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The transformations from the primitive cells of the centered Bravais lattices to

the corresponding centered cells have conventionally been listed as three-by-

three matrices that transform three-space lattice vectors. Using those three-by-

three matrices when working in the six-dimensional space of lattices represented

as Selling scalars as used in Delone (Delaunay) reduction, one could transform

to the three-space representation, apply the three-by-three matrices and then

back-transform to the six-space representation, but it is much simpler to have

the equivalent six-by-six matrices and apply them directly. The general form of

the transformation from the three-space matrix to the corresponding matrix

operating on Selling scalars (expressed in space S6) is derived, and the particular

S6matrices for the centered Delone types are listed. (Note: in his later

publications, Boris Delaunay used the Russian version of his surname, Delone.)

1. Introduction

The transformations from the primitive cells of the centered

Bravais lattices to the centered cells and between alternative

unit cells have conventionally been listed as matrices that are

applied to three-space lattice vectors (Burzlaff & Zimmer-

mann, 1985; Burzlaff et al., 1992). However, for both the

major cell reductions [Niggli (1928) and Delone (1933)], it is

convenient to work in a higher-dimension space than E3, as

reported by Andrews & Bernstein (1988) for G6 reduction and

Andrews et al. (2019) for S6. Therefore, as we did for G6

(Andrews & Bernstein, 1988), we need to provide the math-

ematically equivalent six-by-six matrices for centering in S6.

This reduces the need to convert repeatedly from S6 into

three-space vectors, transform the three-space vectors, and

then transform back into S6. We derive the general form and

list the particular matrices for converting from the 24 canon-

ical Delone types to centered lattices in S6.

2. Background and notation

2.1. The space S6

Andrews et al. (2019) introduced the space S6 as an alter-

native representation of crystallographic lattices. The space is

defined in terms of the ‘Selling scalars’ used in Selling

reduction (Selling, 1874) and by Delone (1933) for the clas-

sification of lattices. A point s in S6 is defined by

s ¼ ½b � c; a � c; a � b; a � d; b � d; c � d�; ð1Þ

where d = �a � b � c.

ISSN 2053-2733

Received 2 July 2019

Accepted 25 October 2019

Edited by A. Altomare, Institute of

Crystallography - CNR, Bari, Italy

Keywords: Delaunay; Delone; centering

transformations; centered lattices; reduced cells;

lattice centering; Niggli; Selling; matrix

transformations.

Supporting information: this article has

supporting information at journals.iucr.org/a

http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273319014542&domain=pdf&date_stamp=2020-01-01


2.2. The space E3�3

A crystallographic unit cell is commonly represented as

three cell edge lengths and three angles, [a, b, c, �, �, �], but,

when presenting common operations on unit cells, it is

convenient to express each of the cell edges as a vector in the

three-dimensional space of real numbers E3 (also written as

R3) with each cell expressed as a 3 � 3 matrix of real numbers,

i.e. as an element of E3
� E3 (see Burzlaff et al., 1992). An

issue with this approach is that we should get the same crys-

tallographic unit cell after any proper rotation of E3, i.e. by

any unitary matrix of determinant +1. Such proper rotation

matrices form the Lie group SO(3). Therefore, formally we

should treat any matrix representation of a cell c 2 E3
� E3 as

equivalent to rc, for all r 2 SO(3), and work in the space of

(E3
� E3)/SO(3). We call this space of equivalence classes

E3�3.

Because the matrices that multiply cells represented in E3�3

are indistinguishable from ordinary 3 � 3 matrices, we will

designate them as ME3 , with the understanding that they may

be applied in either space E3 or space E3�3.

The convention in E3 is to use the cell edges as the basis

vectors of the space. There are infinitely many choices of the

orientation to form the basis. Currently, it is the common

convention to orient one edge vector along the x axis etc. in a

right-handed setting. The convention in S6 is to use unit

vectors [100000], [010000], . . . .

2.3. The method for deriving a transformation in one space
from a transformation in another

Consider two spaces X and Y with one invertible conversion

MYX mapping

MYX : Y ! X; ð2Þ

and a not necessarily invertible mapping

MXY ¼ M�1
YX : X ! Y; ð3Þ

and a transformation of X into X

T : X ! X: ð4Þ

We compose the mappings and the transformation to define a

new transformation U of Y into Y

U : Y ! Y ¼ MXY T MYX : ð5Þ

If Y is a finite-dimensional linear vector space and U is linear,

then we can represent U as a matrix [https://en.wikipedia.org/

wiki/Linear_map] by choosing an appropriate basis. Section A

in the supporting information considers the linearity in more

detail.

If X is in E3�3 and Y is in S6, we can map E3�3 to S6,

MXY ða; b; cÞ ¼ ½b � c; a � c; a � b; a � ð�a� b� cÞ;

b � ð�a� b� cÞ; c � ð�a� b� cÞ�: ð6Þ

Because MXY is invariant under rotation, there are infinitely

many choices for the inverse. We can choose, for example,

MYXðyÞ ¼ ½aðyÞ; bðyÞ; cðyÞ�; ð7Þ

where

aðyÞ ¼ �y2 � y3 � y4ð Þ
1=2; 0; 0

� �
; ð8Þ

bðyÞ ¼
y3

aðyÞ1
; �y1 � y3 � y5 þ

y2
3

y2 þ y3 þ y4

� �1=2

; 0

" #
; ð9Þ

c12ðyÞ ¼
y2

aðyÞ1
; y1 � bðyÞ1

y2

aðyÞ1bðyÞ2
; 0

� �
; ð10Þ

cðyÞ ¼
h

c12ðyÞ1; c12ðyÞ2;

�s½6� � s½2� � s½1� � c12ðyÞ
2
1 � c12ðyÞ

2
2

� 	1=2
i
; ð11Þ

which is applicable for a reasonable set of valid S6 cells. This

would then allow a similar demonstration to that given in

Section A of the supporting information with the mapping

from Y to X being the simple square root that a linear T

generates a linear U in this more complex but similar case. The

details are left as an exercise for the reader.

The point is that, because U is linear, the components of its

representation as a matrix can be determined by applying it to

basis vectors each with only one non-zero component, letting

X be in E3�3, Y be in S6 and MXY be E3toS6 (see Section 3.1).

3. Converting an E3 matrix to an S6 matrix

If we represent the cell as an S6 vector (Andrews et al., 2019),

we can define an operator E3toS6 where E3toS6(a, b, c) = [b � c,

a � c, a � b, a � d, b � d, c � d], where d = �a � b � c.

We form a matrix operating in E3�3, ME3 = [[m1,1, m1,2, m1,3],

[m2,1, m2,2, m2,3], [m3,1, m3,2, m3,3]]. We need to compute a 6 � 6

matrix, MS6 , to operate on S6 vectors.

The obvious basis vectors for S6, [1, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0]

and [0, 0, 0, 0, 0, 1], do not correspond to real vectors in E3,

since a dot product of 1 for real non-zero unit basis vectors

would imply an angle between them of zero, i.e. that they are

identical, but if two unit basis E3 vectors, say a and b, are

identical, and one, say c, is perpendicular to both a and b, then

the d = �a � b � c vector cannot be perpendicular to a or b,

because a � d = b � d = �a � a � a � b � a � c = �2a � a, which

cannot be zero. Therefore we use the negatives of those S6

basis vectors.

The E3�3 basis vectors we choose are shown in Table 1 with

the corresponding S6 vectors.
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Table 1
E3�3 basis vectors matched to S6 basis vectors.

E3�3 basis vector S6 basis vector

[[0, 0, 0], [1, 0, 0], ½1; 0; 0�] ½1; 0; 0; 0; 0; 0�
[[1, 0, 0], [0, 0, 0], ½1; 0; 0�] ½0; 1; 0; 0; 0; 0�
[[1, 0, 0], ½1; 0; 0�, [0, 0, 0]] ½0; 0; 1; 0; 0; 0�
[[1, 0, 0], [0, 0, 0], [0, 0, 0]] ½0; 0; 0; 1; 0; 0�
[[0, 0, 0], [1, 0, 0], [0, 0, 0]] ½0; 0; 0; 0; 1; 0�
[[0, 0, 0], [0, 0, 0], [1, 0, 0]] ½0; 0; 0; 0; 0; 1�



3.1. Relationship to S6

We use the operator E3toS6 that converts a vector in E3�3 to

one in S6 (see above). In our case, we are starting from

reduced unit cells, which means that in S6 all six scalars are

zero or negative. We choose the S6 basis vectors to have zero

scalars except for a single �1 in each. In E3�3 we choose an

orthogonal set (see above), where for each E3�3 vector E3toS6

produces only the corresponding S6 basis vector.

As an illustrative example, we choose the first basis vector

[above, and matrix E in step (b) in Fig. 1],

½½0; 0; 0�; ½1; 0; 0�; ½�1; 0; 0��; ðd ¼ ½0; 0; 0�Þ:

We apply ME3 to that vector [step (a) in Fig. 1] and the

corresponding MS6 to the corresponding S6 vector. Because

only one element of the S6 basis vector is non-zero, the result

of multiplying by MS6 produces only the elements of the

corresponding column of MS6 , with the other elements being

zero [step (c) in Fig. 1]. When we multiply that E3�3 [step (b)

in Fig. 1] basis vector by ME3 and then convert to S6 using

E3toS6 [step (d) in Fig. 1], the resulting elements of S6 are the

same S6 column elements expressed in terms of the elements

of ME3.

In each case, only one of the Selling scalars will be �1 and

the others will be 0 [step (c) in Fig. 1]. Because S6 is invariant

under rotations of E3, we could have used any unit vector on

E3 in place of [1, 0, 0], and we would have obtained the same

set of S6 basis vectors.

The computer algebra system Maxima (Version 5.36.1;

Chou & Schelter, 1986; http://maxima.sourceforge.net) was

used to generate the following equations.

For simplicity, we show the definition of the first row of the

S6 matrix (the complete matrix is listed in Section B of the

supporting information). For any three-by-three matrix, ME3 ,

the equation below computes the first column of the negative

of the complete matrix (the supporting information has all the

columns):

E3toS6ðME3 ½½0; 0; 0�; ½1; 0; 0�; ½1; 0; 0��Þ ¼

½m2;3m3;3 �m2;2m3;3 �m2;3m3;2 þm2;2m3;2;

m1;3m3;3 �m1;2m3;3 �m1;3m3;2 þm1;2m3;2;

m1;3m2;3 �m1;2m2;3 �m1;3m2;2 þm1;2m2;2;

�m1;3m3;3 þm1;2m3;3 þm1;3m3;2 �m1;2m3;2 �m1;3m2;3

þm1;2m2;3 þm1;3m2;2 �m1;2m2;2 �m2
1;3 þ 2m1;2m1;3

�m2
1;2;

�m2;3m3;3 þm2;2m3;3 þm2;3m3;2 �m2;2m3;2 �m2
2;3

þ 2m2;2m2;3 �m1;3m2;3 þm1;2m2;3 �m2
2;2 þm1;3m2;2

�m1;2m2;2;

�m2
3;3 þ 2m3;2m3;3 �m2;3m3;3 þm2;2m3;3 �m1;3m3;3

þm1;2m3;3 �m2
3;2 þm2;3m3;2 �m2;2m3;2 þm1;3m3;2

�m1;2m3;2�: ð12Þ

4. Conversion of reduced primitive lattices to centered
lattices

Tables 2 and 3 list the matrices (Burzlaff & Zimmermann,

1985) for converting from primitive to standard centered

lattices, computed from the above derivations. The designa-

tions of the 24 Delone types are slight modifications of the

symbols of Delone (1933) to more modern forms. His cubic

lattices are changed from ‘K’ to ‘C’, tetragonal from ‘Q’ to ‘T’

and triclinic from ‘T’ to ‘A’. For each lattice, the E3�3 matrix is

listed, followed on the next line by the corresponding S6

matrix.
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Table 2
The first eight of the transformation matrices for each of the 24 Delone
types.

The E3�3 and S6 matrices are both listed in each case. The remaining 16 cases
are in Table 3.

Type Lattice ME3 and MS6

C1 cI [[0, 1, 1], [1, 0, 1], [1, 1, 0]]
[½1; 0; 0; 1; 0; 0�, ½0; 1; 0; 0; 1; 0�, ½0; 0; 1; 0; 0; 1�,

[0, 0, 0, 0, 2, 2], [0, 0, 0, 2, 0, 2], [0, 0, 0, 2, 2, 0]]
C3 cF [[1, 1, 0], ½1; 1; 0�, [1, 1, 2]]

[½1; 1; 0; 1; 1; 0�, ½1; 1; 0; 1; 1; 0�, ½1; 1; 0; 1; 1; 0�,
½1; 1; 0; 1; 3; 0�, ½1; 1; 4; 1; 3; 0�, ½1; 1; 0; 1; 3; 4�]

C5 cP Identity
R1 hR [½1; 1; 0�, ½0; 1; 1�, [1, 1, 1]]

[½0; 0; 0; 0; 1; 1�, ½0; 0; 0; 1; 1; 0�, ½2; 1; 2; 0; 1; 0�,
½1; 2; 2; 2; 1; 0�, ½2; 2; 1; 0; 1; 0�, [0, 0, 0, 2, 1, 0]]

R3 hR [[1, 0, 0], [0, 0, 1], [1, 3, 2]]
[½1; 1; 0; 0; 0; 2�, ½0; 1; 2; 1; 0; 0�, [0, 1, 0, 0, 0, 0],
½0; 1; 1; 2; 0; 0�, [0, 1, 0, 0, 0, 3], [0, 1, 2, 2, 9, 6]]

T1 tI [[0, 1, 1], [1, 0, 1], [1, 1, 0]]
[½1; 0; 0; 1; 0; 0�, ½0; 1; 0; 0; 1; 0�, ½0; 0; 1; 0; 0; 1�,

[0, 0, 0, 0, 2, 2], [0, 0, 0, 2, 0, 2], [0, 0, 0, 2, 2, 0]]
T2 tI [[1, 0, 0], [0, 1, 0], [1, 1, 2]]

[½1; 0; 0; 0; 1; 0�, ½0; 1; 0; 1; 0; 0�, [0, 0, 1, 0, 0, 0],
[0, 0, 0, 2, 0, 0], [0, 0, 0, 0, 2, 0], [0, 0, 0, 2, 2, 4]]

T5 tP Identity

Figure 1
The logic of determining MS6 . (a) E3toS6 is an operator that will generate
a vector s in S6 from a vector e in E3�3. (b) E is a matrix operating on E3�3

and S is a matrix operating on S6. Correspondingly, we can rewrite (a) in
this more general form. (c) Choosing as an example the first basis vector
([1, 0, 0, 0, 0, 0]) in the list of basis vectors, we can then multiply by S. The
first column of elements of S can then be placed into the matrix as
indicated. (d) In like manner, we can multiply the first basis vector
expressed in E3�3 by the matrix E in E3 that corresponds to the matrix S.
However, in this case, the elements of MS6 can be computed from the list
of calculations above for the first basis vector and the values of matrix E.
Repeating this process for each of the six basis vectors completes S.



Burzlaff & Zimmermann (1985) renumbered the lattice

types of Delone (1933). For example, the cubic lattices in

Delone (1933) are K1, K3 and K5. In the reports by Burzlaff &

Zimmermann (1985) and Burzlaff et al. (1992), they are listed

as K1, K2 and K3. Here they are listed as C1, C3 and C5. The

full enumeration of the types is shown in Fig. 2. It is important

to note that Burzlaff et al. (1992) showed the matrices as

the transposes of the corresponding matrices of Burzlaff &

Zimmermann (1985). We have chosen to start from the earlier

paper. The MS6 matrices produced are then applied to the left

of the S6 vectors. The International Tables for Crystallography

(Burzlaff et al., 2016) use the same convention as Burzlaff &

Zimmermann (1985).

5. Summary

This paper is a reference for researchers who need a method

that applies to the space S6, but for which only the matrices

applicable to the edge vectors of the unit cell are available. In

addition, we have provided a list of the matrices required for

conversion of primitive cells in S6 to the more standard

centered presentations.

6. Availability of code

The C++ code for distance calculations in S6 is available at

github.com, both at https://github.com/duck10/LatticeRepLib.

git and https://github.com/yayahjb/ncdist.git For E3toS6 see

LatticeRepLib/MatS6.cpp.
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Table 3
The second 16 of the transformation matrices for each of the 24 Delone
types.

The E3�3 and S6 matrices are both listed in each case. The first eight cases are
in Table 2.

Type Lattice ME3 and MS6

O1A oF [[1, 1, 0], ½1; 1; 0�, [1, 1, 2]]
[½1; 1; 0; 1; 1; 0�, ½1; 1; 0; 1; 1; 0�, ½1; 1; 0; 1; 1; 0�,
½1; 1; 0; 1; 3; 0�, ½1; 1; 4; 1; 3; 0�, ½1; 1; 0; 1; 3; 4�]

O1B oI [[0, 1, 1], [1, 0, 1], [1, 1, 0]]
[½1; 0; 0; 1; 0; 0�, ½0; 1; 0; 0; 1; 0�, ½0; 0; 1; 0; 0; 1�,

[0, 0, 0, 0, 2, 2], [0, 0, 0, 2, 0, 2], [0, 0, 0, 2, 2, 0]]
O2 oI [[1, 0, 0], [0, 1, 0], [1, 1, 2]]

[½1; 0; 0; 0; 1; 0�, ½0; 1; 0; 1; 0; 0�, [0, 0, 1, 0, 0, 0],
[0, 0, 0, 2, 0, 0], [0, 0, 0, 0, 2, 0], [0, 0, 0, 2, 2, 4]]

O3 oI [[0, 1, 1], [1, 0, 1], [1, 1, 0]]
[½1; 0; 0; 1; 0; 0�, ½0; 1; 0; 0; 1; 0�, ½0; 0; 1; 0; 0; 1�,

[0, 0, 0, 0, 2, 2], [0, 0, 0, 2, 0, 2], [0, 0, 0, 2, 2, 0]]
O4 oS [½1; 1; 0�, [1, 1, 0], [0, 0, 1]]

[[1, 1, 0, 0, 0, 0], ½1; 1; 0; 0; 0; 0�, ½1; 1; 0; 1; 1; 0�,
[1, 1, 4, 2, 0, 0], ½1; 1; 0; 2; 0; 0�, ½1; 1; 0; 0; 0; 1�]

O5 oP Identity
M1A mS [½1; 1; 1�, ½1; 1; 0�, [0, 0, 1]]

[½1; 1; 0; 0; 0; 0�, [0, 0, 0, 0, 0, 1], ½0; 0; 0; 1; 1; 0�,
[0, 0, 0, 0, 2, 0], [2, 0, 4, 0, 2, 0], [2, 0, 0, 0, 0, 0]]

M1B mS [[0, 1, 1], [1, 1, 0], ½1; 0; 1�]
[½1; 0; 0; 1; 0; 0�, ½0; 0; 1; 0; 0; 1�, ½0; 1; 0; 0; 1; 0�,

[0, 0, 2, 0, 2, 0], [2, 0, 0, 0, 2, 0], [2, 0, 2, 0, 0, 0]]
M2A mS [½1; 1; 2�, [0, 1, 0], [1, 0, 0]]

[[0, 0, 1, 0, 0, 0], ½0; 1; 0; 1; 0; 0�, ½1; 0; 0; 0; 1; 0�,
[2, 2, 0, 0, 0, 4], [2, 0, 0, 0, 0, 0], [0, 2, 0, 0, 0, 0]]

M2B mS [[0, 1, 1], [1, 1, 0], ½1; 0; 1�]
[½1; 0; 0; 1; 0; 0�, ½0; 0; 1; 0; 0; 1�, ½0; 1; 0; 0; 1; 0�,

[0, 0, 2, 0, 2, 0], [2, 0, 0, 0, 2, 0], [2, 0, 2, 0, 0, 0]]
M3 mS [½1; 1; 2�, [0, 1, 0], [1, 0, 0]]

[[0, 0, 1, 0, 0, 0], ½0; 1; 0; 1; 0; 0�, ½1; 0; 0; 0; 1; 0�,
[2, 2, 0, 0, 0, 4], [2, 0, 0, 0, 0, 0], [0, 2, 0, 0, 0, 0]]

M4 mP Identity
A1 aP Identity
A2 aP Identity
A3 aP Identity
H4 hP Identity

Figure 2
Delone’s table of the 24 canonical types (modified).
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