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Statistical image reconstruction methods based on maximum a posteriori (MAP) principle have been developed for emission to-
mography. The prior distribution of the unknown image plays an important role in MAP reconstruction. The most commonly
used prior are Gaussian priors, whose logarithm has a quadratic form. Gaussian priors are relatively easy to analyze. It has been
shown that the effect of a Gaussian prior can be approximated by linear filtering a maximum likelihood (ML) reconstruction.
As a result, sharp edges in reconstructed images are not preserved. To preserve sharp transitions, non-Gaussian priors have been
proposed. However, their effect on clinical tasks is less obvious. In this paper, we compare MAP reconstruction with Gaussian and
non-Gaussian priors for lesion detection and region of interest quantification using computer simulation. We evaluate three rep-
resentative priors: Gaussian prior, Huber prior, and Geman-McClure prior. We simulate imaging a prostate tumor using positron
emission tomography (PET). The detectability of a known tumor in either a fixed background or a random background is mea-
sured using a channelized Hotelling observer. The bias-variance tradeoff curves are calculated for quantification of the total tu-
mor activity. The results show that for the detection and quantification tasks, the Gaussian prior is as effective as non-Gaussian
priors.

Copyright © 2006 Jinyi Qi. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

rithm for tumor detection. However, the comparison was

Statistical image reconstruction methods have been devel-
oped for emission tomography to improve the signal-to-
noise ratio (SNR), for example, [1-3]. The most popular
maximum-likelihood (ML) reconstruction algorithm is the
expectation-maximization (EM) algorithm [1, 4]. However,
the ML estimate can be very noisy because emission tomog-
raphy is an ill-posed problem. Hence some form of regular-
ization is needed to obtain a useful image. Bayesian methods
regularize the solution by using a prior probability distribu-
tion on the image. The prior probability distribution plays an
important role in Bayesian image reconstruction. The most
commonly used prior is the Gaussian prior which strongly
discourages sharp transitions in images. To preserve edges,
non-Gaussian priors have been proposed [3, 5, 6]. Empiri-
cal results showed that images reconstructed with edge-pre-
serving non-Gaussian priors have less mean-squared error
than those reconstructed with the Gaussian prior. However,
the effect of edge-preserving priors on clinical tasks is not
obvious.

Gifford et al. [7] compared a quadratic penalty func-
tion with Huber penalty functions in a penalized-EM algo-

done as a function of iteration, so the result is algorithm-
dependent. Nuyts and Michel [8] compared maximum a
posteriori (MAP) reconstruction with a relative difference
prior to post-smoothed ML reconstruction for hot lesion de-
tection and found similar performance between MAP and
post-smoothed ML reconstructions. In this paper we evalu-
ate the performance of Bayesian image reconstructions with
the Gaussian and non-Gaussian priors for hot lesion detec-
tion and region of interest quantification, which are two ma-
jor clinical applications of emission tomography. Some pre-
liminary results were reported in [9].

This paper is organized as follows. We briefly review
Bayesian image reconstruction and different prior functions
in Section 2. The methods for evaluating image quality are
described in Section 3. The results are presented in Section 4.
Finally, the conclusion is drawn in Section 5.

2. BAYESIAN IMAGE RECONSTRUCTION

In emission tomography data are well modeled as a collection
of independent Poisson random variables with the meany €
RM*1 related to the unknown image, x € RN*!, through an
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FiGure 1: The potential functions of the Gaussian, Huber, and Geman-McClure priors.

affine transform
y=Px+r, (1)

where P € RM*N is the detection probability matrix with
element (i, j) equal to the probability of an event produced
in voxel j being detected by sinogram bin i, and r € R¥*!
accounts for the presence of scatters and randoms in the data.
The appropriate log-likelihood function is given by

L(y | x) = > (yilogyi — i — log yil), (2)

1

where y is the measured data.

The ML reconstruction can be obtained by maximiz-
ing (2). However, the ML estimate can be very noisy be-
cause emission tomography is an ill-posed problem. Bayesian
methods regularize the noise by using a prior probability dis-
tribution on the image. Most image priors use a Markov ran-
dom field with a Gibbs distribution of the form

P = e P, )

where U(x) is the energy function, f is the hyperparame-
ter that controls the resolution of the reconstructed image,
and Z is a normalization constant. The Markovian proper-
ties of these distributions make them theoretically attractive
as formalism for describing empirical local image properties,
as well as computationally appealing. The energy function
U(x) often contains potentials defined on pair-wise cliques
of neighboring voxels:

N

U) =D > iV (xj—xx), (4)

j=lkeN;

where ; denotes the set of neighboring voxels of voxel j,
ki are weighting factors, and V(-) is the potential func-
tion. A wide range of potential functions has been studied in
the literature that attempt to produce local smoothing while
not removing or blurring true boundaries or edges in the
image. All have the basic property that they are monotonic

nondecreasing functions of the absolute intensity difference
lxj — xkl.

The potential function of a Gaussian prior is a quadratic
function

Vi(x) = x°. (5)

It produces smooth images with very low probability of sharp
transitions in intensity. In an attempt to increase the proba-
bility of sharp transitions, Bouman and Sauer [3] propose
using the generalized p-Gaussian model where V(x) = |x|?,
1 < p < 2. An alternative function is the Huber prior in
which V() is defined as [10]

x2

=, 8)
V(x) = | 20 i ©)

- =, > 0.
x| 3 x|

When § is small, the Huber function approximates the abso-
lute value function. It is probably the most edge-preserving
prior with a convex potential function. Other potential func-
tions with similar behavior are V(x) = logcosh(dx) [6] and
V(x) = 8%[|1x/8| —log(1+ [x/8])] [11]. In an attempt to pro-
duce even sharper intensity transitions, nonconvex functions
have also been proposed. One example that we will study is
the Geman-McClure prior [5], of which

X2

Vo = are

(7)

Figure 1 shows the potential functions of the Gaussian, Hu-
ber, and Geman-McClure priors. Note that in practice both
the Huber prior and Geman-McClure prior can approach
performance of the Gaussian prior by setting § to be suffi-
ciently large.

To demonstrate the difference between these potential
functions, we show two images in Figure 2. For the Huber
prior (§ < 1) the two images are equally probable, while the
Gaussian prior strongly favors the cone image (with an en-
ergy ratio of 50 : 1) and the Geman-McClure prior favors the
disk image.
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FIGURE 2: Images of a cone and a disk. The intensity in both images
are between 0 and 1. See text for details.

Combine the likelihood function and prior distribution,
the MAP reconstruction X is found by maximizing the log-
posterior density function:

X = argmax [L(y | x) - BU®X)]. (8)

For priors with a convex potential function, (8) generally has
a unique solution. When nonconvex potential functions are
used, there may exist multiple local optima and the solution
of most deterministic optimization algorithms will depend
on the initial image.

3. METHODS
3.1. Computer simulation

We conduct computer simulations to study the effect of non-
Gaussian priors on lesion detection. We simulate imaging of
a prostate tumor using C-11 choline [12]. The simulated PET
system has similar parameters as an ECAT HR+ clinical scan-
ner (CPS, Knoxville, TN). It has 576 detectors forming a ring
with radius 41.3 cm. The phantom has a body shape that is
obtained from a patient image. The background has nearly
uniform uptake of the radiotracer and has an attenuation co-
efficient 0f 0.0095 mm™. We place a round hot spot of differ-
ent diameters (5 mm and 15 mm) at the center of the image
to simulate a prostate tumor. Different pixel sizes are used in
data generation and image reconstruction to introduce some
model mismatch. For data generation, phantoms are repre-
sented by 256x256 2-mm square pixels, whereas 128x128
4.5-mm square pixels are used in reconstruction.

Figure 3 shows various phantom images that we used.
Figure 3(a) is a fixed uniform background. Figures 3(b)-3(d)
are three random backgrounds obtained by superimposing
the background image in Figure 3(a) with a realization of
lumpy backgrounds [13]. The lumpy backgrounds are mod-
eled as

K
LB = > G(b,0?,1%), 9)

i=1

where G(b, 0%, 1x) is a Gaussian blob with variance ¢? and
height b centering at a random location ry, and K is a Poisson
random variable. The mean of K is set to 100. Two sets of b
and o are used: b = 0.02 and ¢ = 32 mm in Figure 3(b); b =
0.1 and ¢ = 23 mm in Figures 3(c) and 3(d). In Figure 3(d)

we also add a hot region with activity to background ratio of
4 : 1 to mimic possible bladder uptake. In all four cases the
mean activity of the background is about 0.20.

For each type of the background we generate three
groups of data: background only, background with the 5-
mm lesion, and background with the 15-mm lesion. Each
group consists of 1000 independent identically distributed
data sets. The expected total number of detected events is
about 200 000. All data sets are independently reconstructed
using a preconditioned conjugate gradient algorithm with
the Gaussian prior, Huber prior, and Geman-McClure prior
and different  and § values. Five hundred iterations are used
to ensure effective convergence of the algorithm. All recon-
structions start from a uniform image. For Geman-McClure
prior, the reconstructed image may correspond to a local op-
timum of the log-posterior density function because the ob-
jective function is nonconvex.

3.2. Lesion detection

Detection of cancerous lesions is one major task of emission
tomography. A standard methodology for studying lesion
detectability is the receiver operating characteristic (ROC)
study that compares true positive versus false positive rates
for human observers for the task of lesion detection. Numer-
ical observers based on signal-detection theory have been de-
veloped to mimic human performance [14]. For a given re-
constructed image X, a linear numerical observer computes a
test statistic (a scalar-valued decision variable), #(X), by

n(x) =tx, (10)

where t is the observer template. The detection performance
can be measured by the SNR of 7(x), which is defined as

(E[n(%) | Hi] - E[5(%) | Ho])*
(var [n(X) | Hi] +var [n(X) | Ho])/2
- 2(t'z)’

g t+ gt

SNR* [(%)] =

(11)

where Hj is the null hypothesis representing lesion absent,
H, is the hypothesis representing lesion present, g g, and
Zz11, are the conditional covariance matrices of X under hy-
potheses of H; and H, respectively,andz = E[X | H;]—E[X |
Hy] is the difference between the mean reconstructions un-
der the two hypotheses. When #(X) is normally distributed,
the area under the ROC curve (AUC) is related to the SNR by

AUC=%[1+erf(¥)], (12)

where erf(x) is the error function.

We use a channelized Hotelling observer (CHO), which
has been shown to correlate with human performance [15—
19]. The test statistic of CHO is

7(%) = ZUK " (UK +n), (13)
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FIGURE 3: The simulated phantom with the 15-mm lesion in four different backgrounds. (a) The uniform background; (b) a lumpy back-
ground of b = 0.02 and ¢ = 32mm; (c) a lumpy background of b = 0.1 and ¢ = 23 mm; and (d) a lumpy background of b = 0.1 and
0 = 23 mm with a hot region mimicking bladder uptake. The mean of the background in all cases is about 0.20.

where U denotes frequency-selective channels that mimic the
human visual system, n is the internal channel noise that
models the uncertainty in the human detection process [20]
with zero mean and covariance Ky, and K is the covariance
of the channel outputs, that is,

K= %U(Zﬁ\Hl + ZdeO)U' + Ky. (14)

In this work the channel functions are the differences

of four Gaussian functions with standard deviations ¢ =
2.653,1.592,0.995, and 0.573, respectively [21]. The inter-
nal noise is modeled as uncorrelated noise with Ky =
diag[0.1507 + 0.25max;{c?}], where o7 is the data variance
in the ith channel output [22]. Monte Carlo reconstructions
are used to calculate the expectation of the reconstruction

and covariance matrices. The SNR of CHO is then calculated
by

SNR? [5(x)] = Z UK Uz (15)

because the SNR calculated from (15) is meaningful only
when 7(X) is normally distributed, we also calculate AUCs
from empirical ROC curves using numerical integration.

3.3. Quantification performance

Another clinical task in emission tomography is to quantify
the uptake of radioactive tracer in a region of interest (ROI).
This can be written as

no(X) = t'%, (16)

where t is the indicator function of the ROI, that is, t; = 1
if voxel j is inside the ROI, and ¢; = 0 otherwise. The accu-
racy of the quantification can be measured by the bias and
variance of 77¢(X) as

bias (1) = t'x — t'E[X],

17
var (1q) = t' Zgm,t, (17)

where x denotes the true tracer uptake. Note that the ROI
quantification is only performed on images in which a lesion
is known to be present.

We use the bias versus variance tradeoff curve to evalu-
ate the quantification performance. The above equations are
calculated from Monte Carlo reconstructions.

4. RESULTS

Figures 4 and 5 show examples of reconstructed images with
different priors. For all priors the reconstructed images be-
come less noisy as we increase the hyperparameter . The
images reconstructed with the Gaussian prior have blurred
edges, whereas the images reconstructed with the Huber
prior and Geman-McClure prior tend to form piece-wise
constant regions.

Figure 6 shows the variation of AUC as a function of f3
and § for detecting the 15-mm lesion in the lumpy back-
ground shown in Figure 3(c). In this case, the optimum pa-
rameters for the Gaussian, Huber, and Geman-McClure pri-
orsare § = 30, (8 = 10,6 = 0.1),and (f = 0.3, = 0.1), re-
spectively. Comparing to the results of the fixed background
(not shown), we found that lumpy backgrounds reduce le-
sion detectability at low resolution (large 5) and slightly de-
crease the optimum f value for lesion detection.

To give a fair comparison between different priors, we
choose to compare the maximum SNR and maximum AUC
of each prior. The results are shown in Figure 7. The error
bars are computed using a bootstrap method. In all detection
studies, the contrasts of the 5-mm and 15-mm lesions are 3
and 0.9, respectively, which are selected to obtain a reason-
able detectability (AUC = 0.9). In each case, SNR and AUC
give similar ranking for the optimum performances of the
three priors. No statistically significant advantage is found
for non-Gaussian priors. For lesions with lower contrast, we
expect the performances of the three priors to be even closer.
We notice that some differences in AUC do not correspond
well to the differences in SNR (see Figures 7(c) and 7(d)),
which indicates that the test statistics of the numerical ob-
server does not follow a Gaussian distribution.
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(a) Gaussian prior

(b) Huber prior

(c) Geman-McClure prior

FIGURE 4: Reconstructed images of one noisy data set with a fixed background. The three images in each group are reconstructed with

different j3.

Figure 8 shows the bias versus variance tradeoff curves
for quantification. The contrast of the lesion is 3.0 for the
5-mm lesion and 0.9 for the 15-mm lesion, respectively.
The ROIs were obtained from the original phantom image.
Bias and standard deviation are normalized to the total ac-
tivity inside each ROI. Here we plot all the cases. It is in-
teresting to see that Gaussian prior seems to set a lower
bound for the Huber and Geman-McClure priors (except
in Figure 8(h)). Considering that both Huber and Geman-
McClure priors include Gaussian prior as a special case, no
improvement in ROI quantification is found by using the
Huber or Geman-McClure prior. In many cases, the perfor-
mance of the non-Gaussian priors is much worse than that
of the Gaussian prior, indicating that hyperparameter se-
lection is more important for non-Gaussian priors. In Fig-
ures 8(b), 8(d), 8(f) there is a kink in the Gaussian bias-
variance curve at low noise levels. This is because at such low
resolution the reconstructed background is no longer uni-
form, but forms a dome, which artificially increases the ac-

tivity inside the ROI and, hence, reduces the bias. The de-
crease in bias at low noise levels in Figures 8(g) and 8(h) is
mostly caused by the spill-over effect of the nearby hot re-
gion (“bladder”).

We also studied lesions with higher contrast (9 for the
5-mm lesion and 2.7 for the 15-mm lesion, respectively) and
found very similar results [9]. To investigate the bias-variance
tradeoff for large regions, we quantify the total activity in
the hot “bladder” in Figure 3(d). The results are shown in
Figure 9. Even for this large region with 4 : 1 activity ratio,
we do not see any advantage of using the Huber and Geman-
McClure priors.

5. CONCLUSION AND DISCUSSION

We have compared the performance of three representa-
tive priors for lesion detection and ROI quantification. The
Gaussian prior is the most commonly used prior in emis-
sion reconstruction; the Huber prior is probably the most
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(a) Gaussian prior

(b) Huber prior

(c) Geman-McClure prior

FIGURE 5: Reconstructed images of one noisy data set with the lumpy background shown in Figure 3(c). The three images in each group are

reconstructed with different j3.

edge-preserving prior among all priors with a convex po-
tential function; and the Geman-McClure is a typical edge-
preserving prior with a nonconvex potential function. Note
that both the Huber and Geman-McClure priors can ap-
proach the Gaussian prior by setting § to be sufficiently large.
Thus we focus on whether the Huber and Geman-McClure
priors can outperform the Gaussian prior. In all the cases
that we have tested, we have not observed any significant
improvement. The results show that for the detection and
quantification tasks that are considered here, the Gaussian
prior is as effective as the more complex non-Gaussian pri-
ors.

We should note that while we have investigated each prior
with a range of  and § values, it is still possible that the re-
sults may not reflect the best performance for non-Gaussian
priors because of the lack of theoretical guidance on the hy-
perparameter selection for non-Gaussian priors. Nonethe-
less, the results indicate that hyperparameter selection is ex-

tremely important for non-Gaussian priors. For the Geman-
McClure prior, the simulation results presented here may not
correspond to the global maximum of the log posterior dis-
tribution because the objective function is nonconcave. It is
possible that the performance of Geman-McClure prior may
be improved by using deterministic or stochastic annealing
techniques at an expense of increased computational cost
[23].

In this paper we used a channelized Hotelling observer
for lesion detection and a simple ROI estimator for quan-
tification because of their popularity. It is possible that some
results might change if different observers or estimators were
used. In ROI quantification we defined ROI using the orig-
inal phantom data. If an ROI is to be delineated on the re-
constructed image, the error in ROI delineation will also af-
fect the ROI quantification [24]. Such effect is not included
in this study. We expect that with the recent development of
combined PET/CT and SPECT/CT scanners, high-resolution
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McClure prior.
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anatomical images will help to reduce the error in ROI defi-
nition.
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