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Porting GASNet to Portals: Partitioned Global Address Space 
(PGAS) Language Support for the Cray XT 

Dan Bonachea1,3, Paul H. Hargrove1,3, Michael Welcome2 and Katherine Yelick2,3 
1Computational Research Division, Lawrence Berkeley Nat.  Lab. (LBNL) 
2National Energy Research Scientific Computing (NERSC) Center, LBNL 
3Computer Science Division, University of California at Berkeley 

ABSTRACT: Partitioned Global Address Space (PGAS) Languages are an emerging 
alternative to MPI for HPC applications development.  The GASNet library from 
Lawrence Berkeley National Lab and the University of California at Berkeley provides 
the network runtime for multiple implementations of four PGAS Languages: Unified 
Parallel C (UPC), Co-Array Fortran (CAF), Titanium and Chapel.  GASNet provides a 
low overhead one-sided communication layer has enabled portability and high 
performance of PGAS languages. This paper describes our experiences porting GASNet 
to the Portals network API on the Cray XT series.  
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1. Introduction 

Partitioned Global Address Space (PGAS) languages 
are an emerging alternative to the Message Passing Interface 
(MPI) for HPC applications development.  PGAS languages 
implicitly involve one-sided communication, in which one 
process may read or write to the addresses associated with 
another processor without involving the remote processor.  
While MPI-2 does include some lesser-used mechanisms for 
one-sided communication, MPI is primarily a two-sided 
messaging library.  The two-sided model can be awkward 
for applications involving unstructured communication and 
it adds complexity to the underlying implementation. 
Communication between two MPI tasks involves matching 
the source and destination address information from two 
different MPI calls.  While the matching rules are well 
defined, they impose a non-trivial burden on the 
implementation.  Additionally the application of the rules to 
send and receive operations in a given piece of source code 
is not always immediately obvious, which can frustrate 
debugging and maintenance. 

In a Partitioned Global Address Space model, the 
access to data across tasks is one-sided, meaning that a 
communication operation includes both the source and 
destination address information.  This can lead to more 
efficient implementations and more productive 
programmers. 

Our team at the University of California at Berkeley 
and Lawrence Berkeley National Lab has developed 
“GASNet” (Global Address Space NETworking) [1], a 
portable, high-performance, one-sided communication 
interface that provides an abstraction of the network and 
operating system for the implementation of PGAS 
languages, including our own Berkeley UPC [2] and 
Titanium [3] language compilers.  In addition, the GCC 
UPC compiler from Intrepid [4], the Co-Array Fortran 
(CAF) compiler from Rice [5] and Cray’s Chapel [6] 
compiler are using GASNet for their network 
communications.  Recently Cray released their own 
compilers for UPC [7] and CAF [8] on the XT, and they too 
are using GASNet. 

When the U.S. Department of Energy began to 
purchase Cray XT hardware, the Berkeley UPC compiler 
was ported to run applications under Catamount, but only by 
using GASNet’s “mpi-conduit” for communications.  While 
GASNet can run over MPI for maximum portability, this 
significantly reduces performance relative to an 
implementation for the native network API.  This paper 
describes our experience developing “portals-conduit”, 
GASNet’s native implementation over the Portals [9] API 
for the Cray XT series.  We present some background on the 
relevant hardware and software followed by a chronological 
account of the port; a performance comparison of mpi- and 
portals-conduits and some closing remarks.  
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2. Background 

The Cray XT product series [10] form a family of 
scalable compute platforms composed of Opteron 
processors on a custom 3D torus interconnect.  A custom 
network interface chip called "SeaStar" implements the 3D 
router, a HyperTransport interface to the host main memory, 
and DMA engines that transfer data to and from host 
memory and the network.  The SeaStar also contains a 
PPC440 processor and local scratch memory to help off-
load the communication processing from the host. 

GASNet provides language implementers with one-
sided communications operations and a remote procedure 
call mechanism. GASNet is intended as a target for 
compilers and a limited group of expert programmers, as 
opposed to end-users.  Therefore, this paper will not attempt 
to teach the details of the GASNet interface.  Instead we 
begin with a broad overview of GASNet and then introduce 
details of GASNet and Portals as needed to describe the 
porting issues.  

We designed the implementation of GASNet with a 
layered approach to ease porting to new platforms.  The 
lowest levels include build infrastructure and network-
independent support specific to the O/S and CPU. Above 
the infrastructure layers our term for the support for a given 
network is a “conduit”. The implementation of GASNet’s 
public API is split into two levels: the “Core API” and 
“Extended API”.  The Core consists of the subset of 
GASNet calls that must be ported to any given network, and 
includes program startup and a simple remote procedure call 
mechanism, known as Active Messages (AM).  The 
Extended API includes a wide range of data-movement calls 
such as “Put” and “Get” operations in a variety of blocking 
and non-blocking variants.  GASNet provides a reference 
implementation of the Extended API in terms of calls to the 
Core API.  This design allows an implementer to get started 
with just an implementation of the Core API, and then 
incrementally replace portions of the Extended API’s 
reference implementation with ones customized to the 
network. 

Our goal was to implement GASNet over Portals, the 
lowest-level public interface to the Cray XT’s SeaStar 
communications hardware. We start by moving the GASNet 
mpi-conduit to the XT under Catamount, which involved 
modifications of the lowest level infrastructure layers.  The 
next step started with an analysis of Portals.  The Portals 
API was designed with MPI implementations in mind, and 
therefore includes features well aligned with the send/recv 
matching required by MPI.  Portals supports Remote Direct 
Memory Access (RDMA) for efficiency in the movement of 
data, and all data transfers in Portals are accomplished via 
Put/Get style operations that utilize a sophisticated 
mechanism for determining the remote address. 

3. Portals-conduit Stage 1: MPI Hybrid 

While the layers of implementation in GASNet were 
designed to allow a new platform to begin with a port of just 
the Core, we chose to pursue a different approach with the 
initial implementation of portals-conduit.  Since mpi-
conduit uses the reference implementation of the Extended 
API, portals-conduit began by replacing this with portals-
based implementation of the Extended, while preserving the 
MPI-based Core implementation from mpi-conduit.  This 
allowed us to begin work immediately on the portions of the 
code that would make the greatest impact on performance of 
PGAS applications. 

3.1 Addressing in GASNet vs. Portals 
The most important one-sided communication 

operations in the GASNet Extended API are “Put” and 
“Get” operations to move data between two processes (a 
process is a “node” in GASNet terminology, analogous to 
an MPI “task”).  There are various blocking and non-
blocking variants, in addition to collective and 
vector/indexed/strided operations.  However, all the Put and 
Get operations have in common that the caller specifies a 
local address and length, plus a remote node number and a 
remote address1.  The Put and Get operations are all 
semantically one-sided, in that there is no corresponding 
GASNet call on the peer node to receive the data of a Put or 
to provide the data for a Get. 

While Portals provides an efficient RDMA mechanism 
for movement of data, it is not based directly on virtual 
addresses as in GASNet.  In Portals, one process may allow 
another to access portions of its address space by creating a 
Memory Descriptor (MD) that gives the address and length 
of the region in memory, along with other attributes.  The 
arguments to the Put or Get initiation operation in the 
Portals API include a local MD and an offset relative to its 
base.  For the remote address Portals allows the initiating 
node to specify the target node and an offset relative to the 
base of an undetermined MD, and some matching 
arguments including a “portal index” and a 64-bit word of 
“match bits”. 

At the Portals target node, three layers of data structure 
determine the target MD of any incoming Put or Get.  The 
first is a table indexed by the portal index, which separates 
distinct clients of Portals2, and selects an ordered list of 
Match Entries (ME) on the target node.  Each ME includes 
two 64-bit words (“match bits” and “ignore bits”) and an 
MD handle.  The Portals implementation traverses the 

                                                           
1 GASNet supports a choice of “Segment” configurations in which 
the remote address is either restricted to a specific portion of the 
remote address space, or is unrestricted.  In all configurations the 
local address is unrestricted.  At this time portals-conduit only 
supports the restricted case for remote addresses.   
2 GASNet uses just two portal ids, and they are distinct from those 
used by the MPI and SHMEM implementations, allowing mixed-
mode applications. 
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MD PTE 
Match 

Bits 
Ops 

Allowed 
Offset 
Mgt. 

Event 
Queue Description 

RAR RAR 0x0 PUT/GET REMOTE NONE Remote segment: dst of Put, src of Get 
RARAM RAR 0x1 PUT REMOTE AM_EQ Remote segment: dst of RequestLong payload 
RARSRC 

RAR 0x2 PUT REMOTE SAFE_EQ 
Remote segment: dst of ReplyLong payload 
Local segment: src of Put/Long payload, dst of Get 

ReqRB AM 0x3 PUT LOCAL AM_EQ Dest of AM  Request Header (double-buffered) 
CB 

AM 0x3 PUT LOCAL SAFE_EQ 
Catches any AM Requests that miss all ReqRBs, 
for detection of fatal credit management errors 

ReqSB 
AM 0x4 PUT REMOTE SAFE_EQ 

Bounce buffers for out-of-segment Put/Long/Get, 
AM Request Header src, AM Reply Header dst 

RplSB none none N/A N/A SAFE_EQ Src of AM  Reply Header 
TMPMD 

none none N/A N/A SAFE_EQ 
Large out-of-segment local addressing: 
Src of Put/AM Long payload, dest of Get 

SYS AM 0x5 PUT LOCAL SYS_EQ Startup, shutdown, and credit redistribution 
Table 1.  Memory Descriptors in portals-conduit 

Portal Table

Portal Index

EQ

Application
Memory Region

Optional

Match List

ME
<0001>ME

<1100>ME
<0110> MD

Application
Memory Region

 
Figure 1.  Portals Message Processing 

ordered list of MEs until the match bits provided by initiator 
and ME are the same after discarding the ME-provided 
ignore bits.  If a matching ME is found and the associated 
MD meets some additional criteria, then the initiator-
provided offset is added to the Base of the MD to yield the 
target-side address of the Put or Get.  Portals message 
processing is depicted graphically in Figure 1.  Table 1 lists 
all the MDs utilized in portals-conduit. 

While match bits provide for dynamic use of MEs to 
support posted receives in MPI, implementing GASNet Puts 
and Gets needs only the ability to address a single 
contiguous “segment” on the remote node.  GASNet 
establishes this access at startup using one portal id, 
“RAR_PTE”, with multiple MEs to distinguish different 
operations (as will become clear later).  These MEs have a 
common set of ignore bits that exclude all but the least 
significant 4-bits from matching.  For addressing of the 
GASNet segment at the target, the “RAR” (Remote Access 
Region) is an MD covering the range of addresses in the 
GASNet segment, associated with an ME that matches 
“RAR_BITS”.  This MD is configured to allow Put and Get 
access, to remain persistently available, and not to generate 
any events (described later) on the target node.  Using a 
table established at startup containing the base address of 
each node’s GASNet segment (and thus RAR) the initiator 
of a Put or Get can name the appropriate destination using 

RAR_PTE for the portal index and RAR_BITS for the 
match bits, while the remote offset is the remote address 
minus the base address. 

On the initiator there are two distinct possibilities for 
the local address: it either lies inside the GASNet segment 
or outside.  We will return to the out-of-segment case later.  
For the case of addresses inside the segment a second MD, 
known as “RARSRC” (RAR SouRCe), is used.  This MD 
covers the same range of addresses as “RAR” and is passed 
as the local MD for Portals Put and Get operations with a 
local offset computed as for the remote case.  However, 
RARSRC is different from RAR in that it is configured to 
generate Portals events used to implement GASNet’s 
completion semantics, as described below. 

3.2 Completion of GASNet operations 
GASNet provides a variety of blocking and non-

blocking operations to support the needs of PGAS clients.  
The blocking operations in GASNet return after data 
movement is complete (remote completion), while the non-
blocking ones have associated “sync” mechanisms to poll or 
wait for remote completion.  The non-blocking Put 
functions are further divided into “non-bulk” ones where the 
initiation call may return as soon as the local data is safe to 
overwrite (local completion) and “bulk” ones that may 
return immediately (while the source buffer is still in use).  
In order to implement the various options over Portals, one 
needs to understand the Portals event mechanism. 

In Portals each MD may have an associated Event 
Queue (EQ).  A given operation can trigger creation of 
several possible events on the EQs associated with the MDs 
at the initiator and target.  A combination of per-operation 
flags and MD flags control which events are generated.  A 
Portals call to initiate a Put or Get will return immediately 
without regard to the state of the transfer.  To know when a 
given Portals operation has completed, either locally or 
remotely, one must process the Portals EQs. 
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From the perspective of completion, the most complex 
operation in GASNet is the non-blocking, non-bulk Put 
operation.  Once it initiates the Portals-level Put operation, it 
must wait for local-completion before it may return, and a 
later sync operation must test or wait for remote-completion.  
Bulk operations are simpler because they may return 
without concern for local completion.  Gets are even simpler 
because there is no distinction between local and remote 
completion.  In our implementation for other low-level 
communications APIs, GASNet is sometimes forced to wait 
for remote completion when there is no independent 
indicator of local completion; or GASNet may need to 
implement an acknowledgment when there is no indication 
of remote completion.  With Portals, however, there is a 
one-to-one mapping from Portals events at the initiator to 
GASNet’s completion semantics, as summarized in Table 2. 

Since there can be multiple GASNet-level operations in 
flight, there is some additional work that GASNet must 
perform to associate a Portals-level event with the GASNet-
level operation.  As was mentioned previously, the Match 
Entry for the RAR MD ignores all but the least-significant 
4-bits.  Since all match bits of the original operation are 
preserved in any corresponding EQ entry, this is an ideal 
place to store the information needed for establishing this 
correspondence.  Four additional bits are used to store the 
operation type (including bulk Put, non-bulk Put, and Get3).  
One byte is used for a thread id4 and two bytes for a 
GASNet “eop addr”.  The thread id and eop addr are 
existing GASNet abstractions in the reference-extended 
implementation and provide for a compact naming of a 
specific outstanding GASNet-level operation.  These fields 
account for a total of only 32 of the 64 Portals-provided 
match bits; the remaining 32 became useful in implementing 
additional features, as will be described in subsequent 
sections. 

3.3 Out-of-segment access 
In the case of a local address outside of the GASNet 

segment, Portals still requires GASNet to name a local MD 
when initiating communication, but RARSRC covers only 
the GASNet segment.  GASNet handles this in one of two 
ways depending on the length of the operation: bounce-
buffers or TMPMD.  For small payloads, GASNet maintains 
a pool of buffers covered by a single “ReqSB” MD 
configured very much like RARSRC.  A small GASNet-
level Put with out-of-segment source address is copied into 

                                                           
3 Additional operation types are used to support additional features. 
4 While threads were not supported under Catamount, they are in 
CNL. GASNet supports threads, which permits a hybrid execution 
model involving threads within a node and GASNet between them. 

a bounce-buffer and the Portals-level Put is issued with the 
bounce-buffer as the source.  Similarly a small GASNet Get 
with an out-of-segment destination address is issued to 
Portals as a Get with a bounce-buffer as the destination and 
the data is copied to the caller’s buffer after the Portals-level 
Get is complete (the REPLY_END event). 

For out-of-segment transfers larger than a tunable 
threshold, GASNet switches to dynamic creation of MDs.  
GASNet creates a “TMPMD” Memory Descriptor to cover 
the requested range of local memory, and destroys the MD 
when the Portals-level Put or Get is completed.  There is 
some (OS-dependent) software overhead associated with 
MD creation and destruction, hence the tradeoff between 
this penalty and the cost of copying the payload through a 
bounce buffer on the initiator. The implementation can 
manage many TMPMDs to support multiple outstanding 
non-blocking operations. 

The TMPMD and ReqSB MDs are configured to place 
associated events on the same EQ as the RARSRC used for 
in-segment local address.  Therefore, handling of GASNet 
completion semantics is altered only slightly relative to the 
in-segment case.  In particular if using a bounce-buffer for a 
Put then the copy to the bounce buffer is sufficient for local 
completion, without waiting for a Portals SEND_END 
event.  There is no need to use any match bits to identify in-
segment vs. bounce-buffer or TMPMD, as this is easily 
distinguished using the MD handle in the EQ entry.   

Regardless of the choice between bounce-buffer or 
TMPMD, the associated resource is returned to its free pool 
upon completion.  A specifc TMPMD can be identified 
trivially because the MD handle is stored in the EQ entry.  
Similarly a bounce-buffer address can be reconstructed from 
the base address of its MD and the local_offset in the EQ 
entry. 

3.4 Finite Resources 
The description so far has ignored finite resource 

limitations.  However, Portals EQs are created with a caller-
specified finite capacity that must not be exceeded.  For the 
Put/Get code this is easily dealt with using a semaphore-
type construct that ensures that GASNet will not initiate a 
Portals-level operation until it has acquired sufficient “send 
tokens” to account for the events that the Portals operation 
will generate.  If the counter of available send tokens is 
zero, then portals-conduit will poll the EQ to retire 
operations. A send token is freed when processing the event 
marking the completion of the associated Portals operation. 

4. Portals-conduit Stage 2: Native AM 

The implementation described in the previous section 
used a portals-specific implementation of the GASNet 
Extended API to achieve significant improvements in 
applications level performance5.  However, when the native 

                                                           
5 A performance comparison is presented in Section 6. 

Portals Event GASNet Event 
SEND_END Local completion of Put 
ACK Remote completion of Put 
REPLY_END Completion of Get 
Table 2.  Portals Events for a Put or Get 
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Extended API implementation was completed, portals-
conduit still relied on the MPI implementation of the 
GASNet Core, including job startup/teardown and Active 
Messages.  The next major step for portals-conduit was to 
implement these pieces directly. 

The GASNet Core API includes process startup and 
exit, which were previously implemented in terms of 
MPI_Init and MPI_Finalize.  The implementation of process 
startup under Portals on Catamount was not too difficult to 
derive from documents, but the implementation of MPI_Init 
in Open MPI’s port to Red Storm was the easiest place to 
find the necessary logic.  While some non-trivial work was 
required to make process exit as robust as possible, it was 
based on designs used in previous GASNet conduits and 
there is nothing of interest to describe here. 

4.1 AM Overview 
The Active Message interface in GASNet provides a 

simple remote procedure call mechanism.  At startup a 
GASNet client establishes a table of pointers to functions, 
called “Handlers”.  An AM consists of a required index into 
the handler table at the destination, optional arguments and 
optional payload.  A node may send an AM “Request” to 
any node and the “Request Handler” is determined by the 
handler index and executed with the arguments and payload 
(if any).  An AM Handler is prohibited from blocking 
indefinitely and is allowed to make calls to only a subset of 
the GASNet API.  The only GASNet communication calls 
permitted within Handler context is a Request Handler may 
generate a single optional AM Reply to the node initiating 
the Request; a Reply Handler may not perform any 
communication.  These restrictions are derived from the 
original Berkeley AM [11] specification and combine to 
ensure the implementation may be efficient in terms of both 
code complexity and minimal resource usage.  The “One-
Request + Zero-or-one-Reply” requirement helps ensure 
deadlock-free management of resources. 

4.2 Request Receive Buffers 
Some GASNet conduits dedicate a number of fixed-size 

buffers to receive incoming AMs, and in some cases the 
buffers are associated with specific peers leading to non-
scalable memory consumption.  However, under Portals we 
use a “Locally Managed” MD for receiving AM Requests.  
An MD as described for Put and Get operations is 
“Remotely Managed” and forms the destination address by 
adding an initiator-provided offset to the base address of the 
MD.  In a Locally Managed MD, the initiator’s offset is 
ignored and arriving data is automatically concatenated by 
Portals starting at the Base of the MD.  This Portals feature 
allows reception of a sequence of variable-sized messages 
into a single long buffer with a minimum of waste6.  

                                                           
6 GASNet requires 8-byte alignment of Medium payloads.  
Padding inserted by the sender to ensure this alignment is the only 
per-message wasted space in the ReqRB MD. 

GASNet uses multiple instances of this “ReqRB” (Request 
Recv Buffers) MD linked into a portals table entry 
“AM_PTE” distinct from RAR_PTE.  Like other MDs 
linked to the portal table, they too have an ME that ignores 
all but the four least-significant match bits.  The multiple 
instances of ReqRB implement a double-buffering (or triple) 
scheme, allowing an empty one to automatically begin 
accepting messages when the arrival of a message finds too 
little space in its predecessor.  When GASNet finds a full 
ReqRB MD, it is unlinked from the ME list, and is returned 
to the end of the list when GASNet has processed all of the 
Requests it contains. 

4.3 Sending an AM Request 
AM Requests are constructed in memory by the 

initiating node, allocating memory from the same “ReqSB” 
(Request Send Buffers) MD that is used for bounce-buffers 
in the Put/Get code.  Since GASNet AMs may have at most 
a single reply, and the maximum size of a reply is known at 
compile time, the buffer used to construct the Request is 
also used to receive the corresponding Reply.  Because of 
this, if an AM Request Handler completes without sending 
the optional Reply, our implementation generates one 
implicitly to ensure the requester’s buffer can be recycled. 

GASNet defines three categories of AM: Short, 
Medium and Long.  They have in common that the caller 
provides a handler index and up to 16 optional arguments of 
32-bits each.  The category, handler index, arguments and 
implementation-specific metadata are collectively known as 
the AM “header”.  The categories differ in the treatment of 
the “payload”. 

We can begin to understand the AM-over-Portals 
implementation by examining sending and receiving a 
Medium Request.  In the Medium case, the caller specifies a 
payload by the local address and length, whose contents are 
to be delivered into a conduit-managed buffer at the target 
for use by the AM Handler.  The implementation needs only 
the lowest 4 of the 64 match bits for target MD selection 
and uses the upper 32 to store the local offset of the buffer 
(relative to the ReqSB) which will be used for delivery of 
the Reply.  The remaining 28 bits are used to pack the 
category, handler index, argument count and payload length, 
plus flow control credits to be described later.  Additionally, 
the Portals-level Put operation used to send the AM can 
carry 64-bits of “header_data” for delivery to the EQ entry, 
which is used for other header fields or up to two 32-bit 
handler arguments.  Any arguments beyond those are 
written to the buffer allocated from the local ReqSB, 
followed by a copy of the caller’s payload7.  This buffer is 
then Put to the recipient with the portal index and match bits 
required to target the ReqRB.  Flags are passed to Portals 
that suppress generation of the ACK event and the 
SEND_END event is ignored. 

                                                           
7 Padding may be added before and after the payload to maintain 8-
byte alignment of both the payload and the next header. 
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A Short request differs from the Medium only in having 
no payload.  Long requests are more complex.  In a Long, 
the caller provides not only the local address and length of 
the payload, but also a remote destination address in the 
GASNet segment at the target for delivery of the data 
(semantically, an AM Long may be thought of as a Put 
which invokes an AM Short at the target upon arrival of the 
data).  For sufficiently small payload, a Long is sent the 
same way as a Medium, with the addition of the target 
address to the header, and the receiver will copy the payload 
to the given address.  For payloads too large for this 
“packed long” approach, two Portals-level operations are 
required to move the header and payload to their disjoint 
destinations.  The header is sent as before with addition of a 
generated unique integral “Lid” (Long ID), the use of which 
is described below.  However, in order to address the 
GASNet segment and generate an event at the target, a 
different MD is required for the payload.  This MD is called 
“RARAM” and is identical to RARSRC except for having a 
separate EQ for reasons described below.  The AM Long 
payload is sent with a Portals Put to RARAM that passes the 
Lid in the Portals header_data.  Other than passing this Lid 
for use in the remote event, the Long payload is transferred 
using the same code as the GASNet-level Put.  This 
includes stalling for local completion on a RequestLong like 
a non-bulk Put8. 

4.4 Receiving an AM Request 
The ReqRB MD is configured to generate a PUT_END 

event when an AM Request header arrives.    So when 
GASNet sees a PUT_END event on this MD, it will begin 
processing the AM header.  In the case of the Short and 
Medium categories of AM the Request handler may run as 
soon as sufficient resources can be allocated to generate the 
Reply.  The same is true for a packed Long, but in the case 
of a Long that was not packed there is also a PUT_END 
event for the payload.  Since Portals does not guarantee the 
order these will be processed (especially in the case of a 
threaded GASNet client), we use the Lid included in both 
events to match the two events and ensure the handler is run 
only when both the header and payload have arrived. 

4.5 Sending and receiving of AM Replies 
In order to avoid deadlock, the sending of a Reply must 

not require the implementation to block for unbounded time 
waiting for resources; therefore it does not process 
additional Requests (since their continued arrival could 
starve the pending Reply indefinitely).  As was mentioned 
above, portals-conduit collects the resources needed for a 
worst case Reply before running a Request handler.  If 
necessary this will stall waiting for Portals events that free 
up resources used by in-flight operations.  Doing this prior 

                                                           
8 GASNet also provides a RequestLongAsync which, like the bulk 
Put, is not required to wait for local completion. 

to executing the Request ensures the Reply path will never 
block waiting for resources. 

To avoid reentering the request-handling path, portals-
conduit utilizes two separate EQs for the events generated at 
the target by arriving AMs.  The events generated by arrival 
of a Request in RARAM are on a distinct “AM_EQ” used 
for no other purpose, while the Reply-generated events are 
on the same “SAFE_EQ” as all others we process.  In this 
way we ensure that when a Long Reply stalls for local 
completion, it will do so while polling only the SAFE_EQ 
which is guaranteed not to trigger synchronous execution of 
additional AM Request handlers. 

Separation of EQs for Request and Reply arrivals 
requires that their Portals-level operations address distinct 
MDs.  Therefore sending of a Reply is very similar to a 
Request, but differs in how the data is addressed.  The Reply 
header and any Medium (or packed Long) payload is not 
sent to the ReqRB MD, but instead back to the same portion 
of the ReqSB MD that was used to construct the Request 
(using the offset held in the upper 32-bits of the Request 
header’s match bits).  Similarly, the payload Put of a Long 
is addressed not to the RARAM MD but to the RARSRC 
MD.  So, the arrival of a Reply at its destination generates a 
PUT_END event associated with the ReqSB MD, while a 
Long payload will generate one associated with the 
RARSRC MD.  Additionally, the reception of a Reply 
differs in that there is no need to allocate resources before 
running the handler. 

4.6 Flow Control 
Like the Put/Get code, the AM Request code allocates 

send tokens to account for the locally-generated EQ entries.  
However, AMs also generate PUT_END events on remote 
nodes upon arrival of AM headers and Long payloads.  
Without some flow control to limit the arrival of these 
events, one may exhaust the space in either the AM_EQ or 
the ReqRB.  The available space depends on the message 
backlog and servicing rate at the target, and thus cannot be 
managed on the sender alone.  For this one needs a 
mechanism to ensure that the total number of arriving AMs 
from all peers will not exceed the space in the AM_EQ or 
ReqRB. 

Initially, portals-conduit adopted a standard credit-
based flow control scheme for managing the remote 
resource consumption.  In this scheme, the AM Request 
code must acquire one or more “credits” to account for the 
space it will consume on the target node (in addition to the 
send tokens used to account for space in the local-side 
SAFE_EQ).  Each credit represents 256 bytes of ReqRB 
space plus one AM_EQ event.  An AM Short requires one 
credit, whereas Medium and Long messages may require 
multiple credits depending on the payload size.    Credits are 
implicitly returned by Replies and freed when processing 
the corresponding PUT_END event on the ReqSB.  This is 
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the motivation for sending an implicit Reply if a Request 
handler does not send one explicitly. 

4.7 Advanced Flow Control 
The description of flow control above assumes a known 

value of how many credits a given node has for sending AM 
Requests to a given peer, but does not address how that 
value is chosen.  For each credit granted there must be 
corresponding space in the AM_EQ and ReqRB at the 
target, arguing for smaller values to avoid excessive 
memory consumption at larger scales.  On the other hand, a 
small number of credits will limit the number of AM 
Requests a given node may have un-acknowledged by a 
given peer, potentially reducing performance of AM-
intensive message streams9, which argues for larger values.  
Initially our implementation chose a simple static 
partitioning of the credit resources in which a suitably large 
AM_EQ and ReqRB were created and each peer was 
granted an equal share of the available credits.  The static 
partitioning was easy to implement and with suitably large 
parameters could grant every peer sufficient credits to keep 
many AM Requests outstanding to cover their latency in the 
worst case.  However, this came at the cost of granting equal 
credits (and thus allocating equal space) for every peer 
regardless of the actual usage imposed by the 
communication pattern. 

We have observed that few applications are written to 
require AM-intensive communication between every node 
pair, and that many nodes receive significant bursts of AM 
Requests from very few peers (such as nearest-neighbors).  
Given the amount of memory that was required to give 
equal credits to all peers for a large scale run, we turned our 
attention to a dynamic credit allocation scheme that would 
take advantage of the common case of few AM-peers to 
significantly reduce the memory required for the AM 
receive processing while still allowing a large number of 
outstanding AM Requests between peers that could benefit. 

The dynamic credit management algorithm works by 
granting each peer at startup a constant number of credits 
that sums to less than the allocated resources (to ensure that 
every node may send some AM Requests), but holds some 
resources in reserve to grant to those peers who may need 
more.  The key idea is that a node that stalls for lack of 
credits when trying to send a Request can inform the target 
peer of how many additional credits would have allowed it 
to send the Request without stalling (using just a few bits in 
the header of the Request).   The target of the AM Request 
may then consult its current resource availability and 
include in the header of its Reply a “loan” of additional 
credits to the needy peer.  In this way only those peers that 
would benefit from a greater-than-default number of credits 
will consume them.  While a complete description of the 

                                                           
9AM-intensive operations in GASNet include barriers and some 
other collectives, while the Berkeley UPC compiler uses AMs for 
remote lock/unlock and certain memory allocation operations. 

algorithm is beyond the scope of this paper, it includes 
mechanisms to allow redistribution of credits if the 
application’s communications patterns change over time. 

5. Portals Conduit Stage 3: Firehose 

Among the most recent developments for portals-
conduit is the use of our “Firehose” library [12] to replace 
the TMPMD mechanism.  The TMPMD mechanism adds 
the synchronous overhead of creating and destroying an MD 
to the latency of every out-of-segment Put or Get operation 
that exceeds the bounce-buffer threshold.  When TMPMD 
was first developed CNL was not yet available outside of 
Cray, and MD creation and destruction were negligible on 
Catamount.  However, when we began running on CNL the 
costs were no longer trivial10.   

The Firehose library was originally developed as part of 
GASNet’s gm-conduit support for Myrinet hardware.  It 
was later generalized to be conduit-independent and used in 
GASNet’s InfiniBand and LAPI-RDMA support.  The 
purpose of Firehose is to take advantage of temporal and 
spatial locality of reference to amortize the cost of dynamic 
memory registration.  As with TMPMD, a Put or Get with 
an out-of-segment local address obtains an MD for use in 
the corresponding Portals-level operation.  However, rather 
than unconditionally creating a new MD, Firehose caches 
recently used MDs and in the common case will reuse an 
existing one.  Similarly when the Portals-level operation is 
complete, a reference count is decremented rather than 
destroying the MD.  The Firehose library uses a simple 
LRU scheme for eventually destroying MDs when 
necessary to limit the total amount of memory registered. 

In addition to LRU replacement to limit MD usage, 
Firehose will notice if the MD that would be required for a 
given operation does not yet exist but is adjacent to, or 
overlaps, one or more existing MDs.  In such a case, we 
perform coalescing: creating a new MD that is the union of 
the existing MDs and the present operation11, up to some 
maximum size.  We also mark the now-redundant smaller 
MDs for destruction on the next call.  Through this 
continuous adaptation, the Firehose library will quickly 
discover the out-of-segment working set of most 
applications and encompass it with a small set of MDs after 
a relatively short number of calls. 

The conversion of portals-conduit from TMPMD to 
Firehose was not without complications.  The fact that 
Firehose-created MDs have a maximum size meant that 

                                                           
10 The SeaStar hardware requires memory it addresses be “pinned” 
by the OS, which is ensured at MD creation.  All memory in 
Catamount is pinned, but CNL must traverse its memory 
management data structures to ensure pinning.  
11 While TMPMDs were created for the exact range of addresses to 
be transferred, firehose expands all requests to page-sized 
granularity to take advantage of spatial locality of reference and to 
assist this coalescing. 
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Figure 2.  Small Transfer Latency 

GASNet-level Put and Get operations that had always 
required exactly one Portals-level operation under TMPMD 
can require multiple ones under Firehose.  For the Put and 
Get operations this was not a problem and only minor 
bookkeeping changes were required.  For instance, the 
upper 32-bits of match bits are used to determine which 
Firehose is to be released when an operation is complete.  
However, for the AM Long payload a naïve transition from 
TMPMDs to Firehose would have meant that an 
unpredictable number of PUT_END events would be 
generated, requiring an unpredictable number of credits.  
This was resolved by reducing the maximum size of a Long 
payload under portals-conduit to what would fit in a single 
Firehose-managed MD (allowing for worst-case 
misalignment to page boundaries)12, eliminating any 
variability in credits required. 

6. Performance Results 

In this section we present some microbenchmark results 
to illustrate the benefit that came from implementing 
GASNet natively over Portals rather than relying on mpi-
conduit to run on the Cray XT series. 

6.1 Experimental Platform and Methodology 
All performance numbers were obtained in a single 

two-node batch job on Franklin [13], the quad-core Cray 
XT4 at NERSC.  Only a single core was used on each node.  
Environment modules loaded included PrgEnv-
gnu/2.1.50HD and xt-mpt/3.1.2. 

All data state the mean per-operation performance 
measured by timing 10,000 consecutive iterations of the 
subject operation.  In the case of non-blocking operations 
this time includes initiating all 10,000 operations followed 
by blocking for completion of all 10,000.  All sizes and 
bandwidths are reported in units K=210 and M=220. 

All MPI results use the Cray MPI-1 message passing 
library, which is implemented over Portals.  We do not 
consider MPI-2 RMA because as discussed in [14], that API 
is semantically unsuitable for use as a PGAS compilation 
target.  The same paper describes the design of mpi-conduit 
and the semantically-imposed costs of implementing one-
sided put/get over MPI message passing. 

                                                           
12 This limit can be controlled by an environment variable, but the 
default value allows for Long payloads up to 124K. 

6.2 Small Transfer Latency 
In Figure 2 we examine the latency of a blocking Put 

operation (lower latency is better).  The upper line shows 
the performance of mpi-conduit.  The lower line shows the 
latency of portals-conduit.  For sizes up to 16 bytes, the 
improvement is roughly a factor of two.  The discontinuities 
at 16-bytes in the lower two lines are because the SeaStar 
hardware on the Cray XT can place the first 16 bytes of 
Portals message payload in the same wire-level packet as its 
own header, resulting in nearly constant cost up to 16 bytes. 

The significant difference between the MPI and Portals 
implementations of the GASNet-level Put comes from two 
sources.  The first is that the GASNet completion semantics 
require an acknowledgement that the data has reached 
remote memory.  For portals-conduit this is available 
directly from the Portals ACK event, while mpi-conduit 
must perform an additional MPI-level communication for 
the acknowledgement. 

The remaining difference between the implementations 
is that in mpi-conduit both the initial data movement and the 
acknowledgement are implemented over GASNet’s Active 
Messages, and pay some costs associated with the semantic 
mismatch of implementing one-sided operations over two-
sided message passing13.  To facilitate comparison, we 
include an additional benchmark: the “MPI Ping-Ack” 
(dotted line).  This is a simple benchmark written in MPI 
that sends an n-byte message and a zero-byte reply.  This is 
the minimal MPI-level communication required to simulate 
the data movement and synchronization of a GASNet-style 
Put operation and is a lower bound on the latency 
achievable by mpi-conduit.  Note that portals-conduit out-
performs this MPI benchmark by a significant margin. 

                                                           
13 For instance, the lack of a discontinuity in the latency results 
arises because the combined PutGet-over-AM-over-MPI headers 
exceed 16 bytes.  See reference [14] for further details. 
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 Figure 5.  Firehose vs. TMPMD for Blocking Put 

6.3 Large Transfer Bandwidth 
In Figure 3 we examine the bandwidth of a non-

blocking Put operation (higher bandwidth is better).  This 
benchmark initiates a large number of non-blocking Puts 
before blocking for any completion, expecting that the costs 
of communication initiation can be overlapped with 
communication.  As in the small-transfer latency case, we 
find portals-conduit yields roughly a factor two 
improvement over mpi-conduit across the entire range 
measured. 

At larger transfer sizes, the primary bandwidth 
difference arises from the fact that mpi-conduit requires two 
in-memory copies of the payload (one at each end) to 
implement one-sided Put over two-sided MPI message 
passing, whereas Puts in portals-conduit can directly 
leverage the zero-copy Put operations offered by Portals. 
Again we provide results (dotted line) from a comparable 
MPI benchmark: “osu_bw”14.  As seen before, GASNet’s 
portals-conduit is able to meet or exceed the performance of 
the MPI benchmark. 

6.4 Active Message 
In Figure 4 we see the motivation for replacing the 

MPI-based implementation of Active Messages with a 
portals-based one.  This figure shows the time required for a 
round-trip of AM Medium (a Request and a Reply), each 
with zero arguments and a payload of the indicated size.  
For this benchmark lower results are better.  The results are 
very similar to those for the blocking Put latency (Figure 2) 
and the two figures use the same scales to ease comparison.  
As with the Put latency, there is roughly a 2-fold difference 
up to 16 bytes of payload.  Unlike the Put latency, the 
communication is bidirectional, leading to a more 
significant discontinuity at 16 bytes.  While this leads to a 

                                                           
14 This benchmark is distributed by Ohio State University with 
their MVAPICH implementation of MPI. 

less significant advantage for portals-conduit between 32 
and 512 bytes than was seen in the Put case, the cost mpi-
conduit pays for additional in-memory copies becomes 
evident between 512 and 1024 bytes. 

6.5 Firehose vs. TMPMD 
Finally,  Figure 5 demonstrates the performance gain of 

replacing the TMPMD mechanism with the Firehose library.  
This figure shows large-transfer bandwidth (higher is 
better), as did Figure 3, and they are plotted on the same 
scales.  In this case, however, the operation timed is a 
sequence of large blocking Puts with an out-of-segment 
source address.  The same source address is used for every 
Put operation, which is the ideal case for Firehose.  Because 
a sequence of blocking operations cannot benefit from 
overlap of injection costs with data communication, the 
reduction in injection cost is evident in this 
microbenchmark.  In absolute terms the difference is 
growing with transfer size because the time to create an MD 
grows with size; the TMPMD implementation pays this cost 
for every operation while the Firehose implementation 
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amortizes this cost over all the operations at a given transfer 
size. 

In this figure the lower line represent the use of 
TMPMD, and the upper line is Firehose.  The results show 
that using Firehose consistently achieves an equal or higher 
bandwidth than with TMPMD.  Asymptotically the 
improvement is approximately 3.5%, and the greatest 
improvement of 8.5% is seen at 8KB. 

7. Conclusions and Future Work 

As can be seen from the performance results in the 
previous section, the native port of GASNet to Portals was 
clearly worthwhile from a performance perspective.  The 
microbenchmark results show this port yields approximately 
half the latency for small transfers and twice the bandwidth 
for large ones.  Additionally, comparisons to MPI 
microbenchmarks with the same communications patterns 
(but without the full GASNet semantics) show that no 
amount of tuning of mpi-conduit could have been expected 
to produce the performance of portals-conduit.  Overall we 
feel it was well worth the effort expended. 

The switch from Catamount to CNL did cause some 
significant changes, including the use of Firehose and 
incorporation of thread safety (which we did not elaborate 
on in this paper).  While the gains from implementing 
Firehose are nothing like the 2-fold improvements seen 
moving from portable mpi-conduit to native portals-conduit, 
we still find a 3.5 to 8.5% improvement for transfers larger 
than the 4K page size to be worth the effort.  It was also a 
continued validation of the Firehose design. 

While there is a less than perfect fit between Portals and 
GASNet addressing schemes, the problem was not the 
greatest one we faced.  By leveraging the restriction that a 
remote address must lay within the GASNet segment, we 
were able to use a single statically-created MD and fixed 
ME to address remote memory.  However, supporting the 
Titanium language would require relaxing this restriction on 
the remote address.  Doing so might also be expected to 
improve support for the Chapel language.  While Firehose is 
used in portals-conduit only to manage local memory 
registration, it was originally designed to also deal with the 
more complex problem of managing remote memory 
registration.  Use of Firehose to its full potential in portals-
conduit would allow accessing all of memory both locally 
and remotely and is potentially the most interesting future 
work to be done within portals-conduit. 

The implementation of Active Messages over Portals 
was the biggest complication in this port.  The use of a 
locally managed MD, two distinct EQs and credits to 
manage them eventually all fell into place.  The most 
significant work done in this area is the dynamic credit 
management to replace static partitioning.  This work has 
significant potential for future generalization to other 
network conduits in GASNet. 

Overall, the GASNet Portals conduit has proven 
invaluable to a number of PGAS compiler efforts for the 
Cray XT machines.  The Berkeley and Intrepid (gcc-based) 
UPC compilers both run on GASNet, as do the recent 
releases of the Cray UPC, CAF and Chapel compilers.  The 
GASNet API has emerged as a common communication 
layer for these languages, and has enabled new language 
implementations with a practical model for portability 
across machine architectures and generations.  Finally, the 
GASNet porting experience may provide useful feedback to 
the designers of low level communication layers like 
Portals, demonstrating the use of mechanisms that are 
valuable in implementing fast one-sided communication.  
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