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Abstract

On the Combinatorics of LLT Polynomials in Classical Lie Type

by

Jeremy Meza

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Mark Haiman, Chair

LLT polynomials were first introduced by Lascoux, Leclerc, and Thibon using the action
of an affine Hecke algebra for Sn, and can be viewed as a q-generating function for both
ribbon tableaux and tuples of semistandard Young tableaux. This definition has since been
expanded to arbitrary Lie type, although with no combinatorial definition. We establish a
combinatorial model for LLT polynomials in particular cases for Sp2n and further conjecture
a similar model for the orthogonal Lie types. Our definition uses a new object we call an out-
in tableau as well as a correspondence between oscillating tableaux and symplectic tableaux
that we use to give a proof of a Cauchy identity for Sp2n.
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Chapter 1

Introduction

LLT polynomials are a class of symmetric polynomials originally introduced by Lascoux,
Leclerc and Thibon (and for whom the polynomials are eponymously named) in [57]. Al-
though the original motivation for LLT polynomials was to study certain plethysm coeffi-
cients, they have since then enjoyed a wide range of applications, been given several equiv-
alent definitions, and been shown to possess many astonishing properties. Of particular
interest in this work is their extension to arbitrary Lie types, although before delving into
this, we take the time to expound on the details of two attributes of LLT polynomials,
namely their positivity and Sn-invariance.

The original definition of LLT polynomials comes via a relationship with the Fock space
representation of the quantum affine Lie algebra Uq(ŝln). They are expressed as a sum over k-
ribbon tableaux, weighted with a spin statistic which arises naturally in this representation
[41, 57]. In particular, there are natural vertex operators on this space whose action on
certain basis elements is captured by the LLT polynomials. The fact that LLT polynomials
are symmetric follows from the commutativity of these vertex operators.

Later, Bylund and Haiman discovered an alternative way to model LLT polynomials, in-
stead indexed by k-tuples of skew Young diagrams, weighted with an inversion statistic. The
Bylund-Haiman model is described in [30], and the relationship between the two definitions
uses the Stanton-White correspondence [85], which sends ribbon tableaux to tuples of semis-
tandard Young tableaux. A purely combinatorial proof of the symmetry of LLT polynomials
was given in [31] using these inversion variants, and recently another proof given using the
integrability of a vertex model [1, 21].

As innocuous as it seems, the fact that LLT polynomials are symmetric has led to several
important uses in combinatorics. In [30], the authors conjectured a combinatorial formula
for the Frobenius character of the ring of diagonal coinvariants (known later as the shuffle
conjecture). This Frobenius character is inherently symmetric, owing to a natural Sn-module
structure for the diagonal coinvariant ring. The combinatorial formula was shown to expand
into LLT polynomials, thus witnessing its symmetricity. LLT polynomials played a crucial
part in the subsequent proof of the shuffle conjecture by Carlsson and Mellit [16] and also
recently in another proof by Blasiak, Morse, Haiman and Seelinger [10]. A similar argu-
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ment was used later in [31] to show that a proposed monomial expansion for Macdonald
polynomials was indeed symmetric, and again in [6] and [27] for other related polynomials.

From the inversion definition of LLT polynomials (Definition 2.2.1), one can easily see
that at q = 1, the polynomial devolves into a product of Schur polynomials, and hence the
coefficient of a Schur polynomial sλ in the LLT polynomial indexed by a tuple of partitions
µ = (µ(1), . . . , µ(k)) gives a q-analog cλ

µ(1),...,µ(k)
(q) of the classical Littlewood-Richardson

coefficients. It was shown in [60] that the polynomials cλ
µ(1),...,µ(k)

(q) are equal to certain
parabolic Kazhdan-Lusztig polynomials for an affine symmetric group. As it is known that
these Kazhdan-Lusztig polynomials have non-negative coefficients, the result implies that
LLT polynomials in this case are Schur-positive, that is they expand in the Schur basis
with coefficients in N[q]. This argument was extended by Grojnowski and Haiman [28]
to arbitrary skew partitions, and moreover generalized to any complex reductive Lie group.
Together with the combinatorial expansion of Macdonald polynomials into LLT polynomials,
this gives another proof of Macdonald’s famed positivity conjecture, which states that the
Macdonald polynomials Hµ(x; q, t) are Schur-positive. The original proof is due to Haiman
[34] by means of the geometry of Hilbert schemes.

It is worth noting that all of the mentioned proofs of positivity build upon heavy geometric
machinery, and these statements still lack combinatorial proofs. Some work has been made
along these lines, to name a few [38, 64, 73, 90]. There have also been several lines of
work towards positivity when LLT polynomials are expanded into elementary symmetric
polynomials [2, 4, 5].

The primary concern in this work is to extend these combinatorial descriptions of LLT
polynomials to the other classical Lie types, with a particular focus on the case of the
symplectic group Sp2n(C). We mention that independently from [28], another definition
of LLT polynomials in classical Lie type was given by Lecouvey in [62], although the two
definitions were shown to be equivalent in [55].

To elaborate on the work in [28], the authors associate to any complex reductive Lie
group G its LLT series (Definition 4.6.1), which depends on a Levi subgroup L and two
strictly dominant weights β, γ for L. The LLT series is an infinite formal series of irreducible
characters of G, with coefficients they show to be in N[q]. When G = GLn, they show that a
truncation of their LLT series to polynomial characters coincides with the combinatorial LLT
polynomials. We detail this in Proposition 5.3.1, although we use here a new formulation
of LLT polynomials which we call a coinversion LLT polynomial (Definition 2.2.3). These
serve as generating functions for k-tuples of semistandard Young tableaux, weighted with a
coinversion statistic. The definition is easily seen to be equivalent to the inversion definition
after inverting q and multiplying by a suitable power of q. This new formulation was detailed
to the author in personal correspondence with M. Haiman, and is also developed in the first
of a recent series of publications [10]. In the sections below, we strive to follow the notation
therein, but deviate slightly in order to give a self-contained treatment of the material.

We can summarize our problem at hand as follows.

Problem 1. Let G be a complex reductive Lie group with a Levi subgroup L and associated
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LLT series LGL,β,γ(x; q) for β, γ strictly dominant weights for L. We wish to describe a
generating set of combinatorial objects T , along with a statistic statT , for which we have an
identity

LGL,β,γ(x; q)
∣∣
pol

=
∑
T

qstatTxT (1.1)

where pol denotes some truncation of a formal series to finitely many terms.

We have the following two main results:

1. When G = Sp2n, L = T is a maximal torus, and |βi| + |γi| is sufficiently far from 0
for all i, the sum is over a new set of objects we call out-in tableaux (Definition 5.3.1),
which extends the notion of an oscillating tableau. The statistic in question is an
inversion of an out-in tableau (Definition 5.3.2) and we define symplectic polynomial
truncation (Definition 5.3.1) in this case.

2. When G = Sp2n and q = 1, the sum is over skew symplectic tableaux, as defined in
[53].

Let us describe briefly how these results are obtained. For G a Lie group of classical type, we
let ek denote the character of the kth exterior power Λk(V ) of the defining representation V of
G. After making the usual identifications of the weight ring of G with a Laurent polynomial
ring in the variables x = {x1, . . . , xn} and their inverses, ek is the kth elementary symmetric
polynomial in a subset of the variables x, x−1, and 1.

The desired expression (1.1) for when the Levi is the torus hinges on two key results.

We start with deriving a combinatorial expression for the matrix coefficients c
(k)
β,γ(q) in the

expansion

ekEγ(x; q) =
∑
β

c
(k)
β,γ(q)Eβ(x; q) (1.2)

where the polynomials Eγ(x; q) are non-symmetric Hall-Littlewood polynomials, appearing
in [42] as specializations of non-symmetric Macdonald polynomials. We accomplish this for
Sp2n (Proposition 5.3.2) and SO2n+1 (Proposition 5.4.1).

Secondly, when G = Sp2n, we relate the coefficients c
(k)
β,γ(q) to the coefficient of a monomial

in LGT,β,γ(x; q) by way of a Cauchy identity (Corollary 3.3.2). We prove the Cauchy identity
combinatorially with the use of a new bijection between semistandard oscillating tableaux
and King symplectic tableaux (Theorems 3.2.1, 3.2.2). In [7], Berele modified the RSK
insertion algorithm to give a combinatorial proof of Schur-Weyl duality for Sp2n; we use our
bijection to extend Berele’s insertion algorithm and prove the Cauchy identity, much in the
same way RSK extends the Robinson-Schensted insertion scheme. We mention that this
bijection was also independently discovered in [63] to exhibit a crystal structure on King
symplectic tableaux.

We note that we lack such a Cauchy identity for the orthogonal Lie groups, which is why
our results above only hold for Sp2n. However, as a corollary to (1.2) that holds in both
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the symplectic and orthogonal types, we arrive at a new Pieri rule for Demazure characters
(Corollary 5.3.4), owing to the fact that the non-symmetric Hall-Littlewood polynomials
specialize to Demazure characters.

For the case when q = 1 and the Levi is arbitrary, we compute the coefficient in (1.2) by
a different means. We recast the product on the left hand side as a certain action on the
abacus of γ, a tool used in GLn to visualize the combinatorics of k-cores and k-quotients.
Here, we employ a Lie-theoretic perspective of a k-core and k-quotient, deriving from the
work in [28].

We take the time now to outline more precisely the contents of this work. In Chapter
2, after reviewing some preliminary tableau combinatorics, we define the combinatorial LLT
polynomials in all their guises (spin, inversion, and coinversion) and record their relationships
to each other and to other symmetric functions. In Chapter 3 we introduce our bijection
between symplectic tableaux and semistandard oscillating tableaux, and use it to prove
character identities for Sp2n. In Chapter 4 we first review the theory of affine root systems,
extended affine Weyl groups, and extended affine Hecke algebras, the last of which will play
an essential role in the definition of the LLT series in general Lie type. We also take the
time here to give an overview of how the combinatorics of k-cores and k-quotients relate
to the action of the extended affine Weyl group of GLn. In Chapter 5 we prove the results
stated prior, and also detail work towards the orthogonal Lie types. We end with concluding
remarks and conjectures in Chapter 6. We remark that much of the preliminary material
throughout this work can be found in various classical and recent texts, for example our
presentation of general type LLT polynomials follows closely that of [28] and [10]. We
apologize to the original authors for any undue repetition, and we hope that our verbosity
here is offset with a more illuminating explication.
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Chapter 2

Tableau Combinatorics

This chapter provides the reader with the necessary background on the combinatorics of
partitions, tableaux, and symmetric functions, along with their relationships to the repre-
sentation theory of GLn. Most of this material can be found e.g. in either of the compre-
hensive resources [72, 84]. We also define combinatorial LLT polynomials, the objects at the
heart of our work. We provide the definition of these ever-important polynomials in all their
guises, namely their spin, inversion, and newly presented coinversion formulations. As the
literature on LLT polynomials is much too vast to cover in this chapter, our presentation
will necessarily be an abridged form. We refer the reader to the original source [57] for a
more thorough treatment of the spin definition, and to [30] for the inversion definition.

2.1 Partitions and tableaux

Fix n and let λ = (λ1 ≥ · · · ≥ λn ≥ 0) be a partition with n parts. Note that we consider
our partitions to have a fixed number of parts, but allow for the possibility of parts of zero.
We let the length `(λ) be the number of non-zero parts of λ. The size of λ is |λ| =

∑
i λi

and if |λ| = m, we write λ ` m to mean λ is a partition of m. We associate to λ its Young
(or Ferrers) diagram D(λ) ⊆ Z× Z, given as

D(λ) = {(i, j) | 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi}

We draw our diagrams in French notation, in the first quadrant, such as below

λ = (4, 2, 1), D(λ) =

•

We refer to the elements in D(λ) as cells or boxes. The cell labelled above has coordinates
(1,3). Given partitions λ, µ, the skew diagram D(λ/µ) is the set of cells contained in D(λ)
but not in D(µ).
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In what follows we will use λ and D(λ) interchangeably, when it will not cause confusion.
We will also make frequent use of the staircase partition ρn := (n − 1, . . . , 1, 0), which has
the property that λ + ρn has distinct parts, for any partition λ with n non-negative parts.
For ease of notation, we drop the subscript when it is clear from context.

The transpose of λ, denoted λ′, is the partition whose diagram is the reflection of D(λ)
across the line y = x. The dominance order is the partial order on partitions of a fixed
size defined by

λ ≤ µ ⇐⇒ λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi, for all i (2.1)

We have that λ ≤ µ iff µ′ ≤ λ′.
A Young tableau T is a diagram D(λ) together with a filling σ : D(λ)→ A for some

totally ordered alphabet A. We think of T as placing the value σ(u) in each cell u ∈ D(λ).
We will almost always take A to be Z or Z+, perhaps though with a non-standard ordering.
A semistandard Young tableau is a tableau in which values along each row are weakly
increasing from left to right, and the values along each column strictly increasing from
bottom to top (all in French notation). When the alphabet is taken to be Z+, the weight
of a tableau T is the tuple (µ1, µ2, . . .), where µi is the number of cells with value i. We let
SSYT(λ) denote the set of semistandard Young tableaux of shape λ and SSYT(λ, µ) denote
the subset with weight µ.

The content of a cell u = (i, j) in row i and column j of any Young diagram is c(u) = j−i.
Viewing a Young diagram as a subset of Z× Z, we define a (skew) shape with contents
to be an equivalence class of a (skew) Young diagram up to content-preserving translations.
Given a tuple β/γ = (β(1)/γ(1), . . . , β(k)/γ(k)) of skew partitions, define a semistandard
Young tableau T of shape β/γ to be a semistandard Young tableau on each β(j)/γ(j), that
is,

SSYT(β/γ) = SSYT(β(1)/γ(1))× · · · × SSYT(β(k)/γ(k))

We can picture this as placing the Young diagrams diagonally “on content lines” with the
first shape in the South-West direction and the last shape in the North-East direction. See
Example 2.1.1 below.

Example 2.1.1. Let β/γ = ((3, 1)/∅, (2, 2, 2)/(1, 1, 1), (1)/∅, (2, 1)/(2)). The top row la-
bels the contents of each line.
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−3 −2 −1 0 1 2

3

7

6

4

1

8

2 5 9

A ribbon is a connected skew diagram with no 2 × 2 box. If the ribbon has k boxes,
we say it is a k-ribbon. We label a ribbon in a shape by its tail, which is the cell in the
ribbon with maximal content (i.e. the bottom-right box in French notation). The content
of a ribbon will be the content of its tail, and the residue of a k-ribbon will be its content
modulo k. We define a horizontal k-ribbon strip to be a shape tileable by k-ribbons such
that the tail of every ribbon is in the bottom of its column (this latter condition is what
makes the ribbon strip “horizontal”). A semistandard ribbon tableau of shape λ/µ is a
sequence

µ = ν(0) ⊆ ν(1) ⊆ ν(2) · · · ⊆ ν(r) = λ

such that each ν(i)/ν(i−1) is a horizontal ribbon strip. The weight of such a semistan-
dard ribbon tableau is the composition (α1, . . . , αr) where αi is the number of k-ribbons in
ν(i)/ν(i−1). Often we think of the ribbons in the ith horizontal strip as being labelled i, as in
Figure 2.1.2. We will let SSRTk(λ) denote set of semistandard k-ribbon tableaux of shape
λ, and similarly for SSRTk(λ, µ).

Example 2.1.2. Below is a skew semistandard 3-ribbon tableau of shape (5, 4, 3, 3, 2, 1)/(2, 1)
with the ribbons colored and labelled.

4

3

2 2

1
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k-cores and k-quotients

The notion of a k-core and k-quotient of a partition was introduced long ago, as a generaliza-
tion of integer quotients and remainders. Perhaps it is because the concepts are so old that
in the present day it seems as if every combinatorialist has a different way to construct and
visualize these objects, each with their own set of conventions and choices. Following [28],
we add to this milieu of constructions by employing a nonstandard definition of a k-quotient;
however we still provide the historical definitions for completeness, because we will see later
in Section 4.3 how these concepts can be realized in a Lie-theoretic manner. The uninitiated
reader is welcome to refer to [72, Ch. I.1] for a thorough primer on the combinatorics of
k-cores, k-quotients, and abaci.

A diagram λ is a k-core if there is no diagram µ such that λ/µ is a k-ribbon. If we
start removing k-ribbons from a partition λ until it is no longer possible, at each step
maintaining a partition shape, what remains is the unique partition, called the k-core of λ,
denoted corek(λ). For example, in Figure 2.1 below, we see 2 ways to remove k-ribbons,
both resulting in the same k-core. The fact that corek(λ) does not depend on the order of

Figure 2.1: Two ways to remove 4-ribbons from λ = (5, 3, 2, 2, 1). The order is given by first
removing red, then green, then blue. In both cases, what remains is core4(λ) = (1).

the ribbons removed can be seen more easily with the aid of an abacus, also known as a
Maya diagram. An abacus for us will be drawn with beads on k horizontal lines, known as
rungs, that represent residue classes mod k.1 We adopt certain conventions, among those
being:

• We will read left to right, bottom to top, so that the bottom rung will correspond to
numbers with residue 0 mod k.

• We will always pad our abaci with infinitely many negative beads and will neglect
drawing large enough negative beads.

Fix a partition λ and integer k ≥ 1. Let δ = (−1,−2, . . .) and consider λ padded with
infinitely many zeros. We associate to λ the abacus with k rungs and beads at positions
λ+ δ as in Example 2.1.3 below.

1Others might draw an abacus with vertical and horizontal lines, which are placed by tracing the bound-
ary of the partition.
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Example 2.1.3. Below is the abacus for the partition λ = (8, 6, 5, 2, 1, 1, 0) with k = 4.

7

4

2-2

-4

-5

-7

-12

-11

-10

-9

-8

We make the following observation, without proof.

Observation 2.1.1. Removing a k-ribbon of residue r from λ is equivalent to subtracting
k from some part of λ + δ with residue r, and then rearranging in decreasing order. On
the abacus, this results in moving a bead on the rth rung one position left on its rung.
Consequently, removing all k-ribbons from λ is equivalent to left-justifying its abacus.

Remark 2.1.1. We note that effect of adding δn is to make λ a strict partition. Any choice
of such a δ would suffice. We’ve chosen this specific δn so that the rth rung aligns with the
ribbons of residue r in any ribbon tiling of λ.

Now, notice that given a k-core ν = corek(λ), we can recover λ if we know the number of
times each bead on a rung was moved. Encoding this information on each rung amounts to
constructing what is known as the k-quotient. Historically, the k-quotient of a partition λ is
a k-tuple of partitions (λ(1), . . . , λ(k)) in which λ(r) is read off from the abacus by looking at
the (r − 1)th rung and for each bead, counting the number of gaps to the left of that bead,
i.e. the number of times one must move each bead to left-justify the abacus. In this way,
one has the correspondence

{Partitions} ←→ {k-cores} × {k-tuples of partitions} (2.2)

Example 2.1.4. Continuing with our choice of λ in Example 2.1.3, we see that its k-core is
(1,1,1) and its k-quotient in the terminology of [72] is (1, ∅, (1, 1), (2)), since e.g. in the third
rung, one has to move the two beads left one unit to get a left-justified abacus, whence the
third partition in the quotient is (1,1). We pick a ribbon tiling of λ and color the ribbons so
that the ribbons with residue r correspond to boxes in the rth partition in the quotient.

←→ ,

(
, ∅ , ,

)
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We can make this a bit cleaner by modifying the construction of the k-quotient so that
it absorbs the data from the k-core. More precisely, note that given a k-core ν, there are
exactly k partitions µ such that µ/ν is a k-ribbon, each with a distinct content modulo k.
These partitions µ are exactly the partitions one gets by selecting a rung on the abacus
representing ν and moving the rightmost bead one unit to the right. We will encode the
k-core by considering the k-quotient as a tuple of skew shapes with contents, whose origins
are placed on specific content lines determined by the contents of these k partitions.

Definition 2.1.1. Let λ be a partition with corek(λ) = ν. Let {c1, . . . , ck} be the contents
of the distinct k-ribbons that can be added to ν, ordered so that cr = qrk + r − 1. The k-
quotient of λ, denoted quotk(λ) is the tuple of skew shapes with contents β = (β(1), . . . , β(k))
such that

(i) each β(r) is a partition diagram, translated so that the box at the origin has content
qr,

(ii) the multiset of integers c(x)k + r − 1 for x ∈ β and 1 ≤ r ≤ k is equal to the multiset
of contents of the ribbons in any ribbon tiling of λ/ν.

Example 2.1.5. Continuing again with λ in the previous example, the k-quotient quotk(λ)
is drawn below

−2 −1 0 1 2

where we have shaded the empty partition only to denote on which content line it resides.

Definition 2.1.1 can be extended to any skew shape with contents. Indeed, if λ/µ can
be tiled by k-ribbons, then corek(λ) = corek(µ) and quotk(µ) ⊆ quotk(λ). As such, we can
define quotk(λ/µ) = (β(1)/γ(1), . . . , β(k)/γ(k)), where β = quotk(λ) and γ = quotk(µ).

We are now in a position to spruce up (2.2) from partitions to tableaux. The Stanton-
White correspondence [85] extends this correspondence to a weight-preserving bijection

quotk : SSRTk(λ/µ) 7→ SSYT(quotk(λ/µ)) (2.3)

defined so that if T is a semistandard k-ribbon tableau, and quotk(T ) = (T (1), . . . , T (k)),
then a ribbon in T with content pk + r− 1 and label i will correspond to a box in T (r) with
content p and label i.
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Example 2.1.6. On the left we give a semistandard 4−ribbon tableau T of shape λ =
(5, 4, 3, 3, 2)/(1). The first horizontal strip consists of the blue and yellow ribbons labelled 1,
the second is empty, the third consists of the green ribbon labelled 3, and the fourth consists
of the red ribbon labelled 4. The corresponding 4-quotient is given on the right. In the
quotient, the shaded square denotes the empty partition.

4

3

1 1

−−−−−−−−→

−2 −1 0 1 2

4

1

3

1

2.2 Combinatorial LLT polynomials

In this section we review the theory of LLT polynomials and set notation.
Let T = (T (1), . . . , T (k)) be a SSYT on a tuple of skew shapes with contents. Given a cell

u in T (r), we define the adjusted content to be c̃(u) = c(u)k+r−1. We choose the reading
order on cells so that their adjusted contents increase. In other words, we read from smallest
to largest content line, moving along a fixed content line from the SW to NE direction.

We say two cells attack each other if their adjusted contents differ by less than k and
are not equal. In other words, two cells attack each other if either (1) they are on the same
content line in different shapes, or (2) they are on adjacent content lines, with the cell on
the larger content line in an earlier shape. We define an attacking inversion of T to be a
pair of attacking boxes with different entries in which the larger entry precedes the smaller
in reading order.

Definition 2.2.1. Let β/γ be a tuple of skew partitions. The inversion LLT polynomial
is the generating function

Gβ/γ(x; q) =
∑

T∈SSYT(β/γ)

qinv(T )xT (2.4)

where inv(T ) is the number of attacking inversions of T .
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As is the case for Macdonald polynomials, the number of attacking inversions can be
reformulated as the number of inversion triples, which we now define. Given a tuple β/γ of
skew partitions, we say that three cells u, v, w ∈ Z× Z form a triple of β/γ if (i) v ∈ β/γ,
(ii) they are situated as below

u w

v

(2.5)

namely with v and w on the same content line and w in a later shape, and u on a content
line one smaller, in the same row as w, and (iii) if u,w are in row r of β(j)/γ(j), then u and

w must be between the cells (r, γ
(j)
r − 1), (r, β

(j)
r + 1), inclusive. It is important to note that

while v must be a cell in β/γ, we allow the cells u and w to not be in any of the skew shapes,
in which case u must be at the end of some row in γ and w must be the cell directly to the
right of the end of some row in β.

Definition 2.2.2. Let β/γ be a tuple of skew partitions and let T ∈ SSYT(β/γ). Let a, b, c
be the entries in the cells of a triple (u, v, w), where we set a = 0 and c =∞ if the respective
cell is not in β/γ. Given the triple of entries

a c

b

(2.6)

we say this is a coinversion triple of T if a ≤ b ≤ c. Otherwise, we have b < a ≤ c or
a ≤ c < b, and we say the triple of entries is an inversion triple.

Example 2.2.1. There are 7 coinversion triples below: (0, 2, 4), (0, 2, 7), (3,4,∞), (0,4,7),
(4,5,∞), (1,9,∞), and (0,9,∞).
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We note that Definition 2.2.2, and that of a triple, depends not merely on the tuple of
skew partitions β/γ, but on the individual tuples of partitions β, γ. Indeed, if in Example
2.2.1, we made the superficial change in the third skew shape from (1)/(0) to (2,2)/(2,1),
then we would introduce another coinversion triple (0, 9,∞). Likewise if we consider the
third shape being instead (1,0)/(0,0), then we introduce the coinversion triples (0, 8,∞) and
(0, 6,∞). It’s easily seen that any extra coinversion triples present are independent of the
filling T .

Definition 2.2.3. Let β/γ be a tuple of skew partitions. The coinversion LLT polyno-
mial is the generating function

Lβ/γ(x; q) =
∑

T∈SSYT(β/γ)

qcoinv(T )xT (2.7)

where coinv(T ) is the number of coinversion triples of T .

In light of the preceding remarks, we note that if β/γ and β′/γ ′ are two representations
of the same skew shapes, then their coinversion LLT polynomials differ by an overall power
of q.

Note that in a semistandard filling T on some tuple of skew partitions, a pair of attacking
entries forms an inversion if and only if they are in a (unique) inversion triple. Indeed, if
b < a ≤ c, then (a, b) is an attacking inversion, and likewise if a ≤ c < b, then (b, c) is an
attacking inversion. Hence, we have the identity

Lβ/γ(X; q) = qmGβ/γ(X; q−1) (2.8)

where m = m(β/γ) is the total number of triples in β/γ.
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Remark 2.2.1. A simplified version of Definition 2.2.3, in which each shape in β/γ consists
of a single row, can be found in [10], in which (2.8) is essentially Proposition 4.5.3. The
general case is in [11]. In both, the coinversion LLT polynomials are first defined, via the
action of a Hecke algebra, as a polynomial truncation of a certain formal power series. It is
then shown that this algebraic definition results in the combinatorial definition above. We
will expound on this later in Chapter 5 when we discuss combinatorial formulas for LLT
polynomials in general Lie type.

An explicit formula for m(β/γ) can be given when γ is empty.

Proposition 2.2.1. Let β be a tuple of partitions. Then,

m(β) = #{a < b, i, j | 0 ≤ β
(b)
j − j+ i < β

(a)
i }+

∑
a<b
i,j

max(min(β
(a)
i − i, β

(b)
j − j)+min(i, j), 0)

(2.9)

Proof. We count triples by their cell labelled v in (2.5), as this cell is always in the shape
β. Fix a cell v = (i, `) ∈ β(a) . If there is a triple (u, v, w), then u,w must lie in some (or

adjacent to some) β(b) for b > a. For each row β
(b)
j , let u,w be the unique pair of cells in this

row with w on the same content line as v and u directly to the left of w. Then, (u, v, w) form

a triple if either (1) u,w are both in β
(b)
j , (2) u is the cell (j, 0) just before the beginning

of the row, or (3), u is the cell (j, β
(b)
j ) at the end of the row. In other words, (u, v, w) is a

triple exactly when β
(b)
j has a cell of content c(v) or c(v) − 1. As the set of contents in the

row β
(b)
j is precisely the interval [1− j, β(b)

j − j], then

(u, v, w) is a triple ⇐⇒ 1− j ≤ c(v) ≤ β
(b)
j − j + 1 ⇐⇒ i− j ≤ `− 1 ≤ β

(b)
j + i− j

As ` − 1 ranges over the interval [0, β
(a)
i − 1], after summing over `, i, j and a < b, we find

that the number of triples (u, v, w) is

m(β) =
∑
a<b
i,j

#
(

[0, β
(a)
i − 1] ∩ [i− j, β(b)

j + i− j]
)

=
∑
a<b
i,j

#
(

[−i, β(a)
i − i− 1] ∩ [−j, β(b)

j − j]
)

(2.10)
The intersection of the intervals in the summand in (2.10) has size

max(min(β
(a)
i − i− 1, β

(b)
j − j) + min(i, j) + 1, 0) (2.11)

Casing on whether or not β
(a)
i − i− 1 is the minimum, we can rewrite this as

max(min(β
(a)
i −i, β

(b)
j −j)+min(i, j), 0)+

{
1 : −min(i, j) ≤ β

(b)
j − j ≤ β

(a)
i − i− 1

0 : else
(2.12)
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The condition in the piecewise component is equivalent to i−min(i, j) ≤ β
(b)
j − j + i < β

(a)
i ,

for which the first inequality is seen to be equivalent to 0 ≤ β
(b)
j − j + i in either case i ≤ j

or j ≤ i.

When β is a tuple of partitions all of which are single rows, then we arrive at the following
simpler form for m(β).

Corollary 2.2.1. Let µ be a partition and let β be any rearrangement of its parts. Identify
β with the tuple of partitions β with a single non-negative part in each component. Then,

m(β) = n(µ) + inv(β) (2.13)

where n(µ) =
∑

i(i− 1)µi and inv(β) = #{i < j | βi > βj}.

Proof. As β consists of single rows, the only non-zero terms in (2.9) are when i = j = 1.
Thus,

m(β) = #{a < b | 0 ≤ β(b) < β(a)}+
∑
a<b

max(min(β(a) − 1, β(b) − 1) + 1, 0)

= inv(β) +
∑
a<b

min(β(a), β(b))

The result follows from the identity n(µ) =
∑

a<b min(β(a), β(b)).

The quantity inv(β) defined in Corollary 2.2.1 will make key appearances in Chapter 5
when we count statistics for classical type LLT polynomials.

Definition 2.2.1 of the inversion LLT polynomials was first given in [30], however it is
not related in an obvious way to the original spin-generating functions defined in [57]. For
completeness, we also give the original definition of LLT polynomials. We define the spin
of a ribbon R to be ht(R) − 1, where ht(R) is the number of rows in R. The spin of a
semistandard ribbon tableau is the sum of the spins of the ribbons in its tiling.

Definition 2.2.4. Let λ/µ be a skew partition and fix an integer k. The spin LLT polynomial
is defined as

G
(k)
λ/µ(X; q) =

∑
T∈SSRTk(λ/µ)

qspin(T )xT

where SSRTk(λ/µ) denotes the set of semistandard k-ribbon tableaux of shape λ/µ.

It was shown in [30] that if T ∈ SSRTk(λ/µ) corresponds to S ∈ SSYT(quotk(λ/µ))
under (2.3), then there is some constant e depending only on the shape λ/µ such that
spin(T ) = −2inv(S) + e. Hence,

Proposition 2.2.2. Let λ/µ be a skew partition with quotk(λ/µ) = β/γ. Then, there is a
constant e depending only on the shape λ/µ such that

G
(k)
λ/µ(X; q) = qeGβββ/γγγ(X; q−2) (2.14)
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Another inversion statistic was proposed by Schilling, Shimozono, and White in [80],
which maps exactly with the (co)spin statistic, without any constant error factor qe.

2.3 Representation theory of GLn

We briefly review the basics of the representation theory of GLn as it relates to the tableau
combinatorics discussed in the previous sections. Some familiarity with the material, and
representation theory of finite groups, will be assumed, however the reader is welcome to
reference a typical textbook on the material, e.g. [24, 25, 39, 79]. We will almost always
work over the ground field k = C, although many of these texts work in more generality than
we do. We then review the basics of symmetric functions, which can also be reviewed e.g.
in [72, 84]. While these results are all well-known, they serve as a template for subsequent
chapters, when we give analogous statements for Sp2n which are not as widely disseminated.

Let V be a finite dimensional complex vector space. The general linear group GL(V )
is the group of all invertible linear transformations from V to V . After the identification
V ' Cn, we identify GL(V ) ' GLn(C) with the group of n × n invertible matrices. A
representation of GLn = GLn(C) is a group homomorphism ρ : GLn → GL(V ) for some
vector space V over C. In this way V becomes a G-module, and we often interchange ρ and
the V when referring to a representation. We say a representation is irreducible if it has
no nontrivial invariant subspace, and reducible otherwise.

We will primarily be interested in polynomial representations of GLn, which are
representations ρ in which the matrix entries ρ(g) are polynomial functions in the entries of
g. The reason being that as an algebraic variety, GLn is the open set in the affine n2 space
of n× n matrices defined by the non-vanishing of its determinant. Hence, regular functions
on GLn are generated by polynomials in the entries of g and the multiplicative inverse of
the determinant (det g)−1. If the entries of ρ(g) are regular functions of the entries of g, we
say that ρ is a rational representation. The group GLn is an example of a reductive Lie
group, which is to say that all of its finite dimensional rational representations are completely
reducible, i.e. they can be written as a direct sum of irreducible representations.

To a representation ρ, we define its character χ : GLn → C sending g to the trace
tr ρ(g). Characters are examples of class functions, which is to say that they are constant
on conjugacy classes. As the subgroup of diagonalizable matrices is dense in GLn, and χ
continuous, a character is determined by what it does to diagonal matrices. In particular,
we consider χ = χ(x1, . . . , xn) as a function on the entries x1, . . . , xn of a diagonal matrix
g, or more generally as a function on the eigenvalues of an arbitrary g. A representation is
determined by its character, and we say that a character affords the representation V .

The group of diagonal matrices is a maximal torus for GLn and is acted upon by its
Weyl group. The Weyl group of GLn is the symmetric group Sn and it acts on diagonal
matrices and hence the characters χ by permuting the entries x1, . . . , xn. The irreducible
representations for GLn are indexed by their highest weight, a non-increasing list λ of
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integers of length n. Below we give examples of representations of GLn along with their
associated characters χλ.

Example 2.3.1. 1. The standard representation V ' Cn of GLn(C) is an irreducible
representation whose character is

χ(1)(x1, . . . , xn) = x1 + · · ·+ xn (2.15)

2. The determinant representation is the one-dimensional representation det : GLn → C
whose character is

χ(1n)(x1, . . . , xn) = x1 · · ·xn (2.16)

Every rational representation has the form det−k⊗ρ for some polynomial representa-
tion ρ and integer k. A representation is polynomial iff its highest weight λ has λn ≥ 0,
that is λ is a partition.

3. The symmetric power Sk(V ) is an irreducible representation whose character is

χ(k)(x1, . . . , xn) = hk(x1, . . . , xn) =
∑

1≤i1≤···≤ik≤n

xi1 · · · xik (2.17)

the kth homogenous symmetric polynomial.

4. The exterior power Λk(V ) is an irreducible representation whose character is

χ(1k)(x1, . . . , xn) = ek(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik (2.18)

the kth elementary symmetric polynomial.

5. We define the element eλ(x1, . . . , xn) = eλ1 · · · eλn and similarly for hλ(x1, . . . , xn).
The former is the character of Λλ1(V ) ⊗ · · · ⊗ Λλn(V ) and the latter the character of
Sλ1(V ) ⊗ · · · ⊗ Sλn(V ). These representations are in general not irreducible and will
decompose according to Pieri rules, stated below.

6. If χ affords the representation V of GLn, the contragredient representation is the dual
V ∗, whose character is

χ∗(x1, . . . , xn) = χ(x−11 , . . . , x−1n ) (2.19)

If V = Vλ is irreducible, then the dual representation V ∗λ is irreducible with highest
weight −w0(λ), where w0 is the longest element of Sn, which reverses all the entries of
λ. If λ is a partition, then V ∗λ is not a polynomial representation, but we can factor
out powers of the determinant to find a polynomial representation:

V ∗λ ' det−k ⊗ V~k−w0(λ)
(2.20)

where ~k denotes the weight (k, . . . , k) of length n.
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The irreducible polynomial representation of GLn with highest weight λ has character
given by the Schur polynomial sλ. One definition is given by the Weyl character formula
as a ratio of determinants. We define the alternating element

aλ =
∑
w∈Sn

(−1)`(w)xw(λ) (2.21)

where the factor (−1)`(w) is the sign of the permutation w. Letting ρ = (n − 1, . . . , 0) as
usual, a classical argument gives

aρ =
∑
w∈Sn

(−1)`(w)xρ =
∏
i<j

(xi − xj) = xρ
∏
i<j

(
1− xj

xi

)
(2.22)

so that

sλ(x1, . . . , xn) =
aλ+ρ
aρ

=
∑
w∈Sn

w

(
xλ∏

i<j(1− xj/xi)

)
(2.23)

When λ is a partition, we also have the combinatorial formula

sλ(x1, . . . , xn) =
∑

T∈SSYT(λ)

xT (2.24)

where xT denotes the monomial xwtT =
∏

i x
#i’s in T
i . When λ is a dominant weight that

is not a partition, then we add enough copies of the determinant as in (2.20) to write

sλ = (x1 · · ·xn)−ksλ+~k, where λ+~k has all positive entries. It is often sometimes convenient
to extend (2.23) to when λ is not dominant as follows: if λ+ ρ is a regular weight, then we
set

sλ = (−1)`(w)sw(λ+ρ)−ρ (2.25)

where w ∈ Sn is the unique permutation such that w(λ+ ρ) = λ+ + ρ, for λ+ dominant. In
the case λ+ ρ is not regular, we set sλ = 0.

Equation (2.24) suggests a natural basis of an irreducible representation given by semi-
standard Young tableaux. Indeed many such constructions exist, historically attributed to
Weyl, see e.g. [24]. A representation always breaks into weight spaces, which are eigenspaces
for the subgroup T of diagonal matrices. As T -modules, these weight spaces have characters
xµ; we define the monomial symmetric polynomial mµ(x1, . . . , xn) to be the sum over
distinct monomials in the Sn-orbit of xµ. We can then write (2.24) as

sλ(x) =
∑
µ≤λ

Kλ,µmµ(x) (2.26)

where Kλ,µ = | SSYT(λ, µ)| and < is the dominance order defined in Section 2.1. The coeffi-
cients Kλ,µ are weight multiplicities, known combinatorially as Kostka numbers. They
can be computed for example using Kostant’s weight multiplicity formula. The dominance
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order on partitions arises naturally from an order on the root lattice, which we discuss in
more detail in Chapter 4.

The Schur polynomials are orthonormal with respect to the inner product

〈f, g〉 =
1

n!
[x0]fg

∏
i 6=j

(1− xj/xi) (2.27)

where g denotes inverting the variables, and [x0] denotes taking the constant term. In fact,
Schur polynomials are uniquely determined by their orthogonality (2.27) and triangularity
(2.26). We will see later a q-analogue and non-symmetric analogue of this inner product for
Hall-Littlewood and non-symmetric Hall-Littlewood polynomials.

Dualities and decompositions

We review the classical Cauchy identities and Pieri rules for GLn, as we will shortly give
analogues of each, and their accompanying insertion schemes, for Sp2n. The relationships
between these dualities for GLn and the other classical groups is thoroughly explored in [37].

Theorem 2.3.1 (GLn - GLm duality). Let U, V be finite dimensional complex vector spaces.
The symmetric algebra S(U ⊗ V ) decomposes as a GL(U)×GL(V ) module as

S(U ⊗ V ) =
∑
λ

χUλ ⊗ χVλ (2.28)

where χUλ , χ
V
λ denote the irreducible representations of GL(U),GL(V ), respectively, and λ

ranges over all partitions of length `(λ) ≤ min(dimU, dimV ).

Taking U = Cn and V = Cm, we can identify S(U ⊗ V ) with the algebra of polynomial
functions on Matn×m(C). As a character identity, we write (2.28) as

n∏
i=1

m∏
j=1

1

1− xiyj
=
∑
λ

sλ(x1, . . . , xn)sλ(y1, . . . , ym) (2.29)

where we treat the left hand side as a geometric series in xiyj. Equation (2.29) is known as
the Cauchy identity, and taking the coefficient of a monomial xλ on the left hand side, we
find also that

n∏
i=1

m∏
j=1

1

1− xiyj
=
∑
λ

mλ(x1, . . . , xn)hλ(y1, . . . , ym) (2.30)

There also exist the dual Cauchy identities

n,m∏
i,j

(1 + xiyj) =
∑
λ

sλ(x1, . . . , xn)sλ′(y1, . . . , ym) =
∑
λ

mλ(x1, . . . , xn)eλ(y1, . . . , ym) (2.31)
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Theorem 2.3.2 (Schur-Weyl duality). Let V be the standard representation of GL(V ).
Under the action of GL(V )× Sd, the space V ⊗d decomposes into irreducibles as

V ⊗d =
∑
λ`d

`(λ)≤dim(V )

Vλ ⊗ Sλ (2.32)

where Vλ,Sλ denote the irreducible representations of GL(V ), Sd, respectively.

As a character identity, Theorem 2.3.2 translates to

(x1 + · · ·+ xn)d =
∑
λ`d

sλ(x1, . . . , xn)fλ (2.33)

where fλ denotes the number of standard Young tableaux of shape λ.
Both Theorem 2.3.1, 2.3.2 can be proven using the Robinson-Schensted-Knuth (RSK)

algorithm, an insertion scheme that provides bijections between certain words or 2-lined
arrays and pairs of standard or semistandard Young tableaux.

The following Pieri rules are combinatorial rules governing how the representations in
Example 2.3.1(5) decompose into irreducible representations. They are given by

ek(x)sµ(x) =
∑
λ,

λ/µ∈Vk

sλ(x), hk(x)sµ(x) =
∑
λ,

λ/µ∈Hk

sλ(x) (2.34)

the sums over λ such that λ/µ is a vertical (resp. horizontal) strip of size k. In particular,
the decompositions (2.34) are multiplicity free, which is a property special to GLn. Iterating
(2.34) for hk and viewing a semistandard Young tableau as a chain of horizontal strips gives

hµ(x) =
∑
λ≥µ

Kλ,µsλ(x) (2.35)

and hence we can also interpret Kλ,µ as the multiplicity of the irreducible representation
V λ inside the tensor product Sµ1(V ) ⊗ · · · ⊗ Sµ`(V ) of symmetric powers of the standard
representation V of GLn. We note that (2.35) is technically an infinite sum, however only
finitely many λ have Kλ,µ 6= 0.

More generally we have

sλ(x)sµ(x) =
∑
ν

cνλ,µsν(x) (2.36)

where cνλ,µ is the multiplicity of an irreducible representation V ν inside the tensor prod-

uct V λ ⊗ V µ of irreducible representations for GLn. The coefficients cνλ,µ are known as
Littlewood-Richardson coefficients and possess a myriad of combinatorial models, e.g.
they are known to count tableaux on the shape ν/λ and weight µ whose reading words are
Yamanouchi.
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The notion of a semistandard ribbon tableau is not too different from the notion of a
semistandard Young tableau. Both are thought of as sequences of certain strips and in fact
both are combinatorial manifestations of a certain Pieri rule; the latter appearing in (2.34)
and the former appearing in the plethystic Pieri rule

hµ(xk1, x
k
2, . . . , x

k
n) =

∑
T∈SSRTk(·,µ)

(−1)spinT sshT (x1, x2, . . . , xn) (2.37)

This formula can be used to evaluate certain Hall-Littlewood polynomials at roots of unity,
which was the original motivation for LLT polynomials [57].

2.4 Symmetric functions

We mention that all the definitions and combinatorial formulas above hold with infinitely
many variables. However, so as to avoid confusion between the finite and infinite paradigms,
we will refer to the infinite counterparts as functions rather than polynomials.

We let Λ = ΛR(X) be the algebra of symmetric functions in an infinite alphabet of
variables X = x1, x2, . . . with coefficients in a ring R. We will often take R = Q(q), where
q is a formal indeterminant. As λ ranges over all partitions, each of {eλ}, {hλ}, {mλ}, {sλ}
forms a basis for Λ.

The omega involution is the unique algebra involution ω : Λ → Λ defined on the
elementary basis by ω(ek) = hk. On the Schur basis, it maps ω(sλ) = sλ′ . The Hall inner
product 〈−,−〉 on Λ is defined on the bases by

〈sλ, sµ〉 = 〈mλ, hµ〉 = δλµ (2.38)

and it’s shown that bases {uλ}, {vλ} are dual with respect to the Hall inner product if and
only if they satisfy the Cauchy identity

∏
i,j

1
1−xiyj =

∑
λ uλ(X)vλ(Y ). We caution that the

Hall inner product and omega involution are really features of an infinite alphabet. Indeed,
ω sends ek to hk, but the former is 0 if we take the number of variables to be less than k,
whereas the latter is not.

We review the type A Hall-Littlewood polynomials, although all the explicit formulas
with finitely many variables can be straightforwardly modified for the other classical Lie
types.

The Hall-Littlewood polynomial Pλ(x1, . . . , xn; q) is defined in n ≥ `(λ) variables by

Pλ(x1, . . . , xn; q) =
1

Wλ(q)

∑
w∈Sn

w

(
xλ
∏

i<j(1− qxj/xi)∏
i<j(1− xj/xi)

)
(2.39)

where Wλ(q) =
∑

w∈Stab(λ) q
`(w). For GLn, the polynomials Pλ(x1, . . . , xn; q) stabilize in the

limit n → ∞, so Pλ(X; q) makes sense formally in infinitely many variables. We have the
specializations

Pλ(x1, . . . , xn; 0) = sλ(x1, . . . , xn) Pλ(x1, . . . , xn; 1) = mλ(x1, . . . , xn) (2.40)
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The Hall-Littlewood series Hµ(x1, . . . , xn; q) is the dual basis to Pλ(x1, . . . , xn; q) with
respect to the inner product (2.27) in which the irreducible characters are orthogonal. It has
the explicit formula

Hµ(x1, . . . , xn; q) =
∑
w∈Sn

w

(
xµ∏

i<j(1− xj/xi)
∏

i<j(1− qxi/xj)

)
(2.41)

where again the factors in the denominator are understood as geometric series. We view
the function Hµ(x1, . . . , xn; q) as an infinite formal sum of irreducible GLn characters with
coefficients in Q(q). From the Weyl character formula (2.23) and (2.25), it follows that the
coefficient of χλ(x) in Hµ(x1, . . . , xn; q) is Lusztig’s q-analog of Kostant’s weight multiplicity
formula

Kλ,µ(q) := 〈χλ〉Hµ(x1, . . . , xn; q) =
∑
w

(−1)`(w)Pq(w(λ+ ρ)− (µ+ ρ)) (2.42)

where

Pq(β) = 〈xβ〉
∏
i<j

1

1− qxi/xj
(2.43)

is the q-partition generating function which enumerates multisets S of positive roots that sum
to β, with weight q|S|. The transformed Hall-Littlewood polynomial Hµ(x1, . . . , xn; q)
is the polynomial truncation

Hµ(x1, . . . , xn; q) = Hµ(x1, . . . , xn; q)pol (2.44)

where pol refers to truncating to irreducible characters χλ with λn ≥ 0. From (2.42) and the
fact that Hµ(x; q) are dual to Pλ(x; q), there holds the expansions

Hµ(x; q) =
∑
λ≥µ

Kλ,µ(q)sλ(x) sλ(x) =
∑
µ≤λ

Kλ,µ(q)Pλ(x; q) (2.45)

The coefficients Kλ,µ(q) are known as Kostka-Foulkes polynomials and have been well-
studied, with several combinatorial, geometric, and representation-theoretic interpretations.
Their positivity was a subject of much interest, with geometric proofs given by Hotta and
Springer [36, 82] and Lusztig [66]. A combinatorial formula in type A was provided by
Lascoux and Schützenberger [58], in which they exhibit Kλ,µ(q) as a generating function
weighted with their renowned charge statistic. A excellent survey of the charge statistic can
be found in the thesis of Butler [15].

Kato [49] and Lusztig [67] showed also that the Kostka-Foulkes polynomials coincide
with certain affine Kazhdan-Lusztig polynomials, from which positivity is known by other
geometric means that we will briefly touch upon in Section 4.6 when we deal with general
type LLT polyomials. The reader can find many more properties and applications of the
Kostka-Foulkes polyomials in the surveys [33, 76, 86] and the references therein.
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There also exists a q-inner product

〈f, g〉q =
1

n!
〈x0〉fg

∏
i 6=j

1− xi/xj
1− qxi/xj

(2.46)

This inner product depends on the number of variables n; however, one can normalize so
that the dependence stabilizes as n → ∞. In this limit, (2.46) coincides with the q-Hall
inner product of Macdonald [72, §III.4].

With respect to (2.46) (or the q-Hall inner product in infinitely many variables), the
Hall-Littlewood polynomials Pλ(x; q) are uniquely characterized by the conditions

Pλ = mλ +
∑
µ<λ

Cλ,µ(q)mµ (2.47)

〈Pλ, Pµ〉q = 0, µ 6= λ (2.48)

for some coefficients Cλ,µ(q), where < is the dominance order on partitions. The polynomials
Hµ(x; q) are similarly characterized, but with an upper triangularity on the monomial basis.

We will also make use of the modified Hall-Littlewood polynomials H̃µ(X; q) defined
via

H̃µ(X; q) = qn(µ)Hµ(X; q−1) (2.49)

where n(µ) =
∑

i(i − 1)µi. Similarly, we define the modified Kostka-Foulkes polynomials

K̃λ,µ(q) := qn(µ)Kλ,µ(q−1). The modification is a superficial change, done so that H̃µ(x; q)
aligns more naturally with the character of a graded Sn-module [26].

The following is due to [57], albeit in a different form than stated below.

Proposition 2.4.1. Let µ be a partition, viewed as a tuple of rows, each placed on zero
content line. Then,

Gµ(X; q) = H̃µ(X; q). (2.50)

where we recall that Gµ(X; t) denotes the inversion LLT polynomial.

This proposition is proven in [57] by showing that the inversion statistic for LLT polyno-
mials aligns with a specific geometric intepretation of Kostka-Foulkes polynomials. A proof
using the combinatorics of a vertex model was given recently in [21]. Using (2.49), (2.8) and
(2.13), in terms of the coinversion LLT polynomials we have

Lµ(X; q) = qinv(µ)Hµ(X; q) (2.51)

where we recall that inv(µ) = #{i < j | µi > µj}.
Lastly, it will be useful to record the following identity for when we apply the omega

involution to coinversion LLT polynomials.
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Proposition 2.4.2 ([10]). Let β/γ be a tuple of skew partitions. We say a filling T on
β/γ is a negative tableau if the rows are strictly increasing and the columns are weakly
increasing, i.e. T is the transpose of a semistandard filling. Then,

ωLβ/γ(X; q) =
∑
T

qcoinv(T )xT (2.52)

where the sum is over negative tableaux T and coinv(T ) is the number of negative coin-
versions of T , where a negative coinversion is a triple of boxes of the form (2.2.2), but with
the strict inequalities a < b < c.

Proof. This follows from the quasi-symmetric function expansion in [31, (82)] and the same
argument that gives (2.8).
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Chapter 3

Symplectic Combinatorics

Our main interest is in the combinatorics at play for G = Sp2n, and so we introduce those
objects here. We also briefly review their connections to the representation theory of Sp2n.
Many of these objects and their properties can be found in the excellent exposition by
Sundaram [87].

3.1 Representation theory of Sp2n

The symplectic group Sp(V ) is the group of linear transformations preserving a non-
degenerate skew-symmetric bilinear form on the finite dimensional complex vector space V .
Identifying V ' C2n, we can identify Sp(V ) ' Sp2n(C) with a group of 2n × 2n matrices

M satisfying MTJM = J , where J =

(
0 −In
In 0

)
. It is a simply connected, semisimple Lie

group with semisimple Lie algebra sp2n the set of traceless 2n × 2n matrices M satisfying
JM +MTJ = 0.

The Weyl group for Sp2n is the hyperoctahedral group, also known as the group
of signed permutations. A signed permutation π acts on the set {±1, . . . ,±n}, with π
sending i 7→ j iff it sends −i 7→ −j. The group of signed permutations is generated by the
same simple reflections {s1, . . . , sn−1} as for Sn, along with the generator sn which swaps n
with −n. An arbitrary element can both permute and negate entries.

We identify the character ring of Sp2n with the algebra of Laurent polynomials in the vari-
ables x±11 , . . . , x±1n that are invariant under signed permutations. We review the characters
of several representations of Sp2n.

Example 3.1.1. 1. The standard representation V ' C2n of Sp2n is an irreducible rep-
resentation whose character is

χstd = x1 + x−11 + · · ·+ xn + x−1n (3.1)



CHAPTER 3. SYMPLECTIC COMBINATORICS 26

2. The symmetric power Sk(V ) of the standard representation is an irreducible repre-
sentation whose character is hk(x

±1
1 , . . . , x±1n ), where hk is the complete homogenous

symmetric polynomial.

3. The exterior power Λk(V ) of the standard representation has character ek(x
±1
1 , . . . , x±1n ),

where ek is the elementary symmetric polynomial. This is not an irreducible character,
as the symplectic form lives in Λ2(V ) and is definitionally invariant under Sp2n. The
kernel of the contraction map Λk(V )→ Λk−2(V ) is the irreducible representation with
highest weight the kth fundamental weight, and has character ek − ek−2, see [25].

There is the following decomposition of the d-th tensor power of the standard represen-
tation:

Theorem 3.1.1 ([13]). Let V denote the standard representation of Sp2n. Then,

1. There is an algebra Bd(−2n) ⊆ End(V ⊗d) for which Bd(−2n) and Sp2n are centralizers
of each other in End(V ⊗d).

2. The irreducible representations Wλ of Bd(−2n) are indexed by partitions λ with `(λ) ≤
n and have dimension dimWλ = f̃dλ(n), where f̃dλ(n) counts the number of n-oscillating
tableaux of shape λ and d steps (to be defined in Definition 3.2.2).

3. We have the following decomposition as a Sp2n×Bd(−2n) module

V ⊗d '
⊕
λ

V λ ⊗Wλ (3.2)

where V λ denotes the irreducible character of Sp2n with highest weight λ.

3.2 Symplectic and oscillating tableaux

In searching for a symplectic analogue of semistandard tableaux, there are two natural
candidates. The first is a combinatorial object that encodes the weight multiplicities for an
irreducible representation of Sp2n. These “symplectic tableaux” were proposed independently
by Kashiwara/Nakashima [47] and King [51, 52]. Their definitions are quite different, the
former more compatible with crystal operations, and the latter more compatible with weight
multiplicities and restriction to subgroups. An intricate bijection between the two tableaux
was given by Sheats [81]. We opt to use King’s tableaux, with a slight modification given
by Sundaram [89].

Definition 3.2.1. A symplectic tableau T of shape λ is a filling of the Ferrers diagram
of λ with the letters 1 < 1 < 2 < · · · < n < n such that

1. T is semistandard with respect to the above ordering
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2. The entries i must be in row ≤ i.

We let Symp(λ) denote the set of symplectic tableaux of shape λ. The second condition
is often referred to as the symplectic condition. For convenience, we will denote the entries
with their ordering above as the set [±n].

The utility of these objects is that the irreducible character χλ of Sp2n becomes a gener-
ating function for symplectic tableaux of shape λ, just as the irreducible characters of GLn
are generating functions for semistandard Young tableaux.

Proposition 3.2.1. Let λ be a partition of length `(λ) ≤ n. If spλ denotes the irreducible
character of Sp2n with highest weight λ, then

spλ(x
±1
1 , . . . , x±1n ) =

∑
T∈Symp(λ)

xT (3.3)

where xT =
∏

i x
#i−#i in T
i .

A combinatorial proof of the fact that the irreducible characters of Sp2n are signed-
symmetric is detailed in [87] using (3.3) and a symplectic version of the Bender-Knuth
involution.

Another analogue of semistandard tableaux comes first from standard tableaux, which
encode, via Schur-Weyl duality, multiplicities of irreducible constituents in tensor powers of
the standard representation of GLn, see (2.33). In the Schur-Weyl duality for Sp2n given
in Theorem 3.1.1, the symmetric group is replaced by a Brauer algebra, whose irreducible
representations have a basis given by the following objects.

Definition 3.2.2. Let λ, µ be partitions. An n-oscillating tableau of shape λ/µ is a
sequence

µ = ν0, ν1, ν2, . . . , λ (3.4)

of partitions such that for each i,

(i) νi differs from νi−1 by a single box.

(ii) `(νi) ≤ n.

In the literature [89] this is also known as an n-symplectic up-down tableau. When
the length restriction is implicit or not imposed, we will drop the n and simply refer to this
as an oscillating tableau or an up-down tableau.

Example 3.2.1.

∅ , , , , , ,

is a 2-oscillating tableau of shape (1,1) with 6 steps.



CHAPTER 3. SYMPLECTIC COMBINATORICS 28

Semistandard tableaux more generally count the multiplicities of irreducible constituents
in tensor powers of symmetric powers of the standard representation of GLn, see (2.35). The
following objects take their place in Sp2n.

Definition 3.2.3. Let λ, µ be straight shapes. An n-horizontal (n-vertical) semistan-
dard oscillating tableau of shape λ/µ is a sequence

µ = α0 = β0 ⊆ α1 ⊇ β1 ⊆ α2 ⊇ β2 ⊆ · · · ⊇ λ (3.5)

of partitions such that for each i,

(i) αi/βi−1 and αi/βi is a horizontal (vertical) strip.

(ii) αi, βi have all row (column) lengths ≤ n.

For brevity, we will denote n-hSSOT as the set of n-horizontal semistandard oscillating
tableau, and likewise for n-vSSOT. Again, we may often drop the n to avoid clutter or if the
condition is not imposed. The weight of a horizontal or vertical semistandard oscillating
tableau is the composition ν, where νi = |αi/βi−1| + |αi/βi|. We note that a horizontal or
vertical semistandard oscillating tableau of weight (1, . . . , 1) is simply an oscillating tableau,
with the same length restrictions.

Example 3.2.2. ⊆ ⊇ ⊆ ⊇ ⊆ ⊇ has shape

(2, 1)/(4, 2, 1) and weight (5, 2, 3).

The following Pieri rule was shown e.g. in [77, 89].

Proposition 3.2.2. Let λ, µ be partitions of lengths at most n and let eλ(x, x
−1) denote the

elementary symmetric polynomial in the variables x±11 , . . . , x±1n as in Example 3.1.1.

eλ(x, x
−1) spµ(x±11 , . . . , x±1n ) =

∑
ν

|n- vSSOT(ν/µ, λ)| spν(x±11 , . . . , x±1n ) (3.6)

A Pieri rule for multiplication by hλ was also given, although we haven’t defined the
necessary combinatorial objects here. If we did, they would likely be called “n-horizontal
down-up tableaux”, from which the reader can infer their definition, see also [54].

Now, it is obvious and yet miraculous that one can view a standard tableau as a special
case of a semistandard tableau. Indeed, the former counts the dimension of the (1n) weight
space in an irreducible representation of GLn, given combinatorially in (2.26), whereas the
latter counts the multiplicity of an irreducible representation inside tensor powers of the
standard representation, given combinatorially in (2.35). These two coefficients given in
(2.26) and (2.35) are not innately related and yet they coincide for GLn.

For Sp2n, the above definition of a symplectic tableau has no such obvious reformulation
to connect to an oscillating tableau (nor does the Kashiwara/Nakashima definition). A priori,
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an oscillating tableau seems to be a fundamentally different object than a symplectic tableau.
One result we present, stated below, is that there is in fact an analogous specialization of
symplectic tableaux to oscillating tableaux.

Theorem 3.2.1. Fix positive integers N, n and let λ be a partition contained in an (Nn)
rectangle. There is a bijection

ΦN,n :

{
N-hSSOT of

shape λ and n steps

}
∼−→
{

symplectic tableaux of
shape λc and entries in [±n]

}
(3.7)

where λc denotes the complement of λ in an (Nn) box.

The complement shape is perhaps not surprising when we compare to the situation in
GLn. Indeed, the identity of Schur polynomials

(x1 · · ·xk)nsλ(x−11 , . . . , x−1k ) = sλc(x1, . . . , xk) (3.8)

where the complement is taken in a (nk) box, implies a bijection between semistandard Young
tableaux of shape λc and those of shape λ, with the weight µ mapping to (n−µk, . . . , n−µ1).
This bijection is given in [84, Ex. 7.41] and we adapt it to our current case with oscillating
tableaux and symplectic tableaux.

Proof of Theorem 3.2.1. We first associate to a horizontal semistandard oscillating tableau
a tableau with set-valued entries1 inside the (Nn) rectangle. More specifically, to each cell
in the N × n rectangle, we will assign a subset of entries in {1, 1̄, . . . , n, n̄}, viz., if in the
ith step of the hSSOT a cell was added or removed, then we add i or ī, respectively, to that
cell’s label. Figure 3.1 serves as an example.

∅ −→ 2

1 1123

−→

3

3

1 3

Figure 3.1: An example of the bijection from a hSSOT to a symplectic tableau. The left sequence

of partitions is the 2-hSSOT ∅ ⊆ (2) ⊇ (1) ⊆ (2, 1) ⊇ (2, 1) ⊆ (2, 1) ⊇ (1, 1). The middle diagram

is the tableaux T with set-valued entries we associate to the 2-hSSOT and the rightmost diagram

is the resulting symplectic tableaux T̃ with entries in [±3].

Denote T the resulting tableau with set-valued entries, consisting of the cells in (Nn)
labelled with a (possibly empty) set. Let ν1, . . . , νN be the (possibly zero) columns of T , left

1We don’t refer to this as a set-valued tableau because that term already has two other definitions in the
literature that do not seem to apply in this context.
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to right. Let ν̃i be the column whose entries are

{1, . . . , n} − {i | i ∈ νi} ∪ {̄i | ī ∈ νi}

arranged in increasing order. Let T̃ be the tableau with columns ν̃N , . . . , ν̃1, left to right.
The fact that T̃ is semistandard follows from the same reasoning as in the case of semi-

standard tableaux, but now with the ordered alphabet including barred entries. We only
have left to show that T̃ satisfies the symplectic condition.

We suppose on the contrary that there is an i in some row above row i, say in column c̃.
We can take i to be minimal and assume that i is in the (i+ 1)th row, so that the cell below
this i must be i. The intermediate tableau T with set-valued entries will have an i and no i in
the complement column, say column c. In other words, the semistandard oscillating tableau
removes a cell at the ith step without first adding that cell in the ith step. It must then
have added that cell at some step j < i. We can pick j maximal so that the semistandard
oscillating tableau adds the cell at step j, and does nothing to that cell until it removes it in
step i. So, T will have a j but no j in column c, and also no k or k for j < k < i. In other
words, in column c̃, T̃ will have neither j nor j, but will have k for j < k < i. By column
strictness, the cell at row j in this column will be strictly less than j, which contradicts the
minimality of i if this entry is barred, and otherwise contradicts column strictness.

We mention that Theorem 3.2.1, or a version thereof, was stated and proven indepen-
dently in [63] in order to give a crystal structure on King tableaux.

Remark 3.2.1. (a) We note that Ψn,N is not quite weight preserving. Given an N -hSSOT
~o with n steps, let T be the intermediate tableau with set-valued entries we associate
to ~o. Recall that the weight of ~o is the composition µ = (µ1, . . . , µn) where

µi = |αi/βi−1|+ |αi/βi| = #i’s in T + #ī’s in T

The weight of the resulting symplectic tableau T̃ will be ν = (ν1, . . . , νn) where

νi = #i’s in T̃ −#ī’s in T̃ = (N −#i’s in T)− (#ī’s in T) = N − µi = (µc)n−i

While ν is not always a partition, we can apply the symplectic Bender-Knuth involution
to T̃ to get a symplectic tableau with partition weight.

(b) Secondly, note that given a hSSOT, there is some ambiguity as to what symplectic
tableau it bijects to, and vice versa. More specifically, any N -hSSOT is also an (N+1)-
hSSOT and likewise an hSSOT with n steps is also an hSSOT with n + 1 steps (just
as a symplectic tableau with entries in [±n] is also a symplectic tableau with entries in
[±(n+ 1)]). The corresponding relation between Ψn,N and Ψn,N+1 is as follows: when
increasing N to N + 1, one adds a full column to the resulting symplectic tableau with
entries 1, . . . , n; the inverse map will add a column of i boxes to all the shapes in the
ith step. The corresponding relation between Ψn,N and Ψn+1,N is as follows: when
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increasing n to n + 1, one adds a full row to the resulting symplectic tableau all with
entries n+1; the inverse map will add an additional step at the end that is just adding
a single horizontal strip of length N .

(c) The set of horizontal semistandard oscillating tableaux of shape λ is an infinite set,
as one could just add and remove the same horizontal strip infinitely many times.
Similarly, at any given step, one could add and remove a horizontal strip of arbitrary
length. Thus, to get a finite set, we impose restrictions on the number of steps and on
the sizes of the first part. One might wonder if this is a worry at all, since the set of
symplectic tableaux of a specified shape is also an infinite set if we allow unbounded
entries. However, in the map from hSSOT to symplectic tableau, the shape of the
resulting tableau is a complement shape in a box whose dimensions depend on the
number of steps and the maximum part size.

We also have the dual statement

Theorem 3.2.2. Fix positive integers N, n and let λ be a partition contained in an (nN)
rectangle. There is a bijection

Ψn,N :

{
N-vSSOT of

shape λ and n steps

}
∼−→
{

symplectic tableaux of
shape µ and entries in [±n]

}
(3.9)

where µ = (λ′)c is the complement transpose of λ in an (nN) box.

Proof. The bijection Ψn,N is the bijection in Theorem 3.2.1, precomposed with the map that
transposes every intermediate partition in a vertical SSOT.

Restricting either statement to oscillating tableaux gives

Corollary 3.2.1. There is a bijection between n-oscillating tableaux from ∅ to λ in d steps
and symplectic tableaux of shape λc (or its transpose) and weight ((d− 1)n), the complement
taken in a (dn) box.

We also mention that a notion of skew symplectic tableaux was introduced by Koike
and Terada in [53], which follow similar restrictions as for King tableaux. Theorems 3.2.1,
3.2.2 carry over with a slight tweak. We only give the statement for vertical skew symplectic
tableaux.

Theorem 3.2.3. Fix partitions λ, µ and positive integers N, n, k such that N ≥ `(µ), `(λ)
and k ≥ µ1. There is a bijection

Ψk,n,N :

{
N-vSSOT of

shape λ/µ and n steps

}
∼−→


skew symplectic tableaux of
shape τ/σ and entries in
{±(k + 1), . . . ,±(k + n)}

 (3.10)

where τ = (λ′)c is the complement transpose of λ in a ((n + k)N) box and σ = (µ′)c is the
complement transpose of µ in a (kN) box.
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Proof. We let S be the “standard” N -vSSOT of shape µ in k steps, which adds a column
of length (µ′)i at the ith step (padding µ′ with zeros if necessary). Given T an N -vSSOT
of shape λ/µ and n steps, we prepend S to get an N -vSSOT of shape λ and n + k steps.
Applying Ψn+k,N maps this to a symplectic tableau of shape τ and entries in [±(n + k)],
where τ is the complement transpose of λ in an ((n+ k)N) box.

We let σ denote the complement transpose of µ in the (kN) box. The choice of S
implies that the tableau Ψk,N(S) of shape σ in Ψn+k,N(S ◦ T ) will be the complement of the
superstandard tableau, namely the tableau with a maximal number of k’s, then (k − 1)’s,
etc. In particular, the entries in the skew shape τ/σ are the only entries determined by T ,
and only contain entries in {±(k + 1), . . . ,±(k + n)}.

3.3 Cauchy identities

In this section we prove Cauchy identities akin to (2.29) for the symplectic group. Our main
tool will be an insertion algorithm due to Berele [7], which serves as an analogue to the RSK
insertion algorithm. We briefly review Berele’s algorithm, although we again refer the reader
to the excellent text [87].

Berele insertion involves inserting words in the alphabet [±n] = {1 < 1 < · · · < n < n}
according to same rules as for RSK, with a slight modification when the symplectic condition

is violated. Given a letter a ∈ [±n] and a symplectic tableau T , we denote T
B←− a to be the

result of the following algorithm.
Row-insert a into T á la Robinson-Schensted.
If the result is symplectic, then do nothing.
else there is a unique i bumped out of row i into row i+ 1 by an i.

delete both this i and i to yield a punctured tableau.
slide the hole out via jeu de taquin until a normal tableau remains.

We supplement the algorithm with an example.

Example 3.3.1. We insert the word w = 11211221 into ∅.

∅ , 1 , 1 1 , 1 1 2 , 1 ◦ 2 → 1 2 , 2
1 1

, 2
1 1 2

, 2 2
1 1 2

,
◦ 2
1 1 1

→ 2
1 1 1

Noting that the shapes of the intermediate steps give an oscillating tableau, Berele used
his insertion algorithm to prove the following combinatorial manifestation of Sp2n Schur-Weyl
duality.

Proposition 3.3.1 (Berele [7]).

(x1 + x−11 + . . .+ xn + x−1n )m =
∑

λ,`(λ)≤n

spλ(x
±1
1 , . . . , x±1n )f̃λm(n) (3.11)

where f̃λm(n) is the number of n-oscillating tableaux of shape λ and m steps.



CHAPTER 3. SYMPLECTIC COMBINATORICS 33

We can use our bijections between symplectic tableaux and oscillating tableaux to give a
more general version of this statement, and of Berele insertion itself, just as Knuth generalized
the Robinson-Schensted correspondence. We first recall a variation of RSK known as the
(dual) Burge correspondence [14]. We will say a 2-lined array(

a1 a2 . . . ar
b1 b2 . . . br

)
is arranged in antilexicographic order if ai ≥ ai+1 and ai = ai+1 =⇒ bi < bi+1. In one
guise, the dual Burge correspondence is a bijection between 2-lined arrays in antilexicographic
order and pairs of SSYT (P,Q) with conjugate shapes via row bumping brbr−1 · · · b1 to form
P and placing arar−1 · · · a1 in the newly added cell of the conjugate shape to form Q. We
give an analogue for Berele insertion:

Corollary 3.3.1. Let

(
a1 a2 . . . ar
b1 b2 . . . br

)
be a 2-lined array arranged in antilexicographic or-

der, with the top entries ai ∈ [m] and the bottom entries bj ∈ [±n]. The following procedure

gives a bijection to pairs of symplectic tableaux (P̂ , Q̂) with conjugate complement shapes:

• Row Berele insert brbr−1 · · · b1 to form P̂ .

• Keep track of the intermediate shapes as a n-vSSOT with m steps and weight ν, where
νi = #{j | aj = i}, and then apply Theorem 3.2.2 to form Q̂.

Example 3.3.2. We consider the 2-lined array(
4 4 2 2 1 1 1
1 1 1 2 1 2 3

)
Berele inserting the bottom row from right to left gives

∅ , 3 , 3
2
,

3
2
1
,

3
2
1 2

,
3
◦
1 1

→ 3
1 1

, 3
1 1 1

, 3
1 ◦ 1

→ 3
1 1

= P̂

The intermediate shapes form the following vSSOT of weight (3, 2, 0, 2):

∅

Under the map Ψ4,3 of Theorem 3.2.2, this bijects to

12

1

1 2 44

−→

4

3 4

2 3 4

2 2 3

= Q̂

We note that P̂ and Q̂ are conjugate complement shapes in the (34) box.
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As a corollary, we get the following Cauchy-like identity

Corollary 3.3.2.

n∏
i=1

m∏
j=1

(xi + x−1i + yj + y−1j ) =
∑

λ⊆(mn)

spλ(x
±1
1 , . . . , x±1n )sp(λ′)c(y

±1
1 , . . . , y±1m ) (3.12)

This is a curious identity, as a similar identity holds for Schur functions, dating back to
Littlewood [84, Ex. 7.42]. It appears in [78], where it is referred to as a “Morris Identity”,
referencing [75, Thm. IV]. A stronger form was shown by Mimachi [74], where he proved the
identity for Koornwinder polynomials. A super-version also exists for the orthosymplectic
Lie superalgebra [18, §5.3], which reduces to this form. In particular, Corollary 3.3.2 should
be a statement about Sp2n - sp2m Howe duality, although at present the author has not
worked through the details. A crystal interpretation is discussed in [63] and [35].

Nonetheless, in GLn the representation theoretic statements of GLm - GLn duality and
Schur-Weyl duality are bundled into one cohesive combinatorial algorithm known as RSK; the
previous corollaries exhibit the same such bundling with Berele insertion for the analogous
dualities in Sp2n. In particular, one can take the top line in the 2-lined array in Corollary
3.3.1 to be all 1’s to recover Berele’s original algorithm. Alternatively, taking the coefficient
of yn−11 · · · yn−1m in (3.12) and applying Theorem 3.2.2 recovers (3.11).

We also note that taking the coefficient of xλ on the left hand side of (3.12) gives another
Cauchy identity.

Corollary 3.3.3.

n∏
i=1

m∏
j=1

(xi + x−1i + yj + y−1j ) =
∑

λ⊆(mn)

mλ(x
±1
1 , . . . , x±1n )eλc(y

±1
1 , . . . , y±1m ) (3.13)

where the complement is taken in an (mn) box and mλ denotes the signed monomial sym-
metric function, i.e. the W -orbit of xλ for W the group of signed permutations.

Proof. We recall the generating function identity∑
k

xkek(y
±1
1 , . . . , y±1m ) =

m∏
j=1

(1 + xyj)(1 + xy−1j ) = xm
m∏
j=1

(x+ x−1 + yj + y−1j ) (3.14)

Taking the product over all x1, . . . , xn gives∑
λ1,...,λn

xλeλ(y
±1
1 , . . . , y±1m ) = (x1 · · · xn)m

n∏
i=1

m∏
j=1

(xi + x−1i + yj + y−1j ) (3.15)

from which the result follows after the observation that eλc = em−λ1 · · · em−λn and that
ek(y

±1
1 , . . . , y±1m ) = e2m−k(y

±1
1 , . . . , y±1m ).
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Chapter 4

Root Systems, Weyl Groups, Hecke
Algebras and All That

The purpose of this chapter is to acquaint the reader with the necessary background on root
systems, Weyl groups and Hecke algebras needed to give a definition of an LLT polynomial
in general Lie type. Many of these topics have already been widely exposited, see e.g. [9,
25, 39, 40]; however, most material covered in these typical graduate textbooks overlook the
affine setting, or treat them differently than they do the finite case.

Much of the theory on affine Lie algebras (or symmetrizable Kac-Moody algebras in
general) will not come into play, although they do make an key appearance in [28], where
the definition of general type LLT polynomials first appeared. Only affine Weyl groups
and their associated affine Hecke algebras will be of importance to us, although in order to
maintain a semblance of completeness, we choose to include a review of affine root systems,
much of which can also be found e.g. in [17, 45, 71]. We will assume some previous knowledge
of Lie theory.

Our presentation follows a very similar outline to that of [32], and like that work, we will
often state things without proof, as our goal is to ultimately arrive at a parseable definition
of LLT polynomials in general Lie type. We do however strive to supplement much of the
material with examples.

4.1 Root systems

In anticipation of working with affine root systems and Weyl groups, we build out from
generalized Cartan matrices.

Definition 4.1.1. A generalized Cartan matrix is an n× n matrix A = (aij) such that

(i) aii = 2 for i = 1, . . . , n

(ii) aij are non-positive integers for i 6= j
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(iii) aij = 0 implies aij = 0

The Dynkin diagram of A is the graph with nodes i = 1, . . . , n and an edge {i, j} for
each aij 6= 0, along with some weight or marking to indicate the values aij, aji. We say that
A is indecomposable if its Dynkin diagram is connected.

Definition 4.1.2. A root system X is a collection (P,∆,∆∨), where

(i) P is a finite-rank free abelian group with dual lattice P∨ := Hom(P,Z),

(ii) ∆ = {α1, . . . , αn} ⊆ P consists of simple roots,

(iii) ∆∨ = {α∨1 , . . . , α∨n} ⊆ P∨ consists simple coroots,

(iv) the matrix A with entries aij = 〈αj, α∨i 〉 is a generalized Cartan matrix.

It is well known that generalized Cartan matrices fall into the following trichotomy:

Theorem 4.1.1. Let A be an indecomposable generalized Cartan matrix. Then, A is exactly
one of finite type, affine type, or indefinite type, where

(i) A has finite type iff all its principal minors have positive determinant.

(ii) A has affine type iff detA = 0 and all proper principal minors have positive determi-
nant.

(iii) A has indefinite type iff A satisfies neither of the above.

Let X = (P,∆,∆∨) be a root system with generalized Cartan matrix A. We say X
is finite (resp. affine) if A is finite (resp. affine). The dual of X is the root system
X∨ := (P∨,∆∨,∆), with associated generalized Cartan matrix At. The dual X∨ is finite
(resp. affine) if and only if X is finite (resp. affine).

Cartan matrices of finite type were classified by Dynkin, and share the same classification
as that of finite-dimensional semisimple Lie algebras over an algebraically closed field. By
incorporating a weight lattice into our definition of a root system, one has that finite root
systems classify reductive algebraic groups G over an algebraically closed field. Under this
classification, the weight lattice P is the character group of a maximal torus in G. For a
complex reductive Lie group G, we often refer to (P,∆,∆∨) as the Cartan data specifying
G.

Cartan matrices of affine type are classified in Kac and Macdonald, albeit with different
labellings. A good compendium is given in Carter [17], in which he refers to the differing
nomenclatures as the “Dynkin name” and the “Kac name”. Following Carter, the Dynkin
names (resp. Kac names) of the Cartan matrices of affine type are: the untwisted types Z̃n
(resp. Z

(1)
n ), where Zn = An, Bn, Cn, Dn, E6,7,8, F4, G2 is a Cartan matrix of finite type; the

dual untwisted types B̃n

∨
, C̃n

∨
, F̃4

∨
and G̃2

∨
(resp. A

(2)
2n−1, D

(2)
n+1, E

(2)
6 , and D

(3)
4 ); and the
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mixed type B̃Cn (resp. A
(2)
2n ). The untwisted types whose duals not listed are isomorphic

to their dual.
We mention that there also exist Cartan matrices of affine type coming from a non-

reduced root system, which we choose not to consider. Similarly, we also will not consider
generalized Cartan matrices of indefinite type in this treatise.

Each simple root αi ∈ ∆ gives rise to a linear automorphism sαi of P via

sαi(β) = β − 〈β, α∨i 〉αi (4.1)

The map sαi is a reflection, as it fixes the hyperplane 〈β, α∨i 〉 = 0 and sends αi to −αi.
Likewise, we have an analogous reflection sα∨i on P∨, which we will often identify with sαi
via the non-degenerate pairing 〈−,−〉. We say sαi is a simple reflection and denote it by
si.

The Weyl group W is the group of automorphisms of P (and of P∨) generated by the
simple reflections si. The set of roots R and coroots R∨ are

R =
⋃
i

W (αi), R∨ =
⋃
i

W (α∨i )

The root lattice Q and coroot lattice Q∨ are

Q = Z{α1, . . . , αn} ⊆ ZP, Q∨ = Z{α∨1 , . . . , α∨n} ⊆ ZP∨

The positive roots (coroots) are R+ = R ∩ Q+ and R∨+ = R∨ ∩ Q∨+ where Q+ =
N{α1, . . . , αn} is the cone generated by the simple roots in Q, and Q∨+ the respective cone in
Q∨. We set R− = −R+ and R∨− = −R∨+ to be the negative roots (coroots), respectively.
The roots will decompose as R = R+ ∪R−, so that every root is either positive or negative.
The dominant weights are elements of

P+ = {λ ∈ P | 〈λ, α∨i 〉 ≥ 0 for all i} (4.2)

and the set of strictly dominant weights P++ consisting of those λ ∈ P+ with a strict
inequality in (4.2) for all i. The dominant weights are ordered by the dominance ordering,
where we set λ < µ if µ− λ is in the positive root lattice Q+. We write PR for the extension
by scalars P ⊗ R.

In the case that X is finite, then A is invertible, and R and W are finite sets. In the
case X is affine, then corank A = 1, and R and W are infinite. If X is of untwisted type,
then the affine roots can be decomposed as R = R0 + Zδ, where R0 are the roots of some
finite root system, and δ is known is the nullroot. The positive roots are of the form
(R0 + Z>0δ) ∪ (R0)+. A more explicit description of W will be given in Section 4.2.

We say that A is symmetrizable if there is a diagonal matrix D such that DA is sym-
metric. In other words, there exist non-zero integers di (which can be assumed positive) such
that 〈αj, diα∨i 〉 = 〈αi, djα∨j 〉. One shows that if X is finite or affine, then A is symmetrizable
(and vice versa). If A is indecomposable, then the integers di are unique up to an overall
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common factor, and we call di the length of the root αi. If there are only two root lengths,
we call them long and short; if there is only one root length, every root is both long and
short.

Example 4.1.1. Let P = Zn with the standard inner product so that the unit vectors ei
are orthogonal. We identify P with its dual P∨.

(a) The root system of GLn has simple roots and coroots αi = α∨i = ei − ei+1 for i =
1, . . . , n − 1. The positive roots are of the form ei − ej for i < j and the dominant
weights are non-increasing integer sequences (λ1 ≥ · · · ≥ λn).

(b) Consider the constant vector ~1 = e1 + · · · + en, which satisfies 〈~1, α∨i 〉 = 0 for all i.
Replacing P with P/(Z~1) and keeping the same simple roots and coroots, considered
now in the quotient, gives the root system of SLn. The dominant weights are now an
equivalence class of non-increasing integer sequences as before, up to translation by
the vector ~1; we identify these with partitions (λ1 ≥ · · · ≥ λn ≥ 0) of length at most
n.

(c) Replacing P with the root lattice Q of GLn gives the root system of the adjoint group
PGLn. It is dual to the root system of SLn. All three of GLn, SLn, and PGLn have the
Cartan matrix of type An−1.

(d) Keeping αi, α
∨
i the same as above for i = 1, . . . , n−1, and further letting αn = 2en and

α∨n = en gives the root system of Sp2n. The positive roots are {ei ± ej | i < j} ∪ {2ei}
and the dominant weights are non-increasing integer sequences (λ1 ≥ · · · ≥ λn ≥ 0).
The Cartan matrix is of type Cn.

(e) The root system of SO2n+1 is dual to the root system of Sp2n. The simple roots and
coroots for i = 1, . . . , n − 1 are the same as before, but now αn = en and α∨n = 2en.
The positive roots are {ei ± ej | i < j} ∪ {ei} and the dominant weights are non-
increasing integer sequences (λ1 ≥ · · · ≥ λn ≥ 0). Extending the weight lattice to
P = Zn ⊕ Z(1

2
~1) gives the root system of the simply connected form Spin(2n + 1). In

this case, the dominant weights are allowed to be sequences with half-integers, however
with the condition λi− λj ∈ Z. For both SO2n+1 and Spin(2n+ 1), the Cartan matrix
is of type Bn.

(f) For the root system of SO2n, the simple roots and coroots are the same as above for
i = 1, . . . , n − 1, and we set αn = α∨n = en−1 + en. The positive roots are ei ± ej for
i < j and the dominant weights are sequences of integers (λ1 ≥ · · · ≥ λn−1 ≥ |λn|).
The Cartan matrix is of type Dn.
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4.2 Weyl groups

We recall some basic facts about Weyl groups. To start, the Weyl group W together with
its generating set S of simple reflections si is a Coxeter group, with relations

(sisj)
mij = 1 (4.3)

s2i = 1 (4.4)

where mij is either 0, 2, 3, 4, or 6, depending on the product aijaij of entries in the associated
generalized Cartan matrix A. We will refer to (4.4) as the quadratic relation and (4.3) as
the braid relations.

The length of a permutation w ∈ W is the minimal ` such that w = si1 . . . si` . Such an
expression is called a reduced factorization and is in general not unique. Geometrically, if we
view the Weyl group as acting on the set of roots R, the length of w is precisely the number
of positive roots that are carried into negative roots by w. We define Inv(w) := {α ∈ R+ |
w(α) ∈ R−} so that

`(w) = | Inv(w)| = |R+ ∩ w−1(R−)| (4.5)

In particular, αi is the only positive root α such that si(α) ∈ R−, so that `(wsi) < `(w) if and
only if w(αi) ∈ R−. Likewise, `(siw) < `(w) iff w−1(αi) ∈ R−. Equivalently, `(wsi) < `(w)
(resp. `(siw) < `(w)) if and only if there is some reduced factorization of w that ends in
(resp. begins with) si. We may also at times let Inv(w) denote the positive coroots that are
sent to negative coroots by w.

The Bruhat order is the partial order on W that is the transitive closure of relation
u < v if u = vs and `(u) = `(v) + 1 for some s ∈ S. More explicitly, u ≤ v if there is
some (equivalently every) reduced word for v contains as a subword a reduced word for u.
If u ≤ v, then `(u) ≤ `(v), however the converse is not always true. Many other equivalent
characterizations can be found e.g. in [9].

The complement of the hyperplanes 〈α∨, ·〉 = 0 over all α ∈ R is disconnected and
each connected component is called a chamber. The dominant chamber is the chamber
consisting of dominant weights; the faces of this chamber are given by the hyperplanes
〈Λi, ·〉 = 0, where Λi are the fundamental weights, defined by Λi(α

∨
j ) = δij.

The Weyl group W acts transitively on the set of chambers with the dominant chamber
a fundamental domain for this action. In other words, for every λ ∈ P , there is a unique
dominant weight λ+ ∈ P+ in the orbit of λ. We say λ is regular if it is in the interior of a
chamber. In this case, λ+ is strictly dominant and the permutation w ∈ W with w(λ+) = λ
is unique.

Given J ⊆ S, the parabolic subgroup WJ ⊆ W is the subgroup generated by J . For
W = Sn, the parabolic subgroups are isomorphic to the Young subgroups Sr1 × · · · × Srj .
We write W J for minimal length coset representatives of W/WJ and likewise JW for those
of WJ/W . These are precisely the subgroup of permutations with no reduced word ending
(resp. beginning) with s ∈ J . If W is the Weyl group for a Lie algebra g = Lie(G),
then a choice of J is a choice of simple roots, from which one can construct a parabolic
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subalgebra p. The parabolic subalgebra p has a Levi decomposition, say with a Levi factor
l, which gives rise to a Levi subgroup L of G. For GLn, the Levi subgroups are of the form
GLr1 × · · · × GLrk , where r1 + · · · + rk = n. For Sp2n, the Levi subgroups are of the form
GLr1 × · · · ×GLrk−1

× Sp2rk
.

Example 4.2.1. (a) The Weyl group for GLn and SLn is the symmetric group Sn, acting
on the weight lattice Zn and generated by the simple transpositions si = (i, i + 1) for
i = 1, . . . , n− 1.

(b) The Weyl group for Sp2n and SO2n+1 is the group of signed permutations as discussed
in the beginning of Section 3.1. We recall that it is generated by the simple reflections
s1, . . . , sn−1 as above, along with the generator sn which swaps n with −n.

(c) The Weyl group for SO2n again acts on the set [±n], and is generated by s1, . . . , sn−1,
along with the generator sn which swaps n− 1 with n and negates both. An arbitrary
element can permute entries and negate an even number of entries in [±n].

Affine Weyl groups

There are two notions of an “affine Weyl group”: the first being the Weyl group of an affine
root system, and the second being the affinization of a finite Weyl group. Although related,
we take the time to review both, and for clarity we refer only to the latter as an affine Weyl
group.

If X = (P,∆,∆∨) is a finite root system with root lattice Q, then we define its affine
Weyl group Wa to be the semidirect product W n Q. Concretely, if we let τ(α) ∈ Wa

denote the element corresponding to α ∈ Q, then Wa is generated by the subgroups W and
Q, with the additional relation

siτ(α)si = τ(siα) (4.6)

As it will make an essential appearance later, we also define the extended affine Weyl
group W̃ to be the semidirect product W n P . We can extend the action of W on P to W̃
by setting

τ(µ)(λ) = λ+ µ (4.7)

so that the element τ(µ) corresponds to translation by µ. The reason we call this group Wa

an affine Weyl group is because it is generated by affine reflections, namely the reflections
sα,m, where

sα,m(λ) = λ− (〈λ, α∨〉+m)α (4.8)

for α ∈ R and m ∈ Z. The map sα,m is precisely a reflection about the affine hyperplane
〈α∨, ·〉 = −m. In fact, Wa is isomorphic to the group generated by the sα,m, via

sα,m 7→ sατ(mα) (4.9)
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Indeed,

sα,m(λ) = λ− (〈λ, α∨〉+m)α = sα(λ)−mα = sα(λ+mα) = (sατ(mα))(λ)

If θ is the dominant short root (so that θ∨ is the highest coroot), then the orbit W (θ) consists
of all short roots and hence spans Q. We define the affine reflection s0 as

s0 := τ(θ)sθ : λ 7→ sθ(λ) + θ (4.10)

Then, Wa is generated by S = {s0, s1, . . . , sn}, and in fact (Wa, S) forms a Coxeter system,

i.e. the generators satisfy the usual braid relations. We note however that W̃ is not in
general a Coxeter group.

Example 4.2.2. For GLn, the dominant root (and coroot) is e1 − en and so

s0(λ) = λ− (λ1 − λn − 1)(e1 − en) = (λn + 1, λ2, . . . , λn−1, λ1 − 1)

For Sp2n, the dominant short root is e1 + e2 and s0(λ) = (−λ2,−λ1, λ3, . . . , λn). For SO2n+1,
the dominant short root is e1 and s0(λ) = (−λ1, λ2, . . . , λn).

We now come to the essential correspondence for affine Weyl groups.

Proposition 4.2.1. Given the constructions Wa and W̃ associated to a finite root system
X, there exists an affine root system Y whose Weyl group W is (1) isomorphic to Wa and

(2) has a semidirect extension Π nW isomorphic to W̃ . Conversely, given any affine root
system Y , its Weyl group W is isomorphic to the affine Weyl group Wa = W0 nQ0 of some
finite root system X.

We give a cursory explanation of how this correspondence comes about, as the details
will come into play when we discuss a Lie-theoretic interpretation of a k-core.

Suppose first that we have X = (P,∆,∆∨) a finite root system, with Weyl group W and

affine Weyl groups Wa = W nQ and W̃ = W nP constructed prior. We construct an affine
root system Y as follows. Set P ′ = P∨ ⊕ Z, fix a non-zero δ ∈ Z, and extend the pairing
〈P∨, P 〉 → Z by declaring 〈δ, P 〉 = 0.

Let θ∨ ∈ P∨ be a dominant coroot, associated to the root θ ∈ P . Define the elements

α∨0 = δ − θ∨, α0 = −θ

and set ∆′ = {α∨0 } ∪ ∆∨ and (∆′)∨ = {α0} ∪ ∆. If X is type Zn, then the root system
Y := (P ′,∆′, (∆′)∨) is an affine root system of the following type: (1) if θ∨ is the highest

coroot, then Y is of untwisted type Z̃n; (2) if θ∨ is a dominant short coroot (so θ is the

highest root), then Y is of dual untwisted type Z̃n
∨
; (3) if one takes θ∨ to be one half a long

coroot or twice a short coroot in a non-reduced finite root system containing X of type Bn

or Cn, then Y is the mixed type B̃Cn.
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In the first case, when θ∨ is the highest coroot, then the Weyl group W (Y ) is isomorphic
to Wa = W nQ. Indeed, W (Y ) is generated by elements s0, s1, . . . , sn, where si fixes δ and
acts via its original action on P∨ for i 6= 0, and

s0(λ
∨) = λ∨ − 〈λ∨, α0〉α∨0 = λ∨ − 〈λ∨,−θ〉(δ − θ∨) = sθ(λ

∨) + 〈λ∨, θ〉δ (4.11)

Having the subgroup Q ⊆ Wa act on P ′ via

τ(µ)(λ∨) = λ∨ − 〈λ∨, µ〉δ (4.12)

identifies s0 with the generator τ(θ)sθ ∈ Wa defined in (4.10).
Now let Y = (P,∆,∆∨) be an affine root system, with generalized Cartan matrix A and

Weyl group W = W (Y ). We label the simple roots and coroots as

∆ = {α0, . . . , αn} ∆∨ = {α∨0 , . . . , α∨n} (4.13)

As Y is affine, A is singular and so we can find a with Aa = 0. Moreover, letting ∆0 =
{α1, . . . , αn} and ∆∨0 = {α∨1 , . . . , α∨n}, the root system Y0 = (P,∆0,∆

∨
0 ) is finite. Without

loss we suppose a0 = 1 and define the elements

δ = α0 + a1α1 + · · ·+ anαn, θ = δ − α0 (4.14)

We note that

〈δ, α∨i 〉 = (Aa)ij = 0 (i = 0, . . . , n) (4.15)

〈θ, α∨i 〉 = −〈α0, α
∨
i 〉 ≥ 0, (i = 1, . . . , n) (4.16)

from which we conclude that W fixes δ and θ is a dominant root of P .
We consider the finite root system that is the dual of Y0, namely X = (P∨,∆∨0 ,∆0). If

Y is of untwisted type, then from above we conclude that W ' Wa, where Wa is the affine
Weyl group of X. In the case that Y is of dual untwisted type, then W ' W (Y ∨) ' W ′

a,
where W ′

a is the affine Weyl group of X∨ = Y0.
To summarize, an affine Weyl group is isomorphic to the Weyl group of an affine root

system that is of dual type to the original finite root system. In light of this, one may often
see W̃ defined as W n P∨. There is similarly a left handed presentation as P oW ; this will
only make a difference when dealing for example with double affine Hecke algebas, which we
will not concern ourselves with here.

For the extended affine Weyl group, it will be convenient to visualize its action, and that
of Wa, with the following alcove picture.

We fix a finite root system X = (P,∆,∆∨) and untwisted affine root system Y =
(P ′,∆′, (∆′)∨) with W (Y ) ' Wa(X). Following the constructions prior, we write

P ′ = P∨ ⊕ Zδ ∆ = {α1, . . . , αn}, ∆∨ = {α∨1 , . . . , α∨n} (4.17)

∆′ = {α∨0 } ∪∆∨, (∆′)∨ = {α0} ∪∆
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We keep the elements δ, θ as defined in (4.14), so that θ∨ ∈ P∨ is the highest coroot. For
any k ∈ R, we define the level k plane Hk to be

Hk = {x ∈ (P ′)∨R | 〈λ, δ〉 = k} (4.18)

If we define the “0th fundamental weight” Λ0 ∈ (P ′)∨ by

〈Λ0, α
∨
j 〉 = δj0 (4.19)

then 〈Λ0, δ〉 = 1, the elements {δ, α1, . . . , αn,Λ0} are linearly independent, and in the case
when they form a basis of (P ′)∨, then Hk consists of weights λ whose coefficient of Λ0 is k.

The Weyl groups W (Y ) ' Wa(X) and W̃ = W (X) n P fix δ, hence preserve each Hk.

Orthogonally projecting onto PR induces an affine action of W̃ , known as the level k action.
The permutations w ∈ W (X) act as usual, and the translations P ⊆ W̃ act by

τ(µ)(λ) = λ− kµ, µ ∈ P (4.20)

The connected components bounded by all the affine root hyperplanes tessellate the level k
plane into alcoves. The fact that θ is the highest short root makes the following level k
fundamental alcove a fundamental domain for the level k action:

Ak = {x ∈ PR | 〈θ∨, x〉 < k and 〈α∨i , x〉 ≥ 0 for i = 1, . . . , n} (4.21)

In particular, the level 1 fundamental alcove is bounded by the hyperplanes Hαi for the

simple roots αi. In Figure 4.1, we see the projection of the weight lattice of type C̃2 to
R{α1, α2,Λ0} (including the δ direction would give a 4-dimensional picture). Shaded on the
Λ0 = 1 plane is the level 1 fundamental chamber, and further projecting to the weight lattice
of C2 gives the level 1 alcove picture. The level 2 fundamental chamber, for example, would
be on the Λ0 = 2 plane, and projecting down would result in a fundamental alcove that is
twice as big as pictured.

Heuristically, for a fixed level k, we can visualize the roots of the affine root system Y
as lying on planes stacked on top of each other, in the δ direction, that is, each stack is the
plane δ = a. The Weyl group W (Y ) acts by affine reflections, perhaps also moving a weight
to a different stack. Projecting down collapses the stacks into the alcove setting pictured in
Figure 4.1b.

Example 4.2.3. Let G = GL3, with alcoves pictured in Figure 4.2. Each alcove w(A)
corresponds to an affine reflection w ∈ Wa. The level 1 fundamental alcove is labelled 1. Let
ω = e1 and consider the element π = s2s0τ(ω). Note that π stabilizes the fundamental alcove
and permutes its walls, in particular cycles the hyperplanes Hα0 → Hα1 → Hα2 → Hα0 .

If we define Π ⊆ W̃ to be the stabilizer of A := A1, we note that Π permutes the walls
of A. We can identify the walls of A with the simple reflections S = {s0, . . . , sn}, so that

π(Hαi) = Hαj ⇐⇒ πsi = sjπ (4.22)
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(a) The orthogonal projection of the weight lattice

of C̃2 to the weight lattice of C2 and RΛ0. Pic-
tured are the simple roots α0, α1, α2 and their as-
sociated fundamental weights Λ0,Λ1,Λ2. Shaded
is the fundamental chamber on the level 1 plane.

(b) The further projection of the weight lattice
on the left to that of C2. The fundamental cham-
ber is shaded and the level 1 fundamental alcove
is the shaded alcove nearest the origin.

Figure 4.1: The alcove picture for C2, drawn using SageMath.

Hence Π normalizes S ⊆ Wa, and we arrive at

W̃ ' Π nWa (4.23)

Given the presentations Wa ' W nQ and W̃ ' W nP , together with (4.23), it follows that

Π ' P/Q (4.24)

and so Π is in bijection with the set of minuscule weights, i.e. dominant weights ω such
that 〈ω, θ∨〉 ≤ 1. To be precise, every π ∈ Π can be written π = τ(ω)v, where v ∈ W and ω
is a minuscule weight.

4.3 Extended affine Weyl groups

To recap, given a finite Weyl group W and associated affine Weyl group Wa, we have the
following two descriptions of the extended affine Weyl group W̃ :

W̃ ' W n P ' Π nWa (4.25)

where Π is the stabilizer of the fundamental alcove, defined in the previous section. We
remarked earlier that W̃ is not Coxeter group; however, it can still be given a Bruhat order
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Figure 4.2: Collection of alcoves in level 1 alcove picture for GL3, drawn by SageMath.

and length function. In particular, given πw ∈ W̃ with w ∈ Wa, we define `(πw) = `Wa(w)
and πw ≤ π′v if w ≤ v in Wa. Pictorially, `(πw) is still the number of hyperplanes separating
the fundamental alcove A from πw(A). With this description, we note that Π is precisely
the elements of length zero. Explicitly, for w ∈ W and λ ∈ P , we have

`(wτ(λ)) =
∑

α∨∈Inv(w)

|〈λ, α∨〉+ 1|+
∑

α∨∈R∨+\Inv(w)

|〈λ, α∨〉| (4.26)

When λ ∈ P+, then `(τ(λ)) = 〈2ρ, λ〉, where ρ is the usual Weyl vector. From (4.26), when
w ∈ W,λ ∈ P+, then

`(wτ(λ)) = `(w) + `(τ(λ)) (4.27)

so that wτ(λ) is a reduced expression. Similarly, τ(λ)w is a reduced expression for w ∈ W ,
λ ∈ P−.

In light of (4.25), we can identify P with the the set of minimal coset representatives in

W̃/W . The Bruhat order on W̃ then induces a partial order < on P , which we also refer to

as the Bruhat order. In particular, for λ ∈ P , we let λ̃ ∈ W̃ · λ be the unique element in
P ∩ A, and let vλ be minimal such that vλ(λ̃) = λ. For λ, µ ∈ P , we write

λ < µ if and only if λ̃ = µ̃ and vλ < vµ (4.28)

To be more explicit, for a weight λ and root α ∈ R, consider the root string λ + Zα.
The Bruhat order on this root string is the total order λ < µ if |〈λ, α∨〉| < |〈µ, α∨〉| or if
〈λ, α∨〉 = −〈µ, α∨〉 > 0, i.e. λ is on the positive side of the αi-hyperplane, and µ is on the
negative side. The Bruhat order is the transitive closure of these relations over all positive
roots.
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Alternatively, for weights λ, µ in the same W -orbit the Bruhat order is the transitive
closure of the relation siλ > λ if 〈λ, α∨i 〉 > 0. For arbitrary weights λ, µ ∈ P , we have

λ < µ if and only if λ+ < µ+ or λ+ = µ+ and λ ≤ µ (4.29)

where λ+ < µ+ refers to the dominance order defined in Section 4.2.
In any of the formulations, we see that the minimal elements with respect to the Bruhat

order are the minuscule weights, and the minimal and maximal elements in an orbit W · λ
are λ+ and λ−, respectively.

Example 4.3.1. Consider the level 1 alcove picture of GL3 pictured in Figure 4.2. The
alcoves pictured are alcoves in the double coset Wτ(λ)W where λ = 2e1 (along with alcoves
parameterized by the finite Weyl group). The minimal elements of each coset wτ(λ)W are
labelled.

Relationship to cores and quotients

We take a brief detour in this section to discuss how the level k action of an extended affine
Weyl group relates to the combinatorics of k-cores and k-quotients. Much of this theory can
be found in [28, §6]. We briefly set G = GLn.

Recall that if a skew shape µ/ν is a k-ribbon, then µ+δ is some permutation of ν+δ+kei
for a unit vector ei, where δ = δn = (−1, . . . ,−n). More generally, if µ/ν can be tiled by
k-ribbons, then µ+ δ is some permutation of ν + δ + kλ for some λ ∈ P . In other words,

µ/ν can be tiled by k-ribbons ⇐⇒ µ+ δ ∈ W̃ · (ν + δ) (4.30)

where W̃ acts via the level k action given in (4.20). If η = corek(µ), then η + δ is a minimal

strict partition in its orbit W̃ · (η + δ). More specifically, η is of the form

k > η1 = · · · = ηr1 > ηr1+1 = · · · = ηr1+r2 > · · · > ηn−r`+1 = · · · = ηn ≥ 0 (4.31)

Given k, every weight µ is in the orbit W̃ · η for some η, as one can translate µ to reduce
it mod k and then rearrange to form η in (4.31). This choice of k and η is equivalent to
choosing a weight in the level k fundamental alcove, defined in (4.21). The fact that every

µ is in some W̃ · η is merely the fact that the fundamental alcove is a fundamental domain
for the level k action.

To see how the k-quotient appears in this story, we discuss another object indexed by
dominant weights in Ak. Let G be arbitrary now and say we choose k ∈ N and η ∈ P+ on
the level k fundamental alcove as in (4.31), that is we have η ∈ P+ and 〈η, θ∨〉 < k, where θ∨

is the highest coroot. The walls on which η lie determine a parabolic subgroup, namely we
set J = {j | 〈η, α∨j 〉 = 0}. For G = GLn, the parabolic subgroup determined by the choice
of η in (4.31) is the Young subgroup WJ = Sr1 × · · · × Sr` .

It follows that StabW̃ (η) = WJ , where again W̃ acts via the level k action, and so we can

identify the cosets W̃/WJ with the orbit W̃ ·η. We then identify the double cosets W\W̃/WJ
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with W -orbits in W̃ · η, each of which contains a unique dominant weight µ ∈ P+. We arrive
at a bijection

P+ ∩ W̃ · η
∼−→ W\W̃/WJ µ = wτ(β) · η 7→ Wτ(β)WJ (4.32)

There is a second indexing of double cosets, owing to the presentation W̃ ' W n P . One
canonically identifies W̃/W with the weight lattice P , and consequently WJ\W̃/W with WJ

orbits in P . Each WJ orbit of P has a unique L-dominant weight β ∈ P+(L), and so we
arrive at a bijection

P+(L) ' WJ\W̃/W, β 7→ WJτ(β)W (4.33)

Composing (4.32) with the canonical bijection

W\W̃/WJ ' WJ\W̃/W WwWJ 7→ WJw
−1W (4.34)

we have a correspondence

P+(L) ' P+ ∩ W̃ , β 7→ µ := w(η + kβ) (4.35)

where w is such that w(η + kβ) is dominant. We note that restricting (4.35) to regular
weights gives the same bijection between P++(L) and P++. We come to the following

Proposition 4.3.1. Set G = GLn and δ = δn = (−1, . . . ,−n).

1. There is a bijective correspondence

k-cores ν with `(ν) ≤ n↔ dominant weights η in the kth fundamental alcove (4.36)

More precisely, to a k-core ν we find η ∈ Ak such that ν + δ ∈ W̃ · η. This is
accomplished by reducing ν + δ mod k and then rearranging into nonincreasing order.
In the other direction, given η ∈ Ak, let L be the Levi determined by the walls on which
η lies and let δL be the concatenation of the weights δri for each of the Levi factors.
Set ν + δ to be the strictly dominant weight in the orbit of η + kδL.

2. If µ has corek(µ) = ν, where ν corresponds to η ∈ Ak, then we can write µ + δ =
w(η + k(β + δL)), where β ∈ P+(L).

3. Set µ+ δ = w(η + k(β + δL)) as in (ii) and write

β = (β(1), . . . , β(k)) where β(i) = (β
(i)
1 ≥ · · · ≥ β(i)

ri
) (4.37)

If quotk(µ) has shapes whose origins are placed on the content lines q1, . . . , qk, then
β(k−i+1)/(qrii ) is precisely the ith shape in quotk(µ).

Remark 4.3.1. We make note that the bijection (4.35) depends on the choice of k and η.
Combinatorially, we may view this for GLn as the fact that β is a quotient of infinitely many
partitions µ, which is determined by choosing k and a k-core.
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All of these correspondences are best illustrated with an example, as we do below in
Example 4.3.2. More details can also be found in [28, Prop. 6.18].

Example 4.3.2. Let G = GL8 and k = 4. We draw the abacus of a partition µ and its
k-core below.

µ = (16, 13, 8, 8, 4, 2, 0, 0) corek(µ) = (4, 2, 2, 1, 1, 1, 0, 0)

-1 11 15

4-4

5-7

-12

-11

-10

-9

-8

-5 -1 3

0-4

-3-7

-12

-11

-10

-9

-8

The quotient quotk(µ) is the tuple of skew shapes

−2 −1 0 1 2 3

where the shaded box denotes the empty partition placed on the -2 content line. We place the
shapes with their origins on the content lines 1, 0,−2, 1 because the four ribbons that can be
added to corek(µ) have contents ci = qik+(i−1), where q1 = 1, q2 = 0, q3 = −2, q3 = 1. One
can read the values qi on the abacus by noticing that the four beads that can be moved right,
one on each rung read bottom to top, will be moved to occupy spots in columns 1, 0,−2, 1,
where column 0 denotes the column with the 0 bead.

Under the correspondence (4.36), the number of beads on the rung corresponding to
residue r in the abacus of the k-core is the multiplicity of r in η. In our case, we have η =
(3, 3, 3, 1, 1, 0, 0, 0) (ignoring the infinitely many negative beads after -8), which determines
the Levi L = GL3×GL0×GL2×GL3. We write

µ+ δ = w(η + k(β + δL)), β = (4, 4, 2, 2, 0, 2, 1, 1) (4.38)

Writing β as in (4.37) gives β(1) = (4, 4, 2), β(2) = ∅, β(3) = (2, 0), β(4) = (2, 1, 1). We note
that for each 1 ≤ i ≤ k, β(k−i+1)/(qrii ) is precisely the ith skew shape in the quotient quotk(µ).
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We note that in GLn, the weight η in (4.31) is what is known as a (k − 1)-bounded
partition. The correspondence (4.36) is then a bijection between k-cores and (k−1)-bounded
partitions, for which there is already a known bijection given by Lapointe and Morse [56]
in their study of k-atoms. However, the two bijections are indeed different: to read off the
(k − 1)-bounded partition λ in the spirit of [56], one counts the number of gaps from one
bead in the abacus of a k-core to the spot directly left of it. Continuing with Example 4.3.2,
we have λ = (2, 1, 1, 1, 1, 1, 0, 0), since for example there are two missing beads between the
bead 3 and the bead -1 in corek(µ), namely the spot at 2 and the spot at 1.

There is also a bijection between k-cores and minimal length coset reps of S̃k/Sk, which
is discussed in [8] and related to the Lapointe-Morse bijection; at the present we don’t know
of any direct connections to the construction of η here.

4.4 Hecke algebras

In this section we introduce the Hecke algebra, keeping in mind that our ultimate goal is
toward a definition of LLT polynomials in general Lie type. We choose to review finite
Hecke algebras first, although we will be mainly interested in Hecke algebras arising from
an extended affine Weyl group. We attempt to keep the material self-contained, although a
previous acquaintance may be of use. Any prerequisites concerning Hecke algebras can be
found e.g. in [40] or [9].

Definition 4.4.1. Let W = (W,S) be a Coxeter system. The Hecke algebra H = H(W, q)
is the Z[q±1]-algebra with linear basis {Tw | w ∈ W} and relations

TuTw = Tuw if `(uw) = `(u) + `(w) (4.39)

(Ts − q)(Ts + 1) = 0 s ∈ S (4.40)

The presence of q−1 means that the basis elements are invertible, with

T−1s = q−1Ts + (q−1 − 1) (4.41)

The relations (4.39)-(4.40) are often combined as

TsTw =

{
Tsw : `(sw) > `(w)

(q − 1)Tw + qTsw : `(sw) < `(w)
(4.42)

We let HC denote the free C[q±1]-module H⊗Z C. We note that the parameter q is treated
here as a formal invertible variable, and as such H is often referred to as a generic Hecke
algebra. Specializing q and W in various ways leads to previously well studied algebras.

For example, (4.40) specializes at q = 1 to the quadratic relation in W , and hence HC is a
q-deformation of the group algebra CW . When W is finite, Tits’ deformation argument [12,
Ch.IV, §2] shows that in fact HC is generically semisimple and isomorphic to CW ; however,
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in order to write down an explicit bijection, one needs to enlarge the ground ring to include
q1/2. As such, often the Hecke algebra has as its ground ring Z[q1/2, q−1/2], and the second
relation may be written as

(T ′s − q1/2)(T ′s + q−1/2) = 0 (4.43)

which is seen to be equivalent to the first definition by the substitution T ′s = q−1/2Ts. It is
an annoying fact of the literature that this definition seems to be non-standardized. We will
choose to include half integer powers of q, although we keep the relation (4.40).

When W is a finite Weyl group and q a prime power, H coincides with the Iwahori-Hecke
algebra of B-bi-invariant functions on G, where G is a Chevalley group over Fq with Weyl
group W and B a Borel subgroup [43]. When W is an affine Weyl group and q prime, the
same conclusion holds [44], now with G a split q-adic Chevalley group and I an Iwahori
subgroup of G. In both cases, the multiplication in H is interpreted as convolution of
functions in the latter algebras.

The case when W is an affine Weyl group can be further extended to generic q by
replacing functions supported on I \G/I by perverse sheaves on a certain affine flag variety.
This leads to many beautiful and deep statements in geometric representation theory, which
we unfortunately will not touch here, although we may at points make mention of. The
interested reader is encouraged to reference [20].

Define the bar involution, denoted ·̄, to be the unique Z-linear involution on H which
sends Tw = T−1w−1 and q = q−1. The Kazhdan-Lusztig basis {Cw}w∈W is uniquely deter-
mined by the properties

Cw = Cw (4.44)

Cw = (−1)`(w)q`(w)/2
∑
z≤w

(−q)−`(z)Pz,w(q−1)Tz (4.45)

where Pz,w(q) ∈ Z[q] is a polynomial in q of degree ≤ 1
2
(`(w) − `(z) − 1) for z < w and

Pw,w = 1. The polynomials Pz,w are Kazhdan-Lusztig polynomials and both these and
the basis elements Cw were introduced by Kazhdan and Lusztig [50] in their exploration of
singularities of Schubert varieties.

Remark 4.4.1. Kazhdan and Lusztig also defined another basis C ′w that is invariant under ·,
and given instead by

C ′w = q−`(w)/2
∑
z≤w

Pz,w(q)Tz (4.46)

In [50], the basis elements Cw are used to construct representations of H; the 1-dimensional
span of Cw0 affords the sign representation, whereas the span of C ′w0

affords the trivial
representation.

The Kazhdan-Lusztig polynomials have many geometric interpretations and the question
of their positivity as been a subject of much study in the recent decades. While a modified
proof of their positivity will be the reason why general type LLT polynomials are an N[q]-
linear combination of irreducible characters, the reader should rest assured that no knowledge
of the underlying geometry will be needed in the definition of general type LLT polynomials.
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4.5 Extended affine Hecke algebras

We fix the Cartan data X = (P,∆,∆∨) specifying a complex reductive Lie group G. Let

W,Wa, W̃ be the associated Weyl group, affine Weyl group, and extended affine Weyl group,
respectively, constructed in the previous sections.

For the general definition of LLT polynomials that will follow, we will be interested in
the extended affine Hecke algebra H̃ = H(W̃ , q). To be precise, W̃ is not a Coxeter
group, however it still has a Bruhat order and length function, outlined in Section 4.3, and
so we can still define H̃ as in Definition 4.4.1.

In line with the two presentations Π nWa and W n P for W̃ , the algebra H̃ has two
convenient presentations. For the former, the subgroup Π acts on H(Wa) with the same
action as in (4.22), namely if πsi = sjπ, then πTi = Tjπ for π ∈ Π. We have that

H̃ ' Π nH(Wa) (4.47)

and hence H̃ is generated by Π and {Tw | w ∈ Wa}, subject to the relation πf = π(f)π for
f ∈ H(Wa), π ∈ Π, along with the Hecke relations (4.39), (4.40). We will refer to this as

the Coxeter presentation of H̃. The second presentation was given by Bernstein [65] and is
detailed below.

For λ ∈ P , write λ = µ− ν where µ, ν ∈ P+. Define

Y λ = Tτ(µ)(Tτ(ν))
−1 (4.48)

The Y λ are well-defined and satisfy

Y λY µ = Y λ+µ = Y µY λ (4.49)

for all λ, µ ∈ P . Indeed, (4.49) is satisfied for λ, µ ∈ P+, since Tτ(λ)Tτ(µ) = Tτ(λ+µ) in that
case, and the general case follows immediately thereafter.

Proposition 4.5.1. The sets {TwY λ | w ∈ W,λ ∈ P} and {Y λTw | w ∈ W,λ ∈ P} are both

bases for H̃, subject to the usual multiplication laws (4.39), (4.40), the commutativity (4.49),
and the additional relation

TsiY
λ − Y si(λ)Tsi = (q − 1)

Y λ − Y si(λ)

1− Y −αi
(4.50)

for all simple roots αi, i 6= 0.

Remark 4.5.1. (1) One can also define the extended affine Hecke algebra as a quotient of
an extended affine Braid group. This Braid group is generated by {Tw | w ∈ W} and
{yλ | λ ∈ P}, with the relation (4.39) for the operators Tw and the additional relation

Tiy
λ = yλTi if siλ = λ (4.51)

Tiy
λTi = ysiλ if 〈λ, α∨i 〉 = 1 (4.52)

Further imposing the quadratic relation (4.40) then implies (4.50).
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(2) From the Bernstein presentation, we see immediately that there are two subalgebras

sitting inside H̃: the subalgebra of H̃ generated by the Tw for w ∈ W is isomorphic to
the finite Hecke algebra H(W ), and the subalgebra generated by the Y λ is isomorphic
to the weight lattice P .

The elements Y λ are q-deformations of the translation elements τ(λ), although care
has to be taken when defining Y λ for λ not a dominant weight. Like the subgroup of
translations in W̃ , the subalgebra Y := Z[u±1]Y P is commutative; however if one had
simply set Y λ = Tτ(λ) for any λ ∈ P , then the Y λ would no longer commute in general.

Example 4.5.1. Let W̃ be the extended affine Weyl group of g = sl3, pictured below.

Figure 4.3: Alcove picture for sl3, drawn by SageMath.

(a) Set λ = (1, 0,−1). Then, λ is a dominant weight that is also in the root lattice, and
so τ(λ) can be written as a product of affine simple reflections si for i ∈ {0, 1, 2}. In
particular, τ(λ) = s0s1s2s1 and hence

Y (1,0,−1) = Tτ(λ) = T0T1T2T1

(b) Set λ = (1,−1, 0). This is not a dominant weight, so write λ = (2, 0, 0)− (1, 1, 0). We
have

τ(2, 0, 0) = s0s2s1s0π, τ(1, 1, 0) = s0s1π

where π is defined in Example 4.2.3 to be the element that rotates the fundamental
alcove counter-clockwise. So,

Y (1,−1,0) = Y (2,0,0)(Y (1,1,0))−1 = T0T2T1T0ππ
−1T−11 T−10 = T0T2T

−1
0 T1

Note that τ(1,−1, 0) = s0s2s0s1, but Y (1,−1,0) 6= T0T2T0T1.
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Example 4.5.2. We do the case G = GLn. The Hecke algebra H̃ is generated by elements
{T0, T1, . . . , Tn−1, π}, subject to the relations (4.39),(4.40) for T0, . . . , Tn−1 and the additional
relation

πTi = Ti+1π (4.53)

where the indices are taken modulo n. Alternatively, H̃ is generated by the elements
{T1, . . . , Tn−1, Y1, . . . , Yn} subject to the relations

YiYj = YjYi (4.54)

TiYj = YjTi, j 6= i, i+ 1 (4.55)

TiYiTi = Yi+1 (4.56)

where again indices are taken modulo n. The element Yi in this presentation is the element
Y ei in Bernstein’s definition (4.48). The relation (4.50) implies the relations (4.55), (4.56).
The presentations are related by

T0 = Y1Y
−1
n T−11 · · ·T−1n−2T

−1
n−1T

−1
n−2 · · ·T−11 (4.57)

π = Y1T
−1
1 T−12 · · ·T−1n−1 (4.58)

In general, the Coxeter and Bernstein presentations are related as follows. If θ denotes
the highest short root, then

T0 = Y θT−1sθ
(4.59)

owing to the fact that τ(θ) = s0sθ is reduced. If π ∈ Π, following (4.24) we can write
π = τ(ω)v where v ∈ W and ω is a minuscule weight. Then

π = Y ωTv (4.60)

In light of Remark 4.5.1(2), from any representation ϕ of the finite Hecke algebra H, we

can construct the induced representation IndH̃H(ϕ) of the full extended affine Hecke algebra.
In particular, taking the trivial representation 1 in which each Ti acts by the scalar q gives
rise to the polynomial representation of H̃, with an explicit description we now review.

We define the elements e+ and e− in H̃ by

e+ = C ′w0
= q−`(w0)/2

∑
w∈W

Tw, e− = Cw0 = q−`(w0)/2
∑
w∈W

(−q)`(w0)−`(w)Tw (4.61)

where Cw0 is the Kazhdan-Lusztig basis element defined in (4.44) and C ′w0
is described in

Remark 4.4.1. The elements e+, e− are idempotents and satisfy

(Tsi − q)e+ = 0, (Tsi + 1)e− = 0 (4.62)

for all simple reflections si. The spaces Z[q±1]e+,Z[q±1]e− are the one-dimensional trivial

and sign representations, respectively, of the finite Hecke algebra H. The left H̃-modules
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H̃e+, H̃e− are then identified with the induced trivial and sign representations from H up
to the full extended Hecke algebra. From the presentation of H̃ in Proposition 4.5.1, these
modules are isomorphic to the subalgebras Ye+,Ye−, which we can further identify with the
group algebra of the weight lattice, namely

H̃e+ ' Ye+ ' Z[q±1]P (4.63)

in which we map Y λe+ 7→ xλ. Under this identification, the relation (4.50) translates to the
generator Ti acting by the Demazure-Lusztig q−divided difference operators:

Ti = qsi + (q − 1)
1

1− x−αi
(1− si) (i 6= 0) (4.64)

The elements Y λ act by multiplication on a monomial xµ.
After one identifies Z[q±1]P with a Laurent polynomial ring, the action of the Hecke

algebra H̃ via the divided difference operators (4.64) was due originally to Bernstein and
Zelevinsky and detailed by Lusztig in [68]. The monomials xλ for λ ∈ P form an obvious
basis of the space; however, a more convenient basis for us will be the basis of non-symmetric
Hall-Littlewood polynomials.

Definition 4.5.1. Given γ ∈ P , the non-symmetric Hall-Littlewood polynomial
Eγ(x; q) is

Eγ(x; q) := q−`(w)Tw(xγ+) (4.65)

where γ+ ∈ P+ is the unique dominant weight in the orbit of γ, and w ∈ W with w(γ+) = γ.

If γ is not a regular weight, then the w above is not unique; however, since q−1Tsi fixes
xµ if siµ = µ, the formula for Eγ(x; q) is independent of the choice of w and normalized so
that it has the monic form

Eγ(x; q) = xγ +
∑
β<γ

cβx
β (4.66)

where < is the Bruhat ordering defined in Section 4.3. In fact, with respect to the Bruhat
order, the operators Ti have the triangular form

Tix
λ =


qxsiλ + (q − 1)xλ + lower order terms : 〈λ, α∨i 〉 > 0

xsiλ + lower order terms : 〈λ, α∨i 〉 < 0

qxλ : 〈λ, α∨i 〉 = 0

(4.67)

from which the monic form (4.66) then follows.

Example 4.5.3. Set G = GL3 and make the identification Z[q±1]P ' Z[q±1][x±11 , x±12 , x±13 ].
Then,

E(1,0,1)(x; q) = q−1T2x
(1,1,0) = q−1

(
qx1x3 + (q − 1)

x1x2 − x1x3
1− x3/x2

)
= x1x3 + (1− q−1)x1x2

(4.68)
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These polynomials will be discussed further in Chapter 5. The pertinent property for us
now is that {Eγ}γ∈P form a basis for the space H̃e+.

More generally, we fix a parabolic subset J with corresponding standard parabolic WJ ⊆
W and Levi subgroup L ⊆ G. We define the element e−J which satisfies (Tj + 1)e−J = 0 for
all j ∈ J , and has the explicit formula

e−J = CwJ0 = q−`(w
J
0 )/2

∑
w∈WJ

(−q)`(wJ0 )−`(w)Tw (4.69)

where wJ0 is the longest permutation of WJ . Just as above, the space H̃e−J ' e−J H̃ ' IndH̃HJ (ε)
is an induced sign representation, where HJ is the subalgebra of the finite Hecke algebra H
spanned by {Tw | w ∈ WJ}.

Proposition 4.5.2. The set {e−JEγ | γ ∈ P++(L)} forms a basis for the space e−J H̃e+.

The proof will be postponed to when we discuss positivity in the next section.

4.6 General type LLT polynomials

We finally come to the definition of a general type LLT polynomial, which we give now
so as to help orient the reader. The remainder of the section is devoted to discussing two
prominent properties of LLT polynomials, the first being that they expand as an N[q]-linear
combination of irreducible characters, and the second being that they are Weyl-invariant
polynomials.

Fix the objects G,P, J, L, W̃ , H̃ as above.

Definition 4.6.1. Let β, γ ∈ P++(L). The LLT series associated to G is the formal series

LGL,β,γ(x; q) =
∑
λ∈P+

Qλ
β,γ(q

−1)χλ(x) (4.70)

where the coefficients Qλ
β,γ(q) are defined by

χλe
−
JEγ(x; q) =

∑
β

Qλ
β,γ(q)e

−
JEβ(x; q) (4.71)

i.e. they are the matrix coefficients of multiplying an irreducible character χλ by a basis
element e−JEγ and expanding into basis elements e−JEβ.

We make several observations about the LLT series.

Remark 4.6.1. (a) The presence of q−1 in (4.70) is simply because the non-symmetric Hall-
Littlewood polynomials are technically polynomials in q−1.
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(b) The LLT series is a formal series, since the sum is over all dominant weights. Re-
gardless, we may be careless and refer to these objects as LLT polynomials, with the
understanding that they contain an infinite number of terms. In the case G = GLn,
we will see shortly how a certain truncation of this series will coincide with the LLT
polynomials (which are truly polynomials) defined in Section 2.2.

(c) When q = 1, the basis element e−JEγ specializes to

e−JEγ = e−J x
γ =

∑
w∈WJ

(−1)`(w)xw(γ) (4.72)

This is an antisymmetric WJ -invariant element, and hence divisible by the partial
Vandermonde determinant

aρL := xρL ·
∏

α∈R+(L)

(1− x−α) (4.73)

where ρL ∈ P satisfies 〈ρL, α∨j 〉 = 1 for all j ∈ J . The weight ρL is not uniquely
determined, however is such that P++(L) = P+(L) + ρL. From the Weyl character
formula, the quotient of (4.72) by aρL is precisely the irreducible character χγ−ρL(L) of
L. Hence, the expression (4.71) for the coefficient of χλ in LGL,β,γ is also the multiplic-
ity of the irreducible representation χβ−ρL(L) in χλ|L ⊗ χγ−ρL(L), whence the formal
identity of characters

LGL,β,γ(x; 1) = IndGL(χβ−ρL(L)⊗ χ∗γ−ρL(L)) (4.74)

When G = GLn, L = GLr1 × · · ·GLrk , β − ρL = (β(1), . . . , β(k)), and γ − ρL = 0, this
is merely the statement that the LLT polynomial at q = 1 is the product of Schur
polynomials sβ(1)(x) · · · sβ(k)(x).

The reader is welcome to skip the following two subsections without any worry of dis-
continuity.

Positivity

Before we tackle the notion of positivity of the coefficients, we will need to modify Definition
4.6.1 to a more suitable form. To that end, we delve a bit more into the space e−J H̃e+.
We start by presenting an alternate basis, which we will see presently is nothing more than
a relabelling of the basis e−JEβ given in Proposition 4.5.2. We first note that an element
e−J Txe

+ only depends, up to a power of q, on the double coset WJxW . Indeed, if we suppose
x is minimal in its double coset and write y = wxv, where w ∈ WJ and v ∈ W , then

e−J Tye
+ = e−J TwTxTve

+ = (−1)`(w)q`(v)e−J Txe
+ (4.75)

We say a double coset WJxW is regular if it is a regular orbit for the left action of WJ on
W̃/W , or equivalently, the right action of W on WJ\W .
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Proposition 4.6.1 ([28]). As w ranges over any choice of coset representatives for the

regular double cosets WJwW , the elements e−J Twe
+ form a basis for e−J H̃e+.

Without the regularity condition, it follows from (4.75) that the set in question spans.
We restrict to regular double cosets simply because if x is a representative for WJxW that
is not regular, then one shows that e−J Txe

+ = 0, due to the alternating factor e−J .
Extending the bijection (4.33) to regular double cosets gives

P++(L) ' (WJ\W̃/W )reg, β 7→ WJτ(β)W (4.76)

A convenient choice of coset representatives are the minimal representatives. In other words,
as β ranges over P++(L), with v the minimal element of WJτ(β)W , the elements

e−J Tve
+ ∼

∑
w∈WJτ(β)W

Tw (4.77)

form a linear basis for e−J H̃e+, where we write ∼ to mean “up to a power of q”. This choice

is referred to as the standard basis of the module e−J H̃e+. The following is Proposition
6.3(i) in [28].

Proposition 4.6.2. Let β ∈ P++(L). Let w ∈ W J be such that w(β) ∈ P+. If v is
the minimal element of WJτ(β)W , then vw0 = w−1τ(w(β)), with both sides reduced. In
particular, e−J Tve

+ = q−`(ww0)e−JEβ.

Proof. We only give a few details. Setting λ = w(β), one shows that w−1τ(λ) is minimal
in WJw

−1τ(λ) and also maximal in w−1τ(λ)W , from which one concludes the identity of
reduced factorizations. For the last part, we use that λ ∈ P+ and the identification xλ =
Y λe+ = Tτ(λ)e

+ to see that

e−J Tve
+ = e−J Tvw0T

−1
w0
e+ = q−`(w0)e−J Tw−1Tτ(λ)e

+ = q−`(w0)e−J Tw−1xλ = q−`(ww0)e−JEβ (4.78)

We let P λ
v,w(q) denote the matrix coefficients defined by

χλe
−
J Twe

+ =
∑
v

P λ
v,w(q)e−J Tve

+ (4.79)

where e−J Twe
+ and e−J Tve

+ are standard basis elements. If v, w are the minimal coset repre-
sentatives for WJτ(β)W and WJτ(γ)W , respectively, then it follows from Proposition 4.6.2
that

P λ
v,w(q) = qdQλ

β,γ(q) (4.80)

for some integer d. Putting everything together, we arrive at the following alternate definition
of LLT polynomials.
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Definition 4.6.2. Let β, γ ∈ P++(L). Let v, w be the minimal elements of WJτ(β)W and
WJτ(γ)W , respectively. Then, there is some power d such that

LGL,β,γ(x; q) = qd
∑
λ

P λ
v,w(q)χλ(x) (4.81)

where P λ
v,w(q) is defined in (4.79).

The power d can be given a more explicit description, as is done in [28, Remark 5.10].
This may seem like a trivial relabelling of basis elements, however it leads to a more natural
interpretation of positivity.

Theorem 4.6.1 ([28]). The coefficients of χλ in the LLT series LGL,β,γ(x; q) are polynomials
in q with non-negative coefficients.

The proof is beyond the scope of this thesis, although we speak a bit about how the result
transpires. Long-standing conjectures in Kazhdan-Lusztig theory have revolved around the
positivity of the coefficients of various Kazhdan-Lusztig polynomials. When J = ∅, the
positivity of the original polynomials P λ

v,w(q) was first proved by Dyer and Lehrer [23],
who showed that the operator of multiplication by a Kazhdan-Lusztig basis element Cv has
positive matrix coefficients on the standard basis {Tw}. Preceding this proof was a theorem
of Springer and Lusztig [69, 83] that the same operator has positive matrix coefficients on
the basis {Cw}. Kashiwara and Tanisaki [48] extended these results to the positivity of
Deodhar’s parabolic Kazhdan-Lusztig polynomials.

The standard proof of positivity is shown by identifying the Hecke algebra with a convo-
lution algebra of constructible sheaves on a flag variety, with the classical stratification by
Schubert cells. The Kazhdan-Lusztig basis element Cw is identified with an intersection co-
homology sheaf on the Schubert cell corresponding to w. The standard basis Tw is identified
with a pushfoward (with proper support) of the constant sheaf on a Schubert cell. The bar
involution is identified with a natural duality functor. With this perspective, the matrix co-
efficients are interpreted as graded decomposition factors of irreducible constructible sheaves
in the convolution of two sheaves, and hence innately positive.

In [28], the authors extend this argument to a new hybrid basis {CTw} they define,
which depends on a parabolic subgroup WJ and interpolates between Cw (when WJ = W )
and Tw (when WJ = 1). They show that the operator Cv on the basis {CTw} has positive
matrix coefficients and that these coefficients can be naturally identified with our polynomials
P λ
v,w(q) (up to a power of q), whence Theorem 4.6.1. While we know the coefficient of an

irreducible character in an LLT series has coefficients in N[q±1/2], it still remains to compute
these coefficients combinatorially and manifestly exhibit their positivity. This is achieved in
certain cases in the next chapter, and we again reassure the reader that no knowledge of this
geometric background will be needed in the combinatorics that follow.



CHAPTER 4. ROOT SYSTEMS, WEYL GROUPS, HECKE ALGEBRAS AND ALL
THAT 59

Symmetry

The question of Weyl group invariance is straightforward from Definition 4.6.1, but not at
all obvious from any of the combinatorial definitions 2.2.1, 2.2.3, or 2.2.4 in type A. Several
proofs of the fact that LLT polynomials are symmetric already exist [21, 30, 57], and we
spend some time relating the original algebraic proof to the current setting.

To briefly summarize the argument given in [57], the reason that LLT polynomials are
symmetric is because the coefficient of xλ is essentially the same as the coefficient 〈β | Vλ | γ〉,
where Vλ = Vλ1 · · ·Vλ` is an operator acting on a basis element |γ〉 of some module. One has
that [Vi, Vj] = 0, hence the coefficient of xλ is the same as the coefficient of xw(λ) for any
permutation w.

In the language of physicists and of [57], the module in question is the (fermionic) Fock

space for Uq(ŝln), which is a certain subspace of infinite wedge products. The Fock space
is also endowed with an action of the center of an infinite affine Hecke algebra, which is
where the operators Vi lie, and the reason why they commute. This interpretation leads
more naturally to the spin definition of LLT polynomials.

The action of this Hecke algebra on the Fock space is the same action as by the Demazure-
Lusztig q-divided difference operators defined in (4.64). We won’t go over the exact details
of how to relate this construction back to the Fock space construction, as it requires some
finnicky details with choosing a certain level and multicharge of the Fock space. The in-
terested reader is encouraged to refer to [46] for a classical series of lectures on affine Lie
algebras and Fock spaces, and to [59] for how the Fock space relates to LLT polynomials.
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Chapter 5

Combinatorial Formulas for Classical
Type LLT Polynomials

This chapter is devoted to our main results, which give combinatorial formulas for the LLT
series defined in the previous chapter for Sp2n, albeit with certain conditions. We offer an
outline of this chapter so as to help clarify the various conditions and specializations.

We start in Section 5.1 by reviewing the theory of non-symmetric Hall-Littlewood polyno-
mials, as they are essential objects for computing LLT series, and also defining the inversion
statistic that will ultimately be q-counted by the LLT polynomials. In Section 5.2, we in-
troduce a twisted analogue and prove various identities of LLT series in arbitrary Lie type
when the Levi L is specialized to a maximal torus T . In Section 5.3, we specialize G to the
general linear and symplectic groups. For the general linear group, we recall the proof that a
polynomial truncation of the LLT series coincides with the combinatorial LLT polynomials,
given as a q−generating function over tuples of semistandard tableaux. Most of the material
up until this point can be found in [10] in the case when G = GLn.

We then adapt the proof for GLn to the symplectic case, where we define polynomial trun-
cation and a new combinatorial object, called an out-in tableau (Definition 5.3.1), which is
nothing more than an extension of a vertical semistandard oscillating tableau to compo-
sitions. We show that the symplectic LLT polynomials are generating functions for these
out-in-tableau in the case when all the parts are sufficiently far from zero. Most of what is
proven for the symplectic case also carries over into the orthogonal groups, which we briefly
discuss in Section 5.4.

In the final section, we give another combinatorial formula for symplectic LLT polyno-
mials, this time for an arbitrary Levi L, however at the specialization q = 1. In this case, we
use our bijection between semistandard oscillating tableaux and symplectic tableaux given
in Chapter 3 to write the LLT polynomials as generating functions over symplectic tableaux.
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5.1 Non-symmetric Hall-Littlewood polynomials

We recall the notion of a non-symmetric Hall-Littlewood polynomial, first introduced in
Section 4.4,

Eγ(x; q) = q−`(w)Twx
γ+ (5.1)

where γ+ ∈ P+ is the unique dominant weight in the Weyl orbit of γ and w(γ+) = γ.
We will also make use of their twisted variants and duals

Definition 5.1.1. Given σ ∈ W , the twisted non-symmetric Hall-Littlewood poly-
nomials Eσ

λ (x; q) and their duals F σ
γ (x; q) are defined as

Eσ
γ (x; q) = qdσ(γ)T−1σ−1Eσ−1(γ)(x; q) (5.2)

F σ
γ (x; q) = Eσw0

−γ (x; q) = Eσw0
−γ (x−1; q−1) (5.3)

where dσ(λ) = |{α∨ ∈ Inv(σ−1) | 〈γ, α∨〉 ≥ 0}| and w0 is the longest element of W .

Recall here that the inversions of σ ∈ W , denoted Inv(σ), are the positive roots (or
coroots) sent to negative roots (or coroots). To aid in keeping track of powers of q, we
extend this notion to weights.

Definition 5.1.2. Let γ ∈ P . An inversion of γ is a positive coroot α∨ ∈ R∨+ with
〈γ, α∨〉 > 0. The set of inversions of γ is denoted Inv(γ) and the number of inversions
denoted inv(γ).1

In the case of GLn, the weight lattice can be identified with Zn, in which case an inversion
of γ ∈ Zn is a pair i < j with γi > γj. In the case of Sp2n, an inversion of γ ∈ Zn is either
(1) a pair i < j with γi > γj, (2) a pair i < j with γi > −γj, or (3) an index i with γi > 0.

In general, if γ− is the unique antidominant weight in the Weyl orbit of γ, and say
w(γ−) = γ with w minimal, then | Inv(γ)| = `(w). In particular, an antidominant weight
will have no inversions, and conversely a strictly dominant weight will have |R+| inversions.

The power dσ(γ) in Definition 5.1.1 is defined precisely to make Eσ
γ monic, with the same

form as (4.66). More specifically, there holds the recurrence

Eσ
γ =

{
q−δsiγ≤γTiE

siσ
siγ
, siσ > σ

qδsiγ≥γT−1i Esiσ
siγ
, siσ < σ

(5.4)

where δP is 1 if the condition P is true and 0 otherwise. The twisted variants are determined
by (5.4), along with the initial condition Eσ

γ (x; q) = xγ if γ ∈ P+ is dominant. If σ = e,
then the twisted variants Eσ

γ , F
σ
γ reduce to the usual Eγ, Fγ. In particular, we arrive at a

1It may be wiser to call these coinversions, as we will see that they align more naturally with the
coinversion statistic of type A LLT polynomials (not to mention that the prefix matches that of coroot).
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useful alternate formula for Fγ(x; q): if γ− ∈ −P+ and v minimal with v(γ−) = γ, then (5.4)
implies

Fγ(x; q) = Ew0
−γ(x; q) = T−1v−1E

v−1w0

−v−1γ(x; q) = T−1v−1x−(γ−) = Tvx
γ− (5.5)

There are unfortunately several different definitions of a non-symmetric Hall-Littlewood
polynomial in the literature. Our Eγ, Fγ coincide with specializations of non-symmetric
Macdonald polynomials considered by Ion in [42] and Haiman, Haglund, Loehr in [29], as
q → 0 for Eγ and q → ∞ for Fγ, and t replaced with q−1. The twisted Eσ

γ is a specializa-
tion of the permuted basement non-symmetric Macdonald polynomials for GLn studied by
Alexandersson in [3].

The polynomials Eσ
γ and F σ

γ are dual in the following sense, which can be viewed as a
non-symmetric version of the inner product (2.46).

Proposition 5.1.1. For σ ∈ W , the polynomials Eσ
γ (x; q) and F σ

γ (x; q) are dual bases of
Q(q)P with respect to the inner product defined by

〈f, g〉q = 〈x0〉fg
∏
α∈R+

1− xα

1− q−1xα
(5.6)

In other words, 〈Eσ
γ , F

σ
β 〉 = δγ,β for all λ, µ ∈ P and w ∈ W .

This is Proposition 4.3.2 in [10], and the proof can be found therein. We only remark that
the proof relies on the fact that the operators Ti are self-adjoint with respect to 〈−,−〉q.
Part of Macdonald’s inner product formula [19, 70] shows that the W -symmetrization of
(5.6) coincides with the inner product (2.46) for Hall-Littlewood polynomials Pλ(x; q−1). In
particular, one equivalently defines Pλ(x; q−1) by

Pλ(x; q−1) =
1

Wλ(q)

∑
w∈W

q`(w0)−`(w)Ewλ(x; q) =
∑
β∈W ·λ

qinv βEβ(x; q) (5.7)

where Wλ(q) =
∑

w∈Stab(λ) q
`(w).

The non-symmetric Hall-Littlewood polynomials have the property that if λ ∈ P+, then

Ew0λ(x;∞) = χλ(x) (5.8)

where χλ is the irreducible character of G with highest weight λ. In fact, a more general
result holds. At q−1 = 0, the action of q−1Ti in (4.64) specializes to

(q−1Ti)
∣∣
q−1=0

= si +
1− si

1− x−αi
=

1− x−αisi
1− x−αi

=: ∂i (5.9)

where ∂i is a Demazure operator, defined in [22]. The Demazure operators satisfy the braid
relations and so one unambiguously defines ∂w = ∂s1 · · · ∂sr for any reduced factorization
w = s1 · · · sr, from which we get the more general identity

Ewλ(x;∞) = ∂wx
λ (5.10)
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for any dominant weight λ ∈ P+ and w ∈ W . It was moreover shown that ∂w0x
λ = χλ, from

which (5.8) then follows.
The polynomials Kγ := ∂wx

γ+ are known as key polynomials or Demazure charac-
ters in the literature. The dual basis elements Fγ specialize to what are known as Demazure
atoms, given as

Fwλ(x; 0) = Θw(xλ) (5.11)

where Θi := 1−si
xαi−1 also satisfy the braid relations. The reader is warned that Demazure

atoms and characters are often conflated and our terminology here may be in contrast to
other sources.

5.2 LLT polynomials for the torus

We recall that the LLT series of G, specialized to when the Levi L = T is a maximal torus,
is given by

〈χλ〉Lβ,γ(x; q−1) = 〈Eβ(x; q)〉χλEγ(x; q) (5.12)

where 〈f〉 denotes the coefficient of f . We also define their twisted analogs in this case.

Definition 5.2.1. Let σ ∈ W . The twisted LLT series Lσβ,γ are defined by

〈χλ〉Lσ
−1

β,γ (x; q−1) = 〈Eσ
β (x; q)〉χλEσ

γ (x; q) (5.13)

While the statement below is not given directly in [10], it is essentially proven in the
proof that Eσ

λ and F σ
λ are dual bases. We provide a proof for completeness.

Proposition 5.2.1. Let σ ∈ W and β, γ ∈ P . Then,

Lσβ,γ(x; q) = qdLσ(β),σ(γ)(x; q) (5.14)

where d = | Inv(σ) ∩ (Inv(β + ρ) \ Inv(γ + ρ))| − | Inv(σ) ∩ (Inv(γ + ρ) \ Inv(β + ρ))|

Proof. For sake of notation, we prove (5.14) at q−1. In that case, the coefficient of χλ on the
left hand side is given by

〈χλ〉Lσβ,γ(x; q−1) = 〈F σ−1

β (x; q), χλE
σ−1

γ (x; q)〉q = 〈Eσ−1w0
−β , χλE

σ−1

γ 〉q (5.15)

Since `(w0) = `(σ−1w0) + `(σ−1), it follows from repeated applications of (5.4) that

Eσ−1w0
−β (x; q) = qhTσ−1Ew0

−σ(β)(x; q) (5.16)

where

h = dσ−1w0
(−β)− dw0(−σ(β))

= |{α∨ ∈ Inv(w0σ) | 〈−β, α∨〉 ≥ 0}| − |{α∨ ∈ R∨+ | 〈−σ(β), α∨〉 ≥ 0}|
= |{α∨ 6∈ Inv(σ) | 〈β, α∨〉 ≤ 0}| − |{α∨ ∈ R∨+ | 〈β, σ−1(α∨)〉 ≤ 0} (5.17)
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where in the last equality we’ve used the W -invariance of 〈·, ·〉 and the fact that α∨ ∈
Inv(w0σ) is equivalent to α∨ 6∈ Inv(σ). We can split the second term, casing on whether a
coroot is an inversion of σ−1 or not. In the case α∨ 6∈ Inv(σ−1), we find

|{α∨ 6∈ Inv(σ−1) | 〈β, σ−1(α∨)〉 ≤ 0}| = |{α∨ 6∈ Inv(σ) | 〈β, α∨〉 ≤ 0}| (5.18)

after reindexing α∨ 7→ σ−1(α∨), which cancels with the first term in (5.17). Similarly, in the
case α∨ ∈ Inv(σ−1), we find

|{α∨ ∈ Inv(σ−1) | 〈β, σ−1(α∨)〉 ≤ 0}| = |{α∨ ∈ Inv(σ) | 〈β, α∨〉 ≥ 0}| = dσ−1(β) (5.19)

where we reindex α∨ 7→ −σ−1(α∨), and hence h = −dσ−1(β). Now, as the operators Ti are
self-adjoint with respect to 〈−,−〉q, (5.15) together with (5.16) simplifies to

〈χλ〉Lσβ,γ(x; q−1) = qh〈Tσ−1Ew0

−σ(β)(x; q), χλE
σ−1

γ (x; q)〉q
= qdσ−1 (γ)−dσ−1 (β)〈Ew0

−σ(β)(x; q), χλEσ(γ)(x; q)〉q
= qdσ−1 (γ)−dσ−1 (β)〈Fσ(β)(x; q), χλEσ(γ)(x; q)〉q
= qdσ−1 (γ)−dσ−1 (β)〈χλ〉Lσ(β),σ(γ)(x; q−1) (5.20)

where

dσ−1(γ)− dσ−1(β) = |{α∨ ∈ Inv(σ) | 〈γ, α∨〉 ≥ 0}| − |{α∨ ∈ Inv(σ) | 〈β, α∨〉 ≥ 0}|
= |{α∨ ∈ Inv(σ) | 〈γ, α∨〉 ≥ 0, 〈β, α∨〉 < 0}|
− |{α∨ ∈ Inv(σ) | 〈γ, α∨〉 < 0, 〈β, α∨〉 ≥ 0}| (5.21)

which one see matches the desired identity.

5.3 General linear and symplectic cases

We review how the LLT polynomials defined in Definition 4.6.1 relate to the combinatorial
LLT polynomials in type A, given in Definition 2.2.3. We set G = GLn and make the
identifications P ' Zn and Z[q±1]P ' Z[q±1][x±11 , . . . , x±1n ]. The exact statement is as
follows

Proposition 5.3.1. Let β, γ ∈ Zn and suppose γi ≤ βi for all i. Let β/γ = (β1/γ1, . . . , βn/γn)
denote the tuple of skew shapes with contents, with a single row in each skew shape. Then,

LGLn
T,β,γ(x1, . . . , xn; q)pol = Lβ/γ(x1, . . . , xn; q) (5.22)

where pol denotes the “polynomial truncation” to GLn characters sλ(x) with λn ≥ 0.

This is Proposition 4.5.3 in [10] and Corollary 6.19 in [28] when L = T . As the proof tech-
niques therein will be essential to us, we provide the details below. The essential step will be
to find the coefficient of Eβ(x; q) in the product ek(x)Eγ(x; q), where ek(x) = ek(x1, . . . , xn)
denotes the elementary symmetric polynomial in n variables. To that end, we show
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Lemma 5.3.1 ([10]). Let G = GLn, γ ∈ Zn and k ∈ N. Then,

ek(x)Eγ(x; q) =
∑
|I|=k

q−hIEγ+εI (x; q) (5.23)

where I ⊆ {1, . . . , n} has k elements, εI =
∑

i∈I εI is the indicator vector of I, and

hI = | Inv(γ + εI) \ Inv(γ)| (5.24)

Equivalently, hI is the number of pairs i < j such that i ∈ I, j 6∈ I and γi = γj.

Proof. We note that because ek(x) is symmetric, it commutes with any Tw, so that

ek(x)Eγ = q−`(w)Twek(x)xγ+ = q−`(w)
∑
|I|=k

Twx
γ++εI (5.25)

Setting λ := γ+ + εI , we note that λ can fail to be dominant at worst by having entries
λi = λj + 1 for some i > j with (γ+)i = (γ+)j. We pick vI minimal so that vI(λ) = λ+, that
is vI moves indices i ∈ I as above to the left within each constant block in γ+. We note that
Tixi+1 = xi, and more generally

Ti(x
a
i x

a+1
i+1 ) = xa+1

i xai+1 (5.26)

from which it follows that TvI (λ) = λ+. Hence,

xγ++εI = T−1vI
x(γ++εI)+ (5.27)

Now, we can pick w maximal in its coset w Stab(γ+), and since vI only permutes entries
in constant blocks of γ+, it follows that `(wv−1I ) = `(w) − `(vI), so that TwT

−1
vI

= Twv−1
I

.

Putting everything together, we see that (5.25) becomes

ek(x)Eγ = q−`(w)
∑
|I|=k

Twv−1
I
x(γ++εI)+ =

∑
|I|=k

q−`(vI)Eγ+w(εI) (5.28)

It remains to compute `(vI). We let β = γ + w(εI) = w(λ). The length `(vI) is precisely
the number of pairs i′ > j′ with λi′ = λj′ + 1 and (γ+)i′ = (γ+)j′ . As w is maximal, these
are also the pairs i < j, where i = w(i′), j = w(j′), with βi = βj + 1 and γi = γj. In other
words, e∨i − e∨j ∈ Inv(β) \ Inv(γ). As I ranges over subsets of size k, so too does w(I), giving
(5.23).

We remark that the exact same proof carries over for the multiplication ek(x
−1)Eγ(x; q),

yielding the expansion

ek(x
−1)Eγ(x; q) =

∑
|J |=k

q−hIEγ−εJ (x; q) (5.29)

where J ⊆ {1, . . . , n} has k elements, and hJ = | Inv(γ − εJ) \ Inv(γ)|.
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Proof of Proposition 5.3.1. If we consider γ drawn in French notation, then the weight γ+εI
as in (5.23) differs from γ by the vertical strip εI , where by vertical strip we mean that
(γ + εI)/γ has at most one box in each row. It follows then from Lemma 5.3.1 that the
coefficient of Eβ in the product eλ(x)Eγ(x; q) is nonzero if and only if β/γ can be decomposed
as a sequence of vertical strips εI1 , . . . , εI` whose sizes are λ1, . . . , λ`. We record this data by
placing an i in every cell added in the ith vertical strip, as in Figure 5.1. What results is a
negative tableau of shape β/γ, as defined in Proposition 2.4.2. On the negative tableau, we

1 3 5

2

1 4

Figure 5.1: Starting at γ = (2, 2, 1, 3), we add the indicator vectors, in order, of the subsets
I1 = {1, 3}, I2 = {2}, I3 = {3}, I4 = {1}, I5 = {3}. The respective inversions added at
each step are 1, 1, 0, 3, 1, so that if β = (4, 3, 4, 3), then the coefficient of Eβ in the product
e5(x)Eγ(x; q) has a term q6 = q1+1+0+3+1.

can recast an inversion as follows: After adding εIi , the statistic hIi counts the number of
pairs of cells u, v in which (1) v has label i, (2) u is in the column directly left on a strictly
higher row than v, and (3) either u is in γ or has label strictly less than i. Adding all the
statistics hIi gives

〈Eβ(x; q)〉eλ(x)Eγ(x; q) =
∑

T∈NegTab(β/γ,λ)

q−h(T ) (5.30)

where h(T ) is the number of triples of boxes of the form

a c

b

(5.31)

where a < b < c, and we set a = 0 if a is a cell in γ and c = ∞ if it is not present. In
other words, h(T ) is precisely the number of negative coinversions of the negative tableau
T . Extending to infinitely many variables, we find

ωLβ/γ(X; q) =
∑

T∈NegTab(β/γ)

qcoinv(T )xT =
∑
λ

mλ(X)〈Eβ(y)〉eλ(y)Eγ(y; q) (5.32)

where we have introduced another set of variables y1, . . . , yn and ω is the involution on the
ring of symmetric functions defined in Section 2.4. Finally, using the dual Cauchy identity
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(2.31) and applying ω in the X variables, we write (5.32) as

Lβ/γ(X; q) =
∑
λ

sλ(X)〈Eβ(y)〉sλ(y)Eγ(y; q) (5.33)

the right hand side being precisely the image of LGLn
T,β,γ(x; q)pol in infinitely many variables.

We wish now to derive an analogue of Proposition 5.3.1 when G = Sp2n, that is, we want
a symplectic combinatorial definition that could replace the right hand side of (5.22).

For the remainder of this section, we set G = Sp2n, so that W = {s1, . . . , sn}
is the group of signed permutations as in Chapter 3. We again make the

identifications P ' Zn and Z[q±1]P ' Z[q±1][x±11 , . . . , x±1n ]

There are two key components to the proof of Proposition 5.3.1: (1) a combinatorial
formula for multiplying an ek(x) by an Eγ(x; q) as in (5.23) and (2) a Cauchy identity for
which ek(x) is dual to (the involution ω of) a monomial symmetric polynomial. For the
latter, (3.13) gives an appropriate analogue, involving the elementary symmetric polynomial
ek(x, x

−1) in the variables x and their inverses. We are then left with finding a combinatorial

formula for the coefficients c
(k)
β,γ(q) in

ek(x, x
−1)Eγ(x; q) =

∑
β

c
(k)
β,γ(q)Eβ(x; q) (5.34)

If we naively try the same argument as in the proof of Lemma 5.3.1, we come to the following
expression

ek(x, x
−1)Eγ =

∑
|I|+|J |=k

q−`(w)Twx
γ++εI−εJ (5.35)

at which point we hit three immediate barriers, owing to the fact that λ = γ+ + εI − εJ can
fail to be dominant in more ways than in the GLn case.

To start, λ = γ+ + εI − εJ could fail to be dominant at worst by having some entries
λj = λi + 2 for some i < j with (γ+)i = (γ+)j. This happens in the case i ∈ J \ I and
j ∈ I \ J . We can use the identity

x2i+1 = T−1i x2i + (q−1 − 1)xixi+1 (5.36)

to straighten xλ, which results not in a single monomial, but rather a polynomial with
coefficients q−a(q−1 − 1)b. This can quickly become unwieldy for arbitrary εI , εJ .

The second impediment is when λ fails to be dominant by having entries λj = λi + 1
for some i < j with (γ+)i = (γ+)j + 1, again in the case i ∈ J \ I and j ∈ I \ J . In this
case, we can straighten xλ = T−1v xλ+ with only a single monomial, however it might no
longer be the case that TwT

−1
v = Twv−1 . Indeed, this relied on the fact that we chose w

maximal and v only permuted along constant blocks of γ+. As v no longer stabilizes γ+,
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it could happen that `(wv−1) 6= `(w) − `(v−1) and so we need to use the Hecke relation
TwT

−1
s = q−1Tws + (q−1 − 1)Tw, hence arriving at the same problem above of straightening

xλ into a polynomial with coefficients q−a(q−1 − 1)b.
A third obstacle occurs when λ fails to be dominant by having an entry λj = −1 for

some j with (γ+)j = 0. If there are many such occurrences, then straightening λ involves
again using the identity (5.36), leading to the same unwieldy expression.

The problem common to all three impediments is that even with a meticulous tracking of
all the coefficients, we arrive at an expression for the coefficient c

(k)
β,γ in (5.34) as a polynomial

in q−1 and (q−1 − 1). It still remains to exhibit c
(k)
β,γ as a polynomial in q−1 with positive

coefficients. After all, by Theorem 4.6.1, since ek− ek−2 is an irreducible character, we know

that the coefficients c
(k)
β,γ are in N[q−1]. This positivity must follow then from an intricate

and rather mysterious cancelling of terms. Before continuing with this line, we prove two
cases in which the obstacles listed above can be overcome.

Lemma 5.3.2. Let γ ∈ (Z>0)
n and k ∈ N. Then,

ek(x, x
−1)Eγ(x; q) =

∑
I,J

|I|+|J |=k

q−hI,JEγ+εI−εJ (x; q) (5.37)

where I, J ⊆ {1, . . . , n}, and

hI,J = | Inv(γ + εI) \ Inv(γ)|+ | Inv(γ + εI − εJ) \ Inv(γ + εI)| (5.38)

Proof. Under the assumption γ ∈ (Z>0)
n, we can write Eγ(x; q) = q−`(w)Twx

γ+ , where
w(γ+) = γ, then w is in fact a permutation in Sn. Then, using the identity ek(x, x

−1) =∑
a+b=k ea(x)eb(x

−1), we have

ek(x, x
−1)Eγ(x; q) =

∑
a+b=k

eb(x
−1)
(
ea(x)q−`(w)Twx

γ+
)

(5.39)

where the term in parentheses can now be viewed as the product of ea(x) with the non-
symmetric Hall-Littlewood polynomial Eγ(x; q) for GLn. Following (5.23), the product will
decompose into a linear combination of terms Eγ+εI , which again can be viewed as an object
for GLn, since γ+ εI also has all positive terms, whose subsequent product with eb(x

−1) can
then be decomposed following (5.29). Putting everything together, we have

ek(x, x
−1)Eγ(x; q) =

∑
a+b=k

∑
|I|=a

q−hIeb(x
−1)Eγ++εI (5.40)

=
∑
I,J

|I|+|J |=k

q−(hI+hJ )Eγ++εI−εJ (5.41)

where hI + hJ is exactly the desired expression (5.38), albeit technically with inversions
restricted to coroots α∨ that are also coroots in GLn; however, with the assumption γ ∈
(Z>0)

n, there are in fact no inversions of the form e∨i + e∨j that are in the set difference of
either term in (5.38).
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Corollary 5.3.1. Let γ ∈ Zn with no zero entries and let σ ∈ W be the involution which
negates all negative entries of γ. Then,

ek(x, x
−1)Eσ

γ (x; q) =
∑
I,J

|I|+|J |=k

q−h
σ
I,JEσ

γ+εI−εJ (x; q) (5.42)

where I, J ⊆ {1, . . . , n}, and

hσI,J = | Inv(σ) ∩ (Inv(β + ρ) \ Inv(ν + ρ))|+ | Inv(σ) ∩ (Inv(ν + ρ) \ Inv(γ + ρ))|
+ |(Inv(β) \ Inv(ν)) \ Inv(σ)|+ |(Inv(ν) \ Inv(γ)) \ Inv(σ)| (5.43)

where ν = γ + εI and β = γ + εI − εJ .

Proof. For fixed I, J, we set ν = γ+ εI and β = γ+ εI − εJ . From Proposition 5.2.1 relating
twisted LLT series with the untwisted ones, we have

〈Eσ
β (x; q)〉ek(x, x−1)Eσ

γ (x; q) = q−d〈Eσ(β)(x; q)〉ek(x, x−1)Eσ(γ)(x; q) (5.44)

where

d = |{α∨ ∈ Inv(σ) | 〈β, α∨〉 ≥ 0, 〈γ, α∨〉 < 0}| − |{α∨ ∈ Inv(σ) | 〈β, α∨〉 < 0, 〈γ, α∨〉 ≥ 0}|
(5.45)

As σ(γ) has all positive entries, from (5.38) the coefficient on the right hand side of (5.44)
is q−h, where

h = | Inv(σ(ν)) \ Inv(σ(γ))|+ | Inv(σ(β)) \ Inv(σ(ν))| (5.46)

Following the proof of Proposition 5.2.1, specifically the identities (5.19), (5.18), we rewrite

| Inv(σ(ν)) \ Inv(σ(γ))| = |{α∨ ∈ Inv(σ) | 〈ν, α∨〉 < 0, 〈γ, α∨〉 ≥ 0}|
+ |{α∨ 6∈ Inv(σ) | 〈ν, α∨〉 > 0, 〈γ, α∨〉 ≤ 0}| (5.47)

| Inv(σ(β)) \ Inv(σ(ν))| = |{α∨ ∈ Inv(σ) | 〈β, α∨〉 < 0, 〈ν, α∨〉 ≥ 0}|
+ |{α∨ 6∈ Inv(σ) | 〈β, α∨〉 > 0, 〈ν, α∨〉 ≤ 0}| (5.48)

The terms in (5.47), (5.48) counting inversions in Inv(σ) combine with (5.45) to give

|{α∨ ∈ Inv(σ) | 〈β, α∨〉 ≥ 0, 〈ν, α∨〉 < 0}|+|{α∨ ∈ Inv(σ) | 〈ν, α∨〉 ≥ 0, 〈γ, α∨〉 < 0}| (5.49)

Combining with the terms in (5.47), (5.48) counting inversions not in Inv(σ) gives the desired
result.

We also have a dual statement, which we note is not a direct result of Corollary 5.3.1, as
that situation only applies to choices σ, γ with σ(γ) having all positive entries.



CHAPTER 5. COMBINATORIAL FORMULAS FOR CLASSICAL TYPE LLT
POLYNOMIALS 70

Lemma 5.3.3. Let γ ∈ (Z<0)
n and k ∈ N. Then,

ek(x, x
−1)Fγ(x; q) =

∑
I,J

|I|+|J |=k

qhI,JFγ+εI−εJ (x; q) (5.50)

where I, J ⊆ {1, . . . , n}, and

hI,J = | Inv(γ − εJ) \ Inv(γ)|+ | Inv(γ − εJ + εI) \ Inv(γ − εJ)| (5.51)

Proof. The proof is almost identical to that of Lemma 5.3.2, using the formula for Fγ given
in (5.5).

Lemmas 5.3.2, 5.3.3 can be combined using the following combinatorial gadget, which is
merely an extension of semistandard oscillating tableaux to when the indexing shapes are
compositions with possibly negative parts.

Definition 5.3.1. Let β, γ ∈ Zn. An out-in tableau of shape β/γ is a sequence

γ = υ0 = δ0 ⊆ υ1 ⊇ δ1 ⊆ υ2 ⊇ δ2 ⊆ · · · ⊇ β (5.52)

where we write υ ⊆ δ to mean |υ| ⊆ |δ|, such that

(i) the skew shapes |υi|/|δi−1| and |υi|/|δi| are vertical strips, and

(ii) each υi, δi ∈ Zn.

Note that if all intermediate shapes are partitions, then an out-in tableau of shape β/γ
is simply a vertical semistandard oscillating tableau. We have chosen to use a different
terminology for when β, γ are not dominant weights mostly for clarity.

Example 5.3.1. Let γ = (−1, 0,−2, 2, 0). The following is an out-in tableau starting from
γ with one “out” step and one “in” step.

⊆ ⊇

We let OutIn(β/γ),OutIn(β/γ, ν) denote the set of out-in tableaux of shape β/γ and
weight ν, where the weight is the same as for semistandard oscillating tableaux, namely νi
is the total number cells added or removed at the ith “out” and “in” steps.

Remark 5.3.1. Note that for parts γi = 0, there are two options for the out step υi, namely we
could have υi = ±1. There will be times when we only want to consider one of these options,
and so we define OutIn+(β/γ) to be the subset of OutIn(β/γ) for which the oscillation
0 7→ −1 is not allowed, and likewise we define OutIn−(β/γ) to be the subset for which the
oscillation 0 7→ 1 is not allowed.
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Definition 5.3.2. Let T be an out-in tableau of shape β/γ as in (5.52). Define inv T to be
the quantity

inv T =
∑
i

| Inv(υi+1) \ Inv(δi)|+ | Inv(δi+1) \ Inv(υi+1)| (5.53)

Example 5.3.2. Let G = Sp6. Let T = γ ⊆ β ⊇ β be as follows

γ = (1, 1,−1) = β = (2, 1,−1) =

Then, e∨1 − e∨2 and e∨1 + e∨3 are inversions of β but not of γ, hence inv T = 2.

It follows immediately that we can rewrite (5.37), and similarly (5.50), as

ek(x, x
−1)Eγ(x; q) =

∑
T

q− inv TEendT (x; q) (5.54)

the sum over out-in tableaux starting at γ and ending at endT , with weight (k).

We now tackle the more general condition of finding an expression for c
(k)
β,γ in (5.34) when

γ ∈ Zn. Our method of proof will follow the same format as the proof of Lemma 5.3.1. In
that vein, it will be helpful to have a more concrete description of what a permutation w
does to a dominant weight γ+, where w(γ+) = γ and w is maximal in its coset w Stab(γ+).
The following order on indices will be useful.

Definition 5.3.3. Let γ ∈ Zn. We order the indices of γ so that all nonpositive parts of
γ come first in their original order, followed by the positive parts in reverse order. More
precisely, we say i ≺ j iff one of the following conditions holds

(a) γi, γj ≤ 0 and i < j,

(b) γi ≤ 0 and γj > 0, or

(c) γi, γj > 0 and i > j.

When w is maximal with w(γ+) = γ, we make the following useful observation:

If |γi| = |γj|, then i ≺ j ⇐⇒ w−1(i) < w−1(j) (5.55)

where we view w−1 as acting on the indices, forgetting any sign changes.

Example 5.3.3. Let γ = (−1, 0, 2,−3,−2, 2, 1, 0), drawn in French notation below.
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The order on the indices is 1 ≺ 2 ≺ 4 ≺ 5 ≺ 8 ≺ 7 ≺ 6 ≺ 3. We have γ+ =
(3, 2, 2, 2, 1, 1, 0, 0). If w is maximal with w(γ+) = γ, then as a permutation on the indices,
w is given in 2-line notation as

w =

(
1 2 3 4 5 6 7 8
4 5 6 3 1 7 2 8

)
We see for example that |γ5| = |γ6| = |γ3|, 5 ≺ 6 ≺ 3, and w−1(5) < w−1(6) < w−1(3).

We now establish the following lemma, in which we show that for fixed I, the terms in
(5.35) ranging over all J , when grouped together, can themselves be written as a N[q−1]-linear
combination of Eβ’s.

Lemma 5.3.4. Let γ ∈ Zn with γi 6= 0 for all i, and k ∈ N. Fix I ⊆ n and w maximal such
that w(γ+) = γ. Then,

q−`(w)Tw(xγ++εIeb(x
−1)) =

∑
T

q− inv TEendT (x; q) (5.56)

where the sum is over out-in tableaux T = (γ ⊆ ν ⊇ β), with ν = γ + w(εI) and β = ν − εJ
for some J ⊆ [n], |J | = b.

Proof. We proceed by induction on |I|. When I = ∅, then the proof of Lemma 5.3.1 carries
over. More specifically, each monomial in xγ+eb(x

−1) is of the form xγ+−εJ for some subset
J ⊆ [n] of size b. Setting λ = γ+ − εJ , then as γ+ has no trailing zeroes, λ fails to be
dominant at worst by having entries λi = λj − 1 for some i < j with (γ+)i = (γ+)j. We can
pick vJ minimal such that vJ(λ) = λ+, that is vJ moves indices i ∈ J as above to the right
within each constant block in γ+. Using the identity Ti(x

a−1
i xai+1) = xai x

a−1
i+1 , we have that

xγ+−εJ = T−1vJ
x(γ+−εJ )+ (5.57)

Now, as w is maximal, it follows that TwT
−1
vJ

= Twv−1
J

, since `(wv−1J ) + `(vJ) = `(w). Hence,

each monomial on the left hand side of (5.56) is of the form

q−`(w)Twv−1
J
x(γ+−εJ )+ = q−`(w)q`(wv

−1
J )Ewv−1

J (γ+−εJ )+ = q−`(vJ )Eγ−w(εJ ) (5.58)

where we use the fact that v−1J (γ+ − εJ)+ = γ+ − εJ .
It remains to compute `(vJ), for which we use the same argument as in the proof of

Lemma 5.3.1, with a minor tweak. Suppose T = (γ ⊆ ν ⊇ β) is an out-in tableau with
γ = ν and β = γ − w(εJ). The length `(vJ) is precisely the number of pairs i′ < j′ with
λi′ = λj′−1 and (γ+)i′ = (γ+)j′ . Being maximal, w carries these to pairs i = w(i′), j = w(j′)
such that i ≺ j with |γi| = |γj| and |βi| = |βj| − 1.

We claim that these pairs are exactly the positive coroots α∨ = e∨i ±e∨j that are inversions
of β and not γ, so that `(vJ) = inv T . We case on the signs of γi, γj, pictured below in Figure
5.2. We let S denote the set Inv(β) \ Inv(γ).
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If γi, γj > 0, then i > j, γi = γj, and βi = βj − 1 ≥ 0. So, α∨ = e∨j − e∨i ∈ S. If γi < 0
and γj > 0, then γi = −γj and βi = −(βj − 1). So α∨ = e∨i + e∨j ∈ S. If γi, γj < 0, then
i < j, γi = γj, and βi = −(−βj − 1) = βj + 1, so α∨ = e∨i − e∨j ∈ S. The case γi > 0 and
γj < 0 is not possible, as i ≺ j.

γj

γi

(a) γi, γj > 0

γj

γi γj

γi

(b) γi < 0, γj > 0

γi

γj

(c) γi, γj < 0

Figure 5.2: Cases in which i ≺ j and there is an inversion α∨ = ε∨i ± ε∨j in Inv(β) \ Inv(γ).

Now suppose |I| ≥ 1 and write I = {i1} ∪ I ′, where i1 is the minimum element of I. Let
v1 be minimal such that v1(γ+ + εi1) = (γ+ + εi1)+, that is v1 moves the index i1 to the left
in its constant block of γ+. Let ξ = γ + w(εi1), so ξ+ = (γ+ + εi1)+ and wv−11 (ξ+) = ξ.

With our choice of i1, it follows that v1 fixes I ′, so that

v1(γ+ + εI) = v1(γ+ + εi1 + εI′) = ξ+ + εI′ (5.59)

and xγ++εI = T−1v1
xξ++εI′ . Moreover, our assumption that γ+ has no zero entries means

that v1 is in fact a permutation in Sn (a priori it is an element of the Weyl group of signed
permutations). The left hand side of (5.56) now becomes

q−`(w)Twv−1
1

(xξ++εI′eb(x
−1)) (5.60)

where we’ve appealed to the facts that the Sn-invariant polynomial eb(x
−1) commutes with

Tu for any u ∈ Sn, and again that w is maximal so TwT
−1
v1

= Twv−1
1

.

Now, wv−11 may not be maximal with wv−11 (ξ+) = ξ. However, if (γ+)i1 = a, then ξ+
and γ+ differ only at the index v1(i1), where γ+ takes the value a and ξ+ takes the value
a + 1. Moreover, by our choice of i1, (γ+)j and (ξ+)j are both ≤ a for all j ∈ I ′. Thus, if
we let u be maximal in its coset u Stab(ξ+), then since w is maximal, it follows that u and
wv−11 only differ by some permutation of the indices j with (ξ+)j = a + 1. In other words,
we can write u = wv−11 y, where y ∈ Stab(ξ+) fixes εI′ . By maximality of u, we have that
`(uy−1) = `(u)− `(y) and so `(w) = `(u)− `(y) + `(v1) and Twv−1

1
= Tuy−1 = TuT

−1
y . Then,

(5.60) reduces to

q−`(u)+`(y)−`(v1)TuT
−1
y (xξ++εI′eb(x

−1)) = q−`(v1)q−`(u)Tu(x
ξ++εI′eb(x

−1)) (5.61)

for which we can apply our inductive hypothesis to arrive at

q−`(w)Tw(xγ++εIeb(x
−1)) = q−`(v1)

∑
T ′

q− inv T ′EendT (x; q) (5.62)
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the sum over out-in tableaux T ′ = (ξ ⊆ ν ⊇ β) in which ν = ξ + u(εI′) and β = ν − εJ for
some J ⊆ [n], |J | = b. First note that ν = γ + w(εI), and so we can view T ′ as an out-in
tableau T starting instead at γ. The desired identity (5.56) is then established, provided we
verify that

`(v1) = inv T − inv T ′ = | Inv(ν) \ Inv(γ)| − | Inv(ν) \ Inv(ξ)| (5.63)

The length of v1 is the number of indices p < i1 such that (γ+)p = (γ+)i1 . As usual, setting
p′ = w(p), i′ = w(i1), by the maximality of w, this is the number of indices p′ ≺ i′ with
|γp′| = |γi′ |. In other words, `(v1) = | Inv(ξ) \ Inv(γ)| and we aim to prove

| Inv(ν) \ Inv(γ)| = | Inv(ν) \ Inv(ξ)|+ | Inv(ξ) \ Inv(γ)| (5.64)

To that end, note that any inversion α∨ ∈ Inv(ν)\Inv(γ) is either in Inv(ν)\Inv(ξ) or Inv(ξ)\
Inv(γ), depending on whether 〈ξ, α∨〉 is non-positive or positive, respectively. Conversely,
the sets on the right hand side of (5.64) are clearly disjoint, and so we show that any inversion
in either term is also in Inv(ν) \ Inv(γ). Below we set i′ = w(i1). It will be helpful to note
that |γi′ | is maximal among |γw(j)| for j ∈ I, and is the minimum such index with respect to
the order ≺ on indices.

We suppose first that α∨ ∈ Inv(ν) \ Inv(ξ). If on the contrary 〈γ, α∨〉 > 0, then α∨ ∈
Inv(γ) \ Inv(ξ), which can only happen if there is some p′ � i′ with |γp′| = |γi′| + 1 and
|ξp′| = |ξi′ |. However, by assumption we also have |νp′| = |νi′ |+ 1, and so

|νp′| = |νi′ |+ 1 = |ξi′|+ 1 = |ξp′|+ 1 (5.65)

which implies that p := w−1(p′) ∈ I ′. However, this is impossible as |γp′| > |γi′ | contradicts
our choice of i1.

We suppose next that α∨ ∈ Inv(ξ) \ Inv(γ). If on the contrary 〈ν, α∨〉 ≤ 0, then α∨ ∈
Inv(ξ) \ Inv(ν), which can only happen if there is some p′ ≺ i′ with |ξp′| = |ξi′| − 1 and
|νp′| = |νi′ |. So,

|νp′| = |νi′ | = |ξi′| = |ξp′|+ 1 (5.66)

which implies that p := w−1(p′) ∈ I ′. However, by assumption we also have |γp′| = |γi′ |,
which together with p′ ≺ i′ contradicts our choice of i1. This establishes (5.64) and completes
the proof of the lemma.

We now come to one of our key results,

Proposition 5.3.2. Let γ ∈ Zn with γi 6= 0 for all i, and k ∈ N. Then,

ek(x, x
−1)Eγ(x; q) =

∑
T

q− inv TEendT (x; q) (5.67)

where T is an out-in tableau starting at γ, with weight (k).
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Proof. As ek(x, x
−1) is W -symmetric, it commutes with any Tw, and hence

ek(x, x
−1)Eγ(x; q) = q−`(w)Twek(x, x

−1)xγ+ (5.68)

=
∑
a+b=k

∑
|I|=a

q−`(w)Tw(xγ++εIeb(x
−1)) (5.69)

Noting that as I ranges over subsets of size a, so too does w(I), (5.67) follows from (5.69)
after applying Lemma 5.3.4.

A straightforward repeated use of Proposition 5.3.2 gives

Corollary 5.3.2. Let µ be a partition and k ∈ N. For γ ∈ Zn, write

eµ(x, x−1)Eγ(x; q) =
∑
β

cµβ,γ(q)Eβ(x; q) (5.70)

If for all i, either |γi|+ |βi| >> 0 (in particular greater than `(µ)), then

cµβ,γ(q) =
∑

T∈OutIn(β/γ,µ)

q− inv T (5.71)

We recover the following special case of the Pieri rule as a further corollary to Proposition
5.3.2.

Corollary 5.3.3. Let µ, λ be partitions with all parts sufficiently far from 0. Let χλ(x)
denote the irreducible character of Sp2n with highest weight λ. Then,

eµ(x, x−1)χλ(x) =
∑
ν

| vSSOT(ν/λ, µ)|χν (5.72)

Proof. We let λ ∈ P+ be a dominant weight and consider γ = w0λ. From (5.8), specializing
at q =∞ yields

eµ(x, x−1)χλ =
∑
β

cµβ,λEβ(x;∞) (5.73)

where cµβ,λ = #{T ∈ OutIn(β/γ, µ) | inv T = 0}. Now, if T is an out-in tableau of shape
β/γ with inv T = 0, then γ being antidominant means that any intermediate shape in T
must also be antidominant. Applying w0 to all intermediate shapes in T then gives a vertical
semistandard oscillating tableau from λ to ν := w0(β), hence arriving at (5.72).

We note the Pieri rule above is already known [77, 89], even without the condition that
the parts be far from 0. However, we also find the following new Demazure Pieri rule in the
case when no part of γ is zero.
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Corollary 5.3.4. Given γ = w(λ) for γ ∈ P,w ∈ W,λ ∈ P+, we let Kγ = ∂wx
λ denote the

Demazure character as defined in (5.10). If γ has no zero parts, then

ek(x, x
−1)Kγ(x) =

∑
ν

#{T ∈ OutIn(β/γ, k) | inv T = 0}Kβ(x) (5.74)

We are now in a position to give a partial combinatorial formula for symplectic LLT
polynomials. To start, we give a suitable symplectic analogue of polynomial truncation.

Definition 5.3.4. Let β, γ ∈ Zn. We define the polynomial truncation of Lβ,γ(x; q) to
be

Lβ,γ(x; q)|pol :=
∑

λ⊆(nn)

Q
(λ′)c

β,γ (q−1)χλ(x) (5.75)

where (λ′)c denotes the complement transpose of λ and Qλ
β,γ(q

−1) = 〈Eβ(x; q)〉χλEγ(x; q) is
the usual coefficient of χλ in Lβ,γ. In other words, Lβ,γ|pol is the truncation of the formal
series Lβ,γ to weights contained in an n×n rectangle, and then swapping all the coefficients
of χλ with those of χ(λ′)c .

With this definition in hand, we prove

Theorem 5.3.1. Let γ ∈ Zn with |γi|+ |βi| > n. Then,

Lβ,γ(x; q)|pol =
∑
T

qinv Tm(wtT )c(x, x
−1) (5.76)

the sum over out-in tableaux T of shape β/γ and partition weight wtT ⊆ (nn).

Proof. We introduce another set of variables y±11 , . . . , y±1n . Then, using the Cauchy identity
(3.13), we have

Lβ,γ(x; q)|pol =
∑

λ⊆(nn)

〈Eβ(y; q−1)〉χλ(y)Eγ(y; q−1)χ(λ′)c(x) (5.77)

=
∑

λ⊆(nn)

〈Eβ(y; q−1)〉eλ(y, y−1)Eγ(y; q−1)mλc(x, x
−1) (5.78)

=
∑

λ⊆(nn)

∑
T∈OutIn(β/γ,λ)

qinv Tmλc(x, x
−1) (5.79)

where the last equality is from Corollary 5.3.2.

While this definition of truncation might seem strange, it becomes more natural under the
bijection Ψ between semistandard oscillating tableaux and symplectic tableaux in Theorem
3.2.2. More specifically, given an out-in tableau of shape β/γ, we can view each part as a
1-vSSOT of shape βi/γi in n steps. We can biject each of these to a symplectic tableau that
is a single column of length n− (|βi| − |γi|). We then recall from Remark 3.2.1(a) that Ψ is
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not weight-preserving, but rather maps a semistandard oscillating tableau of weight µ to a
symplectic tableau of weight µc. Hence, through Ψ, the sum in (5.76) transforms to

Lβ,γ(x; q)|pol =
∑
T

qinv TxT (5.80)

where the sum is over tuples of symplectic tableaux on the columns n − (|βi| − |γi|), and
inv T is some undetermined statistic on tuples of symplectic tableaux. The upside of this
reformulation is that at q = 1, we witness Lβ,γ(x; q)|pol as a product of irreducible characters
as is the case with LLT polynomials for GLn at q = 1, and as we noted in Remark 4.6.1(c).
More details on the case q = 1 will be given in Section 5.5.

5.4 Other classical Lie types

Most of what has been proven up until now for Sp2n carries over to analogous statements for
the orthogonal Lie types, where one replaces ek(x, x

−1) with the character of the kth exterior
power of the standard representation. More specifically, we have

Proposition 5.4.1. Let G = SO2n+1 or Spin(2n+ 1) and γ ∈ P . If either

1. G = SO2n+1 and γi 6= 0 for all i, or

2. G = Spin(2n+ 1) and γi 6= 0,±1/2 for all i,

then
ek(x, x

−1, 1)Eγ(x; q) =
∑
T

q− inv TEendT (x; q) (5.81)

where T is an out-in tableau starting at γ, with weight k or k − 1.

Proof. The proof boils down to proving a counterpart to Lemma 5.3.4, which we note relies
on the following facts

(1) The weight λ = γ+ − εJ fails to be dominant at worst by having λi = λj − 1 for some
i < j with (γ+)i = (γ+)j, so that one can sort

xγ+−εJ = T−1vJ
x(γ+−εJ )+ (5.82)

where vJ ∈ Sn.

(2) The length of vJ is the number of inversions in Inv(β) \ Inv(γ), where β = γ − w(εJ)
and w is maximal with w(γ+) = γ.

Both of these facts hold for G having Cartan type Bn, as the Weyl group is the same as for
type Cn, and the conditions on γ still ensure that vJ ∈ Sn. The sum changes to a sum over
out-in tableau with weight k or k − 1 simply because the terms in ek(x, x

−1, 1) are of the
form xεI−εJ , where |I|+ |J | = k or k − 1.
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Conjecture 5.4.1. Let G = SO2n or Spin(2n) and γ ∈ P . If either

1. G = SO2n and γi 6= 0 for all i, or

2. G = Spin(2n) and γi 6= 0,±1/2 for all i,

then
ek(x, x

−1)Eγ(x; q) =
∑
T

q− inv TEendT (x; q) (5.83)

where T is an out-in tableau starting at γ, with weight k.

We would like to follow the same outline as for the odd orthogonal groups, namely we
consider the ways in which the weight λ = γ+ − εJ can fail to be dominant. There is
a new case now, when we have λn−1 = |λn| − 1 and γn−1 = −γn. We can still pick vJ
minimal such that vJ(λ) = λ+, although now a reduced decomposition of vJ will include
sn. There holds the identity Tn(xan−1x

−a−1
n ) = xa+1

n−1x
−a
n for a ∈ Z, however the identity

(5.82) no longer necessarily holds, for example in the case when γ = (a, a, . . . , a,−a) and
εJ = (0, . . . , 0,−1,−1).

For G an orthogonal or spin group, we would like to use Proposition 5.4.1 to give a
formula for some polynomial truncation of its LLT series akin to Theorem 5.3.1; alas we
don’t presently know of any useful Cauchy identity in this case. We discuss progress towards
this a bit in Chapter 6. Nonetheless, the Pieri rule for Demazure characters (Corollary 5.3.4)
still holds in the orthogonal types.

5.5 Symplectic LLT polynomials at q = 1

In this section we let G be arbitrary and work over a general Levi L. We again make the
usual identification of Z[q±1]P with a Laurent polynomial ring. We aim to explicitly compute
the polynomials Qλ

β,γ(q) as defined in (4.71). To that end, we recapitulate the constructions
of η ∈ P+ and k ∈ N given in Section 4.3.

Given a parabolic subgroup WJ with corresponding Levi subgroup L, we pick a dominant
weight η in the level k fundamental alcove, where the only walls on which η lies are the walls
given by J . With η and k in hand, we have the correspondence (4.35) between β ∈ P++(L)

and µ ∈ P++ ∩ W̃ · η with the relationship µ = w(η + kβ). Following [28], we relabel the
elements e−JEβ(x; q) as |µ〉. The upshot of this relabelling is that a W -invariant polynomial
f =

∑
λ aλx

λ acts on these basis elements by

f · |µ〉 =
∑
λ

aλ|µ− kλ〉 (5.84)

With this new indexing of basis elements, the matrix coefficients Qλ
β,γ(q) are equal to poly-

nomials Qλ
µ,ν(q), defined by

χλ|ν〉 =
∑
µ

Qλ
µ,ν(q)|µ〉 (5.85)
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where |ν〉 = e−JEγ and |µ〉 = e−JEβ. We note that there is an implicit dependence on k
and η everywhere - changing k and η will change the labelling |µ〉 for a basis element e−JEβ,
and also how an irreducible character χλ acts on |µ〉. However, the polynomials Qλ

β,γ(q) are
independent of any choices.

To compute the coefficients Qλ
µ,ν(q), one must be able to write the elements µ − kλ in

(5.84), which are in general not strictly dominant weights, as a linear combination of basis
elements. This is accomplished by applying the following straightening rules, which can
be found in [28, Prop. 6.3(ii)] for arbitrary Lie type and in [60] for GLn, albeit with slightly
different notation.

Proposition 5.5.1. Let µ ∈ P and assume 〈µ, α∨i 〉 ≤ 0 for some simple coroot α∨i . Write
−〈µ, α∨i 〉 = pk + r, where 0 ≤ r < k. Then,

|µ〉 =


0 : r = p = 0

−|siµ〉 : r = 0, p > 0

q−1|siµ〉 : r 6= 0, p = 0

q−1|siµ〉+ q−1|µ+ rαi〉 − |siµ− rαi〉 : r 6= 0, p > 0

(5.86)

The action (5.84) and straightening rules can all be visualized with the aid of an abacus.
Following Section 4.3, we view |µ〉 as an ordered abacus on k rungs, where we place a bead
with label i at positions µi. We read the beads from largest position to smallest, so that if
µ is a strictly dominant weight, then the labels are in decreasing order. If µ is not a regular
weight, then |µ〉 = 0.

Example 5.5.1. If k = 3 and µ = (8, 10, 5, 6, 1, 0,−1,−2,−3) in GL9, then we draw |µ〉 as
the ordered abacus

2

1

4

3

5

6

7

8

9

0

We caution that labels of beads are not the positions of the beads, as we originally had when
we defined abaci in Section 2.1. For example, the bead labelled 2 is in position 10.

With the abacus perspective, a generator xi in the weight ring acts according to (5.84)
by moving the bead with label i on the abacus one unit to the right. Similarly, x−1i moves
the bead with label i one unit to the left. If the labellings of the beads on the abacus are
not in decreasing order, then one uses (5.86) to reorder the beads.

Example 5.5.2. We let k = 3 and µ = (10, 8, 6, 5, 1, 0,−1,−2,−3) be the strictly dominant
weight in the orbit of µ in Example 5.5.1. The abacus of µ is pictured as before, but with
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the beads labelled in decreasing order from right to left, top to bottom. The action of x2x6
on |µ〉 results in the element |ν〉, where ν = (10, 11, 6, 5, 1, 3,−1,−2,−3), and is drawn as

0

1

2

3

4

5

6

7

8

9

We straighten |ν〉 by using the third case in (5.86) to swap beads 5,6 and beads 1,2, yielding

x−12 x−16 · |µ〉 = q−2|ν+〉 (5.87)

With Example 5.5.2 as a guide, we come to the following

Proposition 5.5.2. We let G = GLn and µ ∈ P+, so that µ+ ρ ∈ P++. Then,

(i) The only straightening relations that can occur in es(x) · |µ+ ρ〉 are the first and third
conditions in (5.86).

(ii) The element x−1i · |µ + ρ〉 is either zero or equal to q− spinR|ν + ρ〉, where ν ∈ P+ is
gotten from µ by adding a k-ribbon R. In general, if εI is the indicator vector for a
subset I ⊆ n of size s, then x−εI · |µ + ρ〉 = q− spinT |ν + ρ〉, where µ/ν is a horizontal
k-ribbon strip T consisting of s ribbons.

This is essentially the argument used in the proof of Proposition 6.8 in [28], which shows
that the polynomial truncation of LLT series coincides with combinatorial LLT polynomials,
this time with the spin formulation.

For the remainder of this section, we set G = Sp2n.

To compute the coefficients Qλ
µν(q) in (5.85), we follow the strategy outlined in Propo-

sition 5.3.1, namely we first analyze the action of an elementary symmetric polynomial
es(x, x

−1). Matters become slightly more complicated in this case, as the polynomials
es(x, x

−1) can move beads of an abacus |µ〉 either left or right (and some beads simultane-
ously left and right). As a consequence, any of the relations (5.86) can occur. For example,
Figure 5.3 depicts a sequence of actions when e(2,1)(x

±1
1 , x±12 ) acts on an abacus with two

beads.
The main takeaway from Figure 5.3 is that in contrast to the GLn case, more than just

the first and third conditions in (5.86) can occur when straightening an element xεI−εJ · |µ〉,
where µ ∈ P++. Drawn in Figure 5.4 are all the ways in which xεI−εJ · |µ〉 can be out of
order and how one straightens in each case. To elaborate on Figure 5.4, case (5.4e) occurs
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for example when there is an index i with 0 < µi− µi+1 < k and we act by x−1i xi+1. Letting
ν denote the result, we have that

− 2k < 〈ν, α∨i 〉 = νi − νi+1 = (µi − k)− (µi+1 + k) < −k (5.88)

Hence, to straighten ν, we are in the case p = 1, r 6= 0 of (5.86). The three terms in this
case are the three terms pictured as abaci in case (5.4e).

We make special note of case (5.4c). This case occurs when the last index µn is less than
k. Then, to straighten |ν〉 := xn|µ〉 we use the third relation of (5.86) to get q−1|snν〉. This
moves the bead with label n to the conjugate runner, namely if the last bead in µ was on
rung r, then it is moved to rung k − r, with a power of q−1.

For the remainder of this section, we further set q = 1.

As we see from Figure 5.4, each of the four cases in the straightening relations can occur
(although with the value p at most 1). We note however that upon specialization to q = 1,
the cases (5.4e), (5.4f) have terms that vanish, resulting in a more simplified straightening
algorithm: to straighten in all cases except the move to the conjugate runner, we only swap
beads with a power of either q−1 or -1.

The case (5.4c) when a bead moves to the conjugate runner can be avoided with a process
we will refer to as unfolding, which we will see presently is none other than the map (4.35)

between strictly dominant weights for a Levi and strictly dominant weights in the W̃ orbit of
some η. Combinatorially, unfolding is a procedure which takes an abacus with k rungs and
outputs an abacus with d(k+ 1)/2e rungs, given pictorially in Figure 5.5. More precisely, to
a strictly dominant weight ν and k ∈ N, unfolding proceeds as follows:

Figure 5.3: We let |µ〉 stand for the initial abacus with 2 beads in the same column on different

rungs. The top left diagram shows the sequence of actions x−11 x2 followed by x−12 . The top right

diagram shows the sequence of actions x1x
−1
1 followed by x−11 . The bottom left diagram shows

the sequence of actions x−11 x−12 followed by x2. The bottom right diagram shows the sequence of

actions x2x
−1
2 followed by x−11 .
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(f) p = 1, r 6= 0

Figure 5.4: All possible ways to straighten xεI−εJ · |µ〉 for µ ∈ P++, labelled by the cases in
(5.86).

1. Draw the k-quotient of ν, i.e. draw the k-abacus with beads at positions νi.

2. For 1 ≤ r ≤ dk/2e, prepend the (k − r)th rung to the rth rung so that if a bead is at
the ith position of rung k − r, then it is now at the (−i− 1)th position of rung r.

The unfolded abacus of ν has the following relation with the choices of k and η in the kth
fundamental alcove. If η ∈ Ak, then 〈η, θ∨〉 < k, where θ∨ = e∨1 + e∨2 is the highest coroot of
Sp2n. We can choose k and η to have the form

η1 = · · · = ηr1 > ηr1+1 = · · · = ηr1+r2 > · · · > ηn−r`+1 = · · · = ηn ≥ 0, k ≥ 2η1 + 1
(5.89)
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0

−→

0

Figure 5.5: An abacus with 7 rungs being unfolded to an abacus with 3 rungs.

Every weight is in the W̃ -orbit of some η, as one can reduce all the entries of ν to be in the
interval (−k, k), and then permute. The choice of η determines the Levi

L = GLr1 × · · · ×GLr`−1
× Sp2r`

(5.90)

and if we write ν = w(η + kγ), then we can pick w ∈ W J so that γ ∈ P++(L), which we
write as γ = (γ(1), . . . , γ(`)). Also note that d(k+ 1)/2e ≥ η1 + 1 ≥ ` and so we can moreover
choose k so that d(k + 1)/2e is exactly the number of Levi factors.

The unfolded abacus of ν has ` rungs whose beads are prescribed by γ in the following
way: on the ith rung of the folded abacus of ν (read from top to bottom), there are ri beads

in columns γ
(i)
1 , . . . , γ

(i)
ri . To reverse unfolding, i.e. to fold, one writes ν = w(η + kγ), and

then

1. for each γ
(r)
j ≥ 0, place a bead on the rth rung from the top in column γ

(r)
j

2. for each γ
(r)
j < 0, place a bead on the (k− r)th rung from the top in column |γ(r)j | − 1.

More succinctly, the beads on the ith rung of the unfolded abacus of |ν〉, read from top to

bottom, are in columns γ
(i)
j for 1 ≤ j ≤ ri. Given this correspondence, we will use the

notation |γ〉 interchangeably with the unfolding of the abacus |ν〉.

Example 5.5.3. Set ν = (19, 17, 15, 13, 8, 5, 2) ∈ P++ and k = 5. Its ordered abacus and
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unfolded abacus are drawn below.

0

1

2

3

45

6

7

−→

0

1

2

3

4 5

6

7

Reducing all the entries of ν to be between −k and k, exclusive, we have

ν = (−1, 2, 0,−2,−2, 0, 2) + 5 · (4, 3, 3, 3, 2, 1, 0)

= w((2, 2, 2, 2 | 1 | 0, 0) + 5 · (3, 0,−2,−3 | −4 | 3, 1)) (5.91)

so that ν is in the W̃ -orbit of η = (2, 2, 2, 2 | 1 | 0, 0) ∈ Ak. The weight η determines the
Levi L = GL4×GL1× Sp2, and we have γ = (3, 0,−2,−3 | −4 | 3, 1) ∈ P++(L). We note
that the beads on the rth rung of the unfolded abacus of ν (read from top to bottom) are in

columns γ
(r)
j .

With unfolding, we come to

Lemma 5.5.1. Fix k ∈ N. Let ν ∈ P++ and write ν = w(η + kγ), where η is of the form
(5.89) and γ ∈ P++(L) for a Levi L of the form (5.90), which we can assume has number of
factors ` = d(k + 1)/2e. We let |γ〉 denote the unfolding of the abacus |ν〉.

1. The action of f ∈ ZPW on |ν〉 descends to an action on |γ〉, with the elementary
symmetric polynomials acting by

es(x, x
−1) · |γ〉 =

∑
|I|+|J |=s

|γ + εI − εJ〉 (5.92)

2. Let β = γ + εI − εJ for some I, J ⊆ [n]. If β is not a regular weight for L, then
|β〉 = 0. Otherwise, if w ∈ WJ is such that w(β+) = β, where β+ ∈ P++(L), then
|β〉 = (−1)`(w)|β+〉.

3. If µ ∈ P++ with decomposition v(η+ kβ) for β ∈ P++(L), then the coefficient of |µ〉 in
es(x, x

−1) · |ν〉 is the coefficient of |β〉 in es(x, x
−1) · |γ〉.

Proof. For the first part, we recall that a monomial xi acts on |ν〉 by moving the bead
with label i one unit to the left, which still holds after unfolding the abacus. It may happen
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though that xn ·|ν〉 needs to be straightened by moving the bead with label n to its conjugate
runner. On the unfolded |γ〉, this is exactly moving the bead with label n one unit to the
left. The second part follows from any instances of Figure 5.4d when we straighten. The
third part follows from the fact that β ∈ P++(L) uniquely determines µ, given fixed η, k.

Using Lemma 5.5.1, our goal of computing the coefficients Qλ
µ,ν(1) in (5.85) translates to

computing the coefficient of |β〉 in es(x, x
−1) · |γ〉. We interpret this action as a sequence of

bead moves on each rung, where for each bead, we perform exactly one of the following 4
weighted moves:

1. move the bead one unit to the right, with weight 1.

2. move the bead one unit to the left, with weight 1.

3. don’t move the bead, with weight 2 (i.e. act by xix
−1
i ).

4. do nothing, with weight 0.

Consequently, the coefficient of |β〉 in eλ(x, x
−1) · |γ〉 is the number of ways to go from a

given initial configuration of beads |γ〉 to a given final configuration |β〉 with weight λ, such
that

(i) No beads collide.

(ii) If 2 beads on a rung swap places, we count this with a negative sign.

As each rung is independent, we can isolate this problem to a single rung, where we count
ways to move from one configuration of beads to another. We visualize this as a time evo-
lution, in which each sequence of moves becomes a tuple of non-intersecting paths as in
Figure 5.6. For GLn, it is well known that a tuple of non-intersecting paths is in bijection

Figure 5.6: The sequence of actions xixj followed by x−1i on a single rung of |γ〉, viewed as
a tuple of non-intersecting paths.

with semistandard Young tableaux, as is used in a combinatorial proof of the Jacobi-Trudi
identity using the Lindström-Gessel-Viennot lemma. This gives another way to see that LLT
polynomials for GLn are a q-deformation of a product of Schur polynomials. The combi-
natorics of non-intersecting paths and their relation to oscillating tableaux are investigated
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[54], in which the author proves similar determinantal formulas for the generating functions
of semistandard oscillating tableaux.

Proposition 5.5.3. Let γ+ρL, β+ρL ∈ P++(L) for L of the form (5.90) and fix components
γ(i), β(i). As before, each determines a configuration of beads on a fixed rung by placing beads
in column γ(i) + ρri and β(i) + ρri. We let NIP(β(i)/γ(i),m) denote the set of tuples of non-
intersecting paths from the bead configuration prescribed by γ(i) to the one given by β(i) in
m steps. Then, there is a sign-reversing involution on NIP(β(i)/γ(i),m) for which the fixed

points are in bijection with vertical semistandard oscillating tableaux of shape β̃(i)/γ̃(i) in m
steps, where

γ̃(i) = γ(i) + (Rri), β̃(i) = β(i) + (Rri) (5.93)

for some sufficiently large R ∈ N.

Proof. We aid the proof with an example, in Figure 5.7. We first map a tuple of non-
intersecting paths to an out-in tableau T starting at γ(i), with the first out step υ and first
in step δ constructed as follows.

We fix a bead B in the initial configuration given by γ(i), say at position b = (γ(i) +ρri)j.
If B moves in a direction which increases the absolute value of b, then we set υj and δj to
this new position. Likewise, if B moves in a direction which decreases the absolute value of
b, then we keep υj = b and set δj to the new position. If B does not move, with weight 0,
then we set υj = δj = b and if B does not move, but with weight 2, then we keep δj = b and
set υj = b+ 1 if b is non-negative and otherwise b− 1. Continuing in this way for each step
of the non-intersecting paths yields an out-in tableau.

We note that the resulting out-in tableau would in fact be a vertical semistandard tableau,
provided that all the parts of all intermediate shapes are non-negative, and neither of the
following two cases occurs

(5.94)

where we subscript a path with the weight 2 to denote the action by a monomial xix
−1
i . To

ensure the non-negativity, we simply add a large enough integer R to each part of γ(i) and
β(i). Setting R = max(|γ(i)ri |, |β

(i)
ri |) +m+ ri will suffice.

From Lemma 5.5.1(2), a tuple of non-intersecting paths has weight (−1)h, where h is
the number of “crossings”, depicted on the left hand side of (5.94). We will uncross this
by exchanging it with the tuple of non-intersecting paths on the right hand side of (5.94).
Specifically, the involution in question will find the first occurrence of either tuple of paths
in (5.94) (if one exists, and in any predetermined order), and exchange it with the other
option. The fixed points are those tuples of paths with no occurrences of (5.94).
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Figure 5.7: Example of bijection between tuples of non-intersecting paths and vertical semi-
standard oscillating tableaux. We subscript a path with the weight 2 when we act by a
monomial xix

−1
i . The fixed points of the involution are shown on the left.

Combining Proposition 5.5.3 and Theorem 3.2.2 gives a combinatorial tool to count the
coefficient 〈β|eλ|γ〉, given schematically by

〈β | eλ|γ〉 ↔ # {non-intersecting paths} ↔ # {vertical SSOT} ↔ # {symplectic tableaux}
(5.95)

Choosing everything appropriately, we arrive at

Theorem 5.5.1. Let G = Sp2n and fix a Levi L = GLr1 × · · · ×GLr`−1
× Sp2r`

, and weights

β = (β(1), . . . , β(`)), γ = (γ(1), . . . , γ(`)) ∈ P+(L). For 1 ≤ j ≤ `, choose Rj so that γ̃(j) :=

γ(j) + (R
rj
j ) and β̃(j) := β(j) + (R

rj
j ) have all part sizes at least n. For k >> 0 sufficiently

large, set

τ := (β̃′)c, each complement taken in a ((k + n)rj) box (5.96)

σ := (γ̃′)c, each complement taken in a (krj) box (5.97)

Then,

LGL,β+ρL,γ+ρL(xk+1, . . . , xk+n; 1)
∣∣
pol

=
∑

T∈Symp(τ/σ)

xT (5.98)

the sum over all skew symplectic tableaux of shape τ/σ, and where |pol denotes symplectic
polynomial truncation as defined in Definition 5.3.4.
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Chapter 6

Conclusions and Further Work

At the outset, we gave several definitions of LLT polynomials, all as q-generating functions
for some combinatorial object. In the previous chapter, we reviewed how these combinatorial
definitions coincide with polynomial truncations of an LLT series associated to the Lie group
G = GLn, and began our foray into defining an analogous combinatorial LLT polynomial for
the other classical Lie types, in particular for Sp2n, that also coincides with some truncation
of the associated LLT series. Towards this end, Theorems 5.3.1 and 5.5.1 give partial results
for Sp2n and Proposition 5.4.1 and Conjecture 5.4.1 likewise for the orthogonal Lie types.
We profess however that these are by no means complete.

To start, Theorem 5.3.1 only holds when the indexing tuple γ is sufficiently far from 0, the
reason being that it hinges on Lemma 5.3.4 which gives a formula for the expansion of a Hecke
operator Tw applied to a monomial of the form xγ++εI−εJ when γ has no zeroes. The reason
this condition is needed is because when we attempt to straighten the monomial xγ++εI−εJ ,
we only need to use Tv for v ∈ Sn, and not a priori some signed permutation. Relaxing this
condition not only breaks the proof, but invalidates the statement. Accordingly, we are led
to modifying the definition of the inversion statistic of an out-in tableau that starts at a
weight with possibly zero entries. On the one extreme, when γ is identically 0, we conjecture

Conjecture 6.0.1. For k ∈ N,

ek(x, x
−1) =

∑
β

(
n− |β|
k−|β|

2

)
q−2

q− inv βEβ(x; q) (6.1)

the sum over β ∈ W · (1k−2r) for some r, where
(
n
k

)
q

denotes the q-binomial coefficient and

|β| = #{i | βi = ±1}.

One can reformat (6.1) as a sum over a subset of out-in tableau with a modified inversion
statistic as follows. Recall that the set OutIn−(β/γ), defined in Remark 5.3.1, consists of out-
in tableaux of shape β/γ in which the oscillation 0→ 1→ 0 is not allowed. If T = (γ ⊆ ν ⊇
β) ∈ OutIn−(β/γ), we define a descent of T to be an index i with (γi, νi, βi) = (0,−1, 0).
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We define the arm of an index u to be

arm(u) = #{i < u | (γi, νi, βi) = (0, 0, 0)} (6.2)

With the modified definition

inv′ T = inv T +
∑

u∈Desc(T )

arm(u) (6.3)

then (6.1) becomes

ek(x, x
−1) =

∑
β

∑
T∈OutIn−(β,k)

q− inv′ TEβ(x; q) (6.4)

There are other possible modified inversion statistics one could feasibly use, however inter-
polating between any of these choices and Proposition 5.3.2 in which γ has no zero entries
remains unsolved.

Secondly, it is remarked in [28, Remark 6.20] that for GLn, there is a strengthening of
Proposition 5.3.1 in which one can remove the polynomial truncation. More precisely, there
holds an identity of LLT series

LGLn
L,β,γ(x; q) = (x1 · · ·xn)−sLGLn

L,β+(sn),γ(x; q) (6.5)

for every integer s, so that can write the full LLT series for GLn as an inverse limit of
combinatorial LLT polynomials. It would be desirable to have such a restatement for Sp2n

so as to remove the somewhat arbitrary polynomial truncation in this case.
Thirdly, we mentioned in the paragraph following Theorem 5.3.1 that one could use the

bijection Ψ between semistandard oscillating tableau and symplectic tableaux to rewrite the
combinatorial definition of Lβ,γ(x; q)|pol in Sp2n instead as a sum over symplectic tableaux,
which more closely resembles the inversion definition for type A LLT polynomials. It still
remains however to determine how inv T transforms under Ψ.

Alternatively, one could extend the proposed tableaux definition of LLT polynomials
given in Theorem 5.5.1 to arbitrary q. This method uses a different approach than considering
the product ekEγ; instead one considers the action of ek on a basis element |µ〉, where
µ ∈ P++, which we view as an abacus. The straightening relations involved in this case
become more complicated when q 6= 1 (see Figure 5.4) and it still remains to overcome this.

Another natural progression would be to provide a combinatorial definition of general LLT
polynomials for other Lie types. We mentioned when providing a combinatorial definition
of LLT polynomials for Sp2n that two essential ingredients were needed, the first being a
formula for ekEγ and the second being a Cauchy-like identity that relates the elementary
polynomial to the irreducible character. In Section 5.4, we give suitable analogues of the
former for the orthogonal Lie types. What we still lack is a suitable Cauchy identity as in
Corollary 3.3.2.

The combinatorial objects at play for SO2n+1 appear in [88]. In place of symplectic
tableaux, one has orthogonal tableaux, which are symplectic tableaux on the alphabet 1 <



CHAPTER 6. CONCLUSIONS AND FURTHER WORK 90

1 < · · · < n < n <∞ such that all entries equal to ∞ form a vertical border strip. In place
of vertical semistandard oscillating tableaux in the Pieri rule for the product ekχλ, one has
the set of sequences of shapes

µ = α0 = β0 ⊆ α1 ⊇ β1 ⊆ α2 ⊇ β2 ⊆ · · · ⊇ λ (6.6)

such that for each i,

(i) αi/βi−1 and αi/βi are vertical strips with |αi/βi−1|+ |αi/βi| ≤ k.

(ii) αi, βi have all lengths ≤ n.

(iii) If `(αi) < n, then |αi/βi−1|+ |αi/βi| = k.

The difference between these objects and semistandard oscillating tableaux is in the third
condition, when a partition is allowed to “do nothing” if it has maximal length. In [88],
the author uses a modified Berele insertion to prove an analogue of Proposition 3.3.1 in
SO2n+1. Akin to our work in Chapter 3, one would like some bijection between orthogonal
tableaux and these analogues of semistandard oscillating tableaux which in conjunction with
the modified Berele insertion would yield a Cauchy identity. The specifics have yet to be
quantified and this remains an open problem.

Lastly, recalling that LLT polynomials were used in [31] to give a monomial expansion
for Macdonald polynomials, it follows that a combinatorial formula for Sp2n LLT polynomi-
als could illuminate a similar expansion for type C Macdonald polynomials. As it stands,
Macdonald polynomials are defined for any root system, but with only a combinatorial (and
geometric) understanding in type A. What’s more, the general type LLT polynomials coin-
cide with the Hall-Littlewood polynomials Hµ(x; q) in arbitrary Lie type, when the indexing
Levi L is the torus T . Consequently, a combinatorial formula for LLT polynomials could
lead towards a formula for general type Kostka-Foulkes polynomials akin to Lascoux and
Schutzenberger’s celebrated and mysterious charge formula in type A. A charge statistic for
other Lie types has been proposed in [61] for Kashiwara-Nakashima tableaux, and in fact the
current problem was suggested to the author after first trying to extend the charge formula
to type C for King tableaux.
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de Combinatoire 20 (1988), B20a–41.

[71] Ian G. Macdonald. “Affine Hecke algebras and orthogonal polynomials”. In: Asterisque-
Societe Mathematique de France 237 (1996), pp. 189–208.

[72] Ian G. Macdonald. Symmetric functions and Hall polynomials. 2nd ed. Oxford Univer-
sity Press, 1998.

[73] Christopher Roman Miller. “On the k-Schur Positivity of k-Bandwidth LLT Polyno-
mials”. PhD thesis. UC Berkeley, 2019.

[74] Katsuhisa Mimachi. “A duality of Macdonald-Koornwinder polynomials and its ap-
plication to integral representations”. In: Duke Mathematical Journal 107.2 (2001),
pp. 265–281.

[75] A.O. Morris. “Spin representation of a direct sum and a direct product (ii)”. In: The
Quarterly Journal of Mathematics 12.1 (1961), pp. 169–176.

[76] Kendra Nelson and Arun Ram. “Kostka-Foulkes Polynomials and Macdonald Spherical
Functions”. In: London Math. Soc. Lecture Note Ser., Cambridge University Press 307
(2003), pp. 325–370.

[77] Soichi Okada. Pieri rules for classical groups and equinumeration between generalized
oscillating tableaux and semistandard tableaux. 2016. arXiv: 1606.02375.

http://arxiv.org/abs/1910.04459
http://arxiv.org/abs/1606.02375


BIBLIOGRAPHY 96

[78] Arun Ram. “Weyl group, symmetric functions and the representation theory of Lie
algebras”. In: Proceedings of the 4th Conference on Formal Power Series and Algebraic
Combinatorics. 11. Citeseer. 1992, pp. 327–342.

[79] Bruce E. Sagan. The symmetric group: representations, combinatorial algorithms, and
symmetric functions. Vol. 203. Springer Science & Business Media, 2013.

[80] Anne Schilling, Mark Shimozono, and Dennis E White. “Branching formula for q-
Littlewood-Richardson coefficients”. In: Advances in Applied Mathematics 30.1-2 (2003),
pp. 258–272.

[81] Jeffrey Sheats. “A symplectic jeu de taquin bijection between the tableaux of King and
of De Concini”. In: Transactions of the American Mathematical Society 351.9 (1999),
pp. 3569–3607.

[82] T.A. Springer. “A construction of representations of Weyl groups”. In: Inventiones
mathematicae 44 (1978), pp. 279–293.

[83] T.A. Springer. “Quelques applications de la cohomologie d’intersection”. In: Bourbaki
Seminar. Vol. 1981. 1982, pp. 249–273.

[84] Richard P Stanley. “Enumerative Combinatorics, vol. 2. 1999”. In: Cambridge Stud.
Adv. Math (1999).

[85] Dennis W. Stanton and Dennis E. White. “A Schensted algorithm for rim hook tableaux”.
In: Journal of Combinatorial Theory, Series A 40.2 (1985), pp. 211–247.

[86] John R Stembridge. “Kostka-Foulkes polynomials of general type”. In: Generalized
Kostka Polynomials Workshop American Institute of Mathematics (18-22 July 2005).

[87] Sheila Sundaram. “On the combinatorics of representations of Sp(2n, C)”. PhD thesis.
Massachusetts Institute of Technology, 1986.

[88] Sheila Sundaram. “Orthogonal tableaux and an insertion algorithm for SO(2n + 1)”.
In: Journal of Combinatorial Theory, Series A 53.2 (1990), pp. 239–256.

[89] Sheila Sundaram. “The Cauchy identity for Sp(2n)”. In: Journal of Combinatorial
Theory, Series A 53.2 (1990), pp. 209–238. issn: 0097-3165.

[90] Foster Tom. A combinatorial Schur expansion of triangle-free horizontal-strip LLT
polynomials. 2020. arXiv: 2011.13671.

http://arxiv.org/abs/2011.13671

	Contents
	Introduction
	Tableau Combinatorics
	Partitions and tableaux
	Combinatorial LLT polynomials
	Representation theory of GLn
	Symmetric functions

	Symplectic Combinatorics
	Representation theory of Sp2n
	Symplectic and oscillating tableaux
	Cauchy identities

	Root Systems, Weyl Groups, Hecke Algebras and All That
	Root systems
	Weyl groups
	Extended affine Weyl groups
	Hecke algebras
	Extended affine Hecke algebras
	General type LLT polynomials

	Combinatorial Formulas for Classical Type LLT Polynomials
	Non-symmetric Hall-Littlewood polynomials
	LLT polynomials for the torus
	General linear and symplectic cases
	Other classical Lie types
	Symplectic LLT polynomials at q=1

	Conclusions and Further Work
	Bibliography



