3.8 Backend Deserializer . 47
3.9 Simulation Results and Conclusions . 48

4 160 Gb/s Receiver Integration 52
4.1 Receiver Design . 52

4.1.1 Clocking . 52
4.2 On-Chip Testing Features . 53

4.2.1 Snapshot Engine . 54
4.2.2 Pattern Checker . 54

4.3 Off-Chip Testing Software . 55
4.3.1 Equalizer Adaptation . 56
4.3.2 Offset Calibration . 59
4.3.3 Pulse Response Characterization . 59

4.4 Test Setup . 61
4.5 Simulation and Measurement Results . 62
4.6 Conclusions . 65

5 Conclusion 66
5.1 Thesis Summary . 66
5.2 Future Works . 67

Bibliography 68

A Detailed Error Statistical Analysis of MLSE Equalizers 71
A.1 MLSE Window Length 1: Lower Bound BER 71

iv

List of Figures

1.1 Link data rate trends [1] . 1
1.2 Optical Internetworking Forum (OIF) Common Electrical I/O (CEI) standards

for different reach applications [2] . 2
1.3 Chiplet interconnects [4] . 3
1.4 Low-loss channel frequency response (a) and pulse response (b) 4
1.5 CTLE: active (a) and passive (b) topologies . 5
1.6 FFE with M pre-cursor and N post-cursor taps 6
1.7 DFE . 6
1.8 1-tap loop-unrolled DFE . 7

2.1 Ideal voltage states (blue) and received voltage samples (black) for a channel with
coefficients [h0, h1] = [1, α] and NRZ signaling with data levels of ±1 9

2.2 Viterbi equalizer . 10
2.3 Window conflict example. Received voltage samples (black), with expected state

transitions (dashed lines) . 12
2.4 Framework flow for statistical (red) and time-domain (cyan) verification 14
2.5 Discretization of a Gaussian distribution for nσ = 3, bσ = 4 14
2.6 Window length 1 decoding with +1/0/-1 thresholds (dashed) 17
2.7 Decoded window conditions for W (n) (red) and W (n+1) (green) for lower-bound

BER . 17
2.8 Error statistics comparison between DFE and lower-bound MLSE (window length

1) . 19
2.9 Window length 2 decoding with labeled thresholds (dashed) 20
2.10 A partition of the window length 2 decoding into horizontal and vertical lines

(green, dashed) . 21
2.11 Error statistics comparison between DFE and lower-bound MLSE (window length

2) . 22
2.12 Error statistics comparison between DFE and majority vote MLSE (window

length 2) . 23
2.13 Single window decoding for window length 2. A single bit is decoded: 1 if the

received samples are in the red region, 0 if the green region 24
2.14 Single window length 2 block diagram . 25

v

2.15 Error statistics comparison between DFE and single window MLSE (window
length 2) . 26

2.16 Single window length 3 block diagram . 27
2.17 Error statistics comparison between DFE and single window MLSE (window

length 3) . 28
2.18 Equalizer tradeoffs . 29

3.1 RX MLSE block diagram . 31
3.2 MLSE analog datapath block diagram . 33
3.3 Datapath design flow . 34
3.4 Current integration operation . 35
3.5 Impulse response of integrating amp showing different sources of ISI 37
3.6 Latch model during integration . 37
3.7 Waveforms for current- integrating input . 37
3.8 Maximum voltage gain (Av) vs. current efficiency (V ∗) tradeoffs for stable input

(left) and input resetting to VDD (right); assuming VDD = 1 V, vic = 0.7 V,
Vth = 0.2 V, maximum vid = 0.2 V . 39

3.9 Current integrating latch design flow . 41
3.10 T&H topology (a) and timing (b) . 42
3.11 BAG optimization flow . 43
3.12 Integrating 8:16 deserializer unit cell topology (a) and timing (b) 44
3.13 Integrating latched summer topology (a) and timing (b) 45
3.14 Summer input path tracing between vi1 (green) and vi0 (red) 46
3.15 StrongArm flop . 46
3.16 StrongArm latch . 47
3.17 Symmetric SR latch . 47
3.18 Coarse retimer . 48
3.19 Coarse retiming . 49
3.20 Fine retiming . 49
3.21 Backend 1:8 deserializer . 50
3.22 Clock divider chain . 50
3.23 1:2 demultiplexer: latch (left) and flip flop (right) 50
3.24 Generated MLSE analog datapath layout . 51

4.1 Receiver clocking path . 52
4.2 20 GHz to 10 GHz clock dividers . 53
4.3 Differential C2MOS latches . 53
4.4 Digital backend block diagram . 54
4.5 Snapshot engine FSM . 55
4.6 Pattern checker block diagram . 56
4.7 MLSE datapath (simplified) . 57
4.8 Simulated equalizer adaptation and offset calibration waveforms 61

vi

4.9 Testing options . 62
4.10 Test setup . 62
4.11 Die photo . 63
4.12 Simulated clock divider waveforms with varying skew between input differential

clock phases . 64

vii

List of Tables

3.1 Datapath power (simulated) breakdown . 51

4.1 Summer gain and offset update . 59
4.2 Receiver area and power (simulated) breakdown 63
4.3 Performance table . 65

viii

Acknowledgments

When I started my undergraduate program at UC Berkeley, I thought I’d be out of here
in 4 years. Little did I know that Berkeley would give me a decade of opportunities and
growth.

I would first like to thank my advisors: Professors Elad Alon and Vladimir Stojanović.
I’ve had the privilege to engage in many technical conversations with Professor Elad through-
out my Ph.D. education. His sharp circuit intuition never ceases to amaze me. He’s also
motivated to not focus on just my project, but rather on the larger narrative of which my
research is a small piece. Professor Vladimir has been instrumental in broadening my per-
spectives. His visions for the future of wireline communications and design methodologies
inspire me to pursue big dreams.

I also thank Professors Ali Niknejad and Martin White for serving on my qualifing exam
and dissertation committees. I’m grateful for their guidance on my work. I would also like
to thank Professor Borivoje Nikolić for his technical advice during design reviews.

I appreciate the opportunity to share my research progress with Farhana Sheikh, Jahnavi
Sharma, and many others from Intel. It’s always great to receive feedback from industry for
their unique, non-academic perspectives.

I’m thankful for the wonderful support I’ve received from the BWRC staff: Jeff Anderson-
Lee, Brian Richards, Candy Corpus, and Mikaela Cavizo-Briggs. Special thanks to Anita
Flynn for her assistance with PCB design reviews and chip testing options.

Over the years, I’ve been fortunate to work with and learn from many brilliant peers. As
an undergraduate fledgling unsure of what to pursue, I thank Seobin Jung for the opportunity
to assist in her research, as well as Jaeduk Han for providing my first exposure to wireline
circuits. I would like to thank other senior students and postdocs who I’ve learned a lot
from both in and beyond my area of expertise: Eric Chang, Minsoo Choi, Greg LaCaille,
Richard Lin, Pengpeng Lu, Ali Moin, Nathan Narevsky, Emily Naviasky, Antonio Puglielli,
Nick Sutardja, Konstantin Trotskovsky, Zhongkai Wang and Bonjern Yang. I’m grateful for
the opportunities to closely work together with Ayan Biswas, Kunmo Kim, Yi-Hsuan Shih,
Bob Zhou, Wahid Rahman, and Antroy Chowdhury for the SerDes project. I’d also like to
thank Zhaokai Liu, Kwanseo Park, Zhenghan Lin, Sean Huang, Sunjin Choi, Aviral Pandey,
Dan Fritchman, and Meng Wei, and Rebecca Zhao.

I would like to thank my parents and my brother for their continual support over the
years. I’m thankful for the times of rest I could share with my church community. Finally,
I thank my girlfriend, Lucy Choi, for her steadfast love. Surviving 10 years of Berkeley, as
rewarding as it is, is no easy task. I’m glad that I’ve been blessed with friends and family
that I can lean on during this journey and whatever comes next.

1

Chapter 1

Introduction

1.1 Background

Ultra-high throughput, energy-efficient wireline links are key to enabling the next generation
of computing and communication systems. Serializer-Deserializer (SerDes) transceivers form
the backbone of many applications, ranging from high performance computing to artificial
intelligence and Internet of Things. These systems scale over time, increasing the demand
for higher rate serial links. In fact, the per-lane data rates for common I/O standards have
doubled every 3-4 years (Figure 1.1).

Figure 1.1: Link data rate trends [1]

To support the wide variety of applications, serial interfaces are often classified to different
reaches. For example, networking systems typically require data to travel over a backplane
with connectors. Wireline transceivers for such board-to-board communication must be

CHAPTER 1. INTRODUCTION 2

able to operate with long reach (LR) channels, which can introduce significant loss at high
frequencies. On the other end of the spectrum, chip-to-chip interfaces require low-latency
SerDes to transmit data over short, multi-chip module (MCM) links, with minimal channel
loss.

Figure 1.2: Optical Internetworking Forum (OIF) Common Electrical I/O (CEI) standards
for different reach applications [2]

In recent years, a new application for wireline links has emerged. Whereas the traditional
system-on-chip (SoC) approach places all integrated circuits on a monolithic die, growing
transistor and design costs are pushing for these systems to be parititioned into smaller dies,
or chiplets. The multi-chiplet, heterogeneous integration approach allows for higher yield
due to smaller die sizes, and chiplets can be optimally designed in different technology nodes.
This is best summed up by Gordon Moore’s prediction in 1965: “It may prove to be more
economical to build large systems out of smaller functions, which are separately packaged
and interconnected.” [3] To take advantage of multi-chiplet systems, die-to-die links must
provide excellent bandwidth and energy efficiency.

1.2 Channel Equalization

Designing robust links requires equalization to counteract the loss of the wireline channel.
Electrical channels often have low-pass filtering behaviors due to the skin effect and dielectric
loss of the material. In addition, any impedance mismatches along the channel (e.g., between
the connector and backplane) causes reflections, which further worsens the signal integrity.

The loss characteristics of the channel can be visualized in both frequency and time
domain (Figure 1.4). Suppose the channel is modeled as a finite impulse response (FIR)
filter, whose inputs are the symbols transmitted at each unit interval (UI). If modeled as an

CHAPTER 1. INTRODUCTION 3

Figure 1.3: Chiplet interconnects [4]

FIR with M precursor taps, N postcursor taps, and 1 main tap, the channel will output y
as a convolution of the FIR taps h and the input signal x:

y[n] = (h ∗ x)[n] =
∞∑

k=−∞

hkx[n− k] =
N∑

k=−M

hkx[n− k] (1.1)

The channel coefficients can be measured using a pulse response, where the output wave-
form is observed for a 1 UI-wide input pulse. The resulting time-domain response reveals
the channel FIR taps spaced 1 UI apart (Figure 1.4b). Note that h0 represents the main
channel tap (the desired pulse). All other taps degrade signal integrity through intersymbol
interference (ISI), where neighboring symbols are superpositioned onto the current receiver
sample to varying degrees. ISI introduces data-dependent error terms which increase the
link’s bit error rate (BER). The goal of equalization thus is to flatten out the frequency
response of the channel such that the time-domain pulse response shows little to no residual
ISI.

With increasing data rates, more powerful equalization is required to maintain signal
integrity. To the first order, the channel loss tends to increase linearly in dB with respect to
frequency. In addition, the effective channel seen by the transceiver must include not only
the physical routing channel, but also the transceiver circuits themselves. This becomes

CHAPTER 1. INTRODUCTION 4

(a) (b)

Figure 1.4: Low-loss channel frequency response (a) and pulse response (b)

especially important as data rates are pushed to the limits of the technology, since frontend
circuits will face bandwidth limitations and contribute to more loss in the signal chain. The
following sections will introduce conventional wireline receiver equalization techniques which
may have disadvantages at high data rates.

1.2.1 Continuous Time Linear Equalizer (CTLE)

To counteract the channel’s low-pass behavior, continuous time linear equalizers (CTLE)
provide peaking gain. Typical implementations have a zero-pole pair, and the peaking gain is
set by the ratio of the pole to zero frequencies. Active, transistor-based topologies attenuate
low frequency signals through the resistive source degeneration. As frequencies increase, the
source capacitance Cs begins to dominate, creating a low source impedance and reducing
the effect of source degeneration. The peaking gain is set by the source degeneration effect
(1 + gmRs/2), and the zero and pole locations are computed below:

ωz =
1

RsCs

(1.2)

ωp = ωz · (1 + gmRs/2) (1.3)

Active CTLE designs also suffer from an additional pole at the output, which causes a
20 dB per decade roll-off in gain for frequencies above 1

RDCL
. Passive CTLE topologies are

designed with parallel RC structures, where the resistive divider determines low-frequency
gain and the capacitive divider determines high-frequency gain. The zero and pole are

CHAPTER 1. INTRODUCTION 5

(a) (b)

Figure 1.5: CTLE: active (a) and passive (b) topologies

computed below:

ωz =
1

R1C1

(1.4)

ωp =
1

(R1 ∥ R2)(C1 + C2)
(1.5)

Being a frequency-domain equalizer, the CTLE is often used to cancel long-tail postcursor
ISI that would otherwise be challenging for time-domain equalizers (whose complexity scales
with number of taps). Equalizing near-tap ISI with the CTLE poses circuit design challenges
due to how high the poles and zeros would need to be placed. Because the CTLE is a
frequency-domain equalizer, it must be placed at the datapath frontend and operate at
full bit rate. With increasing data rates, parasitics are likely to limit the bandwidth and
equalizing capabilities of the CTLE. Furthermore, the CTLE suffers from noise enhancement,
as both the noise and signal are equally boosted at high frequencies.

1.2.2 Feedforward Equalizer (FFE)

The feedforward equalizer (FFE) is an FIR whose tap coefficients are set to cancel pre- or
postcursor ISI taps from the channel. The FFE can be implemented at either the transmitter
or the receiver. Like the CTLE, the receiver FFE also amplifies noise because the inputs to
the FIR are analog samples. At the transmitter, the FFE is robust to noise as its inputs are
digital symbols. However, headroom constraints on the transmitter output swing require a
normalization of the FFE tap coefficients, reducing the effective signal amplitude. Despite

CHAPTER 1. INTRODUCTION 6

Figure 1.6: FFE with M pre-cursor and N post-cursor taps

its data rate scalability as a parallelizable equalizer scheme, the FFE is usually combined
with other equalizers for low BER applications due to noise enhancement and headroom
issues.

1.2.3 Decision Feedback Equalizer (DFE)

Figure 1.7: DFE

The decision feedback equalizer (DFE) is another FIR-based equalizer which cancels ISI
based on previous decisions. The main advantage of the DFE is its robustness to noise
because the FIR takes digital symbols as inputs. The DFE is limited to equalizing postcur-
sor taps as it operates on previously decoded bits. Any past incorrect decisions can also
propagate through the FIR, potentially generating additional errors. From a frequency scal-
ability perspective, the DFE is bottlenecked by its feedback loop, where the tap coefficient
weighting, analog summation, and symbol resolution all must be completed in 1 UI.

To reduce the critical path, loop-unrolling techniques have been applied to the DFE.
A 1-tap loop-unrolled DFE structure is shown in Figure 1.8. In practice, loop-unrolling is

CHAPTER 1. INTRODUCTION 7

Figure 1.8: 1-tap loop-unrolled DFE

limited to 1-tap because this technique causes the complexity to scale exponentially with the
number of loop-unrolled taps, and loop-unrolling increases the delay associated with later
non-unrolled taps. Nevertheless, a feedback loop still exists and limits the speed of this
equalizer.

1.3 Thesis Organization

Given the limitations of traditional SerDes equalization algorithms, a noise-robust, feed-
forward equalizer architecture is critical to building power-efficient links at 100+ GBaud/s
rates. Short die-to-die links do not require heavy equalization, but must deal with noise-
limited channels where noise amplification could limit the achievable BER of the transceiver.
In such applications, the DFE is particularly attractive as its robustness to noise, but its
feedback-induced timing constraint becomes challenging, if not feasible, to meet for such
high data rates. Consequently, Chapter 2 explores new feedforward architectures inspired
by the classical Maximum Likelihood Sequence Estimation (MLSE) algorithm as alternatives
to the DFE. Tradeoffs between computational complexity and error statistics of proposed
algorithms are discussed, along with statistical analysis strategies for sequence-detection
equalizers. Targeting a data rate of 160 Gb/s NRZ, Chapter 3 presents a receiver datapath
utilizing the feedforward MLSE equalizer. Circuit design techniques and methodologies are
introduced to achieve energy efficient links as communication speeds approach limits of the
technology. Next, Chapter 4 describes the remaining receiver features needed to verify the
datapath, including the clocking path and on- and off-chip calibration loops. Simulation
results show that the receiver can achieve 160 Gb/s at 2.08 pJ per bit under a 3 dB loss
on-package channel. Chapter 5 concludes the thesis with a summary of the proposed work
and potential directions for future research.

8

Chapter 2

Statistical Analysis and Architecture
Exploration

2.1 Maximum Likelihood Sequence Estimation

2.1.1 Overview

As its name suggests, the MLSE algorithm chooses the most likely sequence of data symbols
by comparing all possible sequences within a defined window. When dealing with additive
white Gaussian noise (AWGN) channels, the most probable sequence is that which has the
smallest Euclidean, or L2, norm [5].

The MLSE has a few key differences when compared to typically used equalizers like the
FFE, DFE, and CTLE. First, such conventional equalizers often aim to reduce or cancel
ISI energy, whereas MLSE retains and uses that ISI energy to help decode the transmitted
sequence. Second, while typical equalizers often perform symbol-by-symbol detection, the
MLSE inherently recovers a sequence of symbols by applying the redundant information
embedded in the ISI.

An example is shown in Figure 2.1. Suppose that symbols are transmitted through NRZ
signaling with voltages of ±1, and that the channel of interest is a 1-tap postcursor channel,
with main cursor h0 = 1 and first postcursor h1 = α. The channel is effectively a 2-tap
finite impulse response (FIR) filter, whose noiseless outputs are ±1 ± α depending on the
data pattern. At unit interval (UI) n, the received sample vr[n] deviates from the 4 noiseless
expected states with the following error magnitudes:

e11[n]
2 = [vr[n]− (1 + α)]2

e01[n]
2 = [vr[n]− (1− α)]2

e10[n]
2 = [vr[n]− (−1 + α)]2

e00[n]
2 = [vr[n]− (−1− α)]2

(2.1)

Note that each received sample provides information about 2 consecutive symbols because

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 9

the channel memory spans 2 taps.

Figure 2.1: Ideal voltage states (blue) and received voltage samples (black) for a channel
with coefficients [h0, h1] = [1, α] and NRZ signaling with data levels of ±1

Let the window length L be the number of consecutive UI over which we observe to
compute the most likely sequence. In other words, L becomes the number of UI over which
errors are accumulated in an L2-norm fashion.

Considering the same 1-tap post-cursor channel, the most likely sequence for a window
length L contains L+ 1 symbols and can be computed as

W (n) =
[
dr[n− L] · · · dr[n− 1] dr[n]

]
= argmin

x∈{0,1}L+1

{
L∑
i=1

exixi+1
[n+ i− L]2 (2.2)

Most classic implementations of the MLSE use the Viterbi algorithm, which recursively
decodes the most likely window. Suppose the path metric Pb[n] is defined as the minimum
L2 norm across all sequences whose current bit is b ∈ {0, 1}:

Pb[n] ≡ min
x∈{0,1}L

{(
L−1∑
i=1

exixi+1
[n+ i− L]2

)
+ exLb[n]

2 (2.3)

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 10

The path metric equation can be re-defined using its previous value:

Pb[n] = min
x∈{0,1}L−1

(
L−2∑
i=1

exixi+1
[n+ i− L]2

)
+ exL−10[n− 1]2 + e0b[n]

2(
L−2∑
i=1

exixi+1
[n+ i− L]2

)
+ exL−11[n− 1]2 + e1b[n]

2

= min

[
minx∈{0,1}L−1

{(
L−2∑
i=1

exixi+1
[n+ i− L]2

)
+ exL−10[n− 1]2

]
+ e0b[n]

2[
minx∈{0,1}L−1

{(
L−2∑
i=1

exixi+1
[n+ i− L]2

)
+ exL−11[n− 1]2

]
+ e1b[n]

2

= min

{
P0[n− 1] + e0b[n]

2

P1[n− 1] + e1b[n]
2

(2.4)

The Viterbi algorithm applies this principle to simplify the most likely sequence esti-
mation (Figure 2.2). For each cycle, the branch metrics are computed, which represent
the squared error terms e11[n]

2, e01[n]
2, e10[n]

2, e00[n]
2 for the current sample n. Then, the

path metrics are updated using an add-compare-select (ACS) unit with the branch metric
as new single-UI error terms. By using feedback, the number of comparisons needed to de-
code the sequence increases linearly with window length. This advantage is unfortunately
incompatible with feedforward designs that are scalable with data rate.

Figure 2.2: Viterbi equalizer

To architect an energy-efficient MLSE-based equalization algorithm at ultra-high data
rates, one must address a few key challenges. First, the complexity of the MLSE algorithm
scales exponentially with the number of taps and window length. For an N -tap feedforward
MLSE (i.e., one that will equalize a total of N precursors and postcursors) with a window
length of L and a PAM-M modulation scheme, the number of states for a given sample
is MN , and the number of possible sequences in the window is MN+L. In contrast, the
FFE and DFE increase linearly in complexity with respect to the number of taps. For

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 11

low-power applications, the receiver can employ an MLSE with a low (1-2) number of taps,
with additional equalization like FFE or DFE as necessary to cover the span of the channel.
Decreasing the window length reduces the complexity as well, at the cost of higher error
rates, as will be discussed in later sections.

Second, one must consider how to resolve conflicting interactions between overlapping
windows. For example, let’s take a 1-tap postcursor MLSE with window length = 1. (2.2)
simplifies to

W (n) =
[
dr[n− 1] dr[n]

]
= argmin

x∈{0,1}2

e11[n]

2 if x = [1, 1]

e01[n]
2 if x = [0, 1]

e10[n]
2 if x = [1, 0]

e00[n]
2 if x = [0, 0]

(2.5)

Thus, for the received samples shown in Figure 2.3, we would get the following decoded
sequences:

W (1) = [0, 0]⇒ dr[0] = 0, dr[1] = 0 (2.6)

W (2) = [0, 1]⇒ dr[1] = 0, dr[2] = 1 (2.7)

W (3) = [0, 1]⇒ dr[2] = 0, dr[3] = 1 (2.8)

The decoded sequences from UIs 1 and 2 yield a consistent bit for dr[1]. However,
the sequences from UIs 2 and 3 yield different bits for dr[2]. This conflict results from
these windows independently decoding bits. This problem could be avoided if the previous
window’s decision could be used to decode the current window. In the above example, if
dr[2] = 1 was known from decoding of window 2, the possible states in the decoding of
window 3 would be limited to [1, 0] and [1, 1], corresponding to voltages −1 + α and 1 + α,
and the conflicting scenario [0, 1] would never be considered. However, this would introduce
feedback to the algorithm. A feedforward MLSE equalizer must thus decode each window
independently while resolving any conflicts.

2.2 Statistical Analysis Framework

Error statistics are key to evaluating the effectiveness of a MLSE equalizer. For conventional
symbol-by-symbol equalizers in NRZ signaling, a slicer compares the input differential signal
to differential zero to determine the decoded bit. Ideally, this input signal is just ±h0,
depending on whether the transmitted bit was a 1 or 0. In reality, the input contains error
terms as well, such as any residual ISI post-equalization, and voltage noise. If the absolute
sum of these error terms is enough to swap the polarity of the differential input, an error
would occur. The BER can thus be written as

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 12

Figure 2.3: Window conflict example. Received voltage samples (black), with expected state
transitions (dashed lines)

BER = P (dt = 1 ∩ h0 + vn + vISI < 0) + P (dt = 0 ∩ −h0 + vn + vISI > 0)

= P (dt = 1)P (h0 + vn + vISI < 0) + P (dt = 0)P (−h0 + vn + vISI > 0)

=
1

2
[P (vn + vISI < −h0) + P (vn + vISI > h0)]

=
1

2
[2P (vn + vISI < −h0)] = P (vn + vISI < −h0)

where vISI is a discrete random variable that represents residual ISI, and vn is a normally
distributed continuous random variable representing voltage noise.

As noted in [6], the probability mass function of vISI can be derived by convolving the
individual distributions of ISI cursors. Since ISI is independent of noise, the bit error rate
can be computed as the following:

BER =
∑
x

P (vISI = x ∩ vn < −h0 − x)

=
∑
x

[
P (vISI = x) · P (vn < −h0 − x)

]
=
∑
x

[
pISI(x) · Fn(−h0 − x)

]
(2.9)

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 13

where pISI is the PMF of the ISI and Fn is the CDF of the noise distribution. For an ideal,
noise-limited channel that has no residual ISI post-equalization, (2.9) simplifies to

BERsymbol,ideal = Fn(−h0) (2.10)

Now, consider the proposed MLSE algorithm, which is a sequence detection equalizer.
The bit error rate can generally be split into 2 components: the probability of all overlapping
windows decoding the incorrect bit, and the probability that some windows decode incorrect
bits and the conflict resolution mechanism chooses the wrong bit. Let e represent an incorrect
bit, and let C represent the conflict resolution function. Then, the BER can be expressed as

BER = P

(
N⋂
i=1

[WN+1−i(i) = e]

)

+ P

(
N⋃
i=1

[WN+1−i(i) = e] ∩
N⋃
i=1

[WN+1−i(i) ̸= e] ∩ C(W (1), . . . ,W (N)) = e

)

The first term is a error term that only depends on the window length and number of
taps, whereas the second term indicates the effectiveness of a particular conflict resolution
mechanism. Another perspective is that given some number of taps and window length, the
first term represents the lower-bound BER for all variants. This lower-bound limit on the
BER serves as an initial metric of whether the window length and/or the number of taps
should be increased to meet the desired bit error rate.

Note that each decoded window is some function f of the consecutive noise samples,
which are assumed to be independent and identically distributed according to a Gaussian
distribution:

W (i) = f(vn[i− L+ 1], vn[i− L+ 2], . . . , vn[i])

This results in a dependence between events of overlapping decoded windows, except for
the trivial case when L = 1. Given such dependencies involving Gaussian random variables,
BER equations for these MLSE algorithms often lack closed-form expressions. To tackle this
issue, a statistical analysis framework was created as a means for the user to codify the error
statistics of different equalizers, thereby allowing machines to handle all the computations.

Since this framework must support the modeling of diverse equalization schemes, a few
key features are implemented. First, real-world, continuous distributions like thermal noise
are discretized or sampled into different bins at regular intervals, and then normalized to
have a summed probability of 1. This “binning” results in a probability mass function
(PMF), which can be used in-place of the continuous PDF to ease computation, especially
for operations that involve multiple distributions like convolution or conditioning.

To control the range and resolution of the discretization, two parameters are introduced,
respectively: the number of standard deviations (nσ), and the number of bins per standard
deviation (bσ). Users can choose values based on their application (specifically, the BER of

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 14

Channel &
SNR Specs

Statistical
Model

Time Domain
Model

(EQ Core)

Time Domain
Model

(Adaptation)

Statistical Sim
Time Domain
BER Sim

Convergence
Sim

Compare BER

Figure 2.4: Framework flow for statistical (red) and time-domain (cyan) verification

Figure 2.5: Discretization of a Gaussian distribution for nσ = 3, bσ = 4

interest). For example, to capture error rates of ∼ 10−12, nσ should at least be 7, which
results in a one-sided tail probability of 1.28× 10−12 for Gaussian distributions. Increasing
nσ and bσ improve the accuracy of the statistical results at the cost of analysis runtime. To
the first order, if one is interested in how L random variables affect the probability of an
event (as is the case with window decoding), an approach that iterates through all possible
combinations of variable values results in a runtime ∼ (2nσbσ)

L. Practically, choosing nσ, bσ
to be around 10-15 was a reasonable compromise between statistical accuracy and runtime
for low (< 10−12) BER rate applications.

Second, utility functions are implemented to deal with conditional distribution functions.
For instance, consider the probability expression P (X > Y ∩X > Z), where X, Y , and Z

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 15

are arbitrary, independent, discretized random variables. A brute-force approach to this
calculation would involve a 3-dimensional iteration over the domains of each variable FX ,
FY , and FZ :

P (X > Y ∩X > Z) =
∑
x∈FX

∑
y∈FY

∑
z∈FZ

[
P (X = x)P (Y = y)P (Z = z)

{
1 if x > y ∩ x > z

0 otherwise

]

If X, Y , and Z have BX , BY , and BZ bins, respectively, then the above would take
∼ BXBYBZ time to compute. However, the runtime can be significantly reduced by applying
conditionality. If we define X ′ to be the distribution of X conditioned on the event that
X > Y , then the probability can be rewritten as

P (X > Y ∩X > Z) = P (X > Y) · P (X > Z|X > Y) = P (X > Y) · P (X ′ > Z)

The individual components can be computed as follows, where FX′ represents the domain
of X ′:

P (X > Y) =
∑
x∈FX

[P (X = x) · P (Y < x)] =
∑
x∈FX

[P (X = x) · FY (x)]

P (X ′ = x) =
P (X = x) · FY (x)

P (X > Y)

P (X ′ > Z) =
∑

x∈FX′

[P (X ′ = x) · P (Z < x)]

Note the common term between P (X > Y) and the probability mass function ofX ′. If we
define this common term as a “weight” function WX′ , we can re-define the above equations:

WX′(x) ≡ P (X = x) · FY (x) (2.11)

P (X > Y) =
∑
x∈FX

WX′(x) =
∑

x∈FX′

WX′(x) (2.12)

P (X ′ = x) =
WX′(x)∑

x∈FX′ WX′(x)
(2.13)

In other words, WX′ represents an unnormalized “probability” distribution of X ′, whose
sum is the conditioned event P (X < Y). If the CDF of Y (FY) is pre-computed, the overall
runtime of this approach is on the order of BX , which is a significant improvement over the
initial approach.

In addition to the statistical modeling, the analysis framework supports time-domain
simulation. Time-domain analysis achieves two core purposes. Because statistical models of
equalizers are more equation-driven and prone to modeling errors, time-domain behavioral
models serve as a reference to sanity check that the statistical model yields equivalent error
rates across different values of SNR. However, since the minimum BER detectable by a

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 16

time-domain simulation scales inversely linearly with the number of simulation cycles, time-
domain models typically are only useful to estimate error rates as low as ∼ 10−6. The
second advantage of time-domain support is to verify closed-loop adaptation schemes, as
each equalizer will need to have its own dedicated adaptation engine that should account for
any circuit-induced non-linearities.

2.3 Explored Architectures

The feedforward MLSE algorithm would be proposed as an energy-efficient alternative to the
DFE in the receiver equalization. To manage the MLSE’s exponentially growing complex-
ity, the design space was limited to one-tap post-cursor equalizers. Then, different window
lengths and conflict resolution mechanisms were considered to develop different MLSE de-
signs.

For each design, its error statistics were computed assuming a one-tap postcursor channel
with main cursor h0 = 1 and first post-cursor h1 = α. The noise variance σn was varied to

generate a BER vs. SNR curve, where SNR is calculated as
(

h0

σn

)2
. The proposed design’s

BER vs. SNR curves were then compared with those of the DFE for different values of α to
determine viability from an error statistical perspective.

The effect of error propagation was ignored in the statistical modeling of the DFE as it
has minimal impact on the BER at low error rates [7]. Neglecting error propagation and
residual ISI, the DFE error rate is simply Fn(−h0) = Fn(−1). Note that this is just the ideal
BER for symbol-by-symbol equalizers from (2.10) because DFE does not enhance noise.

2.3.1 Window Length 1

Error terms in (2.5) can be substituted with the definitions from (2.1):

W (n) = argmin
x∈{0,1}2

(vr[n]− (1 + α))2 if x = [1, 1]

(vr[n]− (1− α))2 if x = [0, 1]

(vr[n]− (−1 + α))2 if x = [1, 0]

(vr[n]− (−1− α))2 if x = [0, 0]

(2.14)

= argmin
x∈{0,1}2

α− (1 + α)vr[n] if x = [1, 1]

−α− (1− α)vr[n] if x = [0, 1]

−α + (1− α)vr[n] if x = [1, 0]

α + (1 + α)vr[n] if x = [0, 0]

(2.15)

Expanding and removing common terms in the argmin arguments allows one to simplify
(2.14) to (2.15). Then, one can inspect conditions in which one sequence results in a smaller

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 17

error than another. For example, consider the comparison between e11[n]
2 and e01[n]

2:

e11[n]
2 ?
< e01[n]

2

α− (1 + α)vr[n]
?
< −α− (1− α)vr[n]

2α
?
< 2αvr[n]

vr[n]
?
> 1

One can apply the same approach to other sequences to further simplify the window
function:

W (n) =

[1, 1] if vr[n] > 1

[0, 1] if 0 < vr[n] < 1

[1, 0] if − 1 < vr[n] < 0

[0, 0] if vr[n] < −1

(2.16)

Another way to arrive at (2.16) is by graphically visualizing equidistant lines between the
4 noiseless expected states, as shown in Figure 2.6. Since the MLSE attempts to minimize the
Euclidean distance, the equidistant lines represent thresholds between different sequences.

Figure 2.6: Window length 1 decoding
with +1/0/-1 thresholds (dashed)

Figure 2.7: Decoded window conditions
for W (n) (red) and W (n+ 1) (green) for
lower-bound BER

As mentioned earlier, the error statistics depend on the exact conflict resolution mech-
anism. However, a lower-bound BER for all window length 1 designs can be calculated to
sanity check whether a window length 1 equalizer is viable to begin with. The lower-bound
BER can be computed by considering the ideal case that the conflict resolution mechanism

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 18

always decides the correct bit when a conflict between overlapping windows arises. Thus,
the BER in this case is simply the probability that all windows decode the incorrect bit.

Without loss of generality, assume that at sample n, the transmitted data symbol dt[n]
is 1. Then, the lower-bound BER (as illustrated in Figure 2.7) can be expressed as

BER = P (W2(n) = 0 ∩W1(n+ 1) = 0)

= P (W2(n) = 0) · P (W1(n+ 1) = 0)

= P (vr[n] < 0) · P (vr[n+ 1] < −1 ∪ 0 < vr[n+ 1] < 1) (2.17)

Recall that with for a window length of 1, decoding the overlapping windows is indepen-
dent. This expression simplifies to1

BER ≈ 1

4
[Fn(−1− α) + Fn(−1 + α)][2Fn(−α) + Fn(2− α)− Fn(1− α)] (2.18)

As shown in Figure 2.8, the lower-bound BER of the window length 1 MLSE is higher
than that of the DFE across a wide range of α values, which correspond to different channel
losses. The DFE would out-perform any window length 1 architecture, as any realizable
window length 1 architecture would have greater error probabilities than the lower-bound
model. To find a viable alternative to the DFE, longer window lengths should be considered.

2.3.2 Window Length 2

Applying the same graphical approach as in the previous section, one can reduce the window
decoding function for window length 2 architectures to the following set of lines, as shown
in Figure 2.9. Since the decoding is a function of two adjacent voltage samples, the plot
shows the current sample on the x-axis and the previous sample on the y-axis. The black
dots represent ideal voltage states for each possible data pattern and form a subset of the
space (±1±α,±1±α). The dashed lines represent equidistant lines between the ideal states,
where the exact linear equation for each threshold is expressed below:

1○ : vr[n] = α

2○ : vr[n] = −α
3○ : vr[n− 1] = 1

4○ : vr[n− 1] = −1
5○ : vr[n] = vr[n− 1]

6○ : vr[n] = −
1− α

α
vr[n− 1] + 1

7○ : vr[n] = −
1− α

α
vr[n− 1]− 1

8○ : vr[n] = −
1

α
vr[n− 1]

1Refer to Appendix A.1 for the full derivation.

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 19

Figure 2.8: Error statistics comparison between DFE and lower-bound MLSE (window length
1)

Computing the lower-bound error statistics of the window length 2, however, is trickier
than those of the window length 1 due to the dependence in decoded windows. For a 1-tap
window length 2 architecture, there are 3 overlapping windows for dt[n]:

W (n) = f(vr[n], vr[n− 1]) = g(dt[n], dt[n− 1], dt[n− 2], vn[n], vn[n− 1])

W (n+ 1) = f(vr[n+ 1], vr[n]) = g(dt[n+ 1], dt[n], dt[n− 1], vn[n+ 1], vn[n])

W (n+ 2) = f(vr[n+ 2], vr[n+ 1]) = g(dt[n+ 2], dt[n+ 1], dt[n], vn[n+ 2], vn[n+ 1])

A brute-force approach would require 9 nested loops—5 for the transmitted data dt[n−
4], ..., dt[n] and 4 for the noise vn[n− 3], ..., vn[n]. For a discretized Gaussian distribution of
B bins, the total number of iterations would be 25B4, which results in 100B to 1T iterations
for typical number of bins. To reduce computational complexity, conditioning is applied to
the noise distributions by partitioning the window decoding space, as illustrated in Figure
2.10. If the decoding is broken up at horizontal and vertical lines of threshold 0,±α,±1,
each rectangular region has at most 2 possible sequences that can be decoded.

Let the one-dimensional partitioning be represented by the following set of intervals A ∈
{(−∞,−1), (−1,−α), (−α, 0), (0, α), (α, 1), (1,∞)}, where each tuple contains the lower and
upper bounds of the interval. Suppose again without loss of generality that the transmitted

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 20

Figure 2.9: Window length 2 decoding with labeled thresholds (dashed)

data symbol dt[n] is 1. As the transmitted data spans 5 UI across all overlapping windows,
the 5-bit transmitted sequence dx can be expressed as

dx = [dt[n− 2], dt[n− 1], dt[n], dt[n+ 1], dt[n+ 2]] = [x1, x2, 1, x3, x4]

where x = [x1, x2, x3, x4] represents a random vector of neighboring transmitted bits.
The lower-bound BER can be rewritten as a summation across all possible interval and

data pattern combinations:

BER = P (W3(n) = 0 ∩W2(n+ 1) = 0 ∩W1(n+ 2) = 0)

=
1

16

∑
x∈{0,1}4

∑
(ymin,ymax)∈A4

pr,1pr,2pr,3pr,4pw,0,0pw,1,0pw,2,0 (2.19)

For i ∈ {1, 2, 3, 4}, pr,i represents the probability that the received voltage vr[n + i − 2]
falls in the given interval (ymin,i, ymax,i):

pr,i = P (vr[n+ i− 2] ∈ (ymin,i, ymax,i)|dt[n+ i− 2] = dx,i+1, dt[n+ i− 3] = dx,i)

For j ∈ {0, 1, 2}, pw,j,b represents the probability that W3−j(n + j) (the overlapping bit
in a decoded window) is the binary value b ∈ {0, 1}:

pw,j,b = P (W3−j(n+ j) = b|dt[n+ j] = dx,j+3, dt[n+ j − 1] = dx,j+2, dt[n+ j − 2] = dx,j+1,

vr[n+ j] ∈ (ymin,j+2, ymax,j+2),

vr[n+ j − 1] ∈ (ymin,j+1, ymax,j+1))

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 21

Figure 2.10: A partition of the window length 2 decoding into horizontal and vertical lines
(green, dashed)

Since dt is treated as a constant, vr[n + i − 2] = vn[n + i − 2] + videal, where videal is a
direct function of the transmitted bits (±1±α). (ymin, ymax) are also treated as constants, so
pr,i are all independent probabilities that condition the distribution of the received voltage
according to the inequality ymin,i ≤ vr[n+ i− 2] ≤ ymax,i. Once the conditional distributions
of vr are computed, they can be used to determine pw,j,b.

Due to the partitioning strategy, computing pw,j,b is fairly simple. Recall that pw,j,b is
related to the decoding of (3-j)th bit in window W (n + j), which depends on vr[n + j] and
vr[n+ j− 1]. Based on which interval is currently being operated on, there are the following
3 scenarios:

1. Only 1 sequence can be decoded. If the bit of interest is b, then pw,j,b = 1 and the
received voltage distributions remain unchanged. Otherwise, pw,j,b = 0, zeroing out
the whole term in the (2.19) summation.

2. 2 sequences can be decoded, but the bit of interest is same for both sequences. Then,
this reduces to the above scenario where pw,j,b is either 1 or 0.

3. 2 sequences can be decoded, and the bit of interest is different for the sequences. In this
case, this region is linearly split between the two possible sequences by an inequality
in the form of vr[n + j] < A · vr[n + j − 1] + B. Using the weight function approach
from (2.11) (2.12) (2.13), pw,j,b can be computed with conditional distributions on the
received voltages.

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 22

However, pw,j,b are not all independent of each other. pw,0,b and pw,2,b are independent
since the former depends on vr[n] and vr[n − 1] while the latter depends on vr[n + 2] and
vr[n+1]. pw,1,b shares a dependence with the other 2 terms because it shares a dependence of
vr[n+1] with pw,2,b and a dependence of vr[n] with pw,0,b. By first computing pw,0,b and pw,2,b,
the resulting conditioned distributions of vr[n] and vr[n+ 1] can then be directly applied to
pw,1,b.

Compared to the DFE, “lower-bound” window length 2 MLSE has better or comparable
error rates for most values of α (Figure 2.11). Thus, window length 2 architectures could be
promising alternatives to the DFE, but the key challenge is to develop a conflict resolution
mechanism that is simple to implement in hardware while still retaining good error statistics.

Figure 2.11: Error statistics comparison between DFE and lower-bound MLSE (window
length 2)

2.3.2.1 Majority Vote

Note that for window length 2, there are an odd number of overlapping windows that give
information about the same bit. In the event of a conflict, the majority vote is the simplest
approach since it only requires a few additional logic gates to resolve the conflict.

The error statistics of the majority vote design can be computed similarly to the lower
bound case. Whereas the lower bound version required all windows to give the wrong bit,

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 23

the majority vote design would error if at least 2 windows gave the wrong bit. In other
words, the BER of the majority vote is

BER = P (W3(n) = 0 ∩W2(n+ 1) = 0 ∩W1(n+ 2) = 0)

+ P (W3(n) = 1 ∩W2(n+ 1) = 0 ∩W1(n+ 2) = 0)

+ P (W3(n) = 0 ∩W2(n+ 1) = 1 ∩W1(n+ 2) = 0)

+ P (W3(n) = 0 ∩W2(n+ 1) = 0 ∩W1(n+ 2) = 1)

=
1

16

∑
x∈{0,1}4

∑
(ymin,ymax)∈A4

pr,1pr,2pr,3pr,4(pw,0,0pw,1,0pw,2,0 + pw,0,1pw,1,0pw,2,0

+ pw,0,0pw,1,1pw,2,0 + pw,0,0pw,1,0pw,2,1) (2.20)

Figure 2.12: Error statistics comparison between DFE and majority vote MLSE (window
length 2)

As shown in Figure 2.12, the majority vote design yields a higher BER than the DFE
across all values of α. The main disadvantage of the majority vote method is that all
overlapping windows are weighted equally. However, lower loss channels typically have
α < 0.5, so each voltage sample at the receiver naturally retains more information about
the currently transmitted bit than the previous bit. As α decreases toward 0, the earli-
est window W (n) would contain most information about the current bit to be resolved,

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 24

while the latest window W (n + 2) contains least information and is more error-prone. In
fact, of the 4 error cases in the majority vote analysis, the the dominant error term is
P (W3(n) = 1 ∩W2(n+ 1) = 0 ∩W1(n+ 2) = 0).

2.3.2.2 Single Window

The above phenomenon suggests that for lower loss channels, the earlier windows should
be weighed more heavily than later windows when resolving conflicts. As a result, the
proposed “single window” design resolves conflicts by always using the bit decoded by the
earliest window. Doing so entirely removes interaction between overlapping windows, which
simplifies both the statistical analysis and complexity of this equalizer. Since overlapping
windows are no longer considered, each window only needs to decode its last bit, not the
entire sequence. In other words, the window decoding reduces from Figure 2.9 to Figure
2.13.

Figure 2.13: Single window decoding for window length 2. A single bit is decoded: 1 if the
received samples are in the red region, 0 if the green region

Suppose we define a slice function to mimic a comparator or slicer function:

slice(x) ≡

{
1 if x > 0

0 otherwise
(2.21)

Then, the 3-line piecewise window decoding function Wsing(n) can be mathematically

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 25

represented as

Wsing(n) =

1 if vr[n] > h0

0 if vr[n] < −h0

slice(vr[n]− vr[n− 1]) otherwise

(2.22)

This function can be realized by using minimal circuitry consisting of a few comparators,
adders, and logic gates shown in Figure 2.14. The ±α slicer thresholds are similar to those
of the 1-tap loop-unrolled DFE, but an additional 2-tap FIR path is added. As a result, the
adaptation algorithm of ±α thresholds is reused from that of the 1-tap loop-unrolled DFE,
where the data thresholds are interpolated from an additional error slicer that adapts for
1 ± α data levels (dLevs) based on 11/01 pattern filtering. The adaptation scheme will be
discussed in more detail in Section 4.3.1.

Figure 2.14: Single window length 2 block diagram

With the reduced decoding function and lack of interaction between overlapping windows,
the bit error rate can be computed as the following (again assuming the transmitted bit is
1):

BER = P (W3(n) = 0) = P (vr[n] < −α ∪ (−α < vr[n] < α ∩ vr[n− 1] > vr[n]))

=
1

4

∑
x∈{0,1}2

[P (vr[n] < −α|dt[n− 2] = x1, dt[n− 1] = x2, dt[n] = 1)

+ P (−α < vr[n] < α ∩ vr[n− 1] > vr[n]|dt[n− 2] = x1,

dt[n− 1] = x2, dt[n] = 1)] (2.23)

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 26

As shown in Figure 2.15, this design achieves comparable error rates to the DFE for
α ≤ 0.3 but falls off for larger values of α.

Figure 2.15: Error statistics comparison between DFE and single window MLSE (window
length 2)

2.3.3 Window Length 3

The window decoding function showed a drastic increase in complexity from window length
1 to window length 2 architectures. Given the MLSE’s known tendency for exponentially
increasing complexity, window length 3 architectures seemed infeasible at first. However,
with the discovery of the single window architecture, which could greatly simplify the de-
coding function, the single window approach was extended to window length 3 to determine
whether the error statistics would improve for α values beyond 0.3.

The window decoding function for the single window is shown below:

Wsing(n) =

1 if vr[n] > h1

0 if vr[n] < −h1

f(vr) otherwise

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 27

Note that the general form is the same as the window length 2 version (2.22). However,
the “otherwise” condition is now replaced by a much more complex function f , as shown
below:

f(vr) =

f1(vr) if (a(−∞,−h0) ∩ c>0) ∪ (a(h0,∞) ∩ c(2h1,∞)) ∪ (a(−h0,h0) ∩ b(h1,∞))

f2(vr) if (a(h0,∞) ∩ c(−∞,0)) ∪ (a(−∞,−h0) ∩ c(−infty,−2h1)) ∪ (a(−h0,h0) ∩ b(−∞,−h1))

f3(vr) if (a(h0,∞) ∩ c(0,2h1))

f4(vr) if (a(−∞,−h0) ∩ c(−2h1,0))

f5(vr) if (a(−h0,h0) ∩ b(−h1,h1))

f1(vr) = slice((1− α)vr[n]− vr[n− 1] + h1)

f2(vr) = slice((1− α)vr[n]− vr[n− 1]− h1)

f3(vr) = slice((1− α)(vr[n]− vr[n− 1]) + vr[n− 2]− h1)

f4(vr) = slice((1− α)(vr[n]− vr[n− 1]) + vr[n− 2] + h1)

f5(vr) = slice(vr[n]− vr[n− 1] + vr[n− 2])

a(x,y) ≡ vr[n− 2] ∈ (x, y)

b(x,y) ≡ αvr[n− 1] + (1− α)vr[n− 2] ∈ (x, y)

c(x,y) ≡ αvr[n− 1] + vr[n− 2] ∈ (x, y)

Figure 2.16: Single window length 3 block diagram

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 28

The equivalent block diagram is depicted in Figure 2.16. Compared to the window length
2 version, the new decoding function requires > 4x comparators, which tend to be the most
power-hungry.

The error statistics of the window length 3 variant is shown in Figure 2.17. This MLSE
design now achieves similar BER as the DFE for α < 0.5. However, this comes at a significant
design complexity tradeoff.

Figure 2.17: Error statistics comparison between DFE and single window MLSE (window
length 3)

2.4 Equalizer Comparison and Conclusions

The MLSE algorithm is a powerful equalization algorithm that can theoretically achieve
excellent error statistics. On the other hand, applying MLSE for ultra-high-throughput,
energy-efficient links requires a simplification of the algorithm and removal of feedback loops,
both of which degrade the statistical performance. Several variants of the feedforward MLSE
were explored for different window lengths and conflict resolution mechanisms. Of these, the
most promising designs were the single window architectures.

For given target channels and bit error rates, the energy-delay tradeoffs are compared
across three equalizer designs: 1-tap loop-unrolled DFE, single window MLSE for length 2,

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 29

Figure 2.18: Equalizer tradeoffs

and single window MLSE for length 3 (Figure 2.18). The DFE’s energy efficiency is modeled
to asymptotically reach a maximum frequency limit, which is set by the critical path of the
feedback loop and is technology-dependent. At high frequencies, self-loading effects dominate
the overall power, resulting in the asymptotical behavior. The impact of self-loading on power
consumption for similar circuits is analyzed in more detail in [8]. In contrast, the feedforward
MLSE equalizers can be parallelized as needed and are approximated to be constant over
frequencies.

Let CDFE, CMLSE,2, and CMLSE,3 represent the base complexity of the three designs
without pushing the design to its limits. In other words, CDFE is normalized to 1 as in
Figure 2.18. Assuming that comparators are the dominant source of power consumption,
CMLSE,2 ≈ 1.5 and CMLSE,3 ≈ 7.

Then, one can compute the SNR required to achieve the target BER. In particular, the
SNR requirements of the MLSE designs can be computed relative to the DFE SNR reference.
For error rates of 10−12, the MLSE designs may need anywhere from 0 to 3 dB higher SNR
compared to the DFE. Assuming noise is dominated by kT/C noise, MLSE designs would
need to be upsized to meet the required SNR. The additional power penalty due to noise
consideratoins can be computed as follows:

P ∝ C ∝ 1

v2n
∝ SNR

NMLSE,2 ≡
PMLSE,2

PDFE

=
SNRMLSE,2

SNRDFE

(2.24)

NMLSE,3 ≡
PMLSE,3

PDFE

=
SNRMLSE,3

SNRDFE

(2.25)

CHAPTER 2. STATISTICAL ANALYSIS AND ARCHITECTURE EXPLORATION 30

The nominal power consumption of the MLSE designs are

PMLSE,2 = CMLSE,2NMLSE,2 = 1.5× SNRMLSE,2

SNRDFE

PMLSE,3 = CMLSE,3NMLSE,3 = 7× SNRMLSE,3

SNRDFE

Based on the energy-delay tradeoffs, the window length 2 is a better choice than the
window length 3 across all cases. Although the window length 3 has superior error statistics
for higher loss channels, its base complexity offsets much of its SNR advantages when it
comes to evaluating the energy efficiency. This simple comparison, however, assumes that the
receiver power is mainly dominated by the equalizer. If the MLSE is not the dominant source
of power, the window length 3 could be more attractive in higher loss channels, as the entire
receiver would usually need to be upsized to meet the SNR requirement. Furthermore, the
asymptotic behavior of the DFE energy efficiency indicates that past its maximum achievable
data rate, the feedforward MLSE could be key to implementing the wireline receiver.

31

Chapter 3

Design Techniques for a 160 Gb/s
1-Tap MLSE Datapath

3.1 Overview

A 160 Gb/s NRZ wireline receiver was designed in a 16 nm FinFET process to evaluate
the energy efficiency and future promise of the feedforward MLSE equalizer. As discussed
in the last chapter, the single window length 2 MLSE design is chosen for its lower power
consumption over the window length 3 version.

Figure 3.1: RX MLSE block diagram

The receiver block diagram is shown in Figure 3.1. To further reduce power, the equal-
ization is primarily implemented in the analog and mixed-signal (AMS) domain, removing
the need for a high-speed ADC. To achieve the desired throughput, the MLSE equalizer is
implemented as 16 time-interleaved slices, each effectively working at 10 GS/s. Recall from
Figure 2.14 that one slice consists of 3 comparator outputs (“data1p”, “data1n”, “data2” in
Figure 3.1), which are passed into some digital logic for decoding. As is the case with the

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 32

1-tap loop-unrolled DFE, an additional error slicer must be added to adapt the 1± α dLev.
For the MLSE, this is added as a 4th comparator with output “data1e”. These signals are
then deserialized by an additional factor of 8 and connected to the synthesized logic, which
consists of the MLSE decoder and testing modules. A custom-digital decoder operating at
10 GS/s would halve the number of deserializers required, as each slice would only need to
output 2 signals—one data and one error for datapath calibration. In addition, the decoder
latency would be reduced from ∼128 UI to ∼16 UI. However, latency was not critical to
this design, and having all comparator outputs simultaneously available for off-chip testing
procedures increased visibility and debug capability for the test chip.

Although parallelism eases the implementation of the feedforward MLSE equalizer, the
frontend circuits must still operate at full bit rate and can be the bottleneck to link perfor-
mance. Inductive peaking circuits have thus been used in SerDes frontend designs to improve
bandwidth and return loss performance [9, 10]. In particular, this work’s passive frontend
was designed by Kunmo Kim and features a T-coil design, whose detailed analysis can be
found in [11, 12].

As data rates approach the limits of the process node, device and routing parasitic ef-
fects can significantly degrade the link performance. Building such a high-speed link requires
numerous design iterations, from device sizing to floorplanning. To improve designer pro-
ductivity, the receiver was designed using a generator framework called Berkeley Analog
Generator (BAG) [13, 14]. Once a user codifies a circuit’s design process into a configurable
generator, this design methodology enables an agile workflow through the automatic cre-
ation and post-layout characterization of parameterized instances. Furthermore, complex
design rules in advanced process nodes require greater physical design effort to pass design
rule checking (DRC). Generated instances will often be DRC-clean with little to no manual
changes, making BAG attractive for advanced-node IC designs.

Developing a robust circuit generator, however, can take significant time. If one does
not yet exist for the desired circuit, designers must consider the upfront effort of generator
development. As a result, the generator-based design flow is most effective for circuits which
must be critically optimized for power performance area (PPA) and thus is used extensively
in the proposed receiver.

3.2 Analog Datapath Architecture

A 16-way interleaved MLSE equalizer requires a 1:16 frontend deserializer. This deserializer
is implemented in 2 stages to reduce loading at the input. Instead of equal 4x deserialization
for each stage, the first stage interleaving ratio is set as 8 because distributing octa-rate (20
GHz) clocks would be more energy-efficient than quad-rate (40 GHz) clocks in the given
technology node.

The MLSE slice contains 2 parallel integrating paths. The first path consists of a gain
stage, which drives the ±α-threshold data comparators. Because the error slicer on this path
must compare its input against 1+α, the gain stage must have enough linear range to drive

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 33

Figure 3.2: MLSE analog datapath block diagram

large signals. The second path consists of the 2-tap FIR, where the previous analog sample
is subtracted from the current sample. The output linearity constraints on this FIR/summer
path are much more relaxed, as the slicer compares against differential zero.

Due to the 2-tap FIR structure, the deserialized 16-way signals must be shuffled around
the slices in the array. The 16 slices are physically tiled in a specific order to minimize the
longest routing distance, but the routing tends to increase linearly with number of interleaved
ways. The routing parasitics increase the load capacitance driven by the 8:16 deserializer.
To manage the larger fanout, an additional gain stage is inserted between the deserializer
and MLSE slice as an analog buffer.

Because routing parasitics can often dominate load capacitances and limit circuit perfor-
mance, the datapath design and floorplaning must be iterated with post-layout simulations.
The entire datapath was written as a BAG generator, which allowed for quick design iter-
ation as parameters like device sizing and wire spacing were updated. The design flow is
shown in Figure 3.3. First, load capacitances are estimated for each stage of the signal chain.
The unit cells are independently optimized with these loading constraints, and the top-level
datapath is generated based on each unit cell design. A post-layout transient simulation of

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 34

the datapath can be used to extract total load capacitances seen by each stage, which are
compared with the original estimates. If there is a difference between the assumed and ac-
tual load conditions, the unit cells are re-designed with the new loads and the design process
repeats. Once this loop converges and the top-level load capacitances match the unit cell
load specifications, a final sign-off check is run and the datapath design is complete.

Assume load capacitances
for each stage/unit cell

Design unit cells

Generate top-level datapath

Simulate top-level datapath
and extract load capacitances

Unit cell load
capacitances match?

Update load capacitances

No

Verify performance

Done

Yes

Figure 3.3: Datapath design flow

Various receiver designs have employed current integration techniques to reduce power
consumption by ∼ 3x [8, 15–22]. As discussed in following sections, gain and delay stages of
the datapath are implemented using integrated latches (abbreviated as IL in Figure 3.2).

3.3 Current Integrating Circuits

Traditional current integration techniques involve 2 phases of operation (Figure 3.4b). Dur-
ing the first phase, the amplifier integrates current off of the output nodes, generating an
output differential voltage with a voltage gain Av:

Av =
gmTint

CL

(3.1)

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 35

where gm is the transconductance of the input devices, Tint is the integration time, and CL is
the load capacitance at the output nodes. In the second phase, the circuit resets the outputs
to some common mode level (usually VDD or ground, dependeing on the input device type)
to clear the previous sample in preparation for the next cycle. The settling error associated
with these reset devices εr is

εr = exp

(
− Trst

RswCL

)
(3.2)

where Trst is the reset time and Rsw is the switch resistance of the reset devices.

(a) Current integrator (b) Integrate-reset timing (c) Integrate-hold-reset timing

Figure 3.4: Current integration operation

Since the amplifier output is not held during the operation, the following stage must
quickly sample the voltage before it resets to differential zero. In fact, current integration in
receiver equalizers has primarily been applied to the FFE and/or DFE summer circuit, whose
output is sliced by a regenerative comparator with a narrow sampling aperture. A 2-stage
current integration scheme is proposed in [18], which requires an additional analog “dynamic
latch” circuit between the stages to provide a stable input for the second integrator.

With 4 stages of current integration in this work’s datapath, 3 dynamic latches would
need to be inserted in the signal chain, resulting in higher power and additional circuit non-
idealities. To avoid this, a current integration operation proposed by Eric Chang introduces
a hold phase (Figure 3.4c), where the integrating amplifier retains the amplified output value
for some time until the resetting begins. While the current stage is in the hold phase, the
next stage integrates and amplifies the held voltage, allowing for an easier cascading of the
current integration stages. The integrate-reset operation typically assigns equal durations
for the integration and reset phases, which results in the phases being controlled by a single
50% duty cycle clock. With the integrate-hold-reset scheme, however, the clock period must
now be divided into 3 different phases. This results in shorter integration and/or reset pulses,
which tend to increase clocking power. As this amplifier now “latches” onto and retains the
input during the hold phase, it will be henceforth referred to as the integrating latch.

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 36

3.3.1 Intersymbol Interference Design Considerations

The integrating latch can generate ISI, which must be accounted for in the overall link
analysis. The ISI comes from two independent sources in the integration and reset phases.
By nature of integration, the latch low-pass filters the input during the integration window.
As discussed in [17], this results in frequency-dependent gain that could introduce 3.9 dB
of loss at Nyquist frequency if the integration window is 1 UI wide. One can control the
amount of ISI by controlling the integration period, which would also modulate the gain.
Nevertheless, the integration non-idealities only translate to ISI for the first stage samplers.
Later stages have inputs which are already sampled and in discrete time, so any integration
window effects only impact the gain of that stage.

At low enough speeds, the integration window is primarily set by the width of the in-
tegration pulse. For higher rates, the effective integration period is further affected by the
limited bandwidth at the tail node. During integration, the tail node must drop at least a
Vth below the input common mode for the input devices to turn on. Then, the tail node
must be pulled up back within a threshold of the input common mode for the input devices
to turn back off, signifying the end of the integration window. Tail node bandwidth limited
designs can increase the delay and transition times of the tail voltage, which disperse and
time-shift the ideal boxcar integration window. For frontend samplers that rely on current
integration, controlling the effective tail node bandwidth is key to mitigating ISI.

During the reset phase, the differential output voltage exponentially approaches zero.
Any residual output left at the end of the reset phase is defined as the reset error and
is simply the settling error from (3.2). Larger reset devices will reduce the reset error
but introduce additional parasitic device capacitance to the output, thereby decreasing the
integration gain. Unlike the ISI from integration, the reset error affects all stages of current
integration, where an Nth postcursor ISI tap is effectively introduced if the latch is operating
at 1/N of the full data rate. With the MLSE slices operating at 16x interleaving, the reset
error would mainly manifest as 16th postcursor tap ISI, which is not readily handled by the
equalizer. Thus, the reset error was kept to a minimum and its effect was negligible on the
overall link performance.

The ISI effects can be observed by running an impulse sensitivity function (ISF) char-
acterization, where the integrating latch input is driven by an impulse signal and the held
output amplitude is measured. This process is repeated for different arrival times to generate
the ISF. The equivalent impulse response can then be obtained by reversing the time axis.
An example impulse response waveform is provided in Figure 3.5 for a latch with a total
operation time of 16 UI. The main output impulse is at UI 0, with some nonzero width due
to the integration width of the latch. An attenuated version of this impulse is shown at UI
16, which corresponds to the reset error of this latch.

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 37

Figure 3.5: Impulse response of integrating amp showing different sources of ISI

Figure 3.6: Latch model during
integration

Figure 3.7: Waveforms for current-
integrating input

3.3.2 Output Linearity Design Considerations

During the integration phase, the output common mode decreases linearly with integration
time. If the common mode drops too low, the input devices fall into triode, degrading the
latch gain and linearity as the device output resistance ro begins to modulate with the input
amplitude.

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 38

Suppose the parasitic load capacitance at the output nodes are modeled by common
mode (Cc) and differential mode (Cd) components, as shown in Figure 3.6. For integration
time tint, the drop in common mode voltage ∆voc is

∆voc =
IBtint
Cc

(3.3)

The expected voltage gain Av if the input devices remain in saturation is

Av =
gmtint

Cc

2
+ 2Cd

= 2
gmtint

Cc + 4Cd

(3.4)

where gm is the transconductance of the input devices. The ratio of the common mode drop
to voltage gain is set by design and load parameters:

∆voc
Av

=
IB
2gm

Cc + 4Cd

Cc

(3.5)

We define V ∗ to represent the current efficiency of the transistor with drain current Id and
transconductance gm:

V ∗ ≡ 2Id
gm

(3.6)

Note that V ∗ is mathematically equivalent to the overdrive voltage Vov for long channel
devices. Although this equivalence doesn’t apply for short channel devices, the general Vov

trade-offs with respect to gm linearity, fT , etc. can be applied to V ∗. Applying the V ∗

definition to (3.5) yields
∆voc
Av

= V ∗
(
1

2

Cc + 4Cd

Cc

)
= kcV

∗ (3.7)

where kc =
1
2
Cc+4Cd

Cc
represents some ratio of common mode to differential capacitance. At

its minimum, kc = 0.5 when Cd = 0.
Applying square law intuition, suppose to the first order that the input device will enter

the triode region when Vgd > Vth. For an input differential voltage vid and common mode
voltage vic, the output node must not fall more than Vth under the input node:

VDD −∆voc − Av
vid
2
≥ vic +

vid
2
− Vth (3.8)

Based on the relationship between gain and common mode drop as derived in (3.7), (3.8)
can be rewritten as a maximum Av constraint between for some V ∗:

VDD − kcAvV
∗ − Av

vid
2
≥ vic +

vid
2
− Vth

Av

(
kcV

∗ +
vid
2

)
≤ VDD − vic −

vid
2

+ Vth

Av ≤
VDD − vic − vid

2
+ Vth

kcV ∗ + vid
2

(3.9)

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 39

The above mainly applies while the current stage is in integration phase and the previous
stage is in the hold phase. However, when the current stage is in the hold phase, the previous
stage is resetting its outputs, which causes the current stage’s inputs to rise up to VDD. As
the devices must still remain in saturation during the hold phase, a stricter condition is
derived:

VDD −∆voc − Av
vid
2
≥ VDD − Vth

VDD − kcAvV
∗ − Av

vid
2
≥ VDD − Vth

Av

(
kcV

∗ +
vid
2

)
≤ Vth

Av ≤
Vth

kcV ∗ + vid
2

(3.10)

Figure 3.8: Maximum voltage gain (Av) vs. current efficiency (V ∗) tradeoffs for stable input
(left) and input resetting to VDD (right); assuming VDD = 1 V, vic = 0.7 V, Vth = 0.2 V,
maximum vid = 0.2 V

With example numbers described in Figure 3.8, the maximum voltage gain for a given
V ∗ can be ∼2x worse when the input is resetting to VDD, a common occurrence for cascaded
current integration stages. Furthermore, picking small V ∗ to enable larger Av leaves the
latch more susceptible to gm degradation and non-linearity.

There are several methods to mitigate the gain limitations without compromising lin-
earity. Based on equations (3.9) and (3.10), the maximum gain can be increased by using
higher threshold flavors and reducing the differential capacitance (relative to the common
mode capacitance). Increasing the space between the differential output wires decreases any

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 40

differential parasitic capacitance, but it comes with diminishing returns as the capacitance
is inversely proportional to the spacing. Alternatively, adding a shield wire between the dif-
ferential wires can greatly suppress Cd at the cost of higher total load capacitance. Common
mode boosting/restoration circuits can also be added to avoid this issue altogether [15, 18].
Such techniques must be clocked for integrate-hold-reset latches and thus increase clocking
power. For this work, the gain limitation effects were reduced by using higher threshold
input devices and shielding between the output wires.

3.3.3 Integrating Latch Design Flow

Recall from Figure 3.3 that top-level design iterations require individual unit cell design
flows. As most unit cells are based on integration latches, the following methodology will
apply to most integrating latches in the signal chain. The one exception is the T&H, which
is covered in Section 3.4.

The general integrating latch design flow is shown in Figure 3.9. The design iterations are
primarily on meeting linearity, gain, and reset target specifications. Note that because these
latches are not used as frontend samplers, the integration-related ISI is irrelvant. First, we
design the latch in a way that the linearity is limited not by the output resistance ro of the
input devices, but rather their transconductance gm. As mentioned in the earlier section, this
can be done by increasing the threshold of the input devices and minimizing any differential
capacitance. This allows the input linear range constraint to be independent of gain and
reset error. The input linear range is primarily set by the bias current density Ibias/Wn,
which determines V ∗ (or for long-channel devices, Vov). An initial guess for the bias current
density is computed based on transistor I-V characteristics, then any simulation-based design
iterations are executed to ensure that the linearity specification is met. Next, a separate
design loop is carried out for the gain and reset error specifications. Hand calculations can
be made using (3.1) and (3.2), where CL is modified to include self-loading:

CL = CL,ext + CdpWp + CdnWn (3.11)

CL,ext represents the external load capacitance, and Cdp and Cdn represent unit drain
capacitances for PMOS and NMOS, respectively. To account for any modeling errors due to
circuit non-idealities, the design is iterated based on simulation results. As the reset error
and gain are correlated due to their shared dependence on the load capacitance, they are
iterated together. Once the loop is converged, the integrating latch design flow is complete.

3.4 8-Way Interleaved T&H

The T&H’s are driven by multiple phases of 20 GHz clocks, which correspond to a clock
period of 8 UI. Each T&H thus samples the input every 8 UI, with 1 UI of integration, 3 UI
of hold, and 4 UI of reset (Figure 3.10b). The integration period must be approximately 1
UI to sample the input continuous-time signal without incurring too much integration ISI.

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 41

Compute
Ibias/Wn,

Wn, and Wp

Generate
DUT layout

Simulate
linearity

Input linearity
met? No

Update Ibias/Wn

Simulate Gain
& Reset Error

Generate
DUT layout

Reset error
met?

Update Wp

Gain
met?

Update Wn

Done

Yes

No
Yes

No
Yes

Figure 3.9: Current integrating latch design flow

The 4 UI reset period is chosen to accommodate < 5% reset error without aggressively sizing
the reset devices, and its 50% duty cycle pulse simplifies the reset network to single PMOS
devices. The 1 UI integration “pulse” is generated by AND’ing two phases of the 8-phase
clocks, as shown in Figure 3.10a. As mentioned earlier, the tail node bandwidth is critical in
the design of this frontend sampler. The tail bias current source is removed to increase the
pull-down speed on the tail node, while a NMOS pull-up switch is added to the tail node to
increase the pull-up speed.

Because the integration window is only 6.25 ps (1 UI), the highest achievable gain while
satisfying the maximum capacitive loading allowed by the T-coil was around 0.9 V/V. Al-
though the T&H will likely attenuate the input signal, it was found that passive sampler
alternatives would face similar bandwidth constraints that would result in 2-3x lower gain.
With such a short integration time, the common mode drop in the output was also small
enough that the T&H wouldn’t face output linearity issues mentioned in Section 3.3.2. AC-
coupling high-pass filters were added after the T&H outputs to lower the high common mode

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 42

(a) (b)

Figure 3.10: T&H topology (a) and timing (b)

levels for the following stage, as well as to provide any offset correction (Figure 3.2).
Because the T&H must operate near the speed limits of the process, each design pa-

rameter (device sizing and biasing) could critically impact the performance of the circuit,
with a many-to-many correspondence from design parameters to performance specs. For
example, sizing up the tail pull-down switches would increase gain and linearity but also
the integration-induced ISI. Increasing the input common mode would share similar trends,
albeit to different degrees. Upsizing the tail pull-up switch would have the opposite ef-
fect as the tail pull-down switch upsizing, and increasing the reset devices would mitigate
reset-induced ISI while degrading the gain. Furthermore, simple models to map design pa-
rameters to specs often deviate greatly from simulation results at these high rates, as any
parasitic effects become even more pronounced. Instead of solving this complex optimization
through manual design iteration, an automated design optimization flow was developed in
BAG (Figure 3.11).

First, the user specifies both the design space and target specs. The design space is
defined by allowed sizes of different devices and the range of each bias parameter. For the
T&H, the target specs would be to minimize power under certain gain, ISI, and linearity
conditions. Then, every design in the user-defined design space would be created through
the circuit generator and characterized automatically. All measurement results would be
cached into a singular characterization database. To deal with large design spaces which
would require an unrealistic number of DUTs to be generated and characterized, the user
may set coarse steps for each design parameter to lower the sweep resolution. Then, the

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 43

Choose
Design Space

...
...

Generate
DUT #1

Generate
DUT #N

Characterize
DUT #1

Characterize
DUT #N

Interpolate
Measurement

Results

Optimization
Algorithm

Choose
Target Specs

Figure 3.11: BAG optimization flow

database can be queried with interpolation between characterization points. Finally, the
user target specs are passed into the optimization engine, which uses the characterization
database and computes the final design by calling the SciPy optimize Python package. The
target spec to be minimized or maximized may not be convex in design space, and many
local optima may exist. To increase the chances of achieving the global optimum, the engine
invokes multiple optimization calls with random seeds, and then picks the best design among
the covered local optima. Of these steps, the characterization database generation tends to
take the longest. However, for a fixed design space, the database only needs to be created
once, and can be reused for every subsequent design optimization.

3.5 8:16 Deserializer

The second stage of the frontend deserializer consists of 16 time-interleaved integrating
latches, where each pair is driven by one T&H. Because the input to this stage is now
at the deserialized rate of 20 GS/s, the tail current source is included for bias control with-
out being bottlenecked by the tail node bandwidth (Figure 3.12a). The tail pull-up switch is
also removed for similar reasons. The 8:16 deserializer is clocked by 10 GHz clocks (period
of 16 UI), with each unit cell sampling the input every 16 UI over a 4 UI integrate – 4 UI
hold – 8 UI reset sequence (Figure 3.12b). Although the T&H hold phase is only 3 UI wide,
having the 8:16 deserializer’s phases all be multiples of 4 UI simplifies to clock distribution.
Since each unit cell only needs quadrature phases, the 8:16 deserializer can be grouped into
4 commonly clocked “quadrants”, each containing 4 unit cells. These unit cells integrate
during 3 UI of the T&H’s hold phase and the first UI of its reset phase. This reduces the
average input amplitude seen by the unit cell over its integration window. Phase alignment
between the 20 GHz and 10 GHz clocks is critical to ensure that the 8:16 deserializer is
integrating while the T&H’s are in the hold phase.

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 44

(a) (b)

Figure 3.12: Integrating 8:16 deserializer unit cell topology (a) and timing (b)

The 8:16 deserializer unit cell samples every other output of the T&H. If the latch samples
even data from the T&H, any odd data that makes it to the latch output would translate to
additional ISI around the 8th postcursor. Even if the T&H’s odd data capacitively coupled
onto the latch output, it would be cleared during the latch’s reset phase. With 8 UI of reset
time, this effect is usually negligible.

3.6 Integrating Latched Summer

As depicted in Figure 3.2, the MLSE slice contains 2 parallel integrating paths. The first path
consists of the same integrating latch topology as the 8:16 deserializer (Figure 3.12a) and
serves delay-match with the second path while providing more gain for the ±α-threshold
comparator decisions. The second stage includes an integrating latched summer, which
computes the vr[n]− vr[n− 1] term (2.22) needed for the window length 2 MLSE equalizer.

The latched summer is made of two integrating latches, each driven with a pair of dif-
ferential inputs (Figure 3.13a). The two inputs vi0 and vi1 arrive at the summer through
very different paths, as seen in Figure 3.14. Despite how symmetric the floorplanning may
be, the two signal paths will have different net gain due to process variation. Furthermore,
the latched summer waveforms show that due to the 1 UI shift between vi1 and vi0, vi0 has
a smaller effective magnitude than vi1 when both inputs are being amplified in the summer,
which introduces more gain mismatch. Let Av0 be the total gain from vin,rx (the input of the

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 45

(a) (b)

Figure 3.13: Integrating latched summer topology (a) and timing (b)

receiver chain) to summer input vi0, and let Av1 be the total gain from vin,rx to vi1. To deal
with gain mismatch, if the latch driving vi0 has transconductance gm, then the latch driving
vi1 must have some gain-calibrated transconductance w such that the net gain is equal on
both branches, i.e.

Av0gm = Av1w ⇒ w = gm
Av0

Av1

(3.12)

As a result, the latches in the summer have an additional cascode device, which is used
to precisely equalize gain between the two paths. Cascode gate biasing has been shown to
be an effective way to control gain without compromising linearity [18].

3.7 Backend Sampler

After the integrating gain and summer stages in the MLSE slice, the signals must be sliced
and resolved to CMOS levels for further signal processing in the digital domain. While the
summer output ideally requires no scalar subtraction or voltage threshold, the other paths
require non-zero thresholds for proper operation. The slicer paths corresponding to “data1p”
and “data1n” in Figure 3.2 need ±α thresholds to implement the window length 2 algorithm
(refer to Figure 2.14), and the error slicer path “data1e” must compare against data levels
for equalization adaptation. All slicers are also offset-calibrated to improve the link margin.
The offset correction is jointly applied with any decision thresholds through AC-coupling

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 46

Figure 3.14: Summer input path tracing between vi1 (green) and vi0 (red)

high pass filters, which can be biased as such to provide differential DC voltages at the input
of the comparators [18].

A StrongArm (SA)-based flip flop is used as the comparator (Figure 3.15) for its high
sensitivity. On the rising edge of the clock, StrongArm latch senses the input and regenerates
rail-to-rail outputs. However, the StrongArm exhibits a return-to-zero (RZ) behavior as its
outputs reset to VDD while clock is low. A set-reset (SR) latch is thus used to capture and
hold the StrongArm latch decision for the entire clock period. Inverters are added between
the SA and SR latches to mitigate any hysteresis from the SR latch loading. PMOS devices
are also added in the SA latch to pre-charge all intermediate nodes to VDD, further reducing
any hysteresis (Figure 3.16). The symmetric SR latch proposed in [23] is used for its lower
latency.

Figure 3.15: StrongArm flop

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 47

Figure 3.16: StrongArm latch Figure 3.17: Symmetric SR latch

3.8 Backend Deserializer

The time-interleaved 10 GS/s comparator outputs are aligned to 10 GHz clock phases from
0° to 337.5°, in steps of 22.5°. They must be retimed and deserialized to a 1.25 GS/s data
stream that can be sampled off of a single-phase digital clock. To maximize setup and hold
margins, the retiming is implemented in two stages: coarse and fine. The coarse retimer
aligns 4 quadrature (90°-spaced) outputs to the same clock edge (Figure 3.18). First, using
a D-type latch, the 0° and 90° outputs are each delayed half a clock period and aligned to
180° and 270° phases, respectively. Then, all quadrature signals are latched by a single 10
GHz phase that aligns them to 270°. The coarse retiming waveforms are shown for a single
quadrature group in Figure 3.19.

After the coarse retiming, all data is aligned to clock phases between 270° and 337.5°,
with an overlap of 13 UI or 81.25 ps. This allows for the fine retimer to simply sample
all coarse outputs with a single phase clock, with a maximum timing margin of ∼ ±40 ps
(Figure 3.20). Instead of latching all coarse outputs with a 10 GHz clock, the fine retimer
is implemented in the first stage of the deserializer, which samples the input with 5 GHz
clocks, thereby reducing clocking power.

The backend 1:8 deserializer is implemented using a 3-stage tree structure, where each
stage provides a deserialization ratio of 2 and operates at half of its input data rate (Figure
3.21). Compared to the shift register topology, the tree structure consumes less power as it
avoids the use of the baud-rate clock frequency, but must meet tighter timing constraints.
The required 5 GHz, 2.5 GHz, and 1.25 GHz divided clocks are generated through a series
of C2MOS divide-by-2 stages (Figure 3.22). With a large (64) number of deserializers,

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 48

Figure 3.18: Coarse retimer

distribution of the divided clocks adds significant clock skew, which must be accounted for
when verifying timing arcs. To avoid hold time violations, the clock divider chain features
optional inverters to introduce a 180° phase shift to a divided clock, which can increase
the timing margin. Each deserializer stage is composed of 1:2 demultiplexers, which latch
the even and odd input data at clk and clk phases, respectively (Figure 3.23). Then, the
odd path is delayed by a half clock period using a second D-latch such that the outputs
are aligned to the same clock phase. Most demux stages are implemented using latches to
reduce power consumption, but the final stage is composed of edge-triggered FFs to relax
the timing constraints for the synthesized digital backend.

3.9 Simulation Results and Conclusions

Serial links operating at 100+ GBaud/s rates demand a highly parallelized datapath to
meet the throughput requirements. Highly interleaved structures often come with routing
overhead, which must be carefully managed during the circuit design process. On the other
hand, frontend circuits as the T&H must still operate at the full rate, making their design
most critical for the link performance. For both challenges, the generator-based flow enables

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 49

Figure 3.19: Coarse retiming

Figure 3.20: Fine retiming

the engineer to quickly re-evaluate circuit design modifications, or automate the design loop
altogether through codified optimization strategies.

A 160 Gb/s wireline receiver design is presented in this chapter, with current integration
techniques to achieve energy-efficient MLSE equalization. The conventional integrate-reset
scheme is extended to a integrate-hold-reset latch scheme to enable cascaded integration
stages for analog signal processing. With these design techniques, the receiver datapath is

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 50

Figure 3.21: Backend 1:8 deserializer

Figure 3.22: Clock divider chain

Figure 3.23: 1:2 demultiplexer: latch (left) and flip flop (right)

simulated to consume 115 mW, or an energy efficiency of 0.72 pJ/bit, in a 16 nm FinFET
process. The datapath is designed to achieve a total voltage gain of 2.5 V/V is achieved from
the T&H to comparator inputs, and the total integrated noise is 2 mV RMS when referred
to the input of the T&H.

The generated datapath is shown in Figure 3.24 and spans 240µm by 150 µm.

CHAPTER 3. DESIGN TECHNIQUES FOR A 160 GB/S 1-TAP MLSE DATAPATH 51

Block Power (mW)

T&H 20
8:16 Deserializer 10

MLSE EQ 20
Comparator + Retimer 40
Backend Deserializer 25

Total 115

Table 3.1: Datapath power (simulated) breakdown

Figure 3.24: Generated MLSE analog datapath layout

52

Chapter 4

160 Gb/s Receiver Integration

4.1 Receiver Design

4.1.1 Clocking

The receiver datapath requires multi-phase 20 GHz and 10 GHz clocks for operation. The
clocking path was designed by Yi-Hsuan Shih and Wahid Rahman. An externally sourced
differential 20 GHz clock is buffered and fed into an 8-phase injection-locked ring oscillator,
whose implementation is based on the quadrature clock generator described in [24]. Phase
alignment is critical for the octature 20 GHz clocks, which are needed by the datapath’s
T&H; phase errors could worsen the ISI. Thus, digitally controlled delay lines (DCDLs) are
added to independently tune each phase of the 20 GHz clocks. To minimize the adverse
effect of phase error on the receiver performance, the resolution of the DCDL was designed
to be 50 fs (< 1% of the UI). The tuning range was set to 3.2 ps to account for ±3σ of delay
variation.

Figure 4.1: Receiver clocking path

The 8 phases of 20 GHz clocks are then fed into 4 parallel clock dividers, each of which
takes differential pair of phases and generates quadrature phases at half the frequency (Figure
4.2). Each divider consists of two differential C2MOS latches, whose circuit is shown in Figure
4.3. The dividers output 16 phases of 10 GHz clocks, which must be phase-aligned to the 20
GHz clocks. Recall from Figure 3.12b that the 8:16 deserializer should be integrating while

CHAPTER 4. 160 GB/S RECEIVER INTEGRATION 53

Figure 4.2: 20 GHz to 10 GHz clock dividers Figure 4.3: Differential
C2MOS latches

the T&H is holding its output. The 10 GHz clock phases can be corrected through a phase
rotator, which provides coarse delay tuning, and another DCDL, which provides fine tuning.

4.2 On-Chip Testing Features

One of the challenges of building high-speed links is the lack of direct visibility into the
receiver. Attempting to create probing circuitry on any high-speed signal path could detri-
mentally affect the performance due to the additional capacitive loading. In addition, routing
such signals on a package or test board could incur significant loss or degrade signal integrity
at frequencies above 1 GHz if not carefully designed. Aside from probing DC bias nodes, a
low-speed scan chain is often the primary way of getting any data-dependent debug infor-
mation off the chip.

On-chip testing capability is especially critical for functionality that cannot be imple-
mente off-chip for runtime reasons. For example, consider the BER measurement. To mea-
sure bit error rates of 10−12, more than 1012 bits would need to be captured and checked
for errors. A 160 Gb/s transceiver requires 6.25 to test 1012 bits, plus some additional I/O
time to send the error count off-chip. An off-chip implementation for this would require
many (∼ 109) snapshots, and the measurement runtime would be severely limited by the
I/O latency. If 10 snapshots can be taken off-chip every second, testing 1012 bits would take
2-3 years. This disparity in runtime only increases as more bits are needed to accurately
measure a BER of 10−12.

The digital backend logic is shown in Figure 4.4. To account for accidental polarity
swaps or endianness inconsistencies between the analog and digital blocks, the deserialized
MLSE outputs first go through a bits formatter block, where each signal can optionally be

CHAPTER 4. 160 GB/S RECEIVER INTEGRATION 54

Figure 4.4: Digital backend block diagram

inverted or bit-reversed based on chicken bits. This block is followed by the MLSE decoding
logic, whose output can then be verified in the pattern checker. To maximize visibility, all
intermediate data signals are collected by the snapshot engine to enable off-chip transmission.

4.2.1 Snapshot Engine

The snapshot engine is controlled by a Moore finite state machine (FSM) shown in Figure 4.5.
Starting in the idle state, the FSM waits for the enable control signal to be asserted. Once
the enable signal goes high, the module takes each input data and stores it into a bank of flip
flops. This occurs for D consecutive cycles, where D is the snapshot depth. With a digital
backend word width of 128 bits and snapshot depth of D = 8, a total of 1024 consecutive
bits are saved per data signal, or 6144 total bits from the PRBS, decoded data, and 4 slicer
outputs. Then, the FSM reaches the done state and raises valid high to signify that the data
snapshot can be read. The engine will freeze the snapshot until enable is de-asserted and
then re-asserted, at which point the engine will record another snapshot. An event-triggered
implementation operation allows for safe data transfer off-chip while avoiding metastability
and data loss issues commonly found in asynchronous clock domain crossing.

4.2.2 Pattern Checker

The pattern checker computes the number of errors in the data sequence by comparing it
against the reference PRBS test pattern (Figure 4.6). Three different PRBS run lengths (7,
15, and 31) are implemented in this work, although any other set of PRBS sequences can

CHAPTER 4. 160 GB/S RECEIVER INTEGRATION 55

IDLE
valid = 0

RUN
valid = 0

DONE
valid = 1

enable = 0

enable = 1

repeat D cycles

after D cycles

enable = 1

enable = 0

Figure 4.5: Snapshot engine FSM

easily be configured by the Chisel generator. First, the PRBS generators are synchronized
to the input data stream by directly seeding the LFSR state with the input. Then, these
modules are switched to the free-running state. The selected PRBS test pattern is then com-
pared against the input data stream via an XOR, and the number of errors are accumulated
for a user-specified number of data words. A single cycle delay is introduced on the input
data comparison path to account for the PRBS generator’s inherent 1-cycle latency. The
accumulator width werr is determined by the minimum measurable BER:

BERmin =
1

2werr
⇒ werr = ⌈− log2BERmin⌉ (4.1)

After the measurement is complete, the error count is frozen and can be shifted off-chip
via the scan chain. The counters are then reset for the next measurement.

For a parallelized digital backend of 128 bits, the PRBS generator must output the next
128 bits of the sequence every cycle. This is done by representing a one-step PRBS LFSR
state update as a transition matrix, and then raising it to the 128th power to obtain the
128-step transition matrix [25].

4.3 Off-Chip Testing Software

Testing functionality with lower bandwidth requirements are written in a Python-based
testing framework for ease of implementation. These include feedback loops that track DC
or very-low frequency signals such that the I/O latency doesn’t cause loop instability. As
these loops require data and error samples, the snapshot engine is heavily used for off-chip
testing software.

CHAPTER 4. 160 GB/S RECEIVER INTEGRATION 56

Figure 4.6: Pattern checker block diagram

4.3.1 Equalizer Adaptation

The MLSE has 3 core coefficients that must be adapted: vref1p, vref1n, and w2. Without
any circuit mismatch, the comparator thresholds vref1p and vref1n should be set to +α and
−α, respectively, and the summer gain setting w2 should be adapted to a voltage gain of
1. However, as mentioned in Section 3.6, the analog frontend circuits will have variation
which result in both gain and offset errors. These errors are not fully correlated across the
interleaved ways. Adaptation loops must thus account for such mismatch when converging to
the unique tap coefficients per interleaved slice of the MLSE. All loops are implemented using
the sign-sign LMS [26] for its simplicity; the comparators in the analog datapath already
apply the sign function to error and data signals.

First, the ±α threshold adaptations are considered. Given the similarities in the topology
of the 1-tap MLSE and the 1-tap loop-unrolled DFE, the data level (dLev)-based adaptation
algorithm proposed in [27] can be directly reused here. At the input of the MLSE slicers, the
data levels should ideally be ±1± α, depending on the transmitted data pattern. Although
α cannot be directly observed from the data pattern, data levels 1 + α and 1 − α can be
observed when the transmitted data is a 11 and 01 pattern, respectively. ±α levels can then
be interpolated from the dLevs:

α =
dLev11 − dLev01

2
(4.2)

−α =
dLev01 − dLev11

2
(4.3)

This interpolation is done in the digital domain, and the resulting digital codes are sent
to the voltage DACs to generate differential biases for the AC-coupling HPFs. Therefore,

CHAPTER 4. 160 GB/S RECEIVER INTEGRATION 57

Figure 4.7: MLSE datapath (simplified)

the DAC linearity is critical to minimize errors from interpolation.
The error signal e for the dLev adaptation is defined as

e[n] = vin[n]− dLev[n] (4.4)

If e[n] > 0, then the current value of dLev is too low and must be increased. The inverse is
also true, resulting in the following update equation for dLev:

dLev[n+ 1] = dLev[n] + µ · sgn(e[n]) (4.5)

where µ is the update step size. Note that this adaptation scheme requires a dedicated error
slicer to adapt dLev, as the existing slicers must continually be used for the datapath. Thus,
an additional slicer with threshold vref1e is added, which serves as the dLev adaptation.
This slicer is shared between the adaptation of both data levels to reduce hardware, so
the algorithm time-multiplexes between adapting for the 11 and 01 thresholds. Note that
by construction, vref1e will also track any offsets input-referred to the error comparator.
However, the interpolated ±α thresholds remove the error offset as the two data levels are
subtracted from each other.

The pseudocode is shown in Algorithm 1. As the error samples are unsigned integers
with each bit being 0 or 1, the 0s must be mapped to -1s and then summed. This is done

CHAPTER 4. 160 GB/S RECEIVER INTEGRATION 58

by counting the number of 1s (up) and 0s (dn), and then subtracting the 2 counts to obtain
a signed error term. Then, this error term is reduced to an update step using a user-defined
function cntToDelta.

Algorithm 1 +/-α adaptation using dLev interpolation

Require: data and data1e are bits with width W
Require: dLev11 and dLev01 are arrays of length N for independent slice adaptation
Require: adaptDLev11 is True if currently adapting dLev11, False if dLev01
1: N ← 16 ▷ Number of interleaved MLSE slices
2: D ← 8 ▷ Backend deserialization ratio
3: S ← 8 ▷ Snapshot depth
4: W ← N ×D × S ▷ Off-chip data width

5: if adaptDLev11 is True then ▷ Generate data pattern filter masks
6: mask ← ptrnF ilter(data, 0b11)
7: else
8: mask ← ptrnF ilter(data, 0b01)
9: end if
10: up← mask & data1e ▷ Apply pattern filtering masks
11: dn← mask & ∼ data1e

12: for j ← 0 to N − 1 do ▷ Generate update step per way
13: cnt← popCount(up[j :: N])− popCount(dn[j :: N])
14: δ[j]← cntToDelta(cnt)
15: end for

16: if adaptDLev11 is True then ▷ Update dLevs
17: dLev11← dLev11 + δ
18: else
19: dLev01← dLev01 + δ
20: end if

21: α← 0.5× (dLev11− dLev01) ▷ Interpolate to get ±α
22: vref1p← α
23: vref1n← −α
24: vref1e← adaptDLev11 ? dLev11 : dLev01

The integrated summer gain adaptation algorithm is shown in Algorithm 2. This adap-
tation follows the dual-loop adaptation scheme [27] where both the tap weight and dLev are
adapted simultaneously. Like the ±α adaptation scheme, note that the inputs of the summer
should ideally have data levels of ±1 ± α. Because the previous sample is subtracted from

CHAPTER 4. 160 GB/S RECEIVER INTEGRATION 59

the current sample, consider the ideal summer outputs when the data pattern is a 111 or a
000:

vsum,111 = (1 + α)− (1 + α)w2 → 0 (4.6)

vsum,000 = (−1− α)− (−1− α)w2 → 0 (4.7)

With these data patterns, the data level should be differential zero. After pattern filtering,
Table 4.1 describes how the coefficients should be updated based on the sliced summer output
data2, as well as the current decoded bit data. This approach allows a closed-loop tracking of
this slicer’s input-referred offset using vref2. Note that a separate error slicer is not required
for this path because the summer path captures a differential zero “data level” that can be
used for adaptation purposes.

data data2 w2 vref2
1 1 ↑ ↑
1 0 ↓ ↓
0 1 ↓ ↑
0 0 ↑ ↓

Table 4.1: Summer gain and offset update

4.3.2 Offset Calibration

Although the proposed adaptation loop cancels any offsets on vref1e and vref2, the vref1p
and vref1n paths (corresponding to ±α thresholds) must be calibrated separately. The offset
calibration for these signals is done as a startup procedure, where the external data input to
the receiver is set to a DC value. The frontend AC-coupling HPF at the input of the T&H’s
blocks any DC inputs, thereby providing a differential-zero input to the analog datapath.
Then, any offsets are propagated to the comparators in the MLSE slices, where the vref
signals can be adjusted to cancel offsets. The offset cancellation is implemented similarly to
the vref1e adaptation update, with the exception that no pattern filtering occurs.

The equalizer adaptation and offset calibration loops are simulated with gain and offset
mismatches across the interleaved MLSE slices. In the waveforms shown in Figure 4.8, offset
calibration first occurs for 100 off-chip cycles of snapshots. Then, the equalizer adaptation
loop is enabled, with 250 cycles of dLev11 adaptation followed by dLev01 adaptation. All
equalizer coefficients are shown to converge to expected states while accounting for slice-to-
slice variation.

4.3.3 Pulse Response Characterization

Without means to directly observe the channel characteristics, an on-chip scope allows for
visibility into the effective channel seen by the receiver. In this work, the on-chip scope

CHAPTER 4. 160 GB/S RECEIVER INTEGRATION 60

Algorithm 2 Summer gain and offset adaptation

Require: data and data2 are bits with width W
Require: ref2 and w2 are arrays of length N for independent slice adaptation
1: N ← 16 ▷ Number of interleaved MLSE slices
2: D ← 8 ▷ Backend deserialization ratio
3: S ← 8 ▷ Snapshot depth
4: W ← N ×D × S ▷ Off-chip data width

5: mask111← ptrnF ilter(data, 0b111) ▷ Generate data pattern filter masks
6: mask000← ptrnF ilter(data, 0b000)
7: mask ← mask111 | mask000

8: refUp← mask & data2 ▷ Apply pattern filtering masks
9: refDn← mask & ∼ data2
10: gainUp← mask & ∼ (data2⊕ data) ▷ Apply data-error correlation
11: gainDn← mask & (data2⊕ data)

12: for j ← 0 to N − 1 do ▷ Generate update step per way
13: refCnt← popCount(refUp[j :: N])− popCount(refDn[j :: N])
14: δR[j]← cntToDelta(refCnt)
15: gainCnt← popCount(gainUp[j :: N])− popCount(gainDn[j :: N])
16: δG[j]← cntToDelta(gainCnt)
17: end for

18: vref2← vref2 + δR
19: w2← w2 + δG

functionality reuses the same hardware as the core datapath, specifically through the vref1e
error slicer path.

Recall from the earlier section that by pattern filtering for certain data patterns, one can
find data levels that give information about the effective channel at the input of the error
slicer. In the adaptation scheme, finding the first postcursor α was key, but this strategy
can be extended to any other channel tap coefficient.

Suppose that the channel can be modeled as an FIR with M precursor taps, N postcursor
taps, and 1 main tap. For some input data sequence x, whose values are ±1 corresponding
to ones and zeros, the channel output y is simply the convolution of the input sequence and
the channel FIR:

y[n] = (h ∗ x)[n] =
∞∑

k=−∞

hkx[n− k] =
N∑

k=−M

hkx[n− k] (4.8)

CHAPTER 4. 160 GB/S RECEIVER INTEGRATION 61

(a) vref1e (dLev11) (b) vref1e (dLev01) (c) vref1p

(d) vref1n (e) vref2 (f) w2

Figure 4.8: Simulated equalizer adaptation and offset calibration waveforms

For a test sequence of all “zeros” are sent, the corresponding data level output dLevref is

dLevref = −
N∑

k=−M

hk (4.9)

Let vj represent a test data pattern with a single 1 at sample n − j, and “zeros” for all
other samples. Then, the observed data level dLevj is

dLevj =
N∑

k=−M

hkvj[n− k] = dLevref + 2hj (4.10)

Thus, the jth cursor tap coefficient can be computed by interpolating between dLevj and
dLevref :

hj =
dLevj − dLevref

2
(4.11)

4.4 Test Setup

The test-chip features an entire 160 Gb/s NRZ transceiver, whose transmitter is used to
stimulate the data for receiver testing. Three dies were assembled on the same package.

CHAPTER 4. 160 GB/S RECEIVER INTEGRATION 62

Two dies were used to form an on-package loopback test configuration, with a channel length
of 8.5 mm and loss of 3 dB at Nyquist frequency. The third die on the package enables a
secondary, backup method of testing, where an external, lower-rate transmitter or signal
generator can provide the data stimuli instead. The transceiver was designed to target the
on-package loopback channel of 3 dB loss. The transmitter implemented a 2-tap FFE to
cancel the first pre-cursor tap.

Figure 4.9: Testing options

The 20 GHz reference clock needed for the receiver’s injection-locked ring oscillator is
generated by an Anritsu MG3692B. The receiver’s 1.25 GHz digital clock is monitored by
an Infiniium DSO80204B to sanity check the functionality of the clocking path.

Signal Generator
Anritsu

MG3692B

Balun
Marki

BAL-0026

Balun
Marki

BAL-0026

Balun
Marki

BAL-0026

DC Block
Mini

BLK-18-S+

DC Block
Mini

BLK-18-S+

Test Board

FPGA
OpalKelly
XEM7001

PC

DC Block
Mini

BLK-18-S+

DC Block
Mini

BLK-18-S+

Balun
Marki

BAL-0026

Balun
Marki

BAL-0026

Oscilloscope
Infiniium

DSO80204B

/
2

RX 20G clk

/
2

TX 20G clk

/
2

RX div. clk

/
2

TX div. clk

Figure 4.10: Test setup

4.5 Simulation and Measurement Results

The transceiver was taped out in a 16 nm FinFET process. The receiver occupies 0.58 mm2

and consumes 332.6 mW, which includes the shared digital backend with the transmitter.

CHAPTER 4. 160 GB/S RECEIVER INTEGRATION 63

Figure 4.11: Die photo

Block Area (mm2) Power (mW)

Datapath (DP) 0.04 115
Clocking Path (CP) 0.01 200
Passive Frontend 0.09 0

Digital Backend (DBE) 0.05 17
DP DACs 0.39 0.6

Total 0.58 332.6

Table 4.2: Receiver area and power (simulated) breakdown

Unfortunately, the output 1.25 GHz digital clock could not be observed during post-
silicon testing, which suggests a problem in the clocking path. After further debugging, it is
suspected that the differential phases of the 20 GHz clock are picking up enough phase error
to cause the 20 GHz to 10 GHz dividers to fail.

As shown in Figure 4.2, the complementary clock phases of the divider’s C2MOS latches
are driven separately by differential phases of the 20 GHz clock. Divider simulation results
indicate that with 20 GHz clock phases that are 180° out of phase, the divider outputs
exhibit some kinks in transition (Figure 4.12a). This is due to the input clock’s nonzero rise
and fall times, which cause the non-transparent latch to be slightly on during the transition.
This effect amplifies as the skew between the differential phases increases, which introduces
phase and duty cycle errors after the divider outputs are buffered. With a 45° (or 6.25 ps)
skew between the input clocks, the buffered divider outputs exhibit duty cycles of 54% and
40%, as well as a quadrature phase error of 32°(Figure 4.12b). At 90° of skew, the C2MOS

CHAPTER 4. 160 GB/S RECEIVER INTEGRATION 64

latches are semi-transparent the entire clock period, causing distorted 20 GHz outputs with
varying duty cycle and phase errors (Figure 4.12c). The skew on-chip would have likely
been greater than 45° to cause this divider failure and was too large to be correctable by the
DCDL (whose tuning range was 3.2 ps, or 23°). Post-layout simulations with the integrated
clocking and datapath did not show any signs of such phase mismatch, but this seems to be
a deterministic issue as all test chips exhibited the same failure.

(a) 0 skew (b) 45° (6.25 ps) skew (c) 90° (12.5 ps) skew

Figure 4.12: Simulated clock divider waveforms with varying skew between input differential
clock phases

Although the performance of the proposed receiver could not be measured due to the
aforementioned bug, Table 4.3 shows a performance comparison of this work’s simulation
results with state-of-the-art transceivers designed for short-reach serial links. This work
attempts to achieve the highest data rate and ∼ 3x the Nyquist frequency of other works.

CHAPTER 4. 160 GB/S RECEIVER INTEGRATION 65

Reference [28] [29] [30] [31] [32] This Work1

Technology
16 nm 7 nm 7 nm 5 nm 28 nm 16 nm

FinFET FinFET FinFET FinFET CMOS FinFET

Data Rate (Gb/s) 56 112 106.25 113 52 160

Modulation NRZ PAM-4 PAM-4 PAM-4 PAM-4 NRZ

Bandwidth (GHz) 28 28 26.56 28.25 13 80

Channel Loss (dB) @ BER 8 @ 1e-15
4 @ 6e-11

7 @ 1.3e-10
10 @ 1e-10

11.5 @ 1e-6

0.8 @ 1e-12
7.1 @ 1e-12 3 @ 1e-12

TX Equalization None 5-tap FFE 3-tap FFE 6-tap FFE - 2-tap FFE

RX Equalization CTLE CTLE CTLE CTLE CTLE 1-tap MLSE

RX Power (mW) -2 -2 69 -2 43.1 332.6

RX Energy Eff. (pJ/bit) -2 -2 0.65 -2 0.83 2.08

Total Energy Eff. (pJ/bit) 2.25 1.7 1.55 1.55 0.833 4.08

1 Simulated results
2 No RX-only power reported
3 RX-only work

Table 4.3: Performance table

4.6 Conclusions

This chapter reports the implementation of a complete 160 Gb/s NRZ receiver designed in
a 16 nm FinFET process. The analog MLSE datapath is integrated with the multi-phase
sub-baud-rate clocks. Datapath calibration techniques are proposed to adapt the MLSE tap
coefficients while handling gain and offset mismatch per each interleaved way of the equalizer.
The receiver is simulated to operate with a 3 dB loss channel at an energy efficiency of 2.08
pJ per bit.

66

Chapter 5

Conclusion

5.1 Thesis Summary

The continual scaling of computing and communication networks causes an increasing de-
mand for high-bandwidth, energy-efficient die-to-die links. These links must implement
equalizers that improve error margins for noise-limited, low-loss channels while minimizing
power consumption. As we look toward throughput rates of 100 GBaud/s and beyond, con-
ventional wireline equalization techniques face bandwidth limitation or noise enhancement
problems, resulting in power-hungry or infeasible designs. This necessitates the exploration
of new equalization architectures which remove such circuit bottlenecks and enable a higher
rate of operation.

The MLSE algorithm is chosen as the starting point for the equalizer architecture ex-
ploration, as it is considered the optimum receiver for band-limited channels with additive
white Gaussian noise. Classical implementations of the MLSE equalizer such as the Viterbi
algorithm introduce feedback to reduce computational complexity. Feedforward implementa-
tions of the MLSE algorithm have significant complexity overhead and must resolve conflicts
in overlapping windows. Targeting a 1-tap postcursor channel with coefficients h = [1, α],
various 1-tap postcursor MLSE-based designs were explored to simplify the algorithmic com-
putations while managing the BER penalty. The single window MLSE architecture seemed
to provide the best complexity-error statistics trade-off for low-loss channels, with the win-
dow length 2 version achieving similar error rates as the DFE for α ≤ 0.3 and the window
length 3 version meeting the same benchmark up to α ≤ 0.4.

The proposed window length 2 feedforward MLSE was then designed for a 160 Gb/s NRZ
receiver in a 16 nm FinFET process. By removing the feedback loop, the bottleneck from the
equalizer was eliminated. However, this revealed challenges in the design of frontend circuits,
primarily the T&H, as device parasitics dominated and could incur significant loss if not
carefully designed. A T&H design flow codified in the Berkeley Analog Generator (BAG)
framework enabled automatic design space exploration and design optimization. Current
integrating latches reduce power consumption of the mixed-signal datapath, resulting in a

CHAPTER 5. CONCLUSION 67

simulated datapath energy efficiency of 0.72 pJ/bit.
The receiver datapath is integrated with a multi-phase 20 GHz and 10 GHz generat-

ing clocking path. The digital backend incorporates crucial testing features which provide
visibility into the analog datapath, and an off-chip testing framework applies independent
per-way adaptation and calibration for the equalizer, minimizing error sources from process
variation. The receiver is simulated to run at 160 Gb/s with a 2.08 pJ/bit efficiency while
equalizing a 8.5 mm on-package channel with a loss of 3 dB.

5.2 Future Works

This work’s receiver was primarily designed to target very low loss channels for die-to-die
link applications. Hence, the receiver was constructed with only a 1-tap feedforward MLSE
for equalization. Longer reach wireline transceivers often combine different equalization
techniques to cover different sources of ISI (e.g., FFE and DFE for near-tap and CTLE for
long-tail ISI). For channels with > 10 dB of loss, combining the proposed feedforward MLSE
equalizer with the receiver FFE and CTLE could prove to be a promising equalization
strategy for transceivers operating at 100+ GBaud/s, where the DFE’s feedback timing
constraint cannot be met.

The proposed feedforward equalization scheme itself is a very simplified version of the
original MLSE algorithm, with the primary aim to manage complexity given the challenges
of designing AMS datapaths. As longer-reach standards transition to PAM-4, most wireline
receivers are built as ADC-based links, where the bulk of the time-domain equalization is
implemented in the digital backend. A DSP-based feedforward MLSE could support more
taps or longer window length, achieving better error statistics with easier implementation.

68

Bibliography

[1] S. Mirabbasi, L. C. Fujino, and K. C. Smith. “Through the Looking Glass—The 2023
Edition: Trends in solid-state circuits from ISSCC”. In: IEEE Solid-State Circuits
Magazine 15.1 (2023), pp. 45–62. doi: 10.1109/MSSC.2022.3222727.

[2] N. Tracy et al. 112 Gbps Electrical Interfaces – An OIF Update on CEI-112G. https:
//www.oiforum.com/wp-content/uploads/00311c-OIF-112G-OFC-slides_ofc20_

presentation.pdf. 2020.

[3] G. Moore. “Cramming More Components onto Integrated Circuits”. In: Electronics
Magazine 38.8 (1965), pp. 114–117.

[4] D. Das Sharma. Universal Chiplet Interconnect express (UCIe): Building an open
chiplet ecosystem. Tech. rep. UCIe Consortium, Mar. 2022. url: https : / / www .

uciexpress.org/_files/ugd/0c1418_c5970a68ab214ffc97fab16d11581449.pdf.

[5] J. Proakis and M. Salehi. Digital Communications. 5th ed. McGraw-Hill, 2008.

[6] V. Stojanović. “Channel-Limited High-Speed Links: Modeling, Analysis and Design”.
PhD thesis. Department of Electrical Engineering, Stanford University, 2004. url:
http://www-vlsi.stanford.edu/people/alum/pdf/0409_Stojanovic_Link_Opt.

pdf.

[7] Y. Lu. “Energy-Efficient Equalization Circuits for High-Speed Wireline Links”. PhD
thesis. EECS Department, University of California, Berkeley, Dec. 2016. url: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-178.html.

[8] C. Thakkar et al. “Design Techniques for a Mixed-Signal I/Q 32-Coefficient Rx-Feedforward
Equalizer, 100-Coefficient Decision Feedback Equalizer in an 8 Gb/s 60 GHz 65 nm
LP CMOS Receiver”. In: IEEE Journal of Solid-State Circuits 49.11 (2014), pp. 2588–
2607. doi: 10.1109/JSSC.2014.2360917.

[9] J. Kim et al. “A 112 Gb/s PAM-4 56 Gb/s NRZ Reconfigurable Transmitter With
Three-Tap FFE in 10-nm FinFET”. In: IEEE Journal of Solid-State Circuits 54.1
(2019), pp. 29–42. doi: 10.1109/JSSC.2018.2874040.

[10] J. Kim et al. “A 224-Gb/s DAC-Based PAM-4 Quarter-Rate Transmitter With 8-Tap
FFE in 10-nm FinFET”. In: IEEE Journal of Solid-State Circuits 57.1 (2022), pp. 6–
20. doi: 10.1109/JSSC.2021.3108969.

BIBLIOGRAPHY 69

[11] J. Paramesh and D. J. Allstot. “Analysis of the Bridged T-Coil Circuit Using the
Extra-Element Theorem”. In: IEEE Transactions on Circuits and Systems II: Express
Briefs 53.12 (2006), pp. 1408–1412. doi: 10.1109/TCSII.2006.885971.

[12] B. Razavi. “The Design Of Broadband I/O Circuits [The Analog Mind]”. In: IEEE
Solid-State Circuits Magazine 13.2 (2021), pp. 6–15. doi: 10 . 1109 / MSSC . 2021 .
3072299.

[13] E. Chang et al. “BAG2: A process-portable framework for generator-based AMS circuit
design”. In: 2018 IEEE Custom Integrated Circuits Conference (CICC). 2018, pp. 1–8.
doi: 10.1109/CICC.2018.8357061.

[14] J. Crossley et al. “BAG: A designer-oriented integrated framework for the develop-
ment of AMS circuit generators”. In: 2013 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 2013, pp. 74–81. doi: 10 . 1109 / ICCAD . 2013 .
6691100.

[15] R. Bai, S. Palermo, and P. Y. Chiang. “2.5 A 0.25pJ/b 0.7V 16Gb/s 3-tap decision-
feedback equalizer in 65nm CMOS”. In: 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC). 2014, pp. 46–47. doi: 10 . 1109 /
ISSCC.2014.6757331.

[16] E. Chang et al. “An Automated SerDes Frontend Generator Verified With a 16-nm
Instance Achieving 15 Gb/s at 1.96 pJ/bit”. In: IEEE Solid-State Circuits Letters 1.12
(2018), pp. 245–248. doi: 10.1109/LSSC.2019.2911404.

[17] T. O. Dickson, J. F. Bulzacchelli, and D. J. Friedman. “A 12-Gb/s 11-mW half-rate
sampled 5-tap decision feedback equalizer with current-integrating summers in 45-nm
SOI CMOS technology”. In: 2008 IEEE Symposium on VLSI Circuits. 2008, pp. 58–59.
doi: 10.1109/VLSIC.2008.4585951.

[18] J. Han et al. “Design Techniques for a 60 Gb/s 173 mW Wireline Receiver Frontend
in 65 nm CMOS Technology”. In: IEEE Journal of Solid-State Circuits 51.4 (2016),
pp. 871–880. doi: 10.1109/JSSC.2016.2519389.

[19] J. Han et al. “Design Techniques for a 60-Gb/s 288-mW NRZ Transceiver With Adap-
tive Equalization and Baud-Rate Clock and Data Recovery in 65-nm CMOS Tech-
nology”. In: IEEE Journal of Solid-State Circuits 52.12 (2017), pp. 3474–3485. doi:
10.1109/JSSC.2017.2740268.

[20] K. Huang et al. “A 190mW 40Gbps SerDes transmitter and receiver chipset in 65nm
CMOS technology”. In: 2015 IEEE Custom Integrated Circuits Conference (CICC).
2015, pp. 1–4. doi: 10.1109/CICC.2015.7338370.

[21] B. Kim et al. “A 10-Gb/s Compact Low-Power Serial I/O With DFE-IIR Equalization
in 65-nm CMOS”. In: IEEE Journal of Solid-State Circuits 44.12 (2009), pp. 3526–
3538. doi: 10.1109/JSSC.2009.2031015.

BIBLIOGRAPHY 70

[22] M. Park et al. “A 7Gb/s 9.3mW 2-Tap Current-Integrating DFE Receiver”. In: 2007
IEEE International Solid-State Circuits Conference. Digest of Technical Papers. 2007,
pp. 230–599. doi: 10.1109/ISSCC.2007.373378.

[23] B. Nikolic et al. “Improved sense-amplifier-based flip-flop: design and measurements”.
In: IEEE Journal of Solid-State Circuits 35.6 (2000), pp. 876–884. doi: 10.1109/4.
845191.

[24] K. Kim et al. “A 2.6mW 370MHz-to-2.5GHz Open-Loop Quadrature Clock Genera-
tor”. In: 2008 IEEE International Solid-State Circuits Conference - Digest of Technical
Papers. 2008, pp. 458–627. doi: 10.1109/ISSCC.2008.4523255.

[25] J. J. O’Reilly. “Series-parallel generation of m-sequences”. In: Radio and Electronic
Engineer 45.4 (1975), pp. 171–176. doi: 10.1049/ree.1975.0033.

[26] S. Dasgupta, C. Johnson, and A. Baksho. “Sign-sign LMS convergence with indepen-
dent stochastic inputs”. In: IEEE Transactions on Information Theory 36.1 (1990),
pp. 197–201. doi: 10.1109/18.50391.

[27] V. Stojanović et al. “Autonomous dual-mode (PAM2/4) serial link transceiver with
adaptive equalization and data recovery”. In: IEEE Journal of Solid-State Circuits
40.4 (2005), pp. 1012–1026. doi: 10.1109/JSSC.2004.842863.

[28] M. Erett et al. “A 2.25pJ/bit Multi-lane Transceiver for Short Reach Intra-package and
Inter-package Communication in 16nm FinFET”. In: 2019 IEEE Custom Integrated
Circuits Conference (CICC). 2019, pp. 1–8. doi: 10.1109/CICC.2019.8780221.

[29] R. Yousry et al. “11.1 A 1.7pJ/b 112Gb/s XSR Transceiver for Intra-Package Com-
munication in 7nm FinFET Technology”. In: 2021 IEEE International Solid- State
Circuits Conference (ISSCC). Vol. 64. 2021, pp. 180–182. doi: 10.1109/ISSCC42613.
2021.9365752.

[30] R. Shivnaraine et al. “11.2 A 26.5625-to-106.25Gb/s XSR SerDes with 1.55pJ/b Effi-
ciency in 7nm CMOS”. In: 2021 IEEE International Solid- State Circuits Conference
(ISSCC). Vol. 64. 2021, pp. 181–183. doi: 10.1109/ISSCC42613.2021.9365975.

[31] G. Gangasani et al. “A 1.6Tb/s Chiplet over XSR-MCM Channels using 113Gb/s
PAM-4 Transceiver with Dynamic Receiver-Driven Adaptation of TX-FFE and Pro-
grammable Roaming Taps in 5nm CMOS”. In: 2022 IEEE International Solid- State
Circuits Conference (ISSCC). Vol. 65. 2022, pp. 122–124. doi: 10.1109/ISSCC42614.
2022.9731636.

[32] S. Park et al. “A 0.83pJ/b 52Gb/s PAM-4 Baud-Rate CDR with Pattern-Based Phase
Detector for Short-Reach Applications”. In: 2023 IEEE International Solid- State Cir-
cuits Conference (ISSCC). 2023, pp. 118–120. doi: 10 . 1109 / ISSCC42615 . 2023 .
10067541.

71

Appendix A

Detailed Error Statistical Analysis of
MLSE Equalizers

A.1 MLSE Window Length 1: Lower Bound BER

Recall the that the lower bound BER for the window length 1 MLSE can be written as
(2.17). dt[n] is assumed to be 1 without loss of generality.

We can first solve for P (W2(n) = 0), using the law of total probability to condition on
dt[n− 1]:

P (W2(n) = 0) = P (vr[n] < 0)

= P (dt[n− 1] = 1)P (vn[n] + (1 + α) < 0)

+ P (dt[n− 1] = 0)P (vn[n] + (1− α) < 0)

=
1

2
[P (vn[n] + (1 + α) < 0) + P (vn[n] + (1− α) < 0)]

=
1

2
[Fn(−1− α) + Fn(−1 + α)]

where Fn is the CDF of the noise distribution. Next, we can similarly solve for P (W1(n+
1) = 0):

P (W1(n+ 1) = 0) = P (vr[n+ 1] < −1 ∪ 0 < vr[n+ 1] < 1)

= P (dt[n+ 1] = 1)P (vn[n+ 1] + (1 + α) < −1
∪ 0 < vn[n+ 1] + (1 + α) < 1)

+ P (dt[n+ 1] = 0)P (vn[n+ 1] + (−1 + α) < −1
∪ 0 < vn[n+ 1] + (−1 + α) < 1)

APPENDIX A. DETAILED ERROR STATISTICAL ANALYSIS OF MLSE
EQUALIZERS 72

P (W1(n+ 1) = 0) =
1

2
[P (vn[n+ 1] + (1 + α) < −1 ∪ 0 < vn[n+ 1] + (1 + α) < 1)

+ P (vn[n+ 1] + (−1 + α) < −1 ∪ 0 < vn[n+ 1] + (−1 + α) < 1)]

=
1

2
[2Fn(−α) + Fn(−2− α) + Fn(2− α)− Fn(−1− α)− Fn(1− α)]

If α is positive and standard deviation of the noise σn is sufficiently lower than 1, then
Fn(−α)≫ Fn(−1−α), Fn(−2−α). Thus, Fn(−1−α) and Fn(−2−α) can be safely removed
from the equation, resulting in

P (W1(n+ 1) = 0) ≈ 1

2
[2Fn(−α) + Fn(2− α)− Fn(1− α)]

Plugging these terms back into (2.17), we get

BER ≈ 1

4
[Fn(−1− α) + Fn(−1 + α)][2Fn(−α) + Fn(2− α)− Fn(1− α)] (A.1)

