
Lawrence Berkeley National Laboratory
LBL Publications

Title

Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the
Cray XT

Permalink

https://escholarship.org/uc/item/36k2v1gc

Authors

Bonachea, D
Hargrove, P
Welcome, M
et al.

Publication Date

2009-05-04

DOI

10.25344/S4RP46

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/36k2v1gc
https://escholarship.org/uc/item/36k2v1gc#author
https://escholarship.org
http://www.cdlib.org/

CUG 2009 Proceedings 1 of 11

Porting GASNet to Portals: Partitioned Global Address Space
(PGAS) Language Support for the Cray XT

Dan Bonachea1,3, Paul H. Hargrove1,3, Michael Welcome2 and Katherine Yelick2,3
1Computational Research Division, Lawrence Berkeley Nat. Lab. (LBNL)
2National Energy Research Scientific Computing (NERSC) Center, LBNL
3Computer Science Division, University of California at Berkeley

ABSTRACT: Partitioned Global Address Space (PGAS) Languages are an emerging
alternative to MPI for HPC applications development. The GASNet library from
Lawrence Berkeley National Lab and the University of California at Berkeley provides
the network runtime for multiple implementations of four PGAS Languages: Unified
Parallel C (UPC), Co-Array Fortran (CAF), Titanium and Chapel. GASNet provides a
low overhead one-sided communication layer has enabled portability and high
performance of PGAS languages. This paper describes our experiences porting GASNet
to the Portals network API on the Cray XT series.

KEYWORDS: PGAS, UPC, Cray XT, Portals, GASNet

1. Introduction

Partitioned Global Address Space (PGAS) languages
are an emerging alternative to the Message Passing Interface
(MPI) for HPC applications development. PGAS languages
implicitly involve one-sided communication, in which one
process may read or write to the addresses associated with
another processor without involving the remote processor.
While MPI-2 does include some lesser-used mechanisms for
one-sided communication, MPI is primarily a two-sided
messaging library. The two-sided model can be awkward
for applications involving unstructured communication and
it adds complexity to the underlying implementation.
Communication between two MPI tasks involves matching
the source and destination address information from two
different MPI calls. While the matching rules are well
defined, they impose a non-trivial burden on the
implementation. Additionally the application of the rules to
send and receive operations in a given piece of source code
is not always immediately obvious, which can frustrate
debugging and maintenance.

In a Partitioned Global Address Space model, the
access to data across tasks is one-sided, meaning that a
communication operation includes both the source and
destination address information. This can lead to more
efficient implementations and more productive
programmers.

Our team at the University of California at Berkeley
and Lawrence Berkeley National Lab has developed
“GASNet” (Global Address Space NETworking) [1], a
portable, high-performance, one-sided communication
interface that provides an abstraction of the network and
operating system for the implementation of PGAS
languages, including our own Berkeley UPC [2] and
Titanium [3] language compilers. In addition, the GCC
UPC compiler from Intrepid [4], the Co-Array Fortran
(CAF) compiler from Rice [5] and Cray’s Chapel [6]
compiler are using GASNet for their network
communications. Recently Cray released their own
compilers for UPC [7] and CAF [8] on the XT, and they too
are using GASNet.

When the U.S. Department of Energy began to
purchase Cray XT hardware, the Berkeley UPC compiler
was ported to run applications under Catamount, but only by
using GASNet’s “mpi-conduit” for communications. While
GASNet can run over MPI for maximum portability, this
significantly reduces performance relative to an
implementation for the native network API. This paper
describes our experience developing “portals-conduit”,
GASNet’s native implementation over the Portals [9] API
for the Cray XT series. We present some background on the
relevant hardware and software followed by a chronological
account of the port; a performance comparison of mpi- and
portals-conduits and some closing remarks.

CUG 2009 Proceedings 2 of 11

2. Background

The Cray XT product series [10] form a family of
scalable compute platforms composed of Opteron
processors on a custom 3D torus interconnect. A custom
network interface chip called "SeaStar" implements the 3D
router, a HyperTransport interface to the host main memory,
and DMA engines that transfer data to and from host
memory and the network. The SeaStar also contains a
PPC440 processor and local scratch memory to help off-
load the communication processing from the host.

GASNet provides language implementers with one-
sided communications operations and a remote procedure
call mechanism. GASNet is intended as a target for
compilers and a limited group of expert programmers, as
opposed to end-users. Therefore, this paper will not attempt
to teach the details of the GASNet interface. Instead we
begin with a broad overview of GASNet and then introduce
details of GASNet and Portals as needed to describe the
porting issues.

We designed the implementation of GASNet with a
layered approach to ease porting to new platforms. The
lowest levels include build infrastructure and network-
independent support specific to the O/S and CPU. Above
the infrastructure layers our term for the support for a given
network is a “conduit”. The implementation of GASNet’s
public API is split into two levels: the “Core API” and
“Extended API”. The Core consists of the subset of
GASNet calls that must be ported to any given network, and
includes program startup and a simple remote procedure call
mechanism, known as Active Messages (AM). The
Extended API includes a wide range of data-movement calls
such as “Put” and “Get” operations in a variety of blocking
and non-blocking variants. GASNet provides a reference
implementation of the Extended API in terms of calls to the
Core API. This design allows an implementer to get started
with just an implementation of the Core API, and then
incrementally replace portions of the Extended API’s
reference implementation with ones customized to the
network.

Our goal was to implement GASNet over Portals, the
lowest-level public interface to the Cray XT’s SeaStar
communications hardware. We start by moving the GASNet
mpi-conduit to the XT under Catamount, which involved
modifications of the lowest level infrastructure layers. The
next step started with an analysis of Portals. The Portals
API was designed with MPI implementations in mind, and
therefore includes features well aligned with the send/recv
matching required by MPI. Portals supports Remote Direct
Memory Access (RDMA) for efficiency in the movement of
data, and all data transfers in Portals are accomplished via
Put/Get style operations that utilize a sophisticated
mechanism for determining the remote address.

3. Portals-conduit Stage 1: MPI Hybrid

While the layers of implementation in GASNet were
designed to allow a new platform to begin with a port of just
the Core, we chose to pursue a different approach with the
initial implementation of portals-conduit. Since mpi-
conduit uses the reference implementation of the Extended
API, portals-conduit began by replacing this with portals-
based implementation of the Extended, while preserving the
MPI-based Core implementation from mpi-conduit. This
allowed us to begin work immediately on the portions of the
code that would make the greatest impact on performance of
PGAS applications.

3.1 Addressing in GASNet vs. Portals
The most important one-sided communication

operations in the GASNet Extended API are “Put” and
“Get” operations to move data between two processes (a
process is a “node” in GASNet terminology, analogous to
an MPI “task”). There are various blocking and non-
blocking variants, in addition to collective and
vector/indexed/strided operations. However, all the Put and
Get operations have in common that the caller specifies a
local address and length, plus a remote node number and a
remote address1. The Put and Get operations are all
semantically one-sided, in that there is no corresponding
GASNet call on the peer node to receive the data of a Put or
to provide the data for a Get.

While Portals provides an efficient RDMA mechanism
for movement of data, it is not based directly on virtual
addresses as in GASNet. In Portals, one process may allow
another to access portions of its address space by creating a
Memory Descriptor (MD) that gives the address and length
of the region in memory, along with other attributes. The
arguments to the Put or Get initiation operation in the
Portals API include a local MD and an offset relative to its
base. For the remote address Portals allows the initiating
node to specify the target node and an offset relative to the
base of an undetermined MD, and some matching
arguments including a “portal index” and a 64-bit word of
“match bits”.

At the Portals target node, three layers of data structure
determine the target MD of any incoming Put or Get. The
first is a table indexed by the portal index, which separates
distinct clients of Portals2, and selects an ordered list of
Match Entries (ME) on the target node. Each ME includes
two 64-bit words (“match bits” and “ignore bits”) and an
MD handle. The Portals implementation traverses the

1 GASNet supports a choice of “Segment” configurations in which
the remote address is either restricted to a specific portion of the
remote address space, or is unrestricted. In all configurations the
local address is unrestricted. At this time portals-conduit only
supports the restricted case for remote addresses.
2 GASNet uses just two portal ids, and they are distinct from those
used by the MPI and SHMEM implementations, allowing mixed-
mode applications.

CUG 2009 Proceedings 3 of 11

MD PTE
Match

Bits
Ops

Allowed
Offset
Mgt.

Event
Queue Description

RAR RAR 0x0 PUT/GET REMOTE NONE Remote segment: dst of Put, src of Get
RARAM RAR 0x1 PUT REMOTE AM_EQ Remote segment: dst of RequestLong payload
RARSRC

RAR 0x2 PUT REMOTE SAFE_EQ
Remote segment: dst of ReplyLong payload
Local segment: src of Put/Long payload, dst of Get

ReqRB AM 0x3 PUT LOCAL AM_EQ Dest of AM Request Header (double-buffered)
CB

AM 0x3 PUT LOCAL SAFE_EQ
Catches any AM Requests that miss all ReqRBs,
for detection of fatal credit management errors

ReqSB
AM 0x4 PUT REMOTE SAFE_EQ

Bounce buffers for out-of-segment Put/Long/Get,
AM Request Header src, AM Reply Header dst

RplSB none none N/A N/A SAFE_EQ Src of AM Reply Header
TMPMD

none none N/A N/A SAFE_EQ
Large out-of-segment local addressing:
Src of Put/AM Long payload, dest of Get

SYS AM 0x5 PUT LOCAL SYS_EQ Startup, shutdown, and credit redistribution
Table 1. Memory Descriptors in portals-conduit

Portal Table

Portal Index

EQ

Application
Memory Region

Optional

Match List

ME
<0001>ME

<1100>ME
<0110> MD

Application
Memory Region

Figure 1. Portals Message Processing

ordered list of MEs until the match bits provided by initiator
and ME are the same after discarding the ME-provided
ignore bits. If a matching ME is found and the associated
MD meets some additional criteria, then the initiator-
provided offset is added to the Base of the MD to yield the
target-side address of the Put or Get. Portals message
processing is depicted graphically in Figure 1. Table 1 lists
all the MDs utilized in portals-conduit.

While match bits provide for dynamic use of MEs to
support posted receives in MPI, implementing GASNet Puts
and Gets needs only the ability to address a single
contiguous “segment” on the remote node. GASNet
establishes this access at startup using one portal id,
“RAR_PTE”, with multiple MEs to distinguish different
operations (as will become clear later). These MEs have a
common set of ignore bits that exclude all but the least
significant 4-bits from matching. For addressing of the
GASNet segment at the target, the “RAR” (Remote Access
Region) is an MD covering the range of addresses in the
GASNet segment, associated with an ME that matches
“RAR_BITS”. This MD is configured to allow Put and Get
access, to remain persistently available, and not to generate
any events (described later) on the target node. Using a
table established at startup containing the base address of
each node’s GASNet segment (and thus RAR) the initiator
of a Put or Get can name the appropriate destination using

RAR_PTE for the portal index and RAR_BITS for the
match bits, while the remote offset is the remote address
minus the base address.

On the initiator there are two distinct possibilities for
the local address: it either lies inside the GASNet segment
or outside. We will return to the out-of-segment case later.
For the case of addresses inside the segment a second MD,
known as “RARSRC” (RAR SouRCe), is used. This MD
covers the same range of addresses as “RAR” and is passed
as the local MD for Portals Put and Get operations with a
local offset computed as for the remote case. However,
RARSRC is different from RAR in that it is configured to
generate Portals events used to implement GASNet’s
completion semantics, as described below.

3.2 Completion of GASNet operations
GASNet provides a variety of blocking and non-

blocking operations to support the needs of PGAS clients.
The blocking operations in GASNet return after data
movement is complete (remote completion), while the non-
blocking ones have associated “sync” mechanisms to poll or
wait for remote completion. The non-blocking Put
functions are further divided into “non-bulk” ones where the
initiation call may return as soon as the local data is safe to
overwrite (local completion) and “bulk” ones that may
return immediately (while the source buffer is still in use).
In order to implement the various options over Portals, one
needs to understand the Portals event mechanism.

In Portals each MD may have an associated Event
Queue (EQ). A given operation can trigger creation of
several possible events on the EQs associated with the MDs
at the initiator and target. A combination of per-operation
flags and MD flags control which events are generated. A
Portals call to initiate a Put or Get will return immediately
without regard to the state of the transfer. To know when a
given Portals operation has completed, either locally or
remotely, one must process the Portals EQs.

CUG 2009 Proceedings 4 of 11

From the perspective of completion, the most complex
operation in GASNet is the non-blocking, non-bulk Put
operation. Once it initiates the Portals-level Put operation, it
must wait for local-completion before it may return, and a
later sync operation must test or wait for remote-completion.
Bulk operations are simpler because they may return
without concern for local completion. Gets are even simpler
because there is no distinction between local and remote
completion. In our implementation for other low-level
communications APIs, GASNet is sometimes forced to wait
for remote completion when there is no independent
indicator of local completion; or GASNet may need to
implement an acknowledgment when there is no indication
of remote completion. With Portals, however, there is a
one-to-one mapping from Portals events at the initiator to
GASNet’s completion semantics, as summarized in Table 2.

Since there can be multiple GASNet-level operations in
flight, there is some additional work that GASNet must
perform to associate a Portals-level event with the GASNet-
level operation. As was mentioned previously, the Match
Entry for the RAR MD ignores all but the least-significant
4-bits. Since all match bits of the original operation are
preserved in any corresponding EQ entry, this is an ideal
place to store the information needed for establishing this
correspondence. Four additional bits are used to store the
operation type (including bulk Put, non-bulk Put, and Get3).
One byte is used for a thread id4 and two bytes for a
GASNet “eop addr”. The thread id and eop addr are
existing GASNet abstractions in the reference-extended
implementation and provide for a compact naming of a
specific outstanding GASNet-level operation. These fields
account for a total of only 32 of the 64 Portals-provided
match bits; the remaining 32 became useful in implementing
additional features, as will be described in subsequent
sections.

3.3 Out-of-segment access
In the case of a local address outside of the GASNet

segment, Portals still requires GASNet to name a local MD
when initiating communication, but RARSRC covers only
the GASNet segment. GASNet handles this in one of two
ways depending on the length of the operation: bounce-
buffers or TMPMD. For small payloads, GASNet maintains
a pool of buffers covered by a single “ReqSB” MD
configured very much like RARSRC. A small GASNet-
level Put with out-of-segment source address is copied into

3 Additional operation types are used to support additional features.
4 While threads were not supported under Catamount, they are in
CNL. GASNet supports threads, which permits a hybrid execution
model involving threads within a node and GASNet between them.

a bounce-buffer and the Portals-level Put is issued with the
bounce-buffer as the source. Similarly a small GASNet Get
with an out-of-segment destination address is issued to
Portals as a Get with a bounce-buffer as the destination and
the data is copied to the caller’s buffer after the Portals-level
Get is complete (the REPLY_END event).

For out-of-segment transfers larger than a tunable
threshold, GASNet switches to dynamic creation of MDs.
GASNet creates a “TMPMD” Memory Descriptor to cover
the requested range of local memory, and destroys the MD
when the Portals-level Put or Get is completed. There is
some (OS-dependent) software overhead associated with
MD creation and destruction, hence the tradeoff between
this penalty and the cost of copying the payload through a
bounce buffer on the initiator. The implementation can
manage many TMPMDs to support multiple outstanding
non-blocking operations.

The TMPMD and ReqSB MDs are configured to place
associated events on the same EQ as the RARSRC used for
in-segment local address. Therefore, handling of GASNet
completion semantics is altered only slightly relative to the
in-segment case. In particular if using a bounce-buffer for a
Put then the copy to the bounce buffer is sufficient for local
completion, without waiting for a Portals SEND_END
event. There is no need to use any match bits to identify in-
segment vs. bounce-buffer or TMPMD, as this is easily
distinguished using the MD handle in the EQ entry.

Regardless of the choice between bounce-buffer or
TMPMD, the associated resource is returned to its free pool
upon completion. A specifc TMPMD can be identified
trivially because the MD handle is stored in the EQ entry.
Similarly a bounce-buffer address can be reconstructed from
the base address of its MD and the local_offset in the EQ
entry.

3.4 Finite Resources
The description so far has ignored finite resource

limitations. However, Portals EQs are created with a caller-
specified finite capacity that must not be exceeded. For the
Put/Get code this is easily dealt with using a semaphore-
type construct that ensures that GASNet will not initiate a
Portals-level operation until it has acquired sufficient “send
tokens” to account for the events that the Portals operation
will generate. If the counter of available send tokens is
zero, then portals-conduit will poll the EQ to retire
operations. A send token is freed when processing the event
marking the completion of the associated Portals operation.

4. Portals-conduit Stage 2: Native AM

The implementation described in the previous section
used a portals-specific implementation of the GASNet
Extended API to achieve significant improvements in
applications level performance5. However, when the native

5 A performance comparison is presented in Section 6.

Portals Event GASNet Event
SEND_END Local completion of Put
ACK Remote completion of Put
REPLY_END Completion of Get
Table 2. Portals Events for a Put or Get

CUG 2009 Proceedings 5 of 11

Extended API implementation was completed, portals-
conduit still relied on the MPI implementation of the
GASNet Core, including job startup/teardown and Active
Messages. The next major step for portals-conduit was to
implement these pieces directly.

The GASNet Core API includes process startup and
exit, which were previously implemented in terms of
MPI_Init and MPI_Finalize. The implementation of process
startup under Portals on Catamount was not too difficult to
derive from documents, but the implementation of MPI_Init
in Open MPI’s port to Red Storm was the easiest place to
find the necessary logic. While some non-trivial work was
required to make process exit as robust as possible, it was
based on designs used in previous GASNet conduits and
there is nothing of interest to describe here.

4.1 AM Overview
The Active Message interface in GASNet provides a

simple remote procedure call mechanism. At startup a
GASNet client establishes a table of pointers to functions,
called “Handlers”. An AM consists of a required index into
the handler table at the destination, optional arguments and
optional payload. A node may send an AM “Request” to
any node and the “Request Handler” is determined by the
handler index and executed with the arguments and payload
(if any). An AM Handler is prohibited from blocking
indefinitely and is allowed to make calls to only a subset of
the GASNet API. The only GASNet communication calls
permitted within Handler context is a Request Handler may
generate a single optional AM Reply to the node initiating
the Request; a Reply Handler may not perform any
communication. These restrictions are derived from the
original Berkeley AM [11] specification and combine to
ensure the implementation may be efficient in terms of both
code complexity and minimal resource usage. The “One-
Request + Zero-or-one-Reply” requirement helps ensure
deadlock-free management of resources.

4.2 Request Receive Buffers
Some GASNet conduits dedicate a number of fixed-size

buffers to receive incoming AMs, and in some cases the
buffers are associated with specific peers leading to non-
scalable memory consumption. However, under Portals we
use a “Locally Managed” MD for receiving AM Requests.
An MD as described for Put and Get operations is
“Remotely Managed” and forms the destination address by
adding an initiator-provided offset to the base address of the
MD. In a Locally Managed MD, the initiator’s offset is
ignored and arriving data is automatically concatenated by
Portals starting at the Base of the MD. This Portals feature
allows reception of a sequence of variable-sized messages
into a single long buffer with a minimum of waste6.

6 GASNet requires 8-byte alignment of Medium payloads.
Padding inserted by the sender to ensure this alignment is the only
per-message wasted space in the ReqRB MD.

GASNet uses multiple instances of this “ReqRB” (Request
Recv Buffers) MD linked into a portals table entry
“AM_PTE” distinct from RAR_PTE. Like other MDs
linked to the portal table, they too have an ME that ignores
all but the four least-significant match bits. The multiple
instances of ReqRB implement a double-buffering (or triple)
scheme, allowing an empty one to automatically begin
accepting messages when the arrival of a message finds too
little space in its predecessor. When GASNet finds a full
ReqRB MD, it is unlinked from the ME list, and is returned
to the end of the list when GASNet has processed all of the
Requests it contains.

4.3 Sending an AM Request
AM Requests are constructed in memory by the

initiating node, allocating memory from the same “ReqSB”
(Request Send Buffers) MD that is used for bounce-buffers
in the Put/Get code. Since GASNet AMs may have at most
a single reply, and the maximum size of a reply is known at
compile time, the buffer used to construct the Request is
also used to receive the corresponding Reply. Because of
this, if an AM Request Handler completes without sending
the optional Reply, our implementation generates one
implicitly to ensure the requester’s buffer can be recycled.

GASNet defines three categories of AM: Short,
Medium and Long. They have in common that the caller
provides a handler index and up to 16 optional arguments of
32-bits each. The category, handler index, arguments and
implementation-specific metadata are collectively known as
the AM “header”. The categories differ in the treatment of
the “payload”.

We can begin to understand the AM-over-Portals
implementation by examining sending and receiving a
Medium Request. In the Medium case, the caller specifies a
payload by the local address and length, whose contents are
to be delivered into a conduit-managed buffer at the target
for use by the AM Handler. The implementation needs only
the lowest 4 of the 64 match bits for target MD selection
and uses the upper 32 to store the local offset of the buffer
(relative to the ReqSB) which will be used for delivery of
the Reply. The remaining 28 bits are used to pack the
category, handler index, argument count and payload length,
plus flow control credits to be described later. Additionally,
the Portals-level Put operation used to send the AM can
carry 64-bits of “header_data” for delivery to the EQ entry,
which is used for other header fields or up to two 32-bit
handler arguments. Any arguments beyond those are
written to the buffer allocated from the local ReqSB,
followed by a copy of the caller’s payload7. This buffer is
then Put to the recipient with the portal index and match bits
required to target the ReqRB. Flags are passed to Portals
that suppress generation of the ACK event and the
SEND_END event is ignored.

7 Padding may be added before and after the payload to maintain 8-
byte alignment of both the payload and the next header.

CUG 2009 Proceedings 6 of 11

A Short request differs from the Medium only in having
no payload. Long requests are more complex. In a Long,
the caller provides not only the local address and length of
the payload, but also a remote destination address in the
GASNet segment at the target for delivery of the data
(semantically, an AM Long may be thought of as a Put
which invokes an AM Short at the target upon arrival of the
data). For sufficiently small payload, a Long is sent the
same way as a Medium, with the addition of the target
address to the header, and the receiver will copy the payload
to the given address. For payloads too large for this
“packed long” approach, two Portals-level operations are
required to move the header and payload to their disjoint
destinations. The header is sent as before with addition of a
generated unique integral “Lid” (Long ID), the use of which
is described below. However, in order to address the
GASNet segment and generate an event at the target, a
different MD is required for the payload. This MD is called
“RARAM” and is identical to RARSRC except for having a
separate EQ for reasons described below. The AM Long
payload is sent with a Portals Put to RARAM that passes the
Lid in the Portals header_data. Other than passing this Lid
for use in the remote event, the Long payload is transferred
using the same code as the GASNet-level Put. This
includes stalling for local completion on a RequestLong like
a non-bulk Put8.

4.4 Receiving an AM Request
The ReqRB MD is configured to generate a PUT_END

event when an AM Request header arrives. So when
GASNet sees a PUT_END event on this MD, it will begin
processing the AM header. In the case of the Short and
Medium categories of AM the Request handler may run as
soon as sufficient resources can be allocated to generate the
Reply. The same is true for a packed Long, but in the case
of a Long that was not packed there is also a PUT_END
event for the payload. Since Portals does not guarantee the
order these will be processed (especially in the case of a
threaded GASNet client), we use the Lid included in both
events to match the two events and ensure the handler is run
only when both the header and payload have arrived.

4.5 Sending and receiving of AM Replies
In order to avoid deadlock, the sending of a Reply must

not require the implementation to block for unbounded time
waiting for resources; therefore it does not process
additional Requests (since their continued arrival could
starve the pending Reply indefinitely). As was mentioned
above, portals-conduit collects the resources needed for a
worst case Reply before running a Request handler. If
necessary this will stall waiting for Portals events that free
up resources used by in-flight operations. Doing this prior

8 GASNet also provides a RequestLongAsync which, like the bulk
Put, is not required to wait for local completion.

to executing the Request ensures the Reply path will never
block waiting for resources.

To avoid reentering the request-handling path, portals-
conduit utilizes two separate EQs for the events generated at
the target by arriving AMs. The events generated by arrival
of a Request in RARAM are on a distinct “AM_EQ” used
for no other purpose, while the Reply-generated events are
on the same “SAFE_EQ” as all others we process. In this
way we ensure that when a Long Reply stalls for local
completion, it will do so while polling only the SAFE_EQ
which is guaranteed not to trigger synchronous execution of
additional AM Request handlers.

Separation of EQs for Request and Reply arrivals
requires that their Portals-level operations address distinct
MDs. Therefore sending of a Reply is very similar to a
Request, but differs in how the data is addressed. The Reply
header and any Medium (or packed Long) payload is not
sent to the ReqRB MD, but instead back to the same portion
of the ReqSB MD that was used to construct the Request
(using the offset held in the upper 32-bits of the Request
header’s match bits). Similarly, the payload Put of a Long
is addressed not to the RARAM MD but to the RARSRC
MD. So, the arrival of a Reply at its destination generates a
PUT_END event associated with the ReqSB MD, while a
Long payload will generate one associated with the
RARSRC MD. Additionally, the reception of a Reply
differs in that there is no need to allocate resources before
running the handler.

4.6 Flow Control
Like the Put/Get code, the AM Request code allocates

send tokens to account for the locally-generated EQ entries.
However, AMs also generate PUT_END events on remote
nodes upon arrival of AM headers and Long payloads.
Without some flow control to limit the arrival of these
events, one may exhaust the space in either the AM_EQ or
the ReqRB. The available space depends on the message
backlog and servicing rate at the target, and thus cannot be
managed on the sender alone. For this one needs a
mechanism to ensure that the total number of arriving AMs
from all peers will not exceed the space in the AM_EQ or
ReqRB.

Initially, portals-conduit adopted a standard credit-
based flow control scheme for managing the remote
resource consumption. In this scheme, the AM Request
code must acquire one or more “credits” to account for the
space it will consume on the target node (in addition to the
send tokens used to account for space in the local-side
SAFE_EQ). Each credit represents 256 bytes of ReqRB
space plus one AM_EQ event. An AM Short requires one
credit, whereas Medium and Long messages may require
multiple credits depending on the payload size. Credits are
implicitly returned by Replies and freed when processing
the corresponding PUT_END event on the ReqSB. This is

CUG 2009 Proceedings 7 of 11

the motivation for sending an implicit Reply if a Request
handler does not send one explicitly.

4.7 Advanced Flow Control
The description of flow control above assumes a known

value of how many credits a given node has for sending AM
Requests to a given peer, but does not address how that
value is chosen. For each credit granted there must be
corresponding space in the AM_EQ and ReqRB at the
target, arguing for smaller values to avoid excessive
memory consumption at larger scales. On the other hand, a
small number of credits will limit the number of AM
Requests a given node may have un-acknowledged by a
given peer, potentially reducing performance of AM-
intensive message streams9, which argues for larger values.
Initially our implementation chose a simple static
partitioning of the credit resources in which a suitably large
AM_EQ and ReqRB were created and each peer was
granted an equal share of the available credits. The static
partitioning was easy to implement and with suitably large
parameters could grant every peer sufficient credits to keep
many AM Requests outstanding to cover their latency in the
worst case. However, this came at the cost of granting equal
credits (and thus allocating equal space) for every peer
regardless of the actual usage imposed by the
communication pattern.

We have observed that few applications are written to
require AM-intensive communication between every node
pair, and that many nodes receive significant bursts of AM
Requests from very few peers (such as nearest-neighbors).
Given the amount of memory that was required to give
equal credits to all peers for a large scale run, we turned our
attention to a dynamic credit allocation scheme that would
take advantage of the common case of few AM-peers to
significantly reduce the memory required for the AM
receive processing while still allowing a large number of
outstanding AM Requests between peers that could benefit.

The dynamic credit management algorithm works by
granting each peer at startup a constant number of credits
that sums to less than the allocated resources (to ensure that
every node may send some AM Requests), but holds some
resources in reserve to grant to those peers who may need
more. The key idea is that a node that stalls for lack of
credits when trying to send a Request can inform the target
peer of how many additional credits would have allowed it
to send the Request without stalling (using just a few bits in
the header of the Request). The target of the AM Request
may then consult its current resource availability and
include in the header of its Reply a “loan” of additional
credits to the needy peer. In this way only those peers that
would benefit from a greater-than-default number of credits
will consume them. While a complete description of the

9AM-intensive operations in GASNet include barriers and some
other collectives, while the Berkeley UPC compiler uses AMs for
remote lock/unlock and certain memory allocation operations.

algorithm is beyond the scope of this paper, it includes
mechanisms to allow redistribution of credits if the
application’s communications patterns change over time.

5. Portals Conduit Stage 3: Firehose

Among the most recent developments for portals-
conduit is the use of our “Firehose” library [12] to replace
the TMPMD mechanism. The TMPMD mechanism adds
the synchronous overhead of creating and destroying an MD
to the latency of every out-of-segment Put or Get operation
that exceeds the bounce-buffer threshold. When TMPMD
was first developed CNL was not yet available outside of
Cray, and MD creation and destruction were negligible on
Catamount. However, when we began running on CNL the
costs were no longer trivial10.

The Firehose library was originally developed as part of
GASNet’s gm-conduit support for Myrinet hardware. It
was later generalized to be conduit-independent and used in
GASNet’s InfiniBand and LAPI-RDMA support. The
purpose of Firehose is to take advantage of temporal and
spatial locality of reference to amortize the cost of dynamic
memory registration. As with TMPMD, a Put or Get with
an out-of-segment local address obtains an MD for use in
the corresponding Portals-level operation. However, rather
than unconditionally creating a new MD, Firehose caches
recently used MDs and in the common case will reuse an
existing one. Similarly when the Portals-level operation is
complete, a reference count is decremented rather than
destroying the MD. The Firehose library uses a simple
LRU scheme for eventually destroying MDs when
necessary to limit the total amount of memory registered.

In addition to LRU replacement to limit MD usage,
Firehose will notice if the MD that would be required for a
given operation does not yet exist but is adjacent to, or
overlaps, one or more existing MDs. In such a case, we
perform coalescing: creating a new MD that is the union of
the existing MDs and the present operation11, up to some
maximum size. We also mark the now-redundant smaller
MDs for destruction on the next call. Through this
continuous adaptation, the Firehose library will quickly
discover the out-of-segment working set of most
applications and encompass it with a small set of MDs after
a relatively short number of calls.

The conversion of portals-conduit from TMPMD to
Firehose was not without complications. The fact that
Firehose-created MDs have a maximum size meant that

10 The SeaStar hardware requires memory it addresses be “pinned”
by the OS, which is ensured at MD creation. All memory in
Catamount is pinned, but CNL must traverse its memory
management data structures to ensure pinning.
11 While TMPMDs were created for the exact range of addresses to
be transferred, firehose expands all requests to page-sized
granularity to take advantage of spatial locality of reference and to
assist this coalescing.

CUG 2009 Proceedings 8 of 11

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1024

La
te

nc
y

of
 B

lo
ck

in
g

Pu
t (
μs

)

Transfer Size (bytes)

mpi-conduit Put
MPI Ping-Ack
portals-conduit Put

Figure 2. Small Transfer Latency

GASNet-level Put and Get operations that had always
required exactly one Portals-level operation under TMPMD
can require multiple ones under Firehose. For the Put and
Get operations this was not a problem and only minor
bookkeeping changes were required. For instance, the
upper 32-bits of match bits are used to determine which
Firehose is to be released when an operation is complete.
However, for the AM Long payload a naïve transition from
TMPMDs to Firehose would have meant that an
unpredictable number of PUT_END events would be
generated, requiring an unpredictable number of credits.
This was resolved by reducing the maximum size of a Long
payload under portals-conduit to what would fit in a single
Firehose-managed MD (allowing for worst-case
misalignment to page boundaries)12, eliminating any
variability in credits required.

6. Performance Results

In this section we present some microbenchmark results
to illustrate the benefit that came from implementing
GASNet natively over Portals rather than relying on mpi-
conduit to run on the Cray XT series.

6.1 Experimental Platform and Methodology
All performance numbers were obtained in a single

two-node batch job on Franklin [13], the quad-core Cray
XT4 at NERSC. Only a single core was used on each node.
Environment modules loaded included PrgEnv-
gnu/2.1.50HD and xt-mpt/3.1.2.

All data state the mean per-operation performance
measured by timing 10,000 consecutive iterations of the
subject operation. In the case of non-blocking operations
this time includes initiating all 10,000 operations followed
by blocking for completion of all 10,000. All sizes and
bandwidths are reported in units K=210 and M=220.

All MPI results use the Cray MPI-1 message passing
library, which is implemented over Portals. We do not
consider MPI-2 RMA because as discussed in [14], that API
is semantically unsuitable for use as a PGAS compilation
target. The same paper describes the design of mpi-conduit
and the semantically-imposed costs of implementing one-
sided put/get over MPI message passing.

12 This limit can be controlled by an environment variable, but the
default value allows for Long payloads up to 124K.

6.2 Small Transfer Latency
In Figure 2 we examine the latency of a blocking Put

operation (lower latency is better). The upper line shows
the performance of mpi-conduit. The lower line shows the
latency of portals-conduit. For sizes up to 16 bytes, the
improvement is roughly a factor of two. The discontinuities
at 16-bytes in the lower two lines are because the SeaStar
hardware on the Cray XT can place the first 16 bytes of
Portals message payload in the same wire-level packet as its
own header, resulting in nearly constant cost up to 16 bytes.

The significant difference between the MPI and Portals
implementations of the GASNet-level Put comes from two
sources. The first is that the GASNet completion semantics
require an acknowledgement that the data has reached
remote memory. For portals-conduit this is available
directly from the Portals ACK event, while mpi-conduit
must perform an additional MPI-level communication for
the acknowledgement.

The remaining difference between the implementations
is that in mpi-conduit both the initial data movement and the
acknowledgement are implemented over GASNet’s Active
Messages, and pay some costs associated with the semantic
mismatch of implementing one-sided operations over two-
sided message passing13. To facilitate comparison, we
include an additional benchmark: the “MPI Ping-Ack”
(dotted line). This is a simple benchmark written in MPI
that sends an n-byte message and a zero-byte reply. This is
the minimal MPI-level communication required to simulate
the data movement and synchronization of a GASNet-style
Put operation and is a lower bound on the latency
achievable by mpi-conduit. Note that portals-conduit out-
performs this MPI benchmark by a significant margin.

13 For instance, the lack of a discontinuity in the latency results
arises because the combined PutGet-over-AM-over-MPI headers
exceed 16 bytes. See reference [14] for further details.

CUG 2009 Proceedings 9 of 11

0

200

400

600

800

1000

1200

1400

1600

1800

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

B
an

dw
id

th
 o

f N
on

-B
lo

ck
in

g
Pu

t (
M

B
/s

)

Transfer Size (bytes)

portals-conduit Put
OSU MPI BW test
mpi-conduit Put

Figure 3. Large Transfer Bandwidth

0

200

400

600

800

1000

1200

1400

1600

1800

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

B
an

dw
id

th
 o

f B
lo

ck
in

g
Pu

t (
M

B
/s

)

Transfer Size (bytes)

Firehose

TMPMD

 Figure 5. Firehose vs. TMPMD for Blocking Put

6.3 Large Transfer Bandwidth
In Figure 3 we examine the bandwidth of a non-

blocking Put operation (higher bandwidth is better). This
benchmark initiates a large number of non-blocking Puts
before blocking for any completion, expecting that the costs
of communication initiation can be overlapped with
communication. As in the small-transfer latency case, we
find portals-conduit yields roughly a factor two
improvement over mpi-conduit across the entire range
measured.

At larger transfer sizes, the primary bandwidth
difference arises from the fact that mpi-conduit requires two
in-memory copies of the payload (one at each end) to
implement one-sided Put over two-sided MPI message
passing, whereas Puts in portals-conduit can directly
leverage the zero-copy Put operations offered by Portals.
Again we provide results (dotted line) from a comparable
MPI benchmark: “osu_bw”14. As seen before, GASNet’s
portals-conduit is able to meet or exceed the performance of
the MPI benchmark.

6.4 Active Message
In Figure 4 we see the motivation for replacing the

MPI-based implementation of Active Messages with a
portals-based one. This figure shows the time required for a
round-trip of AM Medium (a Request and a Reply), each
with zero arguments and a payload of the indicated size.
For this benchmark lower results are better. The results are
very similar to those for the blocking Put latency (Figure 2)
and the two figures use the same scales to ease comparison.
As with the Put latency, there is roughly a 2-fold difference
up to 16 bytes of payload. Unlike the Put latency, the
communication is bidirectional, leading to a more
significant discontinuity at 16 bytes. While this leads to a

14 This benchmark is distributed by Ohio State University with
their MVAPICH implementation of MPI.

less significant advantage for portals-conduit between 32
and 512 bytes than was seen in the Put case, the cost mpi-
conduit pays for additional in-memory copies becomes
evident between 512 and 1024 bytes.

6.5 Firehose vs. TMPMD
Finally, Figure 5 demonstrates the performance gain of

replacing the TMPMD mechanism with the Firehose library.
This figure shows large-transfer bandwidth (higher is
better), as did Figure 3, and they are plotted on the same
scales. In this case, however, the operation timed is a
sequence of large blocking Puts with an out-of-segment
source address. The same source address is used for every
Put operation, which is the ideal case for Firehose. Because
a sequence of blocking operations cannot benefit from
overlap of injection costs with data communication, the
reduction in injection cost is evident in this
microbenchmark. In absolute terms the difference is
growing with transfer size because the time to create an MD
grows with size; the TMPMD implementation pays this cost
for every operation while the Firehose implementation

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1024

A
M

 M
ed

iu
m

 R
ou

nd
-tr

ip
 L

at
en

cy
 (μ

s)

Payload Size (bytes)

mpi-conduit
portals-conduit

Figure 4. AM Medium Latency

CUG 2009 Proceedings 10 of 11

amortizes this cost over all the operations at a given transfer
size.

In this figure the lower line represent the use of
TMPMD, and the upper line is Firehose. The results show
that using Firehose consistently achieves an equal or higher
bandwidth than with TMPMD. Asymptotically the
improvement is approximately 3.5%, and the greatest
improvement of 8.5% is seen at 8KB.

7. Conclusions and Future Work

As can be seen from the performance results in the
previous section, the native port of GASNet to Portals was
clearly worthwhile from a performance perspective. The
microbenchmark results show this port yields approximately
half the latency for small transfers and twice the bandwidth
for large ones. Additionally, comparisons to MPI
microbenchmarks with the same communications patterns
(but without the full GASNet semantics) show that no
amount of tuning of mpi-conduit could have been expected
to produce the performance of portals-conduit. Overall we
feel it was well worth the effort expended.

The switch from Catamount to CNL did cause some
significant changes, including the use of Firehose and
incorporation of thread safety (which we did not elaborate
on in this paper). While the gains from implementing
Firehose are nothing like the 2-fold improvements seen
moving from portable mpi-conduit to native portals-conduit,
we still find a 3.5 to 8.5% improvement for transfers larger
than the 4K page size to be worth the effort. It was also a
continued validation of the Firehose design.

While there is a less than perfect fit between Portals and
GASNet addressing schemes, the problem was not the
greatest one we faced. By leveraging the restriction that a
remote address must lay within the GASNet segment, we
were able to use a single statically-created MD and fixed
ME to address remote memory. However, supporting the
Titanium language would require relaxing this restriction on
the remote address. Doing so might also be expected to
improve support for the Chapel language. While Firehose is
used in portals-conduit only to manage local memory
registration, it was originally designed to also deal with the
more complex problem of managing remote memory
registration. Use of Firehose to its full potential in portals-
conduit would allow accessing all of memory both locally
and remotely and is potentially the most interesting future
work to be done within portals-conduit.

The implementation of Active Messages over Portals
was the biggest complication in this port. The use of a
locally managed MD, two distinct EQs and credits to
manage them eventually all fell into place. The most
significant work done in this area is the dynamic credit
management to replace static partitioning. This work has
significant potential for future generalization to other
network conduits in GASNet.

Overall, the GASNet Portals conduit has proven
invaluable to a number of PGAS compiler efforts for the
Cray XT machines. The Berkeley and Intrepid (gcc-based)
UPC compilers both run on GASNet, as do the recent
releases of the Cray UPC, CAF and Chapel compilers. The
GASNet API has emerged as a common communication
layer for these languages, and has enabled new language
implementations with a practical model for portability
across machine architectures and generations. Finally, the
GASNet porting experience may provide useful feedback to
the designers of low level communication layers like
Portals, demonstrating the use of mechanisms that are
valuable in implementing fast one-sided communication.

Acknowledgments

We would like to thank Cray for funding the ports of
GASNet and the Berkeley UPC Complier to the Cray XT
series, and providing machine access for development and
testing. We would particularly like to acknowledge the
valuable technical assistance we received from Cray
employees Kyle Hubert, Howard Prichard and Doug
Gilmore.

This work was supported by the Director, Office of
Science, Office of Advanced Scientific Computing
Research, of the U.S. Department of Energy under Contract
Nos. DE-AC02-05CH11231 and DE-FC03-01ER25509.

This research used resources of the National Energy
Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

This research used resources of the Center for
Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-
00OR22725.

This research was supported in part by the National
Science Foundation through TeraGrid resources provided by
Pittsburgh Supercomputing Center.

About the Authors

Dan Bonachea is finishing up his Ph.D. in Computer
Science at the University of California at Berkeley. He is a
main developer on the GASNet and Berkeley UPC projects,
and his research interests include HPC languages, compilers
and runtime/communication systems. Email:
bonachea@cs.berkeley.edu

Paul H. Hargrove has been a Principle Investigator in
the Future Technologies Group at LBNL since 2000. In
addition to working on the Berkeley UPC and GASNet
projects, Paul leads the Berkeley Lab Checkpoint Restart
(BLCR) project which has recently been ported to the Cray
XT. Email: PHHargrove@lbl.gov

CUG 2009 Proceedings 11 of 11

Mike Welcome, previously a member of the Future
Technologies Group at LBNL, is currently a staff member
of the National Energy Research Scientific Computing
(NERSC) Center in the Mass Storage Group. Email:
mlwelcome@lbl.gov

Katherine Yelick is a Professor of Electrical
Engineering and Computer Sciences at the University of
California at Berkeley and Director of the National Energy
Research Scientific Computing (NERSC) Center at
Lawrence Berkeley National Laboratory. She has led or co-
led the Berkeley UPC, Titanium, and Bebop projects and
her current research interests include parallel computing,
memory hierarchy optimizations, programming languages,
and compilers. Email: yelick@nersc.gov

All four authors may be reached by paper mail to:
Lawrence Berkeley National Lab
One Cyclotron Rd.
Berkeley, CA 94720

References

1. Dan Bonachea. GASNet Specification v1.1. UC
Berkeley Computer Science Division Report CSD-02-
1207, 2002.

2. Berkeley Unified Parallel C (UPC) Project.
http://upc.lbl.gov

3. Titanium Project Home Page.
http://titanium.cs.berkeley.edu

4. GCC UPC (GCC Unified Parallel C).
http://www.intrepid.com/upc.html

5. Co-Array FORTRAN at Rice University.
http://www.hipersoft.rice.edu/caf/

6. Chapel Programming Language Homepage.
http://chapel.cs.washington.edu

7. Cray Inc. Cray C and C++ Reference Manual.
December, 2008. Publication number S-2179-70.
http://docs.cray.com/books/S-2179-70

8. Cray Inc. Cray FORTRAN Reference Manual.
December, 2008. Publication number S-3901-70.
http://docs.cray.com/books/S-3901-70

9. Rolf Riesen, Ron Brightwell, Kevin Pedretti, Arthur B.
Maccabe and Trammell Hudson. The Portals 3.3
Message Passing Interface. Sandia National
Laboratories Report SAND2006-0420, 2006.

10. Cray product information from
http://www.cray.com/products

11. Alan Mainwaring and David Culler. Active Message
Applications Programming Interface and
Communication Subsystem Organization. UC Berkeley
Computer Science Division Report CSD-96-918, 1995.

12. Christian Bell and Dan Bonachea. “A new DMA
registration strategy for pinning-based high
performance networks.” in Proceedings 2003
International Parallel and Distributed Processing
Symposium (IPDPS 2003). Nice, France, 2003.

13. Franklin Home Page.
http://www.nersc.gov/nusers/systems/franklin/

14. Dan Bonachea and Jason Duell. “Problems with using
MPI 1.1 and 2.0 as compilation targets” in 2nd
Workshop on Hardware/Software Support for High
Performance Scientific and Engineering Computing
(SHPSEC-03), 2003.

