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Applications in smart buildings have shown potential for improving energy efficiency,

automated operation, and for creating better living conditions for occupants. To achieve these

goals requires effective collection and use of sensing data and collaboration among different

subsystems such as Heating, Ventilation, Air-condition (HVAC), security, lighting and sensing

subsystems. Data generated and used by these subsystems are heterogeneous and often contextu-

alized to real-time conditions. Contextual information is often provided by subsystem vendors

as “metadata”, that is, the data about data. The multiplicity of vendors makes most metadata

idiosyncratic without any consistent meaning or usage that can be directly inferred from such

metadata. This makes them difficult to be useful. Vendors and building operators have to often
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“guess” based on the unstructured text of metadata written by different engineers. Converting

building metadata to a machine-readable format usually involves significant manual effort. We

envision building systems that are able to seamlessly exchange data across subsystems as well

as across various building services in a programming framework. Such information exchange is

mediated by timely sensor information, its automated organization and navigation, thus creating a

technical basis for future ‘smart buildings’.

Methods and tools for automated handling of metadata are crucial to this vision. Second,

we present an application programming framework comprised of machine learning algorithms

to help organize the current unstructured metadata information from existing buildings into a

structured format such as Brick+. Third, we propose an application workflow that relies only

on a standard information model for unified and secure application deployment. Using Brick+,

Scrabble and Plaster programming support tools, we have built an end-to-end applications and

services framework for smart buildings. Using buildings on the UC San Diego campus, we

describe and demonstrate the effectiveness of the proposed methods. We demonstrate several new

applications, such as a personal thermostat application called Genie and an energy dashboard,

that can be built and deployed with minimal human effort. In addition to the demonstrated value

of metadata models and methods in building portable applications for smart buildings in this

dissertation, we continue to pursue building a community of system builders for the smart building

environments.
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Chapter 1

Introduction

The Internet of Things, or IoT, refers to embedded devices with sensing, computing

and actuation capabilities that are accessible through a wired or wireless network connection.

These devices are growing rapidly, and estimates place 20 to 30 billion devices deployed by

2020 [BPV14]. As these devices find ways into daily life, we envision a responsive living

environment that provides necessary creature comforts as well as operational efficiencies and

effective response to emergencies. For example, fire prediction algorithms utilize weather data

from geographically distributed IoT sensors and satellite images to identify conditions when

wildfires could break out and predict their progress to be useful in firefighting and eradication

plans [GTA+15]. Thus, the potential impact of these IoT use cases is not just limited to gathering

and analyzing data, instead in integrating these disparate data sources and systems to work

together seamlessly for a larger goal. For example, once a fire is predicted, there are a number of

key steps that need to happen. This includes fire stations need to be notified, contingency plans

need to be executed over nearby building systems, traffic control systems should be managed

to enable residents to evacuate in an orderly manner, etc. To address these real-world use

cases, numerous applications (apps) have been proposed and developed such as automatic traffic

control [ZWW+11] and intelligent control of smart buildings [BBF+18a]. These apps use various
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types of resources such as data collected from sensors (e.g an occupancy sensor) and configuration

parameters (e.g. a user’s temperature setpoint) that control certain devices (e.g. the air temperature

and volume provided into the occupants’ room). While there are numerous opportunities enabled

by capable apps in IoT scenarios, their sheer number and heterogeneity poses many challenges.

A vast majority of these challenges are related to how different data sets – sensor generated,

inferred or derived – are composed, and analyzed for useful inferences and control actions. Most

sensory data are highly contextual. For instance, an airflow sensor’s data is meaningful only

when accompanied by the information about its location, time and other conditions. Contextual

information is typically captured through additional data, attributes and annotations that are

collectively referred to as “metadata”, that is, data about data. Metadata is an old concept

and its most recent use in software systems has been in building middleware systems such as

CORBA [ZM95], DCOM [HK97].

In the IoT context, metadata often captures information about the sensor/actuator type,

location, time and other conditions. Typically, such information is encoded in a textual string of

characters and numbers. Lack of structure in metadata sometimes makes it hard or error prone to

infer the real context intended by the metadata. For example, while a temperature sensor may

produce a stream of data consisting of time-stamped values such as 70 at 2019-12-10T10:30:00,

the values do not convey their actual meanings. Rather, the sensor’s metadata can indicate that

its measurement type is temperature, the unit is Fahrenheit, and it is located in a certain

physical space in a building.

Metadata is present in diverse domains. For example, it is used for similar purposes in Web

search. While a search engine algorithm, such as Google’s, statistically exploits the links in the

contents of websites to answer user queries [PBMW99], it also utilizes the websites’ metadata to

provide more precise results matching a user’s queries using schema.org [Gooa, sch]. Google’s

search engine checks if the metadata of a target web page contains a specific keyword, “Movie”

predefined at https://schema.org/Movie, which tells if the web page is unambiguously about
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movies. By leveraging metadata, the web search algorithm is more deterministic than the statistical

analysis of the webpage contents alone, thereby providing more precise results to the user.

Effective use of metadata is even more critical in IoT devices because the contents (i.e.,

values) of IoT devices have less contextual information due to the limited computing/storage

capacities of the IoT devices. These are also often much more ambiguous than, say, the descriptive

text or videos used on websites. Unlike a website that can make inferences about user behaviors

based on longitudinal data (using “cookies”, for instance, which can be seen as carriers of

metadata), IoT devices as sensor endpoints simply lack that capability. For instance, we may

logically infer that the temperature data of a room would have a similar pattern to the adjacent

room if the occupants in the two rooms have similar working schedules. However, such inferences

by the endpoints are architecturally difficult or technically impossible in most deployments. A

software and programming framework that uses metadata effectively can, in principle, help make

such inferences possible.

Structure of metadata is important to its systematic (and automated) use by various

applications. A structured metadata conforms to a well-defined schema. A schema consists

of a set of types associated with the objects and rules that govern the use of these objects in a

particular scheme. For instance, a website consists of webpages as objects that are composed

through hypertext links and schema.org provides vocabularies and rules to annotate such objects

and the rules. In general, a schema refers to a pattern of use of concepts in a given model though

well-defined syntax and rules that conform to semantics derived from the target application

domain.

In reality, the syntax of metadata may vary across systems as well as the vocabularies in

the metadata may be specific to the target system. Metadata could be human-readable text or a

predefined codebook that is specific to a broad class of systems. For instance, the term “T” may

stand for temperature in the context of building applications. Real-life practice of metadata leaves

much to be desired. Different vendors and system integrators have used their own schemata, at
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Figure 1.1: Relationships between systems, data, metadata, and metadata schema.

best, to represent metadata, which creates vendor lock-in. However, the recent change towards

open systems and interoperability have brought to bear the problems with both textual description

and vendor-specific schemata. Moreover, different systems need different types of metadata

depending on the system requirements. For example, while image data-sets need to present the

images’ encoding schemes (e.g., JPEG, PNG, etc.), temperature sensor data do not need such

information but rather units of the values and the location of the measurement. Given the diversity

of applications, and ambiguity inherent in natural language descriptions, a metadata schema is an

important need. While metadata schemata have various formats, their common goal is to bind

the information of interest such as image encoding schemes or data units to a designated part of

metadata, and users can uniformly refer to the part to obtain necessary information.

Figure 1.1 describes the relationships among systems, data, metadata, and metadata

schema. A metadata schema regularizes metadata which users would refer to for understanding
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the meaning of the underlying data. In other words, metadata schema is the starting point to

address the deluge of data produced by different systems. This observation leads to our key

argument: to make use of the large data produced by IoT devices, we need to treat a metadata

schema as a first-class object in the system design and application workflows.

There are a number of questions that must be answered to design an effective metadata

schema: (a) What is the right metadata schema for a system composed of a set of IoT devices? (b)

What is the right methodology to organize existing data and metadata with the metadata schema?

and (c) What are the right means to access data based on the metadata schema?

This dissertation explores the above questions within the context of commercial buildings.

Buildings are a good example of emerging cyber-physical systems that provide a platform for

interaction between physical systems (such as HVAC), humans and computing systems. These

are also significantly energy-intensive thus providing a good application platform for a substantial

impact on societal energy use: buildings account for 40% of the entire energy use of the United

States [U.S] and people spend 87% of their time indoors [KNO+01]. Occupants interact with

buildings in numerous ways. For example, office workers interact with other workers in office

buildings and patients are treated by health care providers in hospitals. To support various

usage modalities of different types of buildings, they have diverse subsystems such as Heating,

Ventilation, and Air Conditioning (HVAC), lighting, elevators, and security systems, which are

often very energy-intensive.

Pursuing the vision of “smart buildings”, the holy grail of CPS computing infrastructure

supported by application software (app) is one in which developers write apps that are indepen-

dent of a specific building, and rather the same app can be run on any building without much

customization, if any at all. However, there is a large gap between this vision and reality. Porting

an app written for a specific building to run on another building is currently a complicated pro-

cess requiring domain-specific knowledge about the target system and significant manual effort

by domain experts and building managers. Traditionally, the purpose of metadata in building
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systems was not for programs to interface with the Building Management Systems (BMS’s) but

for building managers to read through the metadata to identify the location of resources when a

fault occurred in a system or its configuration needed to be changed. Thus, existing metadata are

usually only in human-readable formats where conventions vary a lot based on how and when

a building was commissioned. Metadata authors commonly use technical jargon that is often

abbreviated into a couple of characters. Moreover, the jargon is specific to the target building be-

cause buildings are different in terms of functionality and implementation. For instance, buildings

in Southern California region often have simpler or nonexistent heating systems while those in

Wisconsin have elaborate heating systems due to the harsher winters. Even with a similar weather

condition, buildings may implement cooling systems with different types of configurations such

as centralized and decentralized HVAC systems from different vendors.

Such heterogeneity in metadata and systems results in manually processing existing

metadata into a standard format that an app can understand even when a common schema is

available. Managers or developers deploying a smart building app need to understand the target

building system configuration (e.g., how are the subsystems interconnected?), the source of

the information the app needs (e.g., in which metadata is measurement type encoded?), actual

meaning of the codes used (e.g., what does “T” stand for?), and relationships across resources

(e.g., which room is this temperature sensor associated with?). Existing metadata schemes are

further exemplified in Section 2.2. As is common today, a domain expert would provide a large

set of rules to parse the existing metadata and the interpreted results are hard-coded per app.

This practice not only involves extensive upfront manual effort but is also unsustainable as the

understanding of metadata could drift over the lifetime of the building as it pertains to different

apps and system components — the system could have been updated or human knowledge

corrected.

These observations inform our working thesis; a large scale building application deploy-

ment and management over heterogeneous systems and devices can be built upon structured
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metadata designed for the context of applications and metadata management tools. Buildings

and associated systems are inherently heterogeneous, for which applications should be adaptive

enough to be portable and interoperable with each other. A metadata schema should be the base

reference for such adaptation as it is needed for software to be operational automatically. An end-

to-end smart building infrastructure entirely based on a metadata schema, without hand-crafted

data/system integration, requires advances in three key dimensions: (a) design of a correct and

comprehensive schema for large-scale application development; (b) methods to organize building

metadata around this schema, and algorithms to translate existing building metadata into this

schema with minimal human effort; (c) and finally, a workflow to control applications’ access of

resources with the proposed metadata schema.

1.1 Related Work

Ontologies have been proposed as a means to present information that can be used across

systems. Ontologies are defined as “an explicit specification of a conceptualization [Gru95]”.

We can also use ontologies as a metadata schema, thus, we use metadata and ontologies in-

terchangeably. Researchers have studied ontologies for various domains from general things

[GGM+02] and biology [Con04] to sensor networks [CBB+12, JHC+19a]. For example, the

Semantic Web utilizes ontologies to uniformly represent information in the Web [BLHL+01]. In

the Semantic Web, users rely upon Resource Description Framework (RDF) [RDFa] and Web

Ontology Language (OWL) [OWL]. They together standardize concepts for generalization and

specialization and essential properties entities can have.

Based on the Semantic Web framework, Semantic Sensor Network Ontology (SSN)

[CBB+12] comprehensively models sensor network entities and their properties. SSN models

any sensors’ behaviors as the (phenomenal) stimulus, sensors, and observation pattern, and

it has become the base of all the sensor-based models such as smart cities [AGM15], smart
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buildings [BBF+16a], and the Internet of Things [AFE+16]. Extending SSN, Sensors, Obser-

vations, Samples, and Actuators Ontology (SOSA) introduce the concept of sampled data and

actuation [JHC+19b]. SSN and SOSA provide a basic framework to model interaction between

sensing/actuating devices and the physical world.

IoT applications by nature demand incorporating heterogeneous systems possibly equipped

by different vendors and users. For IoT devices, various standards, such as Open Connectivity

Foundation (OCF) [ocf], the Web of Things (WoT) [Web19], and iot.schema.org [BAD+16b],

attempt to provide frameworks for IoT modeling. OCF’s information model mainly represents

entities with “resource types” and their “interfaces”. The resource types are drawn from various

systems such as health care (e.g., glucose, heart rate), buildings (e.g., humidity, lock) and energy

(e.g., PV system connection terminal, inverter). However, OCF’s model is not systematically

extensible because it is merely a set of enumeration values. It lacks in maintainability, that is, new

concepts cannot be interpreted and relationships between concepts are unknown. Furthermore,

OCF specification is defined in bare texts such as PDF files and OpenAPI specification1 not

suitable for programmatic queries and knowledge management. WoT is a collection of protocols

to exchange information based on a formal description of Things.

WoT serves as a framework to model Things with their capabilities such as types of

properties and actions. iot.schema.org provides vocabularies to represent such properties (e.g.,

humidity, illuminance) and actions (e.g., turnOff, countDown). Both OCF and WoT lack in

organizing knowledge at scale. They represent what Things could do but do not maintain the

relationships among the concepts, and thus force the users to rely on either specific keywords in

the standards or custom metadata outside of the standards.

For buildings, Industrial Foundation Classes (IFC) and Project Haystack (Haystack) are

widely-adopted metadata schemata, though they are not officially aligned with the Semantic Web

framework. IFC was firstly introduced in 1996 and has become an ISO standard 16739-1:2018 2.

1https://swagger.io/docs/specification/about/
2https://www.iso.org/standard/70303.html
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It can describe details of construction information such as the widths of walls, the proximity

between spaces, architectural materials, etc. However, many of the applications are agnostic to

such details but rather need a description of dynamic data such as sensors/actuators and their

associated equipment. Even though IFC has attempted to model such concepts, the vocabulary

set is rudimentary. Furthermore, its file format is highly customized and not interoperable with

existing data exchange protocols, and thus lacks in programming interface. We will discuss IFC

in-depth in Section 2.3.1.

Haystack is an open-source standard for modeling building systems with tags. It started in

2014, with a goal to simplify and standardize building data models. Haystack defines tags, their

meanings, and a data format for associating entities with the tags. While it is easy to understand

Haystack’s meta-model, it is fragile as users are free to associate the tags with any concepts,

which can vary across different users. This unverifiable flexibility eventually deteriorates the

interoperability across models. We discuss this trade-off in-depth at Section 2.3.2.

There are other notable building metadata schemata. Haystack Tagging Ontology (HTO)

[CKAK15a] attempts to provide a semantic structure to Haystack tags in parallel. Their “Domain

Model” governs the possible relationships Haystack tags can have. Despite this formality, HTO

lacks in structurally specializing and extending concepts outside their domain model, thus, limiting

expressivity. Building Topology Ontology (BTO) [bot] is specialized in modeling topological

concepts in buildings, with which it could complement other models such as Haystack. We

present our unified metadata schema, Brick, in Chapter 3.

While metadata schemata could provide a uniform interface to buildings, it takes a

lot of effort of instantiating standardized models from actual buildings. Existing metadata

encode information without a standard such as “RM-ZNT” for zone temperature in a room,

and, even worse, they are idiosyncratic across different buildings and even in a building. many

algorithms have been proposed to ease the instantiation process by exploiting different types

of information sources. They use raw metadata [BHC+15a, HWW15, BVNA15a, LLHW19],
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timeseries data [GPB15a, HWOW15a], and active system perturbation [HOWC13, KBA+16,

PBCM15b] in different frameworks such as active learning, transfer learning, and supervised

learning. We discuss existing algorithms in detail at Section 4.9. Similar problems have been

studied in data mining and database research communities as well [Chr12a], but metadata in

buildings are differed with its higher heterogeneity. Each building has its own convention and

unique system configuration. Furthermore, required label types also vary across different apps.

Thus, it is difficult to reuse the knowledge learned from a building system for other buildings. We

will present our approaches for organizing metadata with minimal human effort in Chapter 4 and

a general framework in Chapter 5.

1.2 Contributions

We envision that buildings can be a programmable platform where users and operators can

develop applications deployable at scale, and users can easily install the right apps matching their

demands, similar to installing smartphone apps on a smartphone. To realize this vision, first, we

present a metadata schema, Brick+, for programmable buildings. Second, To easily map existing

buildings into Brick+, we present a set of novel algorithms to normalize existing metadata into

Brick+ at scale. Third, we standardize the programming pattern of the algorithms, to integrate

and utilize them easily in different contexts, along with a practice user interface of the algorithms.

Finally, we present a dynamic authorization workflow with a comprehensive access control model

to guarantee the least privilege to apps written with Brick+, which we exemplify with actual apps.

We present Brick [BBF+16a, BBF+18a] and its successor, Brick+ [FKA+19], as a base

model for semantic programmability over heterogeneous entities in buildings. Brick represents

entities and their relationships in buildings. Its query mechanism is flexible to cover a vast

majority of the possible patterns building applications may need. Unlike existing schemata, Brick

is consistently extensible and usable at the same time. As soon as we presented Brick initially in
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2016, it drew in a community of different types of users, including building system vendors, IoT

system integrators, and building managers. As a result of discussions in the community, we have

updated Brick for consistent extensibility and formal description of the semantics. Brick is now

beginning to be adopted by companies and research institutions and has formed working groups

in different standard bodies.

While Brick’s metadata schema enable semantic programmability over buildings, instan-

tiating a whole system takes much effort because of the heterogeneity in different buildings,

analogous to porting an Android OS to actual devices. Domain experts need to interpret existing

metadata in buildings and manually convert them into Brick. We discuss the difficulty of the

problem in Section 2.2.

We propose a set of metadata methods with machine learning algorithms to easily map

existing buildings into Brick. The methods help users to adopt Brick in practice by converting

existing buildings into Brick with a minimal effort. There are different aspects of metadata, of

which each is represented in different data sources in buildings.

Scrabble [KBS+18] is a novel algorithm to parse raw metadata into Brick labels. It

utilizes an intermediate representation of actual Brick tags to improve generalizability of a

learned model across different buildings, while buildings have different styles and configurations.

Scrabble shows the best performance in the category of the algorithms. However, Scrabble can

extract only the information presented in raw metadata.

Often, raw metadata solely represents entities’ functions but not their relationships across

each other. Quiver [KBA+16] utilizes system perturbation to detect the co-location of different

sensors in real buildings, which may not be encoded in the raw metadata. With the minimal

perturbation of critical control points only, Quiver can co-locate different sensing and control

points of Variable Air Volume Units (VAVs) 100% precision and 63% recall.

While studying various algorithms, we have identified a common programming pattern in

metadata normalization. A common programming pattern can help 1) development of new algo-
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rithms, 2) comparison between similar algorithms, and 3) integration of different algorithms. It is

similar to the role of scikit-learn in Python. scikit-learn provides a standard programming

interface to machine learning algorithms in Python, helping their usability. We present Plaster,

a standard meta-framework for metadata normalization where several algorithms, including

Scrabble and Quiver, are implemented and compared. Then, we further present Plaster User

Interface (UI) that provides an usable interface for non-programmer users. All the methods are

essential for adopting Brick in the real world.

Apps need different types of resources in diverse contexts and representing their access

requirements is a must for practical deployment of building apps. We propose an access control

model using both Brick and other data sources based on our analysis of 125 building apps’

requirements [KHN+19]. We have also observed that it is required to evaluate apps’ access

patterns at runtime because of the apps’ dynamic nature and multi-tenancy. For online evaluation

workflow, we propose Dynamic Dual Authorization (DDA) workflow. We then demonstrate the

entire workflow via two apps, a Web thermostat and an energy dashboard, showing the feasibility

of our metadata models and methods for building app development and deployment.

All the schema and the source code are open-source, and we are devoted to developing

our work further through community contributions.

• Brick: https://brickshema.org

• Brick Server: https://github.com/brickschema/brick-server

• Plaster Service: https://plaster.ucsd.edu

• Plaster Python Package: https://github.com/plastering/plsatering

• Plaster UI Source Code: https://github.com/plsatering/plastering-ui

With the various set of frameworks and algorithms, we can achieve a seamless connection

from entities, i.e., data sources, to apps or programs that can benefit people around the world.
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We believe it is an important mission to improve our environment all around and people’s living

conditions, where metadata models and methods play a crucial role.

1.3 Organization

Resources / Data

Abstraction / Metadata

Building Operating 
Systems (BOS)

Applications

Chapter 3:  Brick: Extensible and 
Verifiable Metadata Schema for Buildings

Chapter 4:  Semi-Automatic Metadata 
Normalization Algorithms for Buildings

Chapter 5: A General Framework for
Metadata Normalization Methods

Metadata 
Schema

Chapter 2:  Background: Building 
Systems and Existing Metadata

Chapter 6:  An Access Control Model 
with Structured MetadataReference

Mapping

Figure 1.2: An Overview of the Thesis Organization

This dissertation is organized as follows. In Chapter 2, we detail the necessary back-

ground knowledge for understanding building systems. We explain the workflow for apps to

access required resources through BOSes as well as the role of metadata in the workflow. We

present the challenges in metadata for buildings via exemplifying actual metadata from existing

buildings. Then, we show how two major existing metadata schemata, IFC and Haystack, fail at

comprehensively representing entities in buildings.

In Chapter 3, we present Brick, a unified metadata schema for buildings, and its evolution,

through various feedback, to Brick+. We initiated Brick with the other six institutions sharing

the same motivation; we need to be able to represent buildings for apps. Brick has a class

hierarchy where each class precisely represents a category of entities. Thus, users can consistently

instantiate classes to model entities in their buildings. Their associated tags collectively present

the meanings of classes. We show Brick’s expressivity and completeness over six different
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buildings and eight apu categories. Following the Semantic Web framework, Brick’s ecosystem

reuses existing technologies for querying, data management, and data integration.

In Chapter 4, we present two metadata normalization algorithms, Scrabble and Quiver,

for different use cases. Scrabble is an active learning framework which can reuse the knowledge

across similar buildings. It first maps raw metadata to an intermediate representation (IR), Brick

Tags, and then map them into actual labels, Brick TagSets. With IR, Scrabble can reuse existing

knowledge from other buildings to normalize a new building. At the same time, its active learning

algorithm can gradually improve the accuracy at the new building with the help of a domain

expert. Quiver is an active perturbation framework to co-locate different points and find causality

between them. Because different rooms work in a very similar schedule, their properties are

indistinguishable in historical data. Quiver provides a framework to safely perturb existing

systems to improve the observability of relationships in the data. We evaluate the algorithms over

different buildings and different rooms, and they show the best-in-class performances.

In Chapter 5, we present Plaster, a meta-framework for metadata normalization. Through-

out our experiences on metadata normalization, we identify the commonality across different

frameworks. We define the common programming model in Plaster so that we can compare or

integrate different algorithms. We detail our design, evaluate different algorithms with the same

data set, and show the possible benefits from integrating different algorithms. Based on the Plaster

programming interface, we also present a Web-based user interface and its architecture.

In Chapter 6, we present our analysis of access control models over 125 app papers and

propose a manageable access control model based on the analysis. Apps are heterogeneous and

have different requirements, and thus a single access control model or naı̈ve access control list

cannot simply express the requirements with which human managers can deal. Our analysis

shows three information dimensions as Who, What, and When are essential for expressing access

requirements. To represent all the information dimensions, our access control patterns (ACPs)

accommodate diverse data sources through federating databases. The identified access control
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model requires online evaluation of access policies instead of static delegation. Our proposed

Dynamic Dual Authorization (DDA) workflow provides a tight bound even for multi-tenancy

apps with ACPs. We exemplify this workflow with two actual applications as Genie, software

web thermostat, and VEnergy, and energy dashboard.

We discuss future work in Chapter 7 and conclude in Chapter 8. Figure 1.2 visualizes the

overview of our dissertation.
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Chapter 2

Background: Building Systems and

Existing Metadata

2.1 Building Systems and Applications

We first introduce a general workflow of apps in buildings as background information of

this dissertation. The goal of any building apps is to understand the environment, provide insights,

and possibly control buildings better for their optimal use.

For its occupants, buildings need to serve various functions with several subsystems

such as Heating, Ventilation, and Air Conditioning (HVAC) systems, lighting systems, elevators,

security systems, computer rooms, and energy storage. The example configuration in Figure 2.1

has two subsystems as HVAC and lighting systems. There are various types of components and

relationships to completely represent the systems. First, there are two rooms and each of the

rooms is differently served by devices or equipment. The Variable Air Volume Box (VAV) serves

both of them whereas the luminaire illuminates only one of them. Second, the relationships

between devices are also complicated; the VAV is connected to an Air Handler Unit (AHU) that is

often in charge of many VAVs, and each device has subdevices such as fans and dampers. Third,
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Figure 2.1: An Example Building Configuration

such devices refer to various data sources such as temperature sensors and temperature setpoints

to accurately control the temperature. Notably, we call these data sources “points”. Points are

either a physical or virtual entity that continuously generates a value stream whose context is

consistent across time. Each of the points generates data continuously over time, captured as

timeseries.

Existing subsystems in buildings are operated through manual control, such as thermostats

and switches, or with predefined logic often hard-coded in a local controller. In a typical HVAC

controller, if the temperature of a room rises higher than a certain setpoint, an HVAC unit (e.g.,

VAV) would kick in. Better control logic might predict the status of the room and preemptively

cool down the room for both occupants’ thermal comfort and energy efficiency. The HVAC’s

schedule is also stationary as from 7 AM to 7 PM on weekdays regularly regardless of actual

occupants’ behaviors. Moreover, on weekends, it operates only on occupants’ explicit activation

through thermostats, which may not be accessible from a tenant’s office if the shared thermostat

is located inside the next office, as in Figure 2.1.
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There are various ways to improve building operations, which we call smart building

applications (apps). In general, apps pursue improving the energy efficiency of building operations

and living environments for occupants. Table 6.1 shows the categories of building apps found

in our most recent study [KHN+19] For instance, web thermostats, such as Genie [BKWA16],

can provide more accessibility that could result in energy-saving and thermal comforts. Demand

Response apps [Sia14] could save energy during peak energy demand through electricity price

control for efficient energy generation and grid stability. Automatic customization of the environ-

ment [ZARP15] can provide better lighting conditions while meeting the various requirements

from diverse tenants even in the same environment.

However, to deploy such apps on existing buildings, existing systems lack in an application

programming interface (API). Control logic of building systems is commonly implemented inside

a local controller that is often unconnected to any network or connected to a closed network such

as BACnet to limit external access. Such closed network is commonly managed through Building

Management Systems (BMSes), such as MetaSys from Johnson Controls, whose main purpose

is for building operators to review and control when it is needed. They support visualization

of equipment statuses, basic search functions for human managers to look up resources in their

interests, and interfaces to change equipment configuration manually. However, because their

primary end-users are human, BMSes do not have a programming interface through which apps

can interact with actual equipment.

In contrast, emerging Building Operating Systems (BOSs) are designed for providing

API as well as related administrative functions including data storage, access control, resource

scheduling, and resource discovery. The end-users of a BOS are apps or programs that would

analyze historical data from the underlying systems and control the systems based on certain

logic, for which the core functionality is to interface with points, such as sensors and actuators,

governing the underlying systems. For example, an app may read an occupancy sensor’s log to

infer an occupant’s schedule or turn off an HVAC terminal unit when it notices the corresponding
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room is empty.

Here, the metadata plays a crucial role in identifying the right points for apps. Apps

would rely on the resource discovery process a BOS provides. If the metadata is heterogeneous

across different buildings, users or integrators would need to laboriously adapt the apps per

building, which causes a high cost. This role of resource identification can be expanded to other

administrative functions as we will discuss more in Section 6.3. In the next section, we will

explore if the existing metadata in buildings suffice the requirements for such a standardized

resource discovery mechanism.

2.2 Existing Building Metadata

Metadata is often called data about data and can embed any information that helps

understand the meaning of the data. In buildings, there are various types of data such as timeseries

data of a temperature sensor or the status of a light switch and structural information of spaces.

The raw data are merely a set of certain values, such as, for sensors, numbers (72°F) and symbols

(on or off) with timestamps, which do not convey what the values actually mean. Metadata could

provide such information such as measurement types, location of the points, points’ relationships

with each other, etc.

However, metadata in existing BMSes, whose main users are building operators, is

designed mainly for humans to interpret with domain knowledge about the target system. Table 2.1

presents anonymized real-world examples retrieved from existing buildings systems. There

are several types of metadata depending on their sources. Vendor names are displayed and

typically downloadable at vendor-provided user interfaces such as MetaSys and Desigo. Building

managers read vendor names to understand their measurement types, locations, and related

equipment to resolve system faults or tenant requests. Some communication protocols also

provide metadata about points. For example, BACnet defines several fields to annotate points
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Table 2.1: Metadata examples in buildings on different campuses.

Each row in the tables is raw metadata for a data point in the first two tables and correspond-
ing labels in the last table. ID stands for point identifiers. Campus and building names are
anonymized. Vendor Names are retrieved from vendor-given tools such as MetaSys while
metadata related BACnet is only accessible through direct communication with BACnet devices.

ID Campus-Building Vendor Name

P1 A-1 ENG.CRAC-1.TEMPSETF
P2 A-2 SC-CRAC-1-MIG-008.TMP
P3 A-2 SC.3FLW-HALL.ZN-T
P4 B-1 RM123A Zone Temp 3

ID BACnet Name BACnet Description BACnet Type

P1 NAE 05 N2 2 VND 162 TEMPSETF Temp Setpoint Analog Output
P2 NAE 14 N2 Trunk 1 MIG 008 Temp Temperature Analog Input
P3 NAE 13 N2 Trunk 2 VAV327 ZN T Zone Tempreature Analog Input
P4 N/A N/A N/A

ID Point Label Equipment Label Location Label Network Interface

P1 Temperature Setpoint CRAC-1 N/A VND-162, N-2-2, NAE-05
P2 Temperature Sensor CRAC-1 N/A MIG-008, NAE-14, Trunk-1
P3 Zone Temperature Sensor VAV-327 Floor-3, W-Hall Trunk-2, NAE-13, N-2
P4 Zone Temperature Sensor N/A Room-123A N/A

such as Name, Description, and Object Type [ASH16]. Name and Description are still designed

for human readability for managers to understand the points’ context, and, because BACnet is a

communication protocol, there are other information types than those in vendor names such as

network interfaces (e.g., VND, N2, NAE, which are specific names of underlying network devices

or sub-protocols.) There are symbolic fields too, such as Object Type. Object Type in BACnet has

six different values as Binary Input, Binary Output, Analog Input, Analog Output, Multi-value

Input, and Multi-value Output. BACnet devices use this information to check whether a certain

signal from points is compliant to the designated port in the hardware. Likewise, most of the

information in BACnet is designed for either human readability or protocol-specific compatibility

check, but not for general apps information exchange.

Apps would need to access many resources upon their own application logic and the

existing metadata is not the right tool for expressing apps’ requirements. The existing metadata is
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inconsistent across different buildings and often even in the same building. Thus, to deploy an

app across different buildings, any discovery mechanism should be able to cover all the different

patterns of metadata. For example, a building environment analysis app needs to gather all the

ambient temperature sensors residing in rooms per floor. The first step would be to identify the

temperature-related points. With the given metadata as in Table 2.1, the app would need to look

for anything containing “T”, “Temp”, “TEMP”, and “TMP”. Even such simple string comparison

will fail if any of the keywords are a part of other keywords such as “Temporary”. Furthermore,

there is no guarantee that all the information is there for representing apps requirements. After

the above example app sorts out only temperature-related points, it still needs to verify location

information whether the points are located in rooms of the first floor. While the inconsistent

naming is still a problem, some points do not have location information at all. In that case, the

app logic will be broken.

Traditionally, for deploying an app, an app integrator manually normalize the existing

metadata into certain labels that the app can understand. Table 2.1 also shows normalized labels

as point types (i.e., measurement type), associated equipment, locations, and network interfaces.

For example, even though all the points in the table are related to temperature, they are encoded in

various forms (e.g., TEMP, TMP, T, and Temp) as a different part of the strings (e.g., TEMPSETF,

ZN-T, ZN T, and Zone Temp). Location is encoded in various ways while it is missing in some

points. P1 and P2 do not have location information, P3 contains floor and room labels, and P4

only has room info. The names of equipment and network interface are not standardized as well

and the meanings of names are specific to the vendors and the authors of the metadata. Metadata

should have a standardized way of representing such labels that apps and BOSs can exploit in

their operations.

The inconsistency in metadata stems from various factors. Existing metadata are mainly

authored by humans without any rules or tools. First, there are no or few standard rules that

authors can stick to. While a vendor’s internal convention defines several keywords or the types
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of information to put in metadata, those are not complete and the authors need to be flexible

across different buildings’ configuration and requirements. Of course, these conventions are only

internal but not agreed upon by all the vendors. Second, the authors are human and error-prone.

Even with some internal conventions, humans might make typos or omit necessary information

as well as misunderstand some given rules. Lastly, buildings evolve across time. While there

could be some fixes, renovation, or new device installation, not all of them are done by the same

metadata author, and thus the styles of metadata change.

The fundamental reason behind all of these is the lack of motivation from system in-

tegrators or vendors in the past. Traditionally, there was a limited demand for providing a

programmable interface to these subsystems. Lately, however, many interest parties, including

system vendors, energy retrofitting companies, standard bodies, and government agencies, shave

recognized the value of integrating different systems and providing a standardized programmable

interface for general apps.

2.3 Existing Building Metadata Schemata

People have studied and developed several metadata schemata for buildings. Bhattacharya

et al. proposed a quantitative analysis framework for IFC and Haystack whose baseline is to

completely model three different buildings and seven application categories [BPC15]. This work

has become the foundation of Brick (Section 3.1.) Fierro et al. [FKA+19] showed a qualitative

analysis of Haystack to show its tagging scheme is not extensible and leads to inconsistent usage

in practice. Section 3.7 describes our update of Brick to Brick+. In this section, we summarize

such studies [BPC15, FKA+19] as well as review other existing metadata schemata for buildings

[Koh16].
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2.3.1 Limitation of Industrial Foundation Classes

IFC was initiated in 1994 and became an ISO standard in 2018 to standardize Building

Information Models (BIM) mainly for building architect and construction [ISO14]. Thus, its

vocabulary lacks the necessary concepts for the building operation and apps. While IFC has

updated its model since then, its vocabulary coverage was only 29% of unique tags occurring in

the three base buildings’ systems as of 2015 [BPC15]. More importantly, its relationship model

is constrained to 3D modeling and cannot represent simple queries such as logical relationships

between objects (e.g., whether two different sensors are located in the same room.) In addition,

IFC’s data model and serialization format are not designed for general programming language

and thus IFC lacks in programming interfaces such as a programmable abstraction (e.g., object

mappers) and query logic for general programming languages with which apps are developed.

2.3.2 Limitation of Project Haystack

Haystack is an open-source initiative formed in 2014 to simplify and standardize building

modeling with tags. It defines a set of tags and data formats to annotate entities in buildings. In

Haystack, there are three types of tags:

• Value tags define the roles of certain values associated with the corresponding entity. For

example, unit is a value tag whose value represents a unit of the associated point.

• Marker tags specialize the type of the corresponding entity. For example, temp tag means

that the associated entity is related to temperature.

• Ref tags are a type of value tags where the values are other entities. For example, equipRef

means that the associated entity is related to the specific equipment.

Figure 2.2a shows an example entity in Haystack. The first entity is an instance of setpoint

(sp) that configures the amount of airflow (air, flow) from a VAV, VAV-101 (equipRef). Such
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1 {
2 "id": "safsp-101",
3 "air": "m",
4 "flow": "m",
5 "sp": "m",
6 "point": "m",
7 "equipRef": "VAV-101"
8 }

(a) A Haystack Representation of Supply Air
Flow Setpoint

1 {
2 "id": "maxsafsp-101",
3 "max": "m",
4 "air": "m",
5 "flow": "m",
6 "sp": "m",
7 "point": "m",
8 "equipRef": "VAV-101"
9 }

(b) A Haystack Representation of Max Supply
Air Flow Setpoint

Figure 2.2: Project Haystack Examples

simple modeling is flexible and usable with little knowledge about the building and the schemata

itself and thus has attracted a significant user base.

However, such flexibility in Haystack trades the formality of models for the discoverability

and consistency. Discoverability is whether a user can find the right entities from the model

intuitively. While each tag represents partial information about an entity, their roles are different

for different kinds of entities, and Haystack ignores such differences but just represents the

undeterministic association of tags with entities. This results in the disparity between an actual

model and users’ intuitive understanding of the model because the partial information does not

represent the entire entity whereas users would rely on the partial information to discover the

necessary entities from the model. As an example, compare the first entity with the second one in

Figure 2.2b with an additional tag, max. The latter one configures the maximum possible value

that the former one could have, other than how the airflow rate should be actually set. It contains

all the marker tags that the setpoint has because it is associated with all the concepts within the

former one. With such overlapping concepts, to change the current airflow rate of a certain zone,

a user would look up entities with all the tags, air, flow, and sp, which happen to be a subset

of max air flow sp as well. Thus, the tag matching query would select both kinds of points

even though one of them is a configuration parameter for the other one. To precisely select the

right entity among the query results, the user should additionally exclude entities with max tag.
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Still, max is not the only tag to filter out and it might fail with other similar concepts such as min.

While tags are intuitive for annotating partial information of an entity, it should be coherently

used so that it would match users’ intuitive understanding of models.

Due to similar reasons, users’ modeling with Haystack is inconsistent across different

users and buildings. Consistency is crucial for building interoperability; buildings should be

modeled with the same understanding of vocabulary in a metadata schema for all of them to be

operated in the same manner. However, Haystack’s tagging scheme causes inconsistent modeling

in several ways. First, how to use tags is encoded in documentation instead of a verifiable

machine-readable model. For example, vfd can be a point or equipment in Haystack. While

VFDs are equipment, they are often represented by a singled point in BMSes and Haystack

allows users to decide how it is used in their models without guaranteeing any interoperability

in the future. Second, the meaning of a tag varies within different compositions of tags and the

documentation is the single source. “chilled” has different meanings when used standalone and

in chilledWaterCool as the former one for points and the latter one for equipment, and there

is no formal way to verify which is correct is actual usage. Third, there is no way to prevent

human errors with incomplete or conflict modeling. Partial mapping occurs in Haystack instances

in practice as people naı̈vely map existing BMS tags into Haystack tags while BMS tags are

often implicitly meaning diverse information. For instance, sensor is often omitted in BMSes to

represent a temperature sensor just with temp. While a set of hard-coded rules could prevent it

(e.g., if temp occurs, one of sensor, sp, or cmd should occur too,) there is no standard way of

representing such rules and evaluating them in Haystack.

These problems can be resolved by a formal representation of the knowledge such as fine-

grained tagging scheme or a class-based scheme. For example, instead of nondeterministically

associating sp to both of the example entities in Figure 2.2, we could associate the tag with

a predicate such as instantiates sp and regulates sp where the former one indicates the

entity is an instance of setpoint and the latter one means it is an instance that regulates a different
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setpoint. However, fine-grained tagging complicates the modeling process and usage because

all the tags should be associated with different predicates or contexts. On the other hand, the

class scheme can consistently model concepts without too much complication of associating

different predicates for tags. In a class scheme, users strictly instantiate a class to model an entity,

which might be related to other entities. A class can implicate the actual meaning of tags within a

hierarchy. For example, air flow sp can be a specialization or a subclass of sp whereas max

air flow sp can be a totally different class. In this case, max air flow sp class implicitly

defines that it is not a type of sp but a class whose instances would regulate other setpoints. While

users can consistently instantiate classes with a common understanding of the knowledge instead

of arbitrarily associating tags with entities, some information is implicit in the class definitions.

Our proposed metadata schema, Brick, combines the best of both worlds by providing a usable

class hierarchy (Section 3.1.4) and structuring the hierarchy with fine-grained semantic tagging

scheme (Section 3.7).

2.4 Definitions

We will reuse the following terminologies throughout the dissertation.

• Entity: An entity is a conceptualized existence, which can be either physical or virtual. It

is also called resources in this dissertation. Applications refer to entities’ metadata and data

for their operations.

• Class: A class is a category of entities sharing the same properties.

• Point: A point is either a physical or virtual entity that continuously generates a value

stream whose context is consistent across time.

• Building model: A building model is a machine consumable representation of the building,

often as a collection of metadata for entities existing in the building.
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• Application/App: An application utilizes information about the building and various

entities inside to improve building operation. Apps refer to a building model to its operation.

• Building Operating System (BOS): Building Operating Systems is a collection of soft-

ware components to provide API for apps and users to access entities in buildings.

• Building Occupant: Occupants are the end users of buildings, who live, work or spend

time inside buildings.

• Building Operators/Managers: They are responsible for operating buildings’ equipment

to meet the buildings’ requirements such as energy usage and environment control.
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Chapter 3

Extensible and Verifiable Metadata

Schema for Buildings

In this chapter, we present our standard building metadata schema, Brick. As described in

the previous chapter, existing work has observed that existing metadata schemata are not suitable

for representing all the information that applications (apps) would need for interacting with build-

ing systems. From the beginning, Brick is designed for the large-scale app deployment, analyzed

over six different buildings and apps from 85 papers. It is the first metadata schema quantitatively

analyzed over actual buildings. Brick is extensible, by its design, to new terminologies while

preserving the semantics even with new concepts, and also can be integrated with other models

using standard semantic web technologies. As Brick is a formal model for representing resources

in buildings other than just a set of predefined vocabulary, Brick can better maintain consistent

usage across different buildings.

We first introduced Brick in 2016, and Bhattacharya among the authors also presented

Brick in his dissertation [Bha16]. In this chapter, we present the original Brick as well as how

it has evolved to Brick+ for bugs fixes, new concepts, integration with building systems, and

consolidation of its design, which show Brick’s usability in the real world. We have deployed
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Brick with a building at the University of California, San Diego (UCSD), where actual apps are

running. We will discuss app deployment workflows in the real world more at Chapter 6.

Brick is now being adopted into the industry (i.e., companies and other standard bodies)

and publicly maintained via its community at https://brickschema.org.

3.1 Schema Design

3.1.1 Design Principles

Brick’s design focuses on data points, their metadata found in real building deployments

and requirements defined by end-use apps for operations and management. Brick is separated

into a core ontology defining the fundamental concepts and their relationships as discussed

below and a domain-specific taxonomy expanding the building-specific concepts. This allows

users to introduce new concepts as well as the taxonomy with the concepts. We obtain ground

truth information from six diverse buildings across the US and Europe, which have 17,700 data

points and five different vendors in total (Table 3.4). We pick eight representative application

categories from the list of smart building applications compiled by Bhattacharya et al. [BPC15],

and formulate metadata queries for these applications to drive the basic requirements of Brick as

well as evaluate how well our building metadata can be mapped to Brick. Section 3.4 contains our

findings for the six buildings.We use existing standards in ontology development as Turtle [tur]

for data formatting and SPARQL [spa] for querying. Users can exploit existing tools such as

ontology visualization tools and querying engines.

Brick is distinguished from the other building schemata as follows:

• Completeness: The current version of Brick covers 98% of the vocabulary found in six

buildings in different countries. (Section 3.4)

• Vocabulary Extensibility: The structure of Tags/TagSets allows easy extensions of TagSets
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for newly discovered domains and devices while allowing inferences of the unknown

TagSets with Tags. (Section 3.1.3)

• Usability: Brick represents an entity as a whole instead of fragmentarily annotating it. It

promotes consistent usages by different actors. Furthermore, its hierarchical TagSets struc-

ture allows user queries more generally applicable across different systems. (Section 3.1.3

and 3.1.4)

• Expressiveness: Brick standardizes canonical and usable relationships between entities,

which can be easily extended with further specifications. SPARQL facilitates all the possible

combinations of the relationships required by queries of the eight application categories in

the literature. (Section 3.1.5 and 3.3)

• Schema Interoperability: Using RDF enables straightforward integration of Brick with

other ontologies for different domains or aspects. (Section 3.5)

• Formality: The formal rules of Brick TagSet formation promote the integrity of the schema

design and enforce consistent usage of Brick over different users. (Section 3.7)

3.1.2 Development of Brick

An ontology is a structured collection of knowledge in a specific domain. Because an

ontology is meant to be commonly used in the target domain (and sometimes together with other

related ontologies for different domains), it should be able to represent all the necessary concepts

and meet all the users’ requirements in the target domain. Thus, the development of an ontology

could be a highly iterative procedure where many experts and institutions altogether would gather

the information to model in an ontology.

While there are several ontology engineering methodologies [IMM+13], we generally

follow the Unified Process for ONtology building Lite (UPON Lite) methodology [DNM16]

because of its agility. With UPON Lite’s workflow, developers without the knowledge about

ontology engineering can systematically contribute to the ontology design. UPON Lite consists
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of six steps;

1. Collect lexicon for the target domain.

2. Embed meanings into lexicon such as defining textual descriptions and finding synonyms.

3. Organize a taxonomy from the lexicon with generalization/specialization hierarchy.

4. Define relationships across different terms.

5. Identify meronyms1.

6. Formally encode the collected knowledge into an ontology.

Throughout the entire procedure, ontology engineers can gradually refine knowledge. A prelimi-

nary step implicit in UPON Lite is to scope the target domain. However, it is hard to determine

the scope of buildings in general because different buildings would have different resources and

apps’ requirements vary as well. We set our initial goal as to completely represent the data points

discovered in our six testbed buildings and the apps that we identified from 85 papers.

We follow similar steps for establishing a common ontology for our target domain. The

researchers from each campus are responsible for extracting and organizing all the information

from their campus. To collectively gather the information through the ontology engineering

procedure, we design a Comma-Separated Values (CSV) template2. CSV formats are a table-like

structure where each column has a specific category of information and each row represents a set

of information about a thing. In our case, each row represents a single class of entities defined by

a developer and has the information specified in the following columns:

• Lexicon: Classes or types of entities observed in buildings. We reuse the types provided by

BMSs of the buildings. The collection of this corresponds to the first step of UPON Lite.

1In our case, meronyms are identified in the process of defining relationships.
2V1.0.3 CSV file: https://github.com/BrickSchema/Brick/raw/v1.0.3-archive/src/TagSets.csv,

last accessed: 2019-10-26
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• Definition: Definitions of terminologies. While we put our best effort into defining rare

concepts, we partially adopt definitions from ASHRAE Terminology3 as ASHRAE is one

of the most authoritative institutions for standardizing building systems.

• Synonym: Terminologies with the same meaning.

• Abbreviation: Terminologies with the same meaning. BMSs tend to use abbreviations to

represent commonly used concepts, such as Chilled Water Pump (CWP) and Variable Air

Volume unit (VAV), within a short description. This is a type of synonym.

• Parents: All the concepts that generalize the row. This is similar to parent classes in the

object-oriented programming model.

• Author: The author of the row for provenance.

The methodology of UPON Lite is supposedly a linear process where each step contains the

sufficient information required in the next step. In practice, because people might have different

understandings of the same concepts, each step is internally iterative to agree on all the specifica-

tions. Furthermore, human errors could occur or the extracted information from each stage might

not be complete. Thus, we evaluate the coverage of our model after all the steps and then augment

missing or incorrect concepts in each step until our model completely represents everything in

our target buildings.

Note that, in the CSV template, there is no process of defining relationships between

concepts. There are many relationships in building systems such as physical proximity, network

connections, and hardware configurations. Modeling all of such relationships is an exhaustive

process and may not be necessary. We, instead, focus on our goal, enabling a programmable

interface for apps. We analyze 85 app papers to identify the necessary relationships by apps

(Section 3.1.5). We identify the necessary relationships required by apps based on our analysis of

3ASHRAE Terminology, https://xp20.ashrae.org/terminology/, last visited: 2019-10-25.
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85 related papers as discussed in-depth in Section 3.1.5. After the curation of knowledge, we use

a Python script4 to encode the definition, taxonomy, constraints, and relationships into RDF/OWL

format as detailed in Section 3.2.

3.1.3 Tags and Tagsets

We borrow the concept of tags from Project Haystack [hay] (Section 2.3.2) to preserve the

flexibility and ease of use of annotating metadata. We enrich the tags with an underlying ontology

that crystallizes the concepts defined by the tags and provides a framework to create the hierarchies,

relationships, and properties essential for describing building metadata. With an ontology, we

can analyze the metadata using standard tools and place restrictions to prohibit arbitrary tag

combinations or relationships. For example, we can restrict the units of temperature sensors to

Fahrenheit and Celsius or prevent sensor and setpoint from occurring together in a combination of

tags for a data point. An ontology also enables property inheritance in the hierarchy. A subconcept

of a concept preserves the original characteristics with more specifications.

We introduce the concept of a tagset that groups together relevant tags to represent an

entity. With Haystack and related tagging ontologies [CKAK15b], an entity such as Zone -

Temperature Sensor from Figure 2.1 is defined by its individual tags, so its properties and

relationships with other entities can only be specified at the tag level. A user should assume that

the other users would have exactly used zone, temperature, and sensor for annotating the sensor

to look for zone temperature sensors. Thus, the way of annotating the same type of sensors in a

tagging scheme may differ across different buildings. On the contrary, with tagsets based on tags,

we have a cohesive concept of a Zone Temperature Sensor that can be consistently used to

represent actual instances of zone temperature sensor. We can further provide its semantics as the

temperature is maintained between the zone’s Cooling Setpoint and Heating Setpoint. The

4Brick generation script for 1.0.3: https://github.com/BrickSchema/Brick/blob/v1.0.3-archive/src/
BuildBrick.py last accessed: 12/08/2019.
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Figure 3.1: Information concepts in Brick and their relationship to a data point.

concept of tagsets works well with an ontology class hierarchy - a Zone Temperature Sensor

is a subclass of a generic temperature sensor, and will automatically inherit all its properties.

Further, we avoid the use of complex tags such as the chilledWaterCool and hotWaterReheat

tags in Haystack. The vocabulary of Brick is defined by its list of tagsets.

3.1.4 Class Hierarchy

We define several high-level concepts that provide the scaffolding for Brick’s class

hierarchy. As the central emphasis of our design is on representing points in the BMS, we

introduce Point as a class, with subclasses defining specific types of points: Sensor, Setpoint,

Command, Status, Alarm. Each point can have several relationships that relate the data point

to other classes such as its location or equipment it belongs to. Bhattacharya et al. [BPC15]

recognize that building metadata has several dimensions, which we carry forward into the design

of Brick. We define three dimensions as high-level classes to which a Point can be related to:

Location, Equipment, and Resource (Figure 3.1). We define each category as follows:
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Figure 3.2: A subset of the Brick class hierarchy

• Point: Points are physical or virtual entities that generate timeseries data. Physical points

include actual sensors and setpoints in a building, whereas virtual points encompass

synthetic data streams that are the result of some process that may operate on other

timeseries data, e.g. average floor temperature sensor.

• Equipment: Physical devices designed for specific tasks controlled by points belonging to

it. E.g., light, fan, AHU.

• Location: Areas in buildings with various granularities. E.g. room, floor.

• Resource: Physical resources or materials that are controlled by equipment and measured

by points. An AHU controls resources such as water and air, to provide conditioned air to

its terminal units.

We can expand these concepts in future versions to expand the metadata covered by Brick (e.g.

Network). Each concept has a class hierarchy to concretely identify each entity in the building.

For example, the Equipment class has subclasses HVAC, Lighting and Power, each of which have

their own subclasses. Figure 3.2 showcases a sample of Brick’s class hierarchy.

It is common in a domain to use multiple terminologies for the same entity. For exam-

ple, in HVAC systems, Supply Air Temperature and Discharge Air Temperature are used
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interchangeably. We identify these synonyms from our ground truth buildings and mark the

corresponding tagsets as being equivalent classes in Brick. Note that the class hierarchy does not

strictly follow a tree structure, and we use multiple inheritances when appropriate. For example,

a desk lamp can be a subclass of both the lighting system and office appliance classes.

3.1.5 Fundamental Relationships

Relationships connect the different entities in the building and are essential to providing

adequate context for many applications. For instance, to diagnose a VAV, a fault detection

application running on our example building (Figure 2.1) needs to know the room to which

the VAV supplies air, the temperature sensor located in the room, other operational data points

in the VAV, and the AHU that provides air to it. However, Bhattacharya et al. establish that

current industrial standards lack the ability to sufficiently describe all the relationships required

for modern applications [BPC15].

We construct essential relationships by pulling a representative example from each of the

eight common application dimensions identified by Bhattacharya et al. [BPC15] as summarized

in Table 3.2. The categories of quintessential relationships we extract from the applications are:

• Taxonomy: what class or classes of things define an entity

• Location: which building, floor, and room an entity is in, but also where in the room it is

• Equipment Connections: what equipment an entity is connected to, and how it is con-

nected

• Composition: what entity an entity is a part of, or what entity is a part of it

• Point Connections: what points affect the behavior of other points

Portability and orthogonality are two primary concerns in designing the set of relation-

ships.When describing or reasoning about a building, the set of possible relationships between

any two entities should be small enough and well-defined such that the correct relationship should
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Table 3.1: List of the Brick relationships and their definitions.

All definitions follow the form A <relationship> B, where relationship is the first one
listed, not the inverse. All Brick relationships are asymmetric, and transitive where marked.
If a relationship → is transitive, then if A→ B and B→ C, then A→ C is a valid relation.
Asymmetric simply means that if A→ B, then B→ A is invalid.

Relationship (Inverse) Definition Endpoints

isLocationOf (hasLocation) A physically encapsulates B
Loc. / Point
Loc. / Equip.

controls (isControlledBy) A determines or affects the in-
ternal state of B

Point / Point

hasPart (isPartOf) A has some component or part
B (typically mechanical)

Equip. / Sensor
Equip. / Equip.
Loc. / Loc.

hasPoint (isPointOf) A is measured by or is other-
wise represented by point B

Equip. / Point
Loc. / Point
Resource / Point

feeds (isFedBy) A “flows” or is connected to B
Equip. / Location
Equip. / Equip.

be obvious. This orthogonality reduces the risk of inconsistency across buildings. Taken to its

extreme, orthogonality informs a set of relationships that are specific and non-redundant, which

can lead to overfitting the set of relationships for a particular building or subsystem. To support

the goal of designing a unified metadata schema across many buildings, these relationships must

also be sufficiently generic to be portable to many buildings.

Resolving these two tensions leads to the set of relationships listed in Table 3.1. The

specific entities and relationships each application category requires are listed in Table 3.2. We

provide relationships together with their inverse relationships so that users can express them in

any direction they prefer. SPARQL queries can accommodate both directions to be compatible

with any choices of inverse relationships. The left side of Endpoints column defines the possible

subjects and the right side defines the possible objects that the relationship can have, which can

provide a guideline for users not to improperly use them. The isPartOf relationship captures

the compositions among the entities in the building. For example, a room isPartOf a floor and

a return fan isPartOf an AHU. The feeds relationship captures the different flows between
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Figure 3.3: Brick classes and relationships for a subset of the example building in Figure 2.1.

entities such as equipment or locations in the building, such as the flow of air from AHU to VAV,

the flow of water from a tank to a tap, or the flow of electricity from a circuit panel to an outlet.

Each of these relationships can have sub-properties. For instance, feeds can be extended to

feedsAirTo, feedsWaterTo, etc. Figure 3.3 shows the relationships for a subset of the example

building in Figure 2.1.

Brick uses the possible subjects/objects defined in Endpoints column of Table 3.1 as a

guideline when users add relationships. Using ontology property restrictions, we provide rules for

certain properties to have precise subjects and objects. For instance, the object of hasPoint must

be an instance of a class in the Point hierarchy. Likewise, the subject of isLocationOf must be

an instance of a class in the Location hierarchy. These can be exploited by a user interface to

guide users while tagging raw metadata or while establishing relationships between entities. We

define these restrictions as a set of guidelines for Brick model developers to aid in keeping Brick

usage consistent between building models.
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3.2 RDF and SPARQL

3.2.1 Representing Knowledge in RDF

Brick adheres to the RDF (Resource Description Framework) data model [RDFa], which

represents knowledge as a graph expressed as tuples of subject-predicate-object known as triples.

All buildings in Brick are represented as a collection of such triples. A triple states that some

subject entity has some relationship predicate to some other entity object, which is node/directed-

edge/node in the graph theory. RDF enables easily composing different kinds of information in

buildings such as hierarchical location information (e.g., room-101 is a part of the first floor) and

interconnected equipment (e.g., a VAV is fed by an AHU)

All entities and relationships exist in some namespaces, indicated by a namespace: prefix.

This enables distinguishing and reusing entities in different namespaces. Brick especially exploits

well-defined standard vocabularies from RDF [RDFa], RDFS [RDFb], and OWL [OWL] to

express common relationships. For example, RDFS defines subClassOf relationship to represent

super-sub-concepts such as ”sensor rdfs:subClassOf temperature sensor”. A user can

define multiple namespaces to reduce complexity in allocating unique names to entities especially

when she handles many buildings. If a user defines two namespaces as bldg1 and bldg2, she

can easily append namespaces to rm-101 to distinguish the rooms in two buildings with the same

name as bldg1:rm-101 and bldg2:rm-101.

The triples in Figure 3.4 represent the connection of the VAV to the temperature sensor

using the hasPoint relationship from the example building in Figure 3.3. Line 5 declares an

entity identified by the label building:myVAV, this creates the myVAV entity in the building

namespace. brick:VAV is a TagSet defined by the Brick to represent any variable air-volume

boxes. rdf:type declares building:myVAV to be an instance of brick:VAV. Similarly, line

6 instantiates a Zone Temperature Sensor with the label, building:myTempSensor. Line 7

uses the Brick relationship brick:hasPoint to declare that building:myVAV is functionally
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1 PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX brick: <http://brickschema.org/schema/Brick#>
3 PREFIX building: <http://example.com/building#>
4

5 building:myVAV rdf:type brick:VAV
6 building:myTempSensor rdf:type brick:Zone_Temperature_Sensor
7 building:myVAV brick:hasPoint building:myTempSensor

Figure 3.4: RDF triples instantiating a VAV and a Temperature Sensor and declaring that the
VAV measures temperature via that sensor.

1 PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX brick: <http://brickschema.org/schema/Brick#>
4 SELECT ?ahu ?room
5 WHERE {
6 ?zone rdf:type brick:HVAC_Zone .
7 ?room rdf:type brick:Room .
8 ?ahu rdf:type/rdfs:subClassOf* brick:AHU .
9 ?ahu brick:feeds+ ?zone .

10 ?zone brick:hasPart ?room .
11 }

Figure 3.5: A simple SPARQL query for retrieving all rooms connected to a given Air Handling
Unit (AHU).

associated with the given temperature sensor.

3.2.2 Querying Knowledge with SPARQL

Applications query the Brick graph for entities and relationships using SPARQL (SPARQL

Protocol and RDF Query Language) [spa]. SPARQL queries specify constraints and patterns of

triples and traverse an underlying RDF graph to return those that match. For Brick applications,

this underlying graph consists of all the entities and relationships in buildings.

Figure 3.5, a query for retrieving all rooms which are connected to a given AHU, contains

a representative example of each of these features. Lines 1-3 declare the prefixes for the various

namespaces to shorten the references to entities; for brevity, we omit these from all later queries

in this paper. Line 4 contains the SELECT clause, which states that the variables ?ahu and ?room
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should be returned (the ? prefix indicates a variable). The WHERE clause determines the types

and constraints on these variables. Line 6 states that ?zone is any entity in the graph that is an

instance of the class brick:HVAC Zone. Likewise, line 7 declares ?room to be an instance of a

brick:Room.

Brick provides both generic (such as AHU) and specific classes of equipment (such as

a RoofTop-Unit AHU). A building represented in Brick can specify the specific subclasses, or

if that information is not available, instantiate a generic class. Line 8 is a common construct

in Brick queries which accounts for this type of uncertainty in how Brick represents buildings.

This sub-query returns all entities ?ahu that are either an instance of a subclass of brick:AHU or

an instance of brick:AHU itself. An application that does not require specific features of such

subclasses may want to query for the generic class rather than exhaustively specify every possible

subclass.

After declaring the types of the entities involved, the query restricts the set of relationships

between the entities on lines 9 and 10 to determine which pairs of entities are connected. Line 9

finds all HVAC zones downstream of a particular AHU by following a chain of brick:feeds

relationships (the + indicates that 1 or more edges can be traversed as long as the edges are of

type brick:feeds). Line 10 links the identified HVAC zones with the rooms they contain. The

correct relationships to use can be determined from the Brick relationship list (Table 3.1).

This example query illustrates an important quality of Brick queries: establishing a link

between two entities (even across different subsystems such as HVAC and spatial) does not

require explicit knowledge of all intermediary entities. Rather, the query denotes the relevant

entities and relationships: the query in Figure 3.5 is indifferent to whatever building-specific

equipment and details lie between an Air Handler Unit and the end zones. This is possible because

the relationships between those entities all use Brick’s brick:feeds relationship. Furthermore,

the query is concise enough to return the answer only with a few expressions.
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3.3 Applications

Table 3.2: App Requirements for entities and relationships.
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Temp Sensor X X
CO2 Sensor X
Occ Sensor X X X
Lux Sensor X X

Power Meter X X X X X X
Airflow Sensor X
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Generic X X
HVAC X X X X

Lighting X X X
Reheat Valve X X

VAV X X
AHU X X

Chilled Water X X
Hot Water X X

L
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Building X X
Floor X X X

Room X X X X X X
HVAC Zone X X X

Lighting Zone X X

R
el
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Sensor hasLoc Loc. X X X X
Equip hasLoc Loc. X X X X
Loc. hasPart Loc. X X X

Loc. hasPoint Sensor X X X X X
Equip hasPoint Sensor X X X X X

Equip hasPart Sensor X X X X
Equip feeds Zone X X X

Equip feeds Room X X X
Equip feeds Equip X X X

Zone hasPart Room X X X

Applications interact with buildings through either reading or writing to the necessary data

points’ either historical or the most current data. However, as the timeseries data are in different

structures compared to the metadata, the interactions are often separated into the following two

steps. First, an application finds the names or the identifiers of the data points of interest with
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their metadata. Then, it retrieves or changes the data points’ timeseries data in a BMS or a data

historian. The application will run a fault detection algorithm or change a temperature setpoint

with the retrieved data. We show how Brick and SPARQL together standardize the first step,

of which typical systems lack. Brick excludes modeling the second interaction with BMS for

timeseries data retrieval because each system has a unique interface. The two-steps interaction

still could be further standardized through federating metadata query and data query [EKBD17].

The federated query is out of scope in this paper but could be implemented upon Brick.

We consider eight applications — one from each of the application categories compiled

by Bhattacharya et al. [BPC15]. Research has shown that each of these applications can have a

significant impact on improving building energy efficiency [MH09, JKK+13, JSSJ11, BKWA16,

SGMS12, KDHL+11, SBCH06, WBD+11]. There have been hundreds of papers published that

discuss how to design each of these applications to maximize their energy savings, and we have

seen several industry startups that have started to deploy them in real buildings [com, bid, sky,

ene, kgs]. If Brick successfully models different buildings in a uniform manner and enables

portability of these applications, it can have a large impact on the building energy efficiency

efforts.

3.3.1 Application Coverage

We implemented these applications as a set of SPARQL queries identifying the relation-

ships in Table 3.2. Brick allows applications to write portable queries that identify relevant

resources in a building-agnostic manner. An application can then adapt its behavior to the set of

returned resources, likely using some API to interact with the required points. For this reason, we

implement each of the applications as a set of SPARQL queries that return the set of relevant enti-

ties and relationships. Table 3.3 contains the results of running these queries over the six buildings

for each of the applications. Applications such as Occupancy, Web Display, Model-Predictive

Control (MPC), and Demand Response run on most buildings as they are mostly related to HVAC
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systems, which are common in buildings. Such applications require VAVs, AHUs, HVAC zones,

relevant sensors, and their relationships with each other. The Participatory Feedback application

is designed for lighting controls. It shows relatively low coverage of buildings because many

of the BMSes in our buildings do not expose points related to lighting systems. However, the

relationships used in the application are generic for other types of systems too. The NILM

application needs power meters to dissect energy usage into multiple subsystems, and power

meters may not be integrated into the BMS as in the half of our testbed buildings.

We instantiate models from the target buildings’ BMSes, so the coverages depend on how

many data points the BMSes expose is the primary limiting factor for whether each application

runs on a building. In addition, applications have to account for the diversity of points across

buildings: Brick defines synonym tagsets where possible, but there will always be a degree of

disambiguation specific to applications.

The primary challenge in developing portable queries was accounting for the variance

in relationships across buildings. For example, a zone temperature sensor may have either

an isPointOf relationship with an HVAC zone or a VAV. These inconsistencies arise from

differences in building construction and the representation of the points in the BMS. It is possible

to account for these differences in SPARQL to construct truly portable queries using UNION

operations that allow the temperature sensor to be associated with either a zone or a VAV.

3.3.2 Example Application: Genie

We show an example application from the perspective of Brick. The Genie [BKWA16]

application incorporates monitoring and modeling of HVAC zone behavior and power usage with

occupant feedback to provide a platform for occupants to directly contribute to the efficacy and

efficiency of a building’s HVAC system. Genie requires the following relationships:

• the mapping of VAVs to HVAC zones and rooms

• the heating and cooling state of all VAVs in the building
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Table 3.3: Number of matching triples in each building for the SPARQL queries consisting the
eight applications.

A non-zero number indicates that the application successfully ran on the building. Buildings
with ‘-’ did not have any relevant points exposed in the BMS.

Building
Application EBU3B GTH GHC IBM Rice Soda
Occupancy [JKK+13] 261 245 366 821 265 232
Energy Apportionment [JSSJ11] - 302 - 397 4 -
Web Displays [BKWA16] 699 81 65 835 106 605
MPC [SGMS12] 482 69 428 324 110 482
Participatory Feedback [KDHL+11] - 253 - 386 - -
FDD [SBCH06] 229 29 229 728 - 136
NILM [MH09] 6 82 - 1348 - -
Demand Response [WBD+11] 2300 24 2490 608 4 152

1 SELECT ?airflow_sensor ?room ?vav
2 WHERE {
3 ?airflow_sensor rdf:type/rdfs:subClassOf*
4 brick:Supply_Air_Flow_Sensor .
5 ?vav rdf:type brick:VAV .
6 ?room rdf:type brick:Room .
7 ?zone rdf:type brick:HVAC_Zone .
8 ?vav brick:feeds+ ?zone .
9 ?room brick:isPartOf ?zone .

10 ?airflow_sensor brick:isPointOf ?vav .
11 }

Figure 3.6: The Genie query for airflow sensors and rooms for VAVs. The query returns all
relevant triples for Genie to bootstrap itself to a new building.

• the mapping of VAV airflow sensors to rooms

• all available power meters for heating or cooling equipment

Immediately, the requirements of this application outstrip the features provided by other

metadata solutions. Genie needs to relate entities across subsystems typically isolated or ignored

in modern BMS: the spatial construction of the building, the functional construction of the

HVAC system, and the positioning of power meters in that infrastructure. Brick simplifies this

cross-domain integration and makes it possible to retrieve all relevant information in a few simple

queries.
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To identify the airflow sensors and rooms served for each VAV, the application uses the

query in Figure 3.6. Lines 3-4, 5, 6, 7 find all the Supply Air Flow Sensors, VAVs, Rooms

and HVAC Zones in the building respectively. Line 8 identifies the VAVs that feed the respective

HVAC Zones and line 9 identifies the Rooms that are part of the corresponding HVAC Zones. Line

10 finds the Supply Air Flow Sensors that are part of the corresponding VAVs. The application

uses Brick’s synonyms to capture both Discharge Air Flow Sensors and Supply Air Flow -

Sensors. The “Web Displays” row of Table 3.3 contains the results of running Genie over the six

buildings.

3.4 Case Studies

We showcase the effectiveness of our schema by converting six buildings with a wide

range of BMS, metadata formats, and building infrastructure into Brick. We discuss the challenges

faced in converting the buildings into Brick as well as to provide guidance for using Brick. We

also discuss how we can map labels of BMS points to Brick in Chapter 4 and Chapter 5 at scale.

Table 3.4: Case Study Buildings Information

Building Name Location Year Size (ft2) # Points % Tagsets # Relationships
Points Mapped Mapped

Gates Hillman Center (GHC) Carnegie Mellon Univ., Pittsburgh, PA 2009 217,000 8,292 99% 35,693
Rice Hall Univ. of Virginia, Charlottesville, VA 2011 100,000 1,300 98.5% 2,158
Engineering Building Unit 3B (EBU3B) UC San Diego, San Diego, CA 2004 150,000 4,594 96% 8,383
Green Tech House (GTH) Vejle, Denmark 2014 38,000 956 98.8% 19,086
IBM Research Living Lab Dublin, Ireland 2011 15,000 2,154 99% 14,074
Soda Hall UC Berkeley, Berkeley, CA 1994 110,565 1,586 98.7% 1,939

3.4.1 Gates Hillman Center at CMU

The Gates and Hillman Center (GHC) at Carnegie Mellon University is a relatively new

building, completed in 2009, with 217,000 square feet of floor space, 9 floors, and 350+ rooms

of various types (offices, conference rooms, labs), and contains over 8,000 BMS data points for
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HVAC. CMU contracts with Automated Logic5 for building management.

The GHC includes 11 AHUs of different sizes serving multiple zones: three small AHUs

serve a giant auditorium, a big laboratory and three individual rooms respectively. Eight large

AHUs supply air to more than 300 VAVs. GHC’s HVAC system also contains computer room air

conditioning (CRAC) systems which are equipped with additional cooling capacity to maintain

the low temperature in a computer room and fan coil units systems to provide cooling and

ventilation functions. Brick matched 99% of GHC’s BMS points, with the remaining points being

too uncommon to be required by most applications (such as a Return Air Grains Sensor

which measures the mass of water in air).

The major challenge in GHC was determining the relationships between pieces of equip-

mentnot encoded in the BMS labels. While the information is available through an Automated

Logic GUI representation of the building, there was no machine-readable encoding of which VAVs

connected to which AHUs. This required examining the building plans directly to incorporate

more than 400 relationships Brick representation, instead of being reliant upon manually examin-

ing a GUI to determine relationships between equipment, is more amenable for applications in

both human and machine-readable formats.

3.4.2 Rice Hall at UVA

Rice Hall hosts the Computer Science Department at the University of Virginia. The

building consists of more than 120 rooms including faculty offices, teaching and research labs,

study areas and conference rooms distributed over 6 floors with more than 100,000 square feet of

floor space. The building contracts with Trane6 for building management.

Rice Hall contains four AHUs associated with more than 30 Fan Coil Units (FCU) and

120 VAVs serving the entire building. Besides the conventional HVAC components, the building

5Automated Logic, http://www.automatedlogic.com/
6Trane, https://www.trane.com/
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features several different new air cooling units, including low temperature chilled beams and ice

tank-based chilling towers, an enthalpy wheel heat recovery system, and a thermal storage system.

The building also contains a smart lighting system including motorized shades, abundant daylight

sensors, and motion sensors. Rice Hall’s BMS points are easily interpretable for conversion to

Brick despite of some uncommon equipment such as a heat recovery system and thermal storage

systems as part of the building design as an energy-efficient “living laboratory”. However, the

relationships defined by Brick sufficiently captured their relationships with the other parts of

the system. They also have points specific to Rice Hall such as ice tank entering water

temperature sensor. Brick’s structure allows the clean integration of such new tagsets into

the hierarchy without disrupting the representation of existing buildings.

3.4.3 Engineering Building Unit 3B at UCSD

The Engineering Building Unit 3B (EBU3B) at University of California, San Diego hosts

the Department of Computer Science & Engineering and contains offices, conference rooms,

research laboratories, an auditorium, and a computer room. The building was constructed in 2004

and has 150,000 square feet of floor space with over 450 rooms. The BMS of EBU3B is provided

by Johnson Controls7, and contains more than 4500 data points, most of which related to the

HVAC system and power metering infrastructure.

The HVAC system consists of a single AHU that supplies conditioned air to 200+ VAV

units and some FCUs. There are exhaust fans for all kitchens and restrooms and a CRAC system

serving the computer room. The HVAC system also has Variable Frequency Drives (VFD), valves,

heat exchangers and cooling coils to facilitate the operation of AHU and CRAC. Brick’s schema

provides the necessary tagsets and relationships for all of these components.The university central

power plant provides hot and cold water for domestic medium temperature water systems and

controlling air temperature in the HVAC. The corresponding sensors that measure the hot and

7Johnson Controls, http://www.johnsoncontrols.com/
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cold water use such as flow rate and temperature were modeled in Brick, but the central plant was

left out as it was not part of the building.

An issue in mapping EBU3B to Brick is that the AHU discharge air is divided into two

parts for two wings of the building. Brick currently does not model how the discharge air in the

AHU is divided into two wings but describes the connections to other equipment such as VAVs.

Additionally, EBU3B’s BMS contains data points related to Demand Response (DR) events such

as load shedding for hot water, which exposes an interesting conflation of the representation and

operation of the building, while Brick does not model DR events as points. Because BMSes

have been typically written as monolithic applications over vendor-specific interfaces, they must

incorporate external signals such as DR into the set of BMS points directly. On the other hand,

Brick decouples the resources and infrastructure of a building from the building operation so that

any application can operate on top of Brick representation.

3.4.4 Soda Hall at UC Berkeley

Soda Hall, constructed in 1994, houses the Computer Science Department at UC Berkeley.

It mostly consists of closed small to medium-sized offices, where either faculty or groups of

graduate students sit. The BMS system, provided by the now-defunct Barrington Systems,

exposes only the data points in the HVAC system.

The HVAC system of the building runs on pneumatic controls and comprises 232 thermal

zones. Each zone has a VAV and especially VAVs for the zones on the periphery of the building

have reheat mechanisms. For a VAV with reheat, the same control setpoint indicates both the

amount of reheat and the amount of air flowing into a zone.While such combination is building-

specific, Brick can express the fact that the same sensor controls both the reheat and airflow by

labeling the point as a subclass of both reheat command and air flow setpoint tagsets. The

logic of the setpoint also can be described with control relationships in Brick for dependencies to

other setpoints related to actual reheat and airflow rate.

49



Unique to the other buildings presented here, the operational set of Soda Hall’s HVAC

components is not static. Soda Hall contains a redundant configuration of chillers, condensers

and cooling towers. At any point of time, one of these systems is operational while the others

are kept as standby. An isolation valve setpoint indicates which of the redundant subsystems is

currently operating. Brick completely expressed the redundant subsystem arrangement, but the

equipment contained several unique points such as on timer for the chiller subsystem that had

to be added to Brick’s TagSets.

3.4.5 Green Tech House

The Green Tech House (GTH) was constructed in 2014 as a 38,000 square feet office

building in Vejle, Denmark. It contains 50 rooms spanning three stories and functions as office

spaces, a cafeteria, meeting rooms, and bathrooms. GTH is controlled by the Niagara BMS8, but

to protect basic building functionality only a subset of the BMS points is exposed via oBIX. As

the oBIX points do not include AHU nor VAV points, the Brick representation was constructed

from a combination of BMS points, BMS screenshots, and technical documents.

Compared to the rest of the case study buildings, the thermal conditioning of GTH is

reversed: Air is heated centrally in a single AHU and distributed to VAVs with cooling capabilities.

The AHU uses a rotary heat exchanger to recovers heat from the return air. The pressure of the

AHU return and supply air for the north and south side of the building is measured separately.

Additionally, most rooms have radial heating either on walls or in a floor. These are supplied

by two independent hot water loops – one for wall-mounted heaters and one for floor heaters –

heated by district heating.

The two main challenges were to (i) find, extract and merge information from diverse

sources, and (ii) to map this to Brick. Although equivalents are present neither the BMS nor the

technical documentation of GTH refers to AHUs and VAVs. These equivalents are not named.

8Tridium, https://www.tridium.com/
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3.4.6 IBM Research Living Lab

The IBM Research building in Dublin was retrofitted as a modern 15,000 m2 office in

2011 from an old factory. The building serves as a living laboratory for IBM’s Cognitive Building

research and is heavily equipped with modern building automation technology to provide a rich

data source for research.

The building has been renovated multiple times and new systems were installed by

different companies. The heterogeneity of systems became very high in the building. The

building contains 2,154 points collected from 11 different systems. The building is served by

4 AHUs with 115 points but also has old disconnected legacy systems in the point list. Unlike

the other buildings, it contains 250 smart meters and 150 desk temperature sensors. It has 1,000

points for 161 FCUsas well as 350 points on the lighting system including 150 PIR sensors and

door with people counters.

The configuration of the FCUs connected to different AHU, boilers, and chillers are

unique for this building while terminal units such as VAVs and FCUs are connected to a single

central unit such as an AHU in the other buildings. It shows the importance of the relationship

modeling and the capability of Brick.

3.5 Integration with Other Ontologies

There are various aspects of buildings that applications need to exploit and a single model

cannot describe everything. Even though integrating different ontologies and standards for a

system is a common practice, there has been little discussion on how to systematically integrate

different models in buildings. In RDF framework, it is easy to extend Brick to accommodate

other ontologies by connecting relevant concepts via either predefined or custom relationships.

Each ontology community can maintain and develop their own model without deteriorating the

other models. As an example, we illustrate the integration of Brick with three ontologies covering
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Figure 3.7: Integration of Brick with other ontologies.

Common concepts are linked through subClassOf relationships and auxiliary concepts are
connected through new relationships. This integration provides all the functionalities without
violating any models.

different domains in Figure 3.7, showcasing Brick’s flexibility and extensibility even for the scope

outside Brick’s original design.

3.5.1 Unit of Measurement (QUDT)

Units of measurement vary across systems, e.g., Celsius and Fahrenheit for temperature

measurements. They need to be explicitly specified so that applications can interpret correspond-

ing data unambiguously without human input. QUDT is a representative ontology for quantities,

units, and data types [qud]. We link the vocabularies under QuantityKind and Unit in the QUDT
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ontology using the relationships hasQuantityKind and hasUnit respectively as shown in Figure

3.7. QuantityKind represents ”any observable property that can be measured and quantified

numerically” such as temperature and energy [qud]. The vocabularies under QuantityKind can

be automatically associated with Brick Point TagSets that contain Tags of what they measure.

For example, temperature sensor contains temperature as a tag and we can infer that any

instances of temperature sensor should have temperature as a QuantityKind. Unit is ”a

particular quantity value that has been chosen as a scale for measuring other quantities the same

kind” such as Celsius and Joule [qud]. Building domain’s unit vocabularies can be extracted from

BACnet vocabularies or directly adopted from QUDT in the future. QUDT defines extensive

instances of both QuantityKind and Unit, and each instance of QuantityKind is associated

with a set of units through the relationship, applicableUnit. Thus, we can systematically define

the semantic relationships between Brick points and units through QUDT.

Given the explicit representation of units as an ontology, we can automate various use

cases while handling units [SSK16]. We present two of the use cases in Figure 3.8 for building

applications. The first one (Figure 3.8a) is to convert a value in a unit into a target unit auto-

matically. An application does not need to know unit conversion rules for given values but just

needs to submit the query with a value for a target unit, Celsius in the example. The second

one (Figure 3.8b) is to validate if the given unit for a point is correct. The validation query

matches the discovered unit to units applicable to the corresponding quantity kind. Thus, the

QUDT integration enables the automated functionalities with unit composition, conversion, and

validation.

3.5.2 Control Logic (CTRLont)

Even though Brick’s controls relationships can represent control dependencies between

Points, some applications may require full control logic such as PID controllers and state machines.

CTRLont [SPS17] is an ontology modeling control logic that can fully describe control actors
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and logic, and modularize the logic to ensure reusability and easy extension. Especially, it is an

ontology that can be simply integrated with Brick. Its core concept is sense-process-actuate to

model control processes where ControlActor processes Inputs based on ApplicationLogic

and produces Outputs that may actuate devices. Points in Brick receives inputs based on

controls relationships from other points to produce its own output, which is an abstraction

of ControlActor in CTRLont. point being a subclass of ControlActor, every controls

relationship can be further clarified using the Input-isConnectedTo-Output relationship and

its logic can be specified by ApplicationLogic modules. As Point inherits the properties of

ControlActor without a conflict, the integration can inherit functionalities proposed by CTRLont

such as the automated rule-based verification of control logic in BMS [SPS17].

3.5.3 Electrical Power System (SEAS)

Smart Energy Aware Systems (SEAS) Knowledge Model [Lef17] is an ontology aligning

energy systems to existing ontologies such as SOSA (Sensor, Observation, Sample, and Actuator)

ontology [JHC+19b] and SAREF (Smart Appliances REFerence) ontology [DdHR15] and has

several subdomains including electric power systems. Brick has already extended vocabularies to

electrical power systems, but further extensions of the vocabulary set and sustainable cooperation

with other models would be practically required for system interoperability and portability.

In SEAS, Systems are connected with each other through Connections like a transformer is

connected to a power consumer through a bus. In Brick’s design, both System and Connection

are a type of Equipment that can be monitored, controlled and functionally connected to each

other.

However, the connection in SEAS ontology is undirected while feeds is directional. In

SEAS, the connection through a bus represents physical connection as a mere wire through which

electricity can flow in any direction. The connectedThrough relationship tells that a system

and a connection are connected but not the direction of electrical current. On the other hand,
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in Brick, the connection is directional as the electricity flows through the wire based on the

role of the system such as from a transformer to a consumer through a bus. Thus, merging the

relationships raises a logical conflict in RDF though a user may keep both of the relationships

for the system. In the integration, two different models can share the common vocabularies for

equipment, providing both of the functionalities.

3.6 Limitations of Brick

3.6.1 Inference with Tags

As we detailed in Section 3.1.3, the original Brick (Brick 1.0 hereafter) has predefined

TagSets consisting of several Tags, of which each has an indivisible meaning. The TagSets

form a hierarchy to represent concepts in a lattice to represent specialization and generalization

relationships across each other.

With these concepts, we can logically infer9 several types of information from existing

building models. First, we can expand an is-a relationship of an instance with a TagSet to its

superclasses. For example, an instance of Temperature Sensor should be an instance of Sensor

which is a superclass of Temperature Sensor. Even though SPARQL’s query engine can

represent transitive relationships through inference with rdfs:subClasOf* relation (Section 3.2),

expanding is-a relationships throughout the hierarchy can make app queries simpler without

inferring the transitive relationships and even help to adapt Brick to other query models that do

not support graph traversal.

Moreover, we can interpret TagSets as Tags in instance models. The definition of a TagSet

is a predefined collection of Tags and the TagSet’s name is the concatenation of the corresponding

Tags in order. Thus, one can infer that an instance of a TagSet, such as Temperature Sensor, is

associated with its decomposition into Tags, such as Temperature and Sensor. Given mapping

9Refer to Fierro et al. [FKA+19] for the implementation of inference.

55



TagSets into Tags, modeling with TagSets is a superset of tagging schemes, such as Project

Haystack (Haystack hereafter) [hay], and Brick can be compatible with any existing systems with

a tagging scheme.

However, inferring TagSets from models with Tags remains unformalized in Brick’s

design. While Brick’s TagSets guide users to consistently annotate an entity through instantiating

a predefined TagSet instead of associating the entity with arbitrary Tags, we have observed that

some users feel more comfortable with using Tags instead of TagSets. It is because existing users

are already familiar with a tagging scheme; more importantly, the vocabulary size of TagSets is

larger than that of Tags. As of Brick 1.0.3, there are 2027 TagSets and 313 Tags. TagSets are

combinations of Tags, and, though we predefine canonical TagSets only, the number of TagSets is

potentially exponential to the number of Tags. Even though users can utilize a schema search

engine10 without memorizing everything, some users might be overwhelmed by the vocabulary

size of TagSets. Thus, it is a desired feature to infer TagSets from instances associated with Tags

and formalize their relationships.

When we designed the first version of Brick, we overlooked the possibility of primarily

using Tags, and, thus, we did not formally verified the relationships between Tags and TagSets.

The simple rule to infer a TagSet from the associated Tags is as follows: if an instance is associated

with all the Tags that a TagSet has, it is an instance of the TagSet as well. Such inference is the

reverse direction of inferring Tags from a TagSet. For example, if an instance is associated with

Temperature and Sensor, it is an instance of Temperature Sensor.
10Brick schema search tool: https://brickschema.org/ontology/1.0.3
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Figure 3.9: Infer Tags from TagSets and Vice Versa in Brick 1.0

However, Tags in a TagSet may imply more information than just their association with

the exact TagSet, because Tags’ roles vary across different TagSets. For example, Zone in Zone -

Temperature Sensor means that its instances measure the temperature of a zone more than just

it is somehow related to Zone. As visualized in Figure 3.9, this confuses the TagSet inference

logic because there is no difference between Zone’s meanings for Zone Temperature Sensor

and Zone TagSets whereas Zone is a measurement target in the former one and a class itself in

the latter one. Furthermore, Tags might also imply its TagSets’ superclasses in the hierarchy. For

instance, Sensor in Zone Temperature Sensor means that it is a type of Sensor as well as a

type of Point as defined in the hierarchy. It is often misleading to deducing such information

directly from Tags.

3.6.2 Coherent Extensibility

Brick 1.0 provides a hierarchy across all the TagSets represented by subclass (i.e., special-

ization and generalization) relationships (Section 3.1.4). A modeler can extend the schema by

adding a new TagSet that subclasses another TagSet in the hierarchy. The newly added TagSet

will preserve all the semantics of its superclass while introducing new semantics. For instance,

Temperature Sensor is a subclass of Sensor and the users of the model would expect it to

preserve the semantics of Sensor. Even though the hierarchy can be as much deep as needed
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by modelers, apps can query resources with the right level of abstractions with the hierarchy.

For example, a query looking for any instances of Sensor can identify Temperature Sensor as

well.

However, such hierarchy is designed solely based on human knowledge of the original

Brick developers and there were no formal rules for a TagSet being a subclass of another TagSet.

For example, Zone is a subclass of Location, and there is no semantic link between them other

than the subclass relationship defined by a domain expert. Because it is done by a human, the

design entails human errors. The errors include inversed subclasses, incorrect subclasses, and

incorrect class definitions. While a hierarchy allows extensibility through subclasses, the hierarchy

is not fully verified and its extension relies on manual engineering. There should be a more formal

way to coherently extend the hierarchy by explicitly encoding what kind of information has been

added between a class and its parent class.

3.7 Design of Brick+

We introduce Brick+ to solve the two major problems in Brick 1.0: ambiguity in mapping

from Tags to TagSets and systematic extensibility of the schema. They all can be resolved by

formal relationships between Tags and TagSets, which enables tag-based inference and schema

verification. Our schema verification method has found several bugs in Brick 1.0 including

incorrect class designs and subclass relationships.

3.7.1 Formal Structure of Brick+

First, we separate Tags from class names. As we discussed in the previous section, Tags

in a TagSet often does not thoroughly represent what the TagSet means. Figure 3.10a shows that

each TagSet is associated with Tags within its name. In Brick+, we instead relate a class with

all the Tags necessary for the class, independent of the class name. Thus, TagSet, our previous
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term for classes, becomes obsolete because a name is not just a lexical concatenation of the

corresponding Tags. We instead call classes “Class”. In this way, Brick+ becomes more flexible

in associating necessary Tags to a Class without complicating names too much. Figure 3.10b

shows an example class and its associated Tags. Unlike in Brick 1.0, we can associate a Class

named Zone with both Zone and Location to completely describe what the class is about even

though Location is not a part of the name. To exactly represent Zone class within its name, it

should be Zone Location, combining all the related Tags, to disambiguate itself from Zone in

other zonal Classes such as Zone Air Temperature Sensor. We can now associate an arbitrary

number of necessary Tags outside a Class’s name to completely describe the semantics.

It also allows representing Classes with Tags with sufficient and necessary conditions,

which enables complete inference between Tags and Classes without ambiguity. Previously, it is

nondeterministic to infer Zone Class from Zone Tag because it could be used for representing other

zonal Classes (Figure 3.9). In Brick+, we make unambiguous all the sets of Tags associated with

Classes. Thus, Zone Class should be associated with both Zone and Location, as in Figure 3.10b,

which is differentiated from other zonal Classes such as Zone Air Temperature Sensor.

First, we separate Tags from class names. As we discussed in the previous section, Tags

in a TagSet often does not thoroughly represent what the TagSet means. Figure 3.10a shows

that each TagSet is associated with Tags within its name. In Brick+, we instead relate a class

with all the Tags necessary for the class, independent of the class name. Thus, TagSet, our

previous term for classes, becomes obsolete because a name is not just a lexical concatenation

of the corresponding Tags. We instead call classes “Class”. In this way, Brick+ becomes more

flexible in associating semantically necessary Tags to a Class without complicating names too

much. Figure 3.10b shows an example class and its associated Tags. Unlike in Brick 1.0, we can

associate a Class, Zone, with both Zone and Location to completely describe the semantics of

the class even though Location is not a part of the name. To exactly represent Zone class within

11Though it is Zone Temperature Sensor in Brick 1.0, we instead present Zone Air Temperature Sensor for
the fair comparison with Brick+.
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its name, it should be Zone Location, combining all the related Tags, to disambiguate itself from

Zone in other zonal Classes such as Zone Air Temperature Sensor. We can now associate an

arbitrary number of necessary Tags outside a Class’s name to completely describe the semantics.

It also allows representing Classes with Tags with sufficient and necessary conditions,

which enables unequivocal inference between Tags and Classes. Previously, it is nondeterministic

to infer Zone Class from Zone Tag because it could be used for representing other zonal Classes

(Figure 3.9). In Brick+, we map all the sets of Tags associated with Classes one-to-one. Thus,

Zone Class should be associated with both Zone and Location, as in Figure 3.10b, which is

differentiated from other zonal Classes such as Zone Air Temperature Sensor.

As a first step toward semantic tagging, we explicitly specialize Point Classes with Sub-

stance12 and Quantity Classes for describing what a Point Class measures. This information

dimension augments the class hierarchy through grouping Point Classes with the substance

that points are associated with (e.g., Air and Water) as well as quantities of the substance (e.g.,

Temperature and Air Flow). Each of the substance types can be specialized further within the

category as exemplified above (e.g., Return Air), forming a hierarchy, and we can reuse different

substance types in different Classes. Quantity has its own hierarchy too (e.g., Reactive Power

is a subclass of Power.)

We have formalized the relationships between Tags and Classes through disassociating

Tags from Class names and strictly disambiguating associated Tags per Class. Furthermore,

we semantically augment tagging especially for Point through measures relationships with

Substance and Quantity. Semantic tagging helps to consistently extend the schema with

preserving the interpretability of new Classes. Brick+ is now released as Brick 1.1.

12Formerly Resource in Brick 1.0.
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Algorithm 1 A Schema Verification Algorithm with Subsumption Rules
C: All Classes in Brick+, ci: ith Class, Ti: Tags in ci

1: procedure CHECKSUBSUMPTION(C)
2: for ∀ci ∈ C do
3: Super i−hierarchy = {c j |ci subClassOf c j}

4: Super i−in f erred = {c j |Tj ⊂ Ti}

5: assert Super i−hierarchy ≡ Super i−in f erred
6: end for
7: end procedure

Schema Verification

While there are various aspects to be verified in a schema, with the newly introduced

formal structure, we can verify whether the semantic of each class complies with the class

hierarchy. The semantic meaning of a Class is represented by its associated Tags, and the Class

hierarchy should follow the subsumption rules of Tags. In other words, a Class’s Tags should be a

subset of its subclass’s Tags. Algorithm 1 describes the procedure. For each of the Classes in

Brick, we infer its superclasses in two ways: the first one is based on subclass hierarchy defined

with rdfs:subClassOf and the other one is based on the subsumption rules with Tags, and those

two sets of superclasses should be identical. The algorithm has identified that 177 Classes were

not correctly defined during the Brick+ development process13 and has led to the modification of

some major Classes.

3.7.2 Changes in Major Classes

Through formally associating Tags with Classes, we have fixed several semantic errors in

Brick 1.0.
13The related discussion: https://github.com/BrickSchema/Brick/issues/66
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Introduction of Parameter

Control parameters in a system govern the behavior of associated setpoints. For example,

Max Air Flow Setpoint in Brick 1.0 regulates the maximum possible value that its associated

setpoint can have. While we have put it in the Setpoint subtree in Brick 1.0, the Tag Setpoint in

the TagSet does not represent its type but rather the associated point that it regulates. Such a pattern

is widely observed in configuration variables in building systems, including PID parameters and

minimum/maximum limits. We thus introduce Parameter as a new subtype of Point and migrate

all the related classes under the subtree.

Removing Equipment-based Points

Point TagSets account for the largest number of TagSets in Brick 1.0 because we orig-

inally designed TagSets to be as standalone as possible to represent point names with a single

TagSet in building systems. However, we have found that such practice inflated the number of

TagSets, of which the majority is not actively used. One of the redundant information type in

TagSets is equipment-related Tags because equipment is commonly instantiated and explicitly

related to points. For example, VAV Zone Temperature Sensor represents Zone Tempera-

ture Sensor instances working for a VAV while they can be associated with actual instances of

VAV. Thus, in Brick+, we remove all the equipment-related Tags in Point Classes and instead

encourage users to explicitly relate Equipment instances with Point instances. This change is

an example of the tradeoff between instance-level and class-level modeling methods, which we

will discuss more in Section 3.8.

Augmenting Location-associated Points

In Brick+, we explicitly associate Substance and Quantity for what Point classes

can measure. However, conventionally Air is implicit in Location Tags when used for Point

Classes such as Zone Temperature Sensor. To consistently model Point Classes, we explicitly
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add Air Tag to the related Classes, and thus Zone Temperature Sensor has become Zone -

Air Temperature Sensor. Though this might be against the conventional usage of Tags by field

engineers, the role of Brick+ is to give a semantically robust modeling framework. Still, for

usability, we could implement an inference engine that can infer Classes from conventional sets

of Tags which may not directly comply with Brick+’s tagging rules.

3.8 Discussion: Instance- vs Class-level Modeling

One of the biggest challenges in maintaining Brick is to curate the vocabulary. Brick 1.1

(Brick+ in the previous section) has 888 Classes and 299 Tags. Having a too large vocabulary set

would harm Brick’s usability and possibly consistency as well. In contract, a small vocabulary set

might be insufficient to express all the essential concepts or too generic to deliver users’ intention

precisely.

ZNT-101

Instance ClassLegends:

Zone_Air_
Temperature_Sensor

AT-101 Air_
Temperature_Sensor

ZONE-101 Zone

is a

is a
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(a) All the information is encoded in the Class. (b) Zone is separately instantiated and related to 
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Figure 3.11: Information concepts in Brick and their relationship to a data point.
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However, choosing the right amount of vocabulary is an open problem in any schema

design because there are various ways to convey the same information. Consider the following

examples that represent points with the same properties in different Classes.

(a) An instance of Zone Air Temperature Sensor.

(b) An instance of Air Temperature Sensor located in a zone.

(c) An instance of Temperature Sensor measuring air of a zone.

While different Classes represent different levels of abstraction, their instances could be related

to other entities, and the relationships could complement the missing information in different

Classes.

Compare the first two examples visualized in Figure 3.11. ZNT-101 is an instance

of Zone Air Temperature Sensor while AT-101 is an instance of Air Temperature Sensor

located in ZONE-101 which is an instance of Zone. Those two instances share the same properties

as measuring the air temperature of a particular zone. While these two models are comparable,

they necessitate different efforts at the modeling stage. On the one hand, the former one does

not require an actual instance of Zone whereas the latter one needs it. On the other hand,

the former one requires to create a more specialized Class, Zone Air Temperature Sensor,

whereas Air Temperature Sensor can be reused for other types of air such as discharge air or

return air.

It is the trade-off between instance-level (ABox, assertions on individuals) modeling and

class-level (TBox, assertions on concepts) modeling [DGL96]. If we model all the information as

instances and their relationships, the metadata schema could be more straightforward, which in

turn would make actual usage more consistent (the principles of Occam’s razor.) However, it also

means that a modeler should instantiate all the detailed information, which requires more effort

and knowledge about the system (Figure 3.11(b)). Instead, a metadata schema can embed more
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properties into Classes (Figure 3.11(a)) even though it would increase the number of Classes in

the schema.

The trade-off exists within instances as well because some information is inherently tricky

to instantiate. Compare the last two examples in Figure 3.11. Figure 3.11(c) explicitly instantiates

Air to be associated with the point instance. However, most of the Substance Classes are

intangible, and, thus, it is hard for users to comprehend them as instances, as well as instantiating

all the substance could explode the number of instances in a model. In Brick, we allow associating

Classes with instances through punning14 as T-101b measures Air Class directly but not its

instance in Figure 3.11(d). It allows the flexibility for modelers to relate entities explicitly with

intangible Classes without instantiating them.

Brick’s primary goal is to provide interoperability across any systems instantiated by

different users. In a schema design, we should consider how to guide users to properly model

buildings with Brick in a correct manner and have to balance the trade-off between the instance-

level and class-level modeling. Having too many Classes would decrease the consistency and

confuse the users, whereas it is cumbersome for modelers to instantiate every single concept in

the model. That is why we remove all Point Classes with equipment-related Tags in Brick+

(Section 3.7.2). As we commonly instantiate Equipment, equipment-related Tags in Point

Classes become redundant. On the other hand, it is rare to refer to instances of Substance

Classes in practical query patterns as the substance is intangible and abstract. Thus, we define

Point Classes specialized for Substance Tags, with which users are free from organizing too

many intangible instances.

In principle, both instance-level and class-level modelings are compatible through an

inference logic because instances can be abstracted to Tags which can be associated with a specific

Class. For example, we can infer an instance of Air Temperature Sensor measuring a zone is

also an instance of Zone Air Temperature Sensor. Thus, we should have an inference engine

14Refer to Fierro et al. [FKA+19] for more details.

65



that can normalize all the information in a model so that all the models are compatible with each

other. Such tools would give flexibility to users for choosing a preferred modeling principle with

preserving interoperability.

Still, we need to verify if every instance’s relationship can be uniquely encoded into

a Tag for the correct inference, and, furthermore, an overwhelmingly large schema would

degrade usability for practitioners. While Brick’s framework provides a complete vocabulary

and expressivity, its usability should be periodically reviewed by field engineers so that we can

maintain the Brick’s design to be harmonized with the practical usage.

3.9 Future Work

While Brick is the canonical metadata model for buildings, we would need to resolve

several issues for building apps and systems to be truly interoperable across different buildings.

The first is to align the human understanding of the models to the actual standard. Even though

Brick is canonical, users of Brick might not have a complete understanding of how they should

use Brick. There are several cases where an actual understanding of Brick might diverge across

different users, such as different levels of abstractions (Section 3.8) and partial relationships

between instances. We should augment Brick by providing a possible structure between Classes

and define inference rules for guiding users to properly use Brick without dictating them with a

document or inferring canonical models from imperfect models in practice.

The second is the value-level heterogeneity. While Brick provides the framework to model

entities and their relationships, points’ actual timeseries values have not been standardized. For

example, Occupancy Command in Johnson Controls’ Systems usually have three values as 1, 2,

and 3, which represent “unoccupied”, “standby”, and “occupied” respectively. The semantics of

values might be varying across different systems, and we should be able to provide a reference

of how users should interpret the meaning of points’ values with Brick. We could provide
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enumerations for common points and map the enumerations into actual values in the target

system’s model.

The third is the functional heterogeneity. Different buildings have functionally different

system configurations, and we need to be able to interface over those different systems if possible.

For example, different types of terminal units, such as VAVs and FCUs, might have different on/off

model while a remote controller app would like to provide the same interface over them. Another

example is occupancy information. We can infer occupancy from various data sources such as

temperature changes or PIR sensors. Even though different buildings might have different raw

data representing occupancy, we would like to provide the same binary value for the occupancy.

Our future work here should consider inferring semantics of values aligned to apps’ requirements.

3.10 Summary

With Brick, we have shown that a structured metadata can be the foundation of large-scale

building app deployment. Brick can represent resources in buildings with their types and relation-

ships with each other, and apps can refer to Brick for actually finding their necessary resources.

We have developed Brick through a collaborative procedure with a target goal of representing

six different buildings from different campuses for seven app categories. Our reference build-

ings validate the completeness of Brick and application queries show its expressivity for app

requirements.

Brick’s design principle is based on consistent usability and coherent extensibility. We

have seen that modeling with classes is more consistently usable than tagging scheme, while tag-

based models can be easily mapped to our classes-based model. RDF, as a modeling framework

in Brick, has enabled the integration of Brick with other domain-specific ontologies with RDF’s

flexible and polymorphic query model (SPARQL). Furthermore, there are many existing modeling

frameworks for different concepts in RDF (e.g., RDF, RDF, OWL, SSN, etc.). Brick can utilize
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them to verify whether our modeling practice is aligned with other people’s understanding of

general concepts. In general, Brick is complete as capable of representing all the information

buildings and apps need, and maintainable as consistently usable and coherently extensible.

Since Brick was introduced in 2016, it has much attracted both the industry and academia.

Companies, including HVAC vendors and software companies, have adopted Brick into their

systems. Many papers have followed up Brick to extend it for different aspects (real estate

management [HWKH19], services [HK18]), provide a testing framework [FPA+18, MJLM19],

and use it for reasoning [KH18]. We thank all the collaborators and researchers who made the

community around Brick. While we set the foundation, the Brick community will drive Brick’s

future, address problems for the society but not just several institutions, and discover solutions

established by a group of users but not just a single expert.
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1 # query name: unit conversion
2 PREFIX unit: <http://qudt.org/vocab/unit/>
3 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
4 PREFIX qudt: <http://qudt.org/schema/qudt/>
5 PREFIX bf: <https://brickschema.org/schema/BrickFrame#>
6 PREFIX building: <http://example.com/building#>
7 SELECT ?result
8 WHERE {
9 VALUES (?currVal ?targetUnit) { (70 unit:DEG_C) } .

10 building:ZNT-101 bf:hasUnit ?srcUnit. # Assume ?srcUnit is unit:DEG_F.
11 ?srcUnit qudt:conversionMultiplier ?srcFactor. # ?srcFactor = 1.0
12 ?srcUnit qudt:conversionOffset ?srcOffset. # ?srcOffset = 273.15
13 ?targetUnit qudt:conversionMultiplier ?targetFactor. # ?targetFactor = 0.5556
14 ?targetUnit qudt:conversionOffset ?targetOffset. # ?targetOffset = 255.372
15 BIND ((((xsd:float(?currVal) * xsd:float(?srcFactor) + xsd:float(?srcOffset))
16 - xsd:float(?targetOffset)) / xsd:float(?targetFactor)) AS ?result).# =21.11
17 }

(a) Automated Unit Conversion

This query converts a temperature value from the sensor in an unknown unit into Celsius. The base unit
of temperature units is Kelvin (retrieved from QUDT) and the parameters converting them into Kelvin
can be automatically retrieved from QUDT and then used to produce a value in the target unit. The value
in the source unit is converted into the base unit, Kelvin, and into the target unit, Celsius, in turn. This
query returns the right conversion of 70◦F in Celsius, 21.11. bldg:ZNT-101, the target value 70, and the
target unit unit:DEG C can be parameterized for more generic usage. In SPARQL, VALUES provides inline
values to variables and BIND assign values in certain rules to a variable.

1 # query name: unit validation
2 # Same namespace prefixes in the above query.
3 SELECT ?isApplicable
4 WHERE {
5 VALUES ?target {building:ZNT-101} .
6 ?target bf:hasQuantityKind ?qk .
7 ?target bf:hasUnit ?targetUnit .
8 ?qk qudt:applicableUnit ?applicableUnit .
9 BIND (?applicableUnit = ?targetUnit AS ?isApplicable) .

10 }

(b) Automated Unit Validation

This finds a QuantityKind and a Unit corresponding to the sensor ZNT-101, and then checks if the unit is
found in the QuantityKind’s applicable unit set. building:ZNT-101 can be parameterized.

Figure 3.8: Example usages of QUDT with Brick.
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1 @prefix brick: <https://brickschema.org/schema/1.0.3/Brick#> .
2 @prefix tag: <https://brickschema.org/schema/1.0.3/BrickTag#> .
3 @prefix bf: <https://brickschema.org/schema/1.0.3/BrickFrame#> .
4

5 brick:Zone_Air_Temperature_Sensor
6 bf:usesTag tag:Zone;
7 bf:usesTag tag:Air;
8 bf:usesTag tag:Temperature;
9 bf:usesTag tag:Sensor.

10

11 brick:Zone
12 bf:usesTag tag:Zone.

(a) Zone Air Temperature Sensor11and Zone in Brick 1.0. TagSets are simply associated with the Tags
in their names. bf:usesTag is an annotation property that explains how the TagSet is formed.

1 @prefix brick: <https://brickschema.org/schema/1.1.0/Brick#> .
2 @prefix tag: <https://brickschema.org/schema/1.1.0/BrickTag#> .
3 @prefix owl: <http://www.w3.org/2002/07/owl#> .
4

5 brick:Zone_Air_Temperature_Sensor
6 owl:equivalentClass [
7 owl:intersectionOf (
8 [ owl:hasValue tag:Zone; owl:onProperty brick:hasTag; a owl:Restriction ]
9 [ owl:hasValue tag:Air; owl:onProperty brick:hasTag; a owl:Restriction ]

10 [ owl:hasValue tag:Temperature; owl:onProperty brick:hasTag; a owl:Restriction ]
11 [ owl:hasValue tag:Sensor; owl:onProperty brick:hasTag; a owl:Restriction ]
12 [ owl:hasValue tag:Point; owl:onProperty brick:hasTag; a owl:Restriction ]
13 )
14 ] .
15

16 brick:Zone
17 owl:equivalentClass [
18 owl:intersectionOf (
19 [ owl:hasValue tag:Zone; owl:onProperty brick:hasTag; a owl:Restriction ]
20 [ owl:hasValue tag:Location; owl:onProperty brick:hasTag; a owl:Restriction ]
21 )
22 ] .

(b) Zone Air Temperature Sensor and Zone in Brick+. Classes are associated with Tags more than
what the names have. owl:hasValue is a formal way of defining a rule to associate a Tag with a Class.

Figure 3.10: A comparison of relationships between Tags and Classes in Brick 1.0 and Brick+.
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Chapter 4

Semi-Automatic Metadata Normalization

Algorithms for Buildings

While standard metadata schemata, such as Brick, provide a basis for standardized seman-

tic representation of resources for building applications (apps), most of the existing buildings do

not adopt any standard metadata schema. Therefore, metadata normalization — converting exist-

ing metadata into a standard schema — is the first step toward providing general programmable

interface for heterogeneous buildings. However, metadata normalization currently requires

tremendous manual effort as well as significant domain expertise.

A building might have tens of thousands of points monitoring and controlling the hundreds

of devices in tens of subsystems that are often from various vendors. As detailed in Section 2.2,

building metadata is often in disparate formats across different buildings and could be inconsistent

even within the same building. As a result, only experts on target buildings (e.g., building

managers or contracted maintainers) can understand the actual meaning of the existing metadata.

To annotate these points, an needs to extract the meanings of all the metadata in the building and

maps them into Brick. Furthermore, experts who normalize existing metadata into Brick need to

have a good understanding of Brick, from the syntax to the right vocabulary for the entities in their
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target buildings, to the necessary parts of Brick for their projects. Currently, mapping an existing

building to Brick is a manual process, and doing so for each point is not only resource-demanding

but also error-prone. In this chapter, we present two machine learning algorithms to facilitate

instantiating metadata into the Brick format in actual buildings.

However, devising ML algorithms for metadata normalization face technical challenges in

three ways. First, while typical ML algorithms presume that the patterns are identical or similar

in training and target data, the patterns are significantly diverse across buildings, as we detailed in

Section 2.2. As accumulating information is less feasible over different buildings with typical

ML algorithms, a domain expert should laboriously label many training data across different

buildings, and, even with that, it is not guaranteed that the collected training data would be useful

for new target buildings. Therefore, any proposed algorithm should be either highly generalizable

or have high sample efficiency to reduce the human effort.

Second, there are various types of metadata that apps might need to use. For Brick, there

are hundreds of Classes and tens of relationships, and it demands a lot of effort for domain

experts to extract all the information completely. At the same time, different apps would need

different types of metadata such as a remote thermostat app that would primarily need temperature

information per room. Moreover, different data sources, such as raw metadata and timeseries

data, contain different types of information with different accuracy. Thus, it is challenging to

devise a versatile algorithm that can cover all the aspects of metadata, different data sources, and

various use cases.

Lastly, the result of metadata normalization is used in a mission-critical system, buildings.

Though data analytics apps are mainly used by humans, some apps could be consumed by

the system, such as automatic control and HVAC user interface, which can directly control

building systems. Thus, the accuracy of metadata normalization is crucial to avoid disastrous

misconfiguration such as deactivating HVAC of server rooms. Notably, high precision (more

true positives and less false positives) is more important than high recall (more true positives
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Figure 4.1: Fast metadata normalization of new buildings with a known building’s information
and an expert’s knowledge.

possibly with large false positives) because false positives may lead to unnecessary control action

on critical points [GG05].

In summary, a good metadata normalization algorithm should have the following features:

• it requires only a minimal amount of human effort (i.e., training data),

• handles various information types, and

• has high precision.

With those requirements, we present two algorithms; Scrabble and Quiver. Scrabble is

the best-in-class for extracting all kinds of information present in existing metadata. It utilizes

a sequence learning method, Conditional Random Fields, with intermediate representation to

maximize knowledge transfer. Quiver is a control perturbation framework to efficiently learn

points’ relationships across each other, which are unknown in existing metadata, such as co-

location and dependency.

4.1 Scrabble: Semi-Automated Metadata Normalization us-

ing Intermediate Representation

We present Scrabble, a framework to retrieve semantic metadata from unstructured raw

metadata while reusing known information in existing buildings to reduce the amount of effort
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for domain experts to provide input labels. Fig. 4.1 provides an overview of the goal that

known metadata can be mapped automatically (e.g. ‘Tmp’ is Temperature in target buildings)

and ask domain experts to provide undiscovered labels (e.g. ‘Wtr’ is Water). Scrabble uses

a two-stage, active learning approach exploiting a known taxonomy of labels and mapping

information from existing buildings. At the first stage, we learn a Conditional Random Fields

(CRF) model [LMP+01] to extract reusable intermediate representations (IR) from character

sequences in an existing “source building” that has already been mapped to a known schema.

In the second stage, we learn a multilabel classifier to map the IR to actual labels. We use

Multi-Layer Perceptron (MLP) for the multilabel classification with its capability of handling

the high dimension of the input words. For the IR, labels and taxonomy, we use a semantic

ontology, Brick [BBF+16b, BBF+18b, FKA+19], that specifies a list of equipment, data points and

relationships between them. We use active learning methods to ask domain experts’ input for the

unmapped data points. Our model enables a smoother transfer of mappings from known buildings

to a new target building while exploiting different types of information sources systematically.

We have implemented and evaluated Scrabble on metadata from five diverse buildings

on 6,551 randomly chosen data points from a total of 21,802 points. We verified the ground

truth of those points manually. With the IR and proper classifiers, Scrabble extracts entities from

unstructured metadata with an improvement of 59%/162% higher Accuracy/Macro-averaged-F1

in a building than a baseline with 10 initial examples. Furthermore, Scrabble can achieve 99%

Accuracy with 100-160 examples for buildings with thousands of points while the baselines

cannot.

4.2 Scrabble Algorithm

Given unstructured metadata for data points in a target building BT and ground truth

semantic labels for points in a source building BS, we normalize the metadata of the target
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Algorithm 2 Scrabble algorithm overview
BS: source building, BT : target building. si: a sample

1: procedure SCRABBLE(BS,BT )
2: while U(si) < th ∀si ∈ BT do
3: Use CRF to learn Characters from BS ∪D.
4: Use MLP to map Tags→ TagSets from BS
5: Infer Tags of points in Bt with the CRF model.
6: Infer TagSets for the Tags of points in BT with the MLP.
7: Select samples with low confidence or utilization.
8: Resolve manually on chosen samples.
9: end while

10: end procedure

building BT into the structured Brick schema. Our goal is to minimize the number of examples to

extract correct and comprehensive metadata present in the given unstructured metadata.

Scrabble uses an active learning framework for normalizing metadata of sensors in

multiple buildings by adopting a transferrable intermediate layer. We map a sentence from the

target building to a set of Brick Tags using a CRF classifier that trains on samples from source

buildings and examples from domain experts. We use Brick Tags as a reusable Intermediate

Representation (IR) that is free of building specific metadata. IR is effective in reducing the

number of learning samples if it is easier to learn the mapping from inputs to IR than labels

directly [PPHM09, FEHF09, RPT15]. A multi-layer perceptron (MLP) then maps the Tags to

corresponding TagSets. MLP is capable of handling high dimension data very well by learning

important features inside hidden layers. We use confidence-based and Tags-utilization metrics to

identify samples likely to be labeled incorrectly and resolve them by input from domain experts.

Scrabble iterates through all target building samples until it can identify all building labels with

high confidence. Algorithm 2 summarizes the entire process and Figure 4.2 describes the mapping

of raw metadata to the semantic metadata with an example.

Our technique is based on two key observations. First, a word’s meaning does not change

even if its usage varies in different sensors. In Figure 4.2, RM is used to indicate Room as a

sensor’s location whereas it can be a part of RMT to represent Room Temperature in another
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Example Sentence
from target building (BT) R M 3 – Z N T

Raw 
metadata R M 3 - Z N T

Samples from 
Source Building (BS)

L-CRF

Methods Used

BIO Tags 

Concatenation

Room id Zone Temperature∅
Intermediate 

Representation,
Brick Tags

Room Zone Temperature Sensor
Labels

Brick Tagsets

Room-3 Zone Temperature Sensor

Multi-layer
Perceptron

Using Schema
KnowledgeSemantic

Labels (RDF)

Words { RM , 3 , – , ZN , T }

Figure 4.2: Data Mapping from Raw Metadata to Semantic Metadata

CRF maps tokens in raw metadata to the intermediate representation, Brick Tags. Multi-label
classifier maps Tags to final labels, TagSets.

sensor. The meaning of RM as a Room remains identical in both cases. Thus, mapping from raw

strings to Tags can be reused across different buildings though target labels may differ. Second,

the relationships between Tags and TagSets can be learned and used across different buildings.

For example, across all buildings, the Tags Temperature and Sensor form the Tagset Temperature

Sensor. Thus, Tags can be reusable representations of metadata across buildings, which can, in

turn, be easily mapped to Brick schema. We adopt this idea from zero-shot learning methods that

use semantic codes [PPHM09] and attributes [RPT15]. We reuse the relationships discovered in a

source building when available and domain experts can provide samples to learn newly observed

relationships. We can rapidly retrieve structured metadata from a new building in this way.

4.2.1 Terminologies

Figure 4.2 gives an example of the terminologies. A building has various points that

produce a data stream such as sensors. BMSes describe points with various types of raw

77



metadata.Raw metadata associated with a point represents a set of labels, for which we use

Brick TagSets. Raw metadata may contain string metadata like point names and code metadata

like units. We call string metadata also a sentence composed of multiple words. A word may

represent a set of Brick Tags, such as RM represents Room, but it does not have to be delimited

by special characters. A word is decomposed to characters, of which each is mapped to a BIO

token [RR09a] associated with its word’s Brick Tags (details in Section 4.2.2.) In the learning

process, a human expert, such as a building manager, provides examples for mapping a sentence

to 1) Tags and 2) the TagSets that the point’s raw metadata represent. Required examples are

chosen by Scrabble to minimize the total amount of effort.

4.2.2 Raw Metadata to the Intermediate Representation

We define a word as a set of characters representing a concept. E.g., ZN, T, and RM in

Figure 4.2. We map words to Brick Tags as an intermediate representation. Here, words are not

necessarily separated by predefined delimiters. For example, ZN and T in ZNT are separable as

Zone and Temperature because they can be reused in other sentences such as RMT for Room

Temperature. In contrast, mapping ZNT directly to Zone Temperature loses the reusability of ZN

and T in other contexts.

Every character in a word is labeled with a BIO (Begin, In, and Out) token [RR09a]

to represent the location in the word. The word ZN corresponds to the Tag Zone, of which Z

is located at the Beginning of ZN and N is Inside ZN. The BIO scheme captures this relative

position of the character in the word and assigns Z to “B-Zone” and N to “I-Zone”. The “O” BIO

tag stands for Out, i.e., tokens that do not convey semantic meaning such as punctuations and

definitive articles. In Figure 4.2, the punctuations ‘,’ and ‘-’ will be assigned to “O” token.

Scrabble learns a Conditional Random Fields (CRF) model [LMP+01] for mapping raw

building metadata to Brick Tags with BIO tokens, e.g it learns that ZNT corresponds to “B-Zone”,

“I-Zone” and “B-Temperature” with examples from source building. CRF makes a Markov
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independence assumption, i.e., the tag of a character only depends on the neighboring characters.

We use the following as input to our CRF model for character j: the jth character itself, ( j-1)th

character, ( j-2)th character, ( j+1)th character, is digit?, and is special character?

We additionally adopt code-based metadata such as BACnet units other than textual

metadata. BACnet defines codes for certain entries such as units and object types [Bus97b]. For

example, unit code 62 represents Celsius in BACnet, with which we surely know that the point is

associated with Temperature. Similarly, a point with object type ”analog input” in BACnet can be

considered as a Sensor. These metadata are scattered in different entries other than in a single

string so methods only parsing a string cannot integrate them systematically. Scrabble merges

Brick Tags from different metadata at the second stage. Though we only use BACnet metadata,

which is common in BMSes, this concept can be generalized into any other code-based metadata

that can be interpreted as Brick Tags.

4.2.3 Mapping Intermediate Representation to Semantic Labels

We have thus far mapped the raw building metadata to Tags, which are an intermediate

representation (IR) of Brick TagSets, our target semantic label. Our second stage maps Tags to

TagSets. As the Brick schema can represent a general building, a classifier that labels TagSets

from Tags can be shared across different buildings. Mapping from Tags to TagSets is challenging

because not all Tags of a TagSet may be present when we perform the raw metadata to IR mapping,

e.g., Sensor is often omitted in Zone Temperature Sensor. A single Tag can be attributed to

different TagSets, and we need to identify which of these TagSets is the correct semantic mapping.

For example, the Tag Room may correspond to the location TagSet Room or to a point TagSet like

Room Temperature Sensor.

We use Bag of Words (BoW) with Term-Frequency Inverse-Document-Frequency (TF-

IDF) [SM86] scheme to vectorize IR. BoW counts the occurrence of each Tag learned from a

sentence and stores it as a feature vector. The length of the feature vector, i.e. its dimension, is
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the number of Tags in the Brick schema. TF-IDF skews the Tag counts to reduce the importance

of common words such as ‘the’, ‘to’. Learning standard classifiers on BoW such as a decision

tree is an intuitive approach to learn the mapping between IR and TagSets. However, there

are several difficulties to learn such classifiers. First, a set of Tags generated from a sentence

represents multiple TagSets, which is a multi-label classification problem. In our model example,

the raw metadata “RM3-ZNT” describes a Zone Temperature Sensor and a Room simultaneously

(Figure 4.2). As the relationships among Tags for a sensor are unknown, what Tags in the set

are used for what types of TagSets is also unknown. We need to identify multiple labels from

one distribution. From the set of Tags, {Room, id, ∅, Zone, Temperature}, in Fig. 4.2, we need

to identify two TagSets, {Room, Zone Temperature Sensor}. Second, samples are significantly

biased across different buildings. There are points widely used such as Zone Temperature Sensor

while some points specific to control special equipment occur only once. In the four buildings

of our data set, 17% of TagSets account for 90% of TagSet occurrences on average and 34%

of TagSets occur only once. Moreover, different buildings would have different types of points

and metadata. A specific type of equipment may exist only in a particular building. Such new

information cannot be pretrained from a source building. To address these challenges, we propose

three approaches in Scrabble: sample augmentation, a domain agnostic classifier and iterative

sample selections.

Sample Augmentation

Samples in a building are inherently biased toward the building’s configuration and its

original installer’s writing style. We synthetically generate samples from the schema and the

given building’s samples to mitigate the biased samples in three ways.

(a) Brick Samples: The schema provides samples of mapping from Tags to TagSets as a

TagSet is a composition of some Tags (e.g., Zone, Temperature and Sensor for Zone Temperature

Sensor). We insert sets of Tags for each TagSet and a Tag in each set has a random frequency
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from 1 to a threshold, thtag, where thtag is the median frequency of Tags inferred in a sensor

of a source building. The number of the generated schema samples, thts, is a hyper-parameter

chosen empirically with a validation set. We limit each schema sample to have just one label. For

instance, we generate a sample mapping tags of (Temperature, Sensor) to a TagSet, (Temperature

Sensor). We avoid adding samples with multi-labels because the number of possible combinations

of different TagSets increases exponentially to the number of total TagSets.

(b) Negative Samples: We can also add more possible combinations of TagSets from the

given samples using logic similar to Brick Samples. Given a set of labels for a sample, we add its

variations without a TagSet by removing Tags related to the TagSet (e.g., remove the Tag Room}

to remove the TagSet Room in the label set of Room, Zone Temperature Sensor}.) It prevents

overfitting to given samples while generating an acceptable number of samples in the order of the

number of given samples.

Multi-layer Perceptron for Multi-label Classification

We use Multi-layer perceptron (MLP) to model the mapping from Tags to TagSets.

MLP uses fully connected (FC) neural network layers to act as a universal function approxima-

tor [Pin99]. Here, we use sigmoid as the non-linearity function and use binary cross-entropy for

the loss evaluation in the training phase. We use 2 FC layers and each of them is followed by a

dropout [SHK+14] layer to generalize the model. This MLP stage receives vectorized BoWs for

Brick Tags as inputs and infers a set of TagSets the vector represents as outputs. Our input data

are considerably hard because the Tags are in high dimensions but sparse. We have empirically

evaluated other multi-label classification models such as classifier chains, random forests, but

MLP outperforms other methods because of its dimensionality reduction ability.
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4.2.4 Sample Selection

We cluster sentences based on the tokens to identify similar sentences [BVNA15a,

BHC+15a]. Each sentence is converted to a vector of the BoW model with tokens usually

defined by contiguous alphabets or special characters. This tokenization need not be precise

as it just needs to recognize similarities among sentences. The vectors are clustered based on

hierarchical clustering and a small threshold determines output clusters. Balaji et al. [BVNA15a]

empirically show that if the threshold is small enough, sentences in a cluster have the same label

for sensor type, which is the most complex information in metadata. When selecting an example

to learn, we pick one randomly from the most uncovered cluster. The coverage is defined as the

rate of sensors given examples over the number of sensors in a cluster. This method is generally

applicable for determining what examples an expert should provide to derive the best learning

speed.

4.2.5 Active Learning with Domain Experts

We iteratively update the learned model with the target building’s sample given by an

expert. Target building’s raw metadata may contain some points unobserved from the source

buildings such as new systems and new conventions that should be taught by an expert. We have

to carefully select samples for experts to answer so that we can achieve the fast learning ratio with

minimal examples, which is called Active Learning (AL). In general AL, we evaluate unlabeled

samples with the learned model and pick the most informative samples based on a certain query

strategy. A domain expert provides labels for the samples, with which we update a new model.

Then, we iterate the entire procedure.

As Scrabble consists of two-stages with one from characters to Tags with CRF and the

other from Tags to TagSets with MLP, a query strategy should pick good examples covering

both stages. We exploit two types of query strategies for different stages. The first one is to
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find the lowest confident inference at the CRF stage and the lowest entropy of inferences at the

second stage. CRF is a sequence model that maps a sequence to labels. Among various ways

of querying strategies [SC08], we select the least confident inferences (LC) for its simplicity,

interpretability and less computational complexity. Settles and Craven [SC08] show that LC’s

performance is competitive compared to the others with a less computational cost. Confidence of

a CRF inference is an inferred sequence’s conditional probability but we normalize it with its

length because the probability highly depends on the length of the sequence.

Φ(s,b,θ) = log(Pθ(s,b))/length(s), (4.1)

where s is a sentence with characters, b is BIO tags inferred from the model θ. Pθ is a CRF’s loss

function1.

The second stage is multi-label classification and single label confidence cannot represent

how the inference is confident in general. We instead exploit an assumption that identified Tags

should be fully mapped to certain TagSets and query how many Tags are exploited in the current

inferences. The assumption is based on the observation that the original installers put only

meaningful information into the raw metadata as the space for the metadata is limited and it needs

to provide useful information for maintenance and operations. For example, if given Tags are

Temperature and Sensor, mapping it into Sensor is incomplete as Temperature is not used in the

inference. Tags utilization is defined as follows:

Utags(Θi,Ti) =

∑
j usagetags(θi,j,Ti)

length(si)−#(O-Tag)
(4.2)

usagetags(θi,j,Ti) =


1, if ∃ti,m | θi,j ∈ ti,m∧ ti,m ∈ Ti

0, otherwise,

1For the exact CRF loss function, please refer to the original literature [LMP+01].
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where Θi is a set of Tags identified for the point and Ti is a set of TagSets inferred from Θi. θi,j

are Tags in Θi and ti,m are TagSets in Ti. O-Tags are ignored in the calculation as they have little

meaning. We pick target building samples with low utilizations by the diverse random sample

selection method. We dynamically choose outliers with utilizations less than an average of the

entire utilizations subtracted by their standard deviation.

The entire process is summarized in Algorithm 2. Models for both Tags (intermediate

representation) and TagSets (labels) are initially learned from a source building. We infer Tags

and TagSets in the target building. Then, we calculate all utilizations of metadata at the target

building and randomly choose N diverse samples. We set N as 0.5% of the target dataset size, but

it is a hyper-parameter dependent on the heterogeneity of a target data set and the learning speed

of a user’s preference. An expert provides labels of the asked samples such as positions of words,

their corresponding Tags and TagSets. All the models then are learned with the updated data set.

These steps are iterated until all the utilizations of raw metadata in the target building is higher

than a threshold.

4.3 Scrabble Evaluation

4.3.1 Experimental Setup

Datasets and buildings

We evaluate the framework with three buildings from campus A (A-1,2,3), one from

campus B (B-1) and the other one from campus C (C-1). C-1 is one of the buildings used in

ProgSyn [BHC+15a]. Due to the huge amount of human effort for labeling, we randomly choose

1000 examples per building for our evaluation in A-1,2,3 and B-1, and verify them manually for

ground truth. However, we use the entire points in C-1 to exactly compare Scrabble’s performance

with ProgSyn. Table 4.1 summarizes the statistics of the buildings. Missing Tags indicate the
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Table 4.1: Quantities of datasets for Scrabble evaluation.

We choose 1000 points from each building randomly for the evaluation. The numbers of Tags
and TagSets explain diversity of labels in buildings. The numbers are also averaged over data
points. 1.1 Tags should be learned from example patterns, which accounts for 26% of a TagSet
in average.
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A-1 4593 (1000) 129 122 6.30 8.67 7.83 1.09 67.7
A-2 1914 (1000) 120 96 7.12 9.23 8.62 0.83 67.9
A-3 4381 (1000) 137 111 6.90 9.85 9.00 0.94 74.9
B-1 8363 (1000) 90 73 4.37 6.36 6.30 1.35 59.4
C-1 2551 (2551) 68 65 3.03 5.17 3.69 2.71 21.7

number of Tags shown by its corresponding TagSets. With fewer missing Tags, it would be

more straightforward to map them to the target TagSets. A-1,2,3 and B-1 have more informative

metadata with a longer metadata size and the contained TagSets. C-1 has relatively concise

metadata with 21.7 characters metadata on average.

We first analyze the difference between the buildings for raw metadata and ground truth

labels. Fig. 4.3a describes the rates of words in BT occurring in BS to show the possibility of

reusing the model from source buildings. Words are defined as contiguous letters with a unit

meaning that can be mapped to Brick Tags. Words coverages equally weight each word and the

weighted word coverages include frequencies of words in each building. It shows that at least

half of the words in BT can be obtained given BS, but the other half has to be learned with expert

input. The gap between word and weighted word explains more frequent words are more common

across different buildings. Thus, using BS would help understand common words in BT . These

similarities are directly reflected in the learning rates of Scrabble in the later sections.

There are 119 TagSets and 101 Tags in a building on average among the 904 TagSets and

284 Tags defined in Brick. The similarities of Tags and Tagsets across buildings are shown in
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(a) Raw metadata similarity across buildings. This shows how much a target building’s raw metadata
already exists in a source building. Weighted word coverage considers the frequencies of words.
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(b) Tags/TagSets coverage: Coverage is the rate of common Tags and Tagsets between two buildings over
those in the target building, showing Tags are more common than TagSets.

Figure 4.3: Similarity Comparison across Buildings’ Datasets

Fig. 4.3b. Tags model would be more transferable between buildings as Tags are more shared

between buildings than TagSets. We suspect Scrabble will perform better when the source and

target buildings have similar metadata style. However, even when a target building metadata style

is different, our hypothesis is that the learning rate would be better compared to learning from

scratch.

Implementation

We implement Scrabble2 in Python with PyCRFsuite [Oka07] for CRF, Keras [ker] for

MLP and scikit-learn [PVG+11a] for the other machine learning algorithms. All the datasets are

stored as files and the ground truth datasets are used as a domain expert iteratively providing

2Scrabble repository: https://github.com/jbkoh/scrabble
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labels for active learning.

4.3.2 Evaluation Metric

We infer a set of TagSets from raw metadata. We use a label-based and an example-based

metric [ZZ14].

• Accuracy(h) =
1
p
∑p

i=1
|Yi ∩ h(xi)|

|Yi ∪ h(xi)|
,

• MacroF1(h) = 1
q
∑q

j=1 F1,j

where h is a model, p is the number of samples, q is the number of labels, xi is an ith input vector

and Yi is ith label set. h(xi) produces xi’s inferred labels. Accuracy calculates an average ratio

between the number of correctly inferred labels and the sum of the correct labels, irrelevant labels

and misclassified labels per sample. It captures how well the entire data set is classified, but the

metric can be skewed by dominating classes. In contrast, Macro-averaged F1 (Macro F1) captures

the normalized mean of measures F1 scores across classes. It can exaggerate incorrect inferences

of classes with rare samples though it provides a good estimation of the model’s class coverage.

In our dataset, a few classes such as the name of the Building occurs in all points, while a few

classes, such as Pump, occur in very few. Such disparity in class samples causes the two metrics

to differ significantly.

4.3.3 Baselines

For our baselines, we use two algorithms; the program synthesis (ProgSyn) [BHC+15a]

and a multi-label version of Zodiac [BVNA15a]. ProgSyn is a promising solution for parsing

strings but has several critical drawbacks as discussed in Section 4.9. In addition to the drawbacks,

the algorithm cannot parse a string if there are repeated labels. In A-1,2,3, there can be repeating

labels across metadata types, so ProgSyn simply cannot be executed over the datasets. Thus,

ProgSyn is excluded in buildings other than C-1 in our evaluation.
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Due to the limitation of the ProgSyn, we devise another baseline. Zodiac is an active

learning framework for inferring point types from raw metadata while Scrabble extracts all

possible labels - point type, equipment type, location. Zodiac vectorizes the raw metadata with

BoW scheme and learns a multi-class classifier but it is limited to infer point types only. We

modify Zodiac to infer multiple labels. We first use TF-IDF scheme instead of count vectorization

to account for variation in word frequencies across different buildings. We use Classifier Chain

of RF Classifiers for multilabel classification instead of a single RF classifier. Zodiac uses

confidences of predictions to determine the most uncertain samples to ask experts, but there is no

single confidence representing the inference on a sample in multi-label classification because each

class has its own confidence. We instead use the entropy of class probabilities per sample [SC08].

The rationale is that if a sample is confidently inferred, its confidences of each class will be close

to either zero or one. Entropy is high when a probability distribution is extremely spread, and we

can know that a multi-label inference is not confident when an entropy of the inferences is low.

An expert is asked to provide labels for 10 samples with the lowest entropy for each iteration.

Note that mapping a BoW vector to a set of TagSets has a limitation of losing the relationship

between actual words and the labels. For example, it cannot associate a Room label to the portion

in the string representing the room including its identifier like room numbers. It is very often

important to identify actual room number or device IDs for applications to properly take actions

for the target object. Scrabble can traceback the mappings from characters to actual TagSets and

identify actual names together.

Baseline results of five buildings are shown in Fig. 4.6. For C-1, ProgSyn’s learning rate

is steep in the early stage, but it slows down soon. Furthermore, it cannot reach 99% Accuracy

because it lacks the capability of accumulating more examples once it reaches the point where

every metadata is qualified. For multi-label Zodiac, we observe that the words are similar in the

buildings in the same campus A as their accuracies are initially higher than one being transferred

from/to B-1. In the baselines, accuracies initially increase rapidly with the sample numbers
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Figure 4.4: Learning rate of CRF mapping characters to Brick Tags.

It compares the learning rate with the different numbers of source building examples.

because samples are biased. A few examples can represent many others. Macro F1 increases

linearly which shows that the sample query mechanism is valid. In all cases, the baseline has no

notable gain with source buildings initially with 10 examples. It shows that it is hard to exploit

different buildings together with the naı̈ve features. All the buildings can hardly achieve a high

Accuracy like 99% within 200 examples. For example, its best case is achieves 99% accuracy at

210 examples in A-1 and the worst case is 98% accuracy at 300 examples in A-3. We conclude

that we would need a framework converging faster.

4.3.4 Experimental Results

We individually evaluate the first stage (characters ⇒ Tags), the second stage (Tags

⇒ TagSets), and the entire framework. Our experiments initially take 10 examples randomly

chosen by the method in Section 4.2.4 and 10 examples per iteration based on the methods in

Section 4.2.5 for 20 rounds. All results are averaged over four experiments.
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CRF Evaluation

Scrabble maps characters to BIO token labels with CRF and concatenates them to form

Brick Tags. Fig. 4.4 shows the results of learning the tags of a target building with source building

data. Initially, 10 samples are randomly selected based on the mechanism in Section 4.2.4 and

samples of the source building are uniformly randomly chosen. In each iteration, the models are

learned and tested, and then the expert gives 10 different examples with the lowest confidences.

The metrics in the figure are for Brick Tags, which are the features used in the next stage.

Fig. 4.4 shows that 200 samples from BS improves F1 from 82.6% to 93.7% and MacroF1

from 14.0% to 61.7% in A-1⇒A-3, and from 82.8% to 88.9% and from 16.8% to 54.7% in

B-1⇒A-1 initially than learning without BS samples. A-3 easily benefits from A-1 as they are on

the same campus with similar conventions as described in Fig. 4.3a. F1 is high as 94% from the

beginning with A-1. Even without A-1, F1 is high as 82.0% because of several dominant words

such as building names or location like Room occurring in most of the raw metadata. MacroF1

also improves from 14.0% to 61.7 % and 60.0% by adding 200 and 400 examples from A-1,

exploiting the similarity between A-1 and A-3. Even though the sample query mechanism is valid

as the metrics monotonically increase, MacroF1’ converge around 100 samples. There is little

difference between 400 samples and 200 samples for A-1⇒ A-3.

However, for buildings from different campuses (A-1⇒ B-1), we observe that MacroF1

converges lower when there are source data than one without source data. Still, there is a large gain

in MacroF1 initially due to certain similarities of common words such as Room. The degradation

of MacroF1 in the later stage would be due to overfitting. Hyperparameter optimization needs

to be investigated more. In general, adding samples from BS improves learning rate in all cases

initially, but may decrease MacroF1 when there are many examples with different styles. It

shows Scrabble’s initial transferability but more generalizability with large data sets should be

investigated more.
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Figure 4.5: Learning Rate Comparison of Different Configurations for TagSet Classifier

based on ground truth Tags. SA stands for sample augmentation, TS means learning with
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Figure 4.6: Learning Rate of Scrabble’s Entire Process.

On the left side of each arrow are source buildings and at the other side is a target building.
Note that ProgSyn is only working with C-1 due to its limitations. ProgSyn also ceases before
achieving high accuracy because of its deterministic algorithm. In general, Scrabble shows
better performance exploiting existing buildings in the same campus with similar patterns. Even
across different campuses, Scrabble does not degrade accuracies.

TagSet Classifier

To independently evaluate the performance of the TagSet Classifier, we presume the TagSet

classifier receives correct Tags from the first stage. Fig. 4.5 shows how each component improves

the learning rate of a target building based on Accuracy and Macro F1. The naı̈ve scenario

without sample augmentation and samples from the source building achieves low MacroF1 as

11.1% and moderate 81.2% Accuracy initially. Sample augmentation (SA) in the experiments

91



includes all the two types discussed in Section 4.2.3. As it provides valid examples not included

in the given small BT ’s data set, MacroF1 is also increased from 11.1% to 36.5% though the

accuracy rather decreases. In the naive scenario, common TagSets such as Room can be simply

identified by a few examples, represented by initial high accuracy but low MacroF1. While the

benefit of this layer is consistently higher than the naı̈ve approach between similar buildings, it is

unclear for buildings in different campuses.

Overall Performance

We evaluate five directions of active learning with knowledge transfer to cover different

types of coverages found in Fig. 4.3a. While multi-label Zodiac and Scrabble select 10 examples

per iteration, ProgSyn picks a sample in each iteration from the beginning. Due to the long

experiment time as five minutes to a few hours per iteration in learning CRF model, we restrict

samples per source building to 200 instead of the entire 400. The analysis in Section 4.3.4 already

shows that learning with 200 BS samples gives similar results to 400 samples for the first stage.

As an active learning framework, Scrabble outperforms both ProgSyn and multi-label

Zodiac for Accuracy and MacroF1 in general. In C-1, Scrabble has 83.2% Accuracy and

25.3% MacroF1 while ProgSyn shows 42% and 12% initially with 10 samples. Scrabble also

continuously outperforms and can reach 99% Accuracy while ProgSyn cannot. Compared to

multi-label Zodiac, Accuracy and MacroF1 of the best case of A-1,A-2⇒ A-3 are 83.2% and

25.3% initially with 10 samples, while multi-label Zodiac’s are 74.6% and 9.78%.

Furthermore, it shows the knowledge accumulation by showing adding more examples

from source buildings results in similar or better initial inferences. Accuracy and MacroF1 of

learning A-3 without source buildings are 73.6% and 11.9%, which 8.6% and 15.5% lower than

learning with source buildings initially. However, we again experience MacroF1 degradation

in later stages possibly caused by overfitting. Our hypothesis is that source buildings’ data

distribution could confuse the evaluation metrics used for sample selection. The coverage of the
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words and Tags would affect the results as well. While using B-1 for A-3 improves the accuracies

consistently, using A-3 for B-1 disturbs the learning rate. A-3 has more diverse patterns than B-1

as in Section 4.3.1, which would add noise to B-1’s model more than the other way.

Overall, Scrabble always shows better performance than the other baselines including

ProgSyn and the multi-label Zodiac. When 10 samples are initially given, Scrabble has 67%/31%

Accuracy/MacroF1 than ProgSyn’s 42%/12% for C-1, and 83%/25% than the multi-label

Zodiac’s 75%/9.8% at best. To achieve 99% Accuracy, Scrabble requires 100 examples for C-1

while ProgSyn cannot achieve. For A-3 using A-1 and A-2, Scrabble requires 160 examples while

the modified Zodiac needs 280 examples for 98 % Accuracy. Scrabble shows the possibility of

reusing the models with intermediate representations though a model that is more generalizable

across different data patterns is still a future research topic.

4.4 Scrabble Extensions

4.4.1 Learning from Time-Series Features

A way to augment the transfer learning process is by using time-series data, of which

features are more common across different types of buildings [HWOW15b]. Tags can be differ-

entiated using the features from the data collected by the building [GPB15b]. E.g., a Temperature

related sensor may have an average of around 70oF for indoor temperature. We choose the source

building to be A-1 and the target building to be A-3. We extract 16 time-series features, such

as mean and Fourier Transform values, from both buildings to train a random forest model as a

multilabel classifier to model Tags that points represent in the source building. We infer Tags of

interest at the target building with the learned classifier. The result is shown in Fig. 4.7, where

we compare the precision and recall.Fig. 4.7 shows that validation and test sets track each other,

which indicates that time-series features can be used to augment the transfer learning process.

However, the competence to augment the transfer learning process is limited to how diverse the
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Figure 4.7: Tags Inference from Timeseries Features with Source Building (A-1) at the Target
Building (A-3)

data is at the source building. From Fig. 4.3b we can see that the Tag coverage for A-1⇒ A-3 is

75%, this means that our model, initially, will not be able to represent 25% of the Tags for building

A-3. Furthermore, Tags occurrences in buildings are significantly biased as discussed, there are

quite a few Tags which only have time-series data representing those particular Tag, which is

not enough data to train the model adequately. Only several Tags with significant numbers can

be properly modeled by timeseries features.Hence, it limits the effectiveness of augmenting the

learning process. We add the Tags determined by timeseries features to the ground truth and test

the TagSet classifier’s performance as shown in Fig. 4.5. Its accuracy is similar to the original

TagSet classifier, but Macro F1 decreases due to the improper representation of rare Tags by

timeseries features.

4.4.2 Semantics Postprocessing

We identified TagSets from raw metadata. There is more information embedded in the

raw metadata both explicitly and implicitly. We infer identifiers (IDs) of entities in the same way
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Room Id­3Temperature Sensor

RM3­ZNT Room 3
hasLocation

LocationSensor
subClassOfsubClassOf

Given by Brick Inferred from
conventions

Figure 4.8: An Example of Semantic Postprocessing with Brick

as TagSets though they are not included in the evaluation metrics because they may overstate our

performance. Two types of IDs such as equipment number or a hall name are positionally defined

to indicate whether they qualify a TagSet right or left to the ID. We can glue the IDs to TagSets to

reconstruct the original entities’ name. In Fig. 4.8, the ID’s position confines Room to Room 3.

Temperature Sensor does not have corresponding ID, but rather it is common to use the entire

name as an ID. Another type of information is relationships between TagSets. A Temperature

Sensor may reside in a Room, which is not explicit in metadata but a domain expert can infer.

Such relationships can be also inferred by a schema with relationships such as Brick defines

canonical relationships between entities in buildings. In Fig. 4.8, we can explicitly know that

“RM3-ZNT” is a Sensor and “Room 3” is a type of Location. The only possible relationships in

Brick for them is hasLocation so we can explicit the semantic relationships among them without

human intervention. The above two mechanisms are excluded in our analysis due to the lack of

technical novelty but notable for practical use.

4.4.3 Applying to Project Haystack

Project Haystack [hay] is another popular standard metadata schema. Instead of Brick’s

TagSet/class concept, a user associates only tags to an entity in Haystack. For example, a sensor

may be associated with the tags as “zone”, “temp”, and “sensor”. Such Haystack tags can be

corresponding to a Brick Tag though Brick further aggregates Tags to construct a TagSet as a class

name. Thus, Haystack is a subset of Brick in terms of expressivity so algorithms that can infer
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Brick can easily do for Haystack as well. In Scrabble, the first stage using CRF alone is sufficient

to infer Haystack as it maps raw metadata to Brick Tags, which is theoretically equivalent to

Haystack tags.

4.4.4 Limitation of Scrabble

Assumption of Identical Probability Distributions

As we note in Section 4.3.4, while Scrabble improves knowledge transferability across

different but similar buildings, its design assumes that the probability distributions across different

buildings are the same. However, in practice, the collection of data might not come only from

similar buildings so we should be able to accommodate different buildings. In future work, we can

add domain adaptation using gradient reversal [GUA+16] or a neural adapter [CM19] to mitigate

the difference among different buildings. While this can be easily added to the second layer

(Tags⇒ TagSets), the first layer (characters⇒ Tags) would require a more sophisticated method

because native CRF uses statically defined feature sets while domain adaptation techniques

dynamically adjust the features.

Ignorance of Relationships between Entities

While efficiently extracting semantic information from raw metadata, Scrabble is limited

to the information contained in the raw metadata. In other words, if not encoded in raw metadata,

Scrabble cannot infer other information types such as relationships between different points

and equipment. Even though inferring relationships is not in the Scrabble’s scope, we have

observed the necessity of incorporating different algorithms, which we will discuss more in-depth

at Chapter 5. We will further investigate algorithms to infer relationships in the following sections

as well.
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4.5 Quiver: Using Control Perturbations to Increase the Ob-

servability of Sensor Data in Smart Buildings

Active control is a promising approach to address the lack of information available, as

carefully designed control perturbations can reveal insights into system behavior that is not

observed in regular operation. Recently, Pritoni et al. [PBCM15a] showed that the mapping

between the Air Handler Units (AHU) and the corresponding terminal units in the building

Heating, Ventilation and Air Conditioning (HVAC) system can be inferred with 79% accuracy with

control perturbations compared to 32% accuracy with data analysis alone. Control perturbations

have also been studied for Fault Detection and Diagnosis (FDD) [WAA+12, PC15] and fault-

tolerant control [FBK09, PCC15] in HVAC systems as it eliminates mundane manual testing and

fixes some classes of faults automatically.

We expand on these ideas and show that active control mechanisms can be used as an

integral part of a data model. Control based interventions are not used in practice because of

equipment and safety issues. We empirically explore control in a real building HVAC system. We

build Quiver, a control framework that allows us to do control experiments safely on the HVAC

system by constraining control input that satisfies criteria such as range of values, frequency of

actuation and dependency between actuators. We deploy Quiver in our building testbed and use it

to demonstrate three example applications that exploit control perturbations. First, we show that

perturbations can be used to identify co-located sensors which has been shown to be difficult with

data alone [HOWC13]. We co-locate data points in HVAC terminal units with 98.4% accuracy

and 63% coverage. Furthermore, we map the dependency between sensors and actuators in the

control system using control perturbations and probabilistic analysis. We identify dependency

links between actuators with 73.5 % accuracy, with 8.1% false positives and 18.4% false negatives

across five zones.
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4.6 Quiver: Our Building Testbed

Modern buildings consist of hundreds of networked sensors and actuators for the operation

and maintenance of various systems. These systems are typically overseen with Building Man-

agement System (BMS) which helps configure, monitor, analyze and maintain various systems.

The sensors, actuators and the configuration parameters in the BMS are together referred to as

points. We focus on building HVAC systems where BMSes are most commonly used.

Our testbed is a 150,000 sq ft building, constructed in 2004 and consists of a few thousand

occupants and 466 rooms. The HVAC system consists of an Air Handler Unit (AHU) that supplies

cool air to the building via ductwork using chilled water supplied by a central plant. A heat

exchanger supplies hot water to the rest of the building using hot water supplied by a central plant.

The cool air and hot water are used by local terminal units called Variable Air Volume (VAV)

boxes to regulate the temperature of rooms. The area serviced by the VAV box is referred to as a

thermal zone, which consists of a large room or multiple small rooms in our building. Figure 4.9

shows a schematic of the VAV box with the sensors and actuators installed for its operation.

VAVs have been commonplace since 1990s [Hyd03], and their basic working is well

understood. The VAV regulates the amount of cool air provided using a damper, and if the zone

needs to be heated, it regulates the hot water in the heating coil using a valve. The temperature

sensor in the thermal zone provides feedback on how much cooling or heating is required.

However, in the real VAV box, there are over 200 points that govern its working [vav03]. The

essential sensors include: Zone Temperature, Supply Air Flow, Reheat Valve Position and Damper

Position; and the actuator points include: Reheat Valve Command, Thermostat Slider Adjust

and Damper Command. These actuators are controlled using many configuration points such as

Temperature Setpoint, Occupied Command, Air Flow Setpoint, etc. These configuration points

account for the majority of the points, and include nuanced parameters that ensure minimum

airflow, set the PID loop settings, etc.
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Figure 4.9: Sensors and Actuators in a Variable Air Volume (VAV) Unit Providing Local Control
of Temperature in the HVAC system

Not all of these 200 points are reported to the BMS, and only the essential sensors and

control points are exposed to limit resource usage and information overload for building managers.

In our building testbed, 14 to 17 points are reported to the BMS for each VAV box. The points

exposed to BMS changes depending on the vendor, type of VAV and the installation version used

by the vendor. Even though the same model of VAV is used across all zones in our building, there

are minor variations due to configuration changes, presence of supply/exhaust fans or lack of

heating.

4.6.1 Data Collection and Control

The points in our building communicate with the BMS using BACnet [Bus97a], a standard

building network protocol. We connect our server to this network to collect data and control the

points in our building. We use BuildingDepot [WNA13], an open-source RESTful web service

based building datastore to manage the points in the building, provide appropriate permissions to
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Figure 4.10: System Architecture of Quiver

Data collection and control is done via BACnet protocol using BuildingDepot web ser-
vice [WNA13]. Quiver ensures that the control sequences of our experiments are safe and
rolls back the system to its original behavior in case of failure.

developers, and search using a tagging mechanism. Our control framework Quiver works on top

of BuildingDepot to manage control inputs from our experiments. Figure 4.10 depicts the system

architecture of our deployment.

BACnet is a well-developed protocol with which developers can not only read and write

points, but also schedule hourly control, mark holidays on a calendar, and even manage programs

running in the embedded VAV controller. For simplicity, we only focus on read and write points,

i.e., in BACnet terminology Input, Output and Value points. These points can have floating point,

binary, or multi-state values, and in BACnet a floating point that can be written to is referred to

Analog Output. Each of these Output points has an associated priority array. The default operation

is performed at the lowest priority and the highest levels are reserved for emergency operations

such as fire safety. Once a higher level priority is written to, the lower levels are ignored. An

explicit write with value “0” needs to be written to the higher level priority in order to relinquish

control to the lower levels.

The university’s Facilities Management provides us with a fixed priority level in this

priority array for our control experiments. We need to relinquish control back to the default

priority level after our control experiments to ensure that our interference does not affect the
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regular operation of the HVAC system. Quiver ensures that all the points are relinquished after an

experiment.

4.6.2 Points in Variable Air Volume Box

Figure 4.11 shows the points associated with VAV in our building BMS and how these

points relate to each other. At the top of the figure, we have the zone Temperature Setpoint and

Occupied Command, which in combination with thermostat input determine the temperature

guardband within which the VAV is trying to keep the zone temperature. The temperature

guardband is indicated by Heating and Cooling Setpoints, which represent the lower and upper

bounds of temperature respectively. There are three occupancy modes: Occupied, Standby and

Unoccupied during which the temperature bands are 4oF, 8oF and 12oF respectively. During

the Occupied mode, minimum amount of airflow is maintained to ensure indoor air quality.

The Thermostat Adjust allows changing the temperature setting by ±1oF, and the Temporary

Occupancy maps to a button on the thermostat which when pressed puts the zone to Occupied

mode for two hours during nights/weekends.

The Heating and Cooling Setpoints determine the behavior of the VAV control system

with the measured Zone Temperature completing the feedback loop. These three points determine

the Cooling and Heating Command of the thermal zone. The Cooling Command determines

the amount of cool air required for the zone and determines an appropriate Supply Air Flow

Setpoint that is between the designed minimum and maximum supply air flow. When the Cooling

Command is high (∼ 100%), feedback is sent to the AHU to decrease the supply air temperature

to meet the cooling needs of the thermal zone. The Heating Command determines the amount of

reheat required by controlling the Reheat Valve Command. During heating, the airflow is set to the

minimum to reduce chilled airflow from AHU, and this airflow is increased when high Heating

Command (∼ 100%) fails to heat up the thermal zone sufficiently. A high Heating Command also

sends a signal to the heat exchanger to increase the supply water temperature. Note that only one
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Figure 4.11: BMS points associated with VAV in our building testbed. The dependency between
the points as shown by arrows is mapped based on domain knowledge. Read-only points are
either sensors or configuration points which cannot be changed. Read/write points can be
changed via BACnet.

of Heating or Cooling Commands can be >0% at a time.

The Supply Air Flow Setpoint determined by the cooling/heating requirements in turn

determines the Damper Command which is the amount of damper actuation required to match the

setpoint to the measured Supply Air Flow. The Damper Position sensor also provides feedback to

set the appropriate Damper Command. There is a separate PID loop associated with setting each

of Heating Command, Cooling Command, Supply Air Flow Setpoint and Damper Command, and

there are PID parameters such as those that govern proportional gain and integration time, but

these are hidden from the BMS.
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4.7 Quiver: Learning with Control Perturbations

We use Quiver to learn more information about the sensor and actuator points inside a

building using control perturbations. We define control perturbation as any changes made to

actuators that deviate from typical HVAC operation. We confine all of our control experiments to

nights/weekends, or in unoccupied zones only, to alleviate any effects on occupant comfort. We

focus our control experiments towards addressing three important smart building applications:

• Identifying points which are co-located with a VAV box.

• Mapping the dependency between VAV actuator points.

All of our data analysis is implemented using Python Scikit Learn library3.

3scikit-learn: https://scikit-learn.org/
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Figure 4.12: A sample of co-location experiment

The Temperature Setpoint is oscillating between 62oF and 78oF for four hours at night (the top
graph). The VAV points which react to these changes (remaining four graphs) can be co-located
by using temporal data analysis of this controlled period.
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4.7.1 Control Perturbation for Co-location of Points

The location of sensor and actuator points might not be readily available in the BMS for

old buildings. Even in buildings where location information is available, it could be inconsistent

due to errors in manual labeling processes [BCH+15, GPB15a]. It is also difficult to co-locate

points using historical data alone as many VAVs function similarly, and the variation of data is

not enough to distinguish them apart [HOWC13]. Control perturbations can be used to force the

control system to unusual operating points, and co-located points that respond to this perturbation

can be clustered together by data analysis.

We assume that we already know the type of points in the building which can be obtained

using recently proposed methods [BCH+15, HWOW15a], but do not know if they are co-located

or how these points relate to each other or affect the control system. We do not use the location

information already integrated into Quiver for these experiments. We perturb the actuator

point identified as the Temperature Setpoint (TS) of a randomly chosen zone, and identify the

corresponding co-located points using the temporal data features of other points. Towards the end

of this section, we discuss how we can relax the assumption of knowing the point type apriori.

Figure 4.12 shows an example control sequence, where we change TS four times across

four hours from low (62°F) and high (78°F), and the corresponding VAV points in the same zone

that react to its changes. We chose such an oscillation of TS as it deviates substantially from the

normal operation so that we can easily distinguish the controlled zone from the rest of the zones

under the normal operation. This control sequence was chosen empirically, and we show that

even such simple control sequences can be effective for co-location of points. However, as we

show with our experiments, the effect of control sequences do affect the quality of results. We do

not focus on designing generic control sequences in this paper.

We extract basic features such as amplitude, mean and standard deviation from the

observed timeseries data. We also extract the Dynamic Time Warping (DTW) distance [BC94]

between the applied TS signal and the point under consideration. DTW compensates for the
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time delay in the reaction and change in sensor values due to a control action and quantifies the

difference between the shape of the signals. In addition, we exploit our pulse control and analyze

the Fast Fourier Transform (FFT) after normalizing the data and use the Euclidean distance

between the FFT of the point signal and FFT of the TS signal. We refer to this feature as “L2

norm of FFT” or “LFT”. We ignore frequencies beyond 0.0005 Hz, i.e. a period of 30 minutes,

because we only focus on changes caused by our low-frequency control sequence.

We extract these features for all the VAV points in the building and identify the outlier

points. In principle, the point which deviates the most from regular control operations would be

co-located with our TS points with high probability.

Figure 4.13 shows the distribution of all the Zone Temperature (ZT) points in our building

across three features – DTW, LFT and range – with a control sequence of two changes to TS.

The zone under control is marked in red, and as observed, the red point is far away from most

of the points from the other zones in the building. However, there are still a few points which

are also differed significantly from most zones and it is difficult to distinguish the red point from

those outliers. When we examine the data from the experiment where we made 4 changes to TS,

the corresponding to changes to the ZT in the same zone resulted in much higher variation from

those in uncontrolled zones. This is captured by our features as shown in Figure 4.14. Hence,

with the help of a well-designed control perturbation, it is possible to mold the behavior of the

control system for end-use applications.

We analyze the data for other point types to check if we can co-locate the zonal points

successfully. In practice, we find that LFT feature alone is sufficient to distinguish the controlled

zone points from the rest. Figure 4.15 shows compares the LFT of the controlled zone with other

zones for point types: Zone Temperature (ZT), Supply Air Flow Setpoint (SAFS), Supply Air

Flow (SAF), Reheat Valve Command (RVC), Heating Command (HC), Damper Position (DP),

Cooling Command (CC), Heating Setpoint (HS) and Cooling Setpoint (CS). We performed this

control experiment on eight zones in our building, and we co-located the listed points with 98.6%
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Figure 4.13: Co-location of Zone Temperature by perturbing the Temperature Setpoint.

Two changes of Temperature Setpoint are applied over 2 hours in the controlled zone.

accuracy. We only failed to identify the correct Damper Position point for one of the zones,

leading to a drop in accuracy.

The Damper Command (DC) is a differential actuator that sets the change that needs to be

made to the damper. There are several VAVs in the building which constantly change their DC for

minor variation in the airflow, and the features we extracted – DTW, FFT, mean, variance, number

of changes – failed to differentiate the DC of the zone under control from the rest (Figure 4.15).

More sophisticated data analysis or perturbance signals are required for co-location of DC points.

We could only co-locate DC points in two of the eight zones with our current method.

Another issue with these control experiments is that we can only co-locate those points

which react to changes in TS (see Figure 4.11). Points such as Occupied Command (OC) and

Thermostat Adjust, which are external inputs to the VAV control system, cannot be co-located.

To remedy this, we perform a second set of experiments which oscillates the OC similar to our

TS control perturbations. We successfully co-locate OC and points such as Cooling Setpoint and
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Figure 4.14: Co-location of Zone Temperature by perturbing the Temperature Setpoint

Four pulses of Temperature Setpoint is applied across 4 hours in the controlled zone.

Supply Air Flow that have been already co-located with their corresponding TS point. Thus, all of

these points can be marked as being co-located in the same VAV. We performed the Occupied

Command oscillation experiments across four zones with 100% success rate in their co-location

results. We could not perform similar experiments on the thermostat points (Thermostat Adjust

and Temporary Occupancy). They cannot be controlled by our platform as thermostats produce

their data contiguously, and we acknowledge this is a limitation of our proposed method.

We repeated our TS control experiments on a hot day, and found that the same control

perturbations cannot co-locate heating related points – Heating Command (HC), Reheat Valve

Command (RVC) – as they are not triggered sufficiently due to hot outside weather. The zone

cannot be cooled down enough to activate heating (HC, RVC) when its TS is changed to the high

value. We need to change our control perturbations to excite these points specifically. Thus, the

perturbation signature needs to be sensitive to external conditions and confounding factors.

Note that in Figure 4.15, the LFT feature of the controlled zone for most point types
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Figure 4.15: Comparison of the L2 norm between FFT of VAV points and the FFT of the
controlled temperature setpoint

The points corresponding to the controlled VAV have a much lower L2 norm compared to regular
zones for eight point types, but fails to capture the difference in Damper Command.

except ZT and DC differs significantly from the rest of the points. The controlled zone’s LFT

feature of ZT is not distinguishable from other types’ LFT features of the other zones though it

can be co-located within the same type. Contrary to DC’s different operational behavior, ZT’s

signal response is slower than the other types due to the heat capacity of zones. If we assume

that we do not know the point type, then the points except ZT and DC can be obtained as outliers

from the points belonging to normal zones. However, we would need to design an appropriate

threshold or clustering technique to identify the outlier points correctly.

Overall, with our control perturbations based co-location, we successfully co-located 10

out of 16 point types (63% coverage) with 98.4% accuracy across eight VAV units. We co-located

the Occupied Command points using auxiliary control experiments for four zones. We failed to
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co-locate Damper Command due to its divergent behavior. We also do not co-locate 4 point types

which do not respond to control perturbations.

4.7.2 Control Perturbation for Causal Relationships between Points

We now focus on understanding the working of the VAV, and how the points relate to

each other. As the types of points exposed are different across vendors and equipment, it is

necessary to understand the context of these points, and map it to a model that can be used by

other applications. These models can be built using domain knowledge, technical documents and

historical data analysis [FRS+13, Jen96] as demonstrated by our dependency graph in Figure 4.11.

We propose control perturbations as an alternative to these methods, which can be used for either

verifying already developed models or used for older buildings where the available information is

insufficient for modeling using other methods.

We assume that we already know the point type and the co-located points in a VAV. We

focus on modeling the dependencies between the actuator points (or read/write points). We write

to the Temperature Setpoint (TS) of a zone with a randomly chosen value every 20 minutes

for 6 hours. The goal of this control sequence is to identify the points that react to changes in

TS, and so we choose random values within limits for perturbing different operating points of

the control system. For every change in TS, we analyze the behavior of the VAV points for 10

minutes, and note the points whose values change during this period. The threshold of change

is one standard deviation for values observed for the past 12 minutes. We chose these times so

that we can isolate changes that occur due to the change in TS rather than other external factors

such as solar radiation. For the duration of the experiment, we calculate a final probability for

each of the points as the ratio of the number of changes observed for the point and the number

of changes in TS. We repeat this experiment by perturbing all the actuator points - Occupied

Command (OC), Cooling Command (CC), Heating Command (HC), Supply Air Flow Setpoint

(SAFS) and Damper Command (DC). Note that we ignore the points related to minimum and
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Figure 4.16: Color map showing the changes induced by control perturbations of each actuator
point on other actuators. Probabilities are calculated as the ratio of number of changes observed
in a non-controlled actuator and the number of changes made by the controlled actuator.

maximum supply airflow as they are constants.

Figure 4.16 shows a color map representing the probabilities obtained by perturbing each

of these points. The changes to TS affects all the actuators except OC and DC, while changes to

actuators like CC cause changes only in DC and SAFS. With the help of this color map, we can

understand which points are being affected by each of the actuator points. However, this does not

precisely decide the dependency between points as points which are lower in the dependency tree

such as SAFS get affected by almost all of the actuation experiments. We find the behavior of

DC to be unpredictable, and the changes that occurred in DC with our control perturbations were

lesser than our set threshold. We perform these perturbations across five zones.

Figure 4.17 shows the relationships obtained as a result of our analysis. The green solid

links indicate relationships that are true and confirmed with the analysis. The red dashed links

show relationships that are not true, but are shown to be related by the analysis. In general, the

above experiments cannot identify the true links when a “cycle” is formed in the graph. Here, by

“cycle” we mean that there are multiple paths from one point to another in the graph. We perform

more control experiments to negate the red links, and also confirm the blue dotted links which

form a cycle with the green links.
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Figure 4.17: Dependency Links Obtained by Perturbing each of the Actuators

The links which require further testing are verified using conditional control perturbations.

Consider the cycle formed between the points TS, CC and SAFS. In order to verify if the

link between TS and SAFS is correct, we perform a conditional control perturbation, where we

change TS but force CC to be unchanged, which is called Graph Surgery [Pea09]. We repeat

this experiment for at least four changes of TS. If TS were directly affecting SAFS, we would

observe that SAFS changes even when CC is held constant. We verify each of the red and blue

links this way. When there are more than three points in a cycle, such as that with TS, OC, HC

and RVC, we ensure several combinations of TS and OC are performed to test the validity of

the link. In some of these experiments, we preset the TS value to a fixed value for appropriate

conditions that can activate other points such as HC. As we note at Section 4.6.1, an external

variable, ZT, may disable HC or CC in certain condition though ZT is not an actuator. We let

the VAV control system to settle to a steady state after our change of TS before performing any

dependency experiments.

We performed these experiments on five zones in our building, and verified the links with

73.5 % accuracy with a false positive rate of 18.4 % and false-negative rate of 8.1 %. All the

false positives and 64.7 % of the false negatives are due to the external variable, ZT. Thus, we

can discover the dependency between actuator points in the VAV using our control experiments.
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However, in order to discover the complete dependency map as shown in Figure 4.11, we need to

use maximum likelihood data analysis as the behavior of read-only points cannot be controlled

directly.

4.8 Quiver Future Work

Quiver is a control perturbation framework for increasing information observability of

data. While Quiver shows the possibility of identifying relational information not encoded in any

raw metadata, there are a few technical challenges to be adopted in practice. First, the control

perturbation signal is intrusive to occupants’ daily lives. An exemplary control signal, such

as large pules over Temperature Setpoints, would be out of temperature bandwidths that the

occupants can tolerate. This is often called exploration and exploitation trade-off where the goal

is to maximize exploitation while minimizing the exploration time as much as possible [Mar91].

We need to explore the design space further, for which there a few candidates as (i) optimizing

the perturbation signals with smaller amplitudes and (ii) shorter periods, and (iii) applying the

signals only at nights or weekends when the rooms are unoccupied. While Quiver will be a base

framework, we leave such design space exploration as future work.

Furthermore, we need more statistically robust perturbation signals that are effective in

various situations. While our naı̈ve pulse would have been unseen in most of the existing building

control policies, a more robust perturbation signal should be able to cause novel patterns while

effectively affecting all the rest of the dependent points. It further means that the perturbation

signal might vary across different systems depending on the patterns of existing data. Though

an optimal signal design has been widely studied for system identification [JNMM18, GTBC05]

whose goal is to fully understand system functions, we need a subset of the functions such as

co-location and causality whose optimality might be achieved in different ways.
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4.9 Related Work

4.9.1 Entity Resolution

Normalizing unstructured or semi-structured data is a well-known problem in various

areas including data matching. The goal of Entity Resolution (ER) is to identify data entries or

records that represent the same entities in different databases [Chr12b]. Records for the same

entities may vary across different sources, for the same reason in metadata related to SCADA

systems. Most of the existing work in ER is to exploit string similarities between entries such

as learnable string similarity metrics [BM03], declarative grammar rules [AK09] and learning

similarities from examples [CCGK07]. However, it is often impractical to learn models from

samples as producing labeled data requires significant effort. Active learning approaches have

been proposed to reduce the number of samples to learn an ER model faster [SB02, CVW15].

Active learning frameworks learn models with a limited number of samples initially and iteratively

choose either uncertain inferred samples [SB02], samples maximizing recall [BIPR12] or most

heterogeneous samples [CVW15]. Though our goal is to identify entities with variations like

ER, the raw metadata in SCADA systems contain multiple pieces of information whereas ER

commonly identifies entities with a one-to-one mapping.

4.9.2 Transfer Learning

The lack of labeled data is a common problem in the real world. Domain adaptation con-

sists of reusing a classifier learned in one domain and applying it in another. Sample reweighting

with importance can adjust source samples’ distribution to match the target domain’s and there

are various ways to infer the importance [Shi00, GSH+09, BBS07]. However, our application

datasets often break the assumption that the source domain should contain the target domain

labels. Zero-shot learning is a two-step classification framework where data inputs are mapped

to semantic codes or attributes [PPHM09, FEHF09, RPT15] as an intermediate representations
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instead of labels. The relationships between attributes and actual labels can be given by domain

experts or learned. One can easily infer a new class if its mapping to attributes is given because

data inputs to attributes are already learned. We adopt this paradigm to reuse learned patterns as

source data and infer undiscovered labels as a new domain.

4.9.3 Building Metadata Normalization

Prior works have proposed data mining approaches to normalize raw metadata in buildings.

Proposed approaches include learning a multi-class classifier from Bags of Words (BoW) of raw

metadata [HWW15, BVNA15a] and learning regular expressions from examples to parse raw

metadata [BHC+15a]. All of them adopt active learning frameworks to reduce the number of

examples to learn based on clustering BoWs. However, the proposed approaches either identify

data point type only [HWW15, BVNA15a] or require knowledge about regular expressions

with which domain experts are usually not familiar with [BHC+15a]. Furthermore, these works

require many labels to normalize each building and do not apply the learned knowledge across

buildings. Other supervised approaches learn classifiers on time series features to label point

type [GPB15b] or find the best match between the raw metadata and corresponding labels with

edit distance [SPG14a]. Hong et al. propose a transfer learning framework similar to our work for

identifying point types [HWOW15b]. They use locally weighted ensemble methods [GFJH08]

to learn classifiers from a source building’s time series features based on BoW similarity with a

target building. However, unlike Scrabble, their method is limited to identifying point types and

have low precision/recall of 36% and 85% respectively.

4.9.4 Learning with Control Perturbation

The problem of discovering system characteristics and models using available data is

called system identification [Lju98], and is a well-studied subject in control systems research.
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Using control perturbations for system identification is also well known [Lju98, God93], and

the design of control perturbations, also referred to as auxiliary or secondary signals, has been

studied for modeling different types of control systems [GBT99, GTBC05]. System identification

techniques have also been used for HVAC modeling [TC98], and some prior work has explored

using control signals for system identification [SBV97, VCL95]. However, all of these works

focus on modeling the control system or perform control optimizations and do not address

the identification of contextual information such as location, point type or dependency graphs.

Moreover, the control perturbation methods used for buildings are only verified using simulations.

Active HVAC control on real systems has been used for fault diagnosis [WAA+12] and

fault tolerant control [FBK09]. These works and other simulation-based studies which propose

fault tolerant control [LD01, WC02] assume the contextual information about the system is

already available. We focus on discovering contextual information using active control.

Co-location of sensors has been studied before [FOCE12, HOWC13] but they use sophis-

ticated data analysis algorithms. These methods fail when the points from different locations

have similar data characteristics during regular usage. We show that with perturbations we can

excite the local control system to unique operating points and co-locate points with high accuracy

using simple data analytics.

Point type identification has also been studied earlier using both metadata [BVNA15b,

BCH+15] and data analytics [GPB15a, HWOW15a]. These works show that metadata alone can

be unreliable and requires significant manual input for accurate type identification, and the data

analytics based method is useful for some point types but fails for others. Our results conform to

the data analysis works, and we show that perturbations can be used to identify the points which

are difficult with data analysis. We also note that Hong et al. [HWOW15a] focus on transfer

learning across buildings, while we focus on transfer learning within the building across the

different instances of VAV units.
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4.10 Summary

Automatic metadata normalization is an essential tool to have Brick widely adopted as

well as it is a common problem in any data management systems. We have shown two tools to

efficiently normalize metadata of existing systems as Scrabble and Quiver. Scrabble is the best-

in-class algorithm for extracting semantic information from raw metadata via a semi-supervised

learning framework. It uses fine-grained labels (Tags) as an intermediate representation to improve

the transferability of data across different buildings. Quiver is a control perturbation framework to

generate new patterns in data to improve information observability. We exploit such new patterns

for learning relationships across different entities such as co-location and control dependency,

which are not observable in either existing historical timeseries data or raw metadata.

While Brick has shown the possibility of using a structured metadata schema as a base for

application interface, we should various methodologies to easily use Brick. There are millions of

buildings in the United States [Uni15] which deserve modern building applications for energy

savings and better living conditions. Our set of metadata normalization methods will help

to deploy a Brick-enabled infrastructure for those buildings with minimal human effort and

eventually attract app developers to adopt Brick as a base information model. Our methods are a

vital link for deploying building apps at scale.
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Chapter 5

A General Framework for Metadata

Normalization Methods

For metadata normalization, prior works have proposed methods to partially automate

metadata normalization [SPG14b, BHC+15b, BVNA15a, HWOW15a, KBS+18, KBA+16],

with each of them focusing on particular aspects of metadata.Some methods recognize all

entities using the raw metadata [SPG14b, BHC+15b, KBS+18], including the site, floor and

room identifiers, and point type. Other methods identify only the point types based on ei-

ther the raw metadata [BVNA15a, HWW15], timeseries data [GPB15b], or both [HWOW15a].

Yet other methods focus on inferring the relations between entities, including the spatial rela-

tionships [HOWC13, KAB14] and functional relationships [KBA+16, PBCM15b]. In order to

reduce the manual effort, these methods either only exploit the structure available within each

building [SPG14b, BHC+15b, BVNA15a, HWW15, GPB15b] or transfer information from one

building to the next [HWOW15a, KBS+18]. Importantly, while all of these prior works exploit

common attributes of each point — the alphanumeric text-based metadata and/or the numerical

timeseries readings, they differ significantly concerning the inference scope, input/output format,

and structure, algorithm interface, and evaluation metrics [WBK+18]. The resultant lack of
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compatibility among thevarious methods precludes the possibility of combining and comparing

themsystematically. Most importantly, there is still no standalone, versatile solution so far.

Generic machine learning platforms such as MLJAR [mlj16], OpenML [VvRBT13],

and MLlib [MBY+16] have recently emerged. However, while these ML platforms provide

generic interfaces for standard machine learning tasks, they are too generic to serve as a usable

interface for the unique building-specific human-in-the-loop process with diverse data sources and

different input/output formats. We need a modular framework that provides a unified interface for

exploring existing techniques as well as rapidly prototyping new algorithms, in order to advance

the state-of-the-art in building metadata normalization. To this end, we design and implement

Plaster, a modular framework akin to Scikit-learn1 for building metadata normalization, which

incorporates existing metadata normalization methods, along with a set of data models, evaluation

metrics, and canonical functionalities commonly found in the literature. Together these enable the

integration of different methods into a generic workflow as well as development and evaluation of

algorithms. With the designed interfaces, Plaster can easily fit into existing building stacks, from

commercial building management systems to open-sourced systems such as XBOS [AKC+17]

and BuildingDepot [WNA13], that expose the access to metadata and timeseries data in buildings.

With Plaster, we also present the first systematic evaluation of the state-of-the-art metadata

normalization methods via a set of unified metrics and datasets. Our evaluation covers a broad

spectrum of metrics, such as how accurate each method is in inferring the same kind of labels,

how many kinds of labels each method can produce, and how many human labels are required

to achieve a accuracy. Our experiment results reveal that there is no one-size-fits-all solution

and properly combining them could produce better results. This evaluation would not have been

possible without Plaster, given the heterogeneity in earlier works. We believe Plaster provides a

comprehensive framework for further development of new algorithms, techniques for metadata

normalization within the building domain, as well as mapping buildings to a structured ontology

1scikit-learn, https://scikit-learn.org/, last access: 12/01/2019.
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like Brick2 [BBF+16a, BBF+18a, FKA+19], enabling seamless smart building apps.

5.1 Categories of Metadata Normalization Methods

We identify three dimensions along which various existing metadata normalization meth-

ods work: 1) the type of data sources exploited, 2) the kinds of labels produced, and 3) the degree

of human input required.

There are three different types of data sources we can exploit in buildings. The raw

metadata in BMSes, also referred to as point names, usually encodes various kinds of information

about the control and sensing points, including the type of sensor, floor and room numbers, HVAC

equipment ID, etc. The metadata within a building often exhibits clear patterns that can be

leveraged, although it varies significantly across buildings and often does not generalize from one

building to another. As a result, various works have leveraged such pattern for metadata inference

[SPG14b, HWW15, BHC+15b, BVNA15a, KBS+18]. Secondly, modern BMSes also collect

time series readings of each point in the building, which contain information that indirectly

reveals what the point is and its relationship with others. For example, the range of the readings

can indicate the type of sensor and the correlated changes in different streams can indicate

the relationship. Works that leverage the characteristics of timeseries data include [HOWC13,

KAB14, GPB15b]. Additionally, one may also perform controlled perturbation in a building,

e.g., to manually turn off an air handling unit, and create new patterns in operations that help to

reveal the functional relationships between entities more clearly [KBA+16, PBCM15b]. However,

such control requires careful and sophisticated designs not to harm the system stability and

occupants thermal comforts.

Existing metadata normalization methods focus on producing two kinds of labels —

following the canonical definitions in Brick — entity types and relationships between entities.

2Brick: https://brickschema.org, last accessed: 12/01/2019
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Table 5.1: Categorization of Metadata Normalization Methods

Method Label Produced Data Source ML
Bhattacharya et al. [BHC+15b]

Scrabble [KBS+18]
All entities Raw metadata AL

Zodiac [BVNA15a]
Hong et al. [HWW15]

Point type Raw metadata AL

Fürst et al. [FCKB16] Point type Raw metadata CS

BuildingAdapater [HWOW15a] Point type
Raw metadata,

Timeseries
TL

Gao et al.[GPB15b] Point type Timeseries SL
Hong et al.[HGW17] Point type Timeseries UL

Pritoni et al. [PBCM15b]
Quiver [KBA+16]

Functional
Relationship

System
Perturbation,
Point Label

UL

AL: Active Learning TL: Transfer Learning
SL: Supervised Learning CS: Crowd Sourcing
UL: Unsupervised Learning

The entity type refers to the type of measurement of a point and there is a wide variety in its

possible set of labels, while the relationships include how points are connected to each other,

whether they are in the same room/zone, etc. A few methods infer all the available information

(e.g., both kinds of labels) encoded in the raw metadata [SPG14b, BHC+15b, KBS+18], whereas

many others identify the point type only [HWW15, GPB15b, HWOW15a, FCKB16], which is

the most important aspect of a point in buildings, or infer the relationships only [HOWC13,

KAB14, PBCM15b, KBA+16].

While different methods all aim to reduce the amount of manual effort in normalizing

metadata, the degree of human input required by each of them varies from fully supervised

to semi-supervised to completely unsupervised. Particularly, supervision, or human input, in

this context is the annotation or labels that a human expert provides to interpret the point for

its type, location, relationship with others, etc. Supervised learning has been used to learn

the point types based on timeseries data or raw metadata, where both clean, accurate labels

from experts [GPB15b] and crowd-sourced labels from occupants in the building [FCKB16]

have been explored in the literature. For the set of semi-supervised solutions, they employ
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active learning to iteratively select the most informative example and query an expert for its

label to improve a model for normalizing the metadata, requiring the minimal amount of labels

[HWW15, BHC+15b, BVNA15a, KBS+18]. On the other hand, transfer learning techniques

have been developed to exploit information from existing buildings and completely eliminate

human effort when inferring the metadata in a different target building [HWOW15a]. Similarly,

Scrabble [KBS+18] is another method that exploits existing buildings’ normalized metadata, but

through an active learning procedure. Table 5.1 summarizes these methods with regard to the

above criteria. In this work, we show that, while each of these techniques has its advantages, our

proposed meta-framework – Plaster– can help to choose the right algorithm per user requirements

as well as leverage different techniques in a complementary manner to yield better results.

Generic machine learning platforms such as MLJAR [mlj16], OpenML [VvRBT13],

Microsoft Azure ML Studio [azu16], and MLlib [MBY+16] have recently emerged. These

platforms have proved to be useful and facilitated tasks and research on machine learning.

However, the building metadata normalization problem has more unique requirements: 1) it

handles diverse types of input/output data, receiving as input timeseries data and/or encoded

textual metadata, and produces a graph (such as Brick entity graph) as a final output, 2) it

involves various types of learning frameworks including transfer learning, active learning, and

supervised learning altogether, and 3) users would need to interact with the algorithm(s) through

the abstraction of the building data such as a specific type of building metadata and identifiers

of the data, rather than directly with the data itself. Consequently, existing frameworks cannot

be adopted for metadata normalization tasks as are. Additionally, although not being directly

related to the metadata normalization problem, there are frameworks in other domains that

integrate different algorithms and create composable workflows, including general machine

learning analytics [BORZ17], recommendation systems [Hug17, YBG+18], non-intrusive load

monitoring [BKC+14, BKP+14]. Plaster is the first framework of its kind that enables the

exploration and integration of various algorithms on building metadata normalization, as well as
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provides the ability to systematically compare related algorithms.

5.2 Plaster Framework
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Figure 5.1: Plaster Architecture

Plaster adopts a modular design and incorporates a variety of components, among which the
core is a family of inference algorithms. Each algorithm is abstracted as an ensemble of common
functions, which allows the communication between different algorithms. Such a design enables
not only the flexible invention of a workflow composed of any algorithms, but also the systematic
comparison between different algorithms.

Plaster delivers a modular framework for benchmarking, integration, and development

by providing two levels of abstractions common among existing methods. As the first level of

abstraction, Plaster views a metadata normalization task as an ensemble of a key inferencer

and several other reusable components that have canonical functionalities and interfaces. This

way, we provide users with the flexibility in choosing the data model, learning scope, and

inference algorithm as needed. As the second level of abstraction, an inferencer, which is the

core component, comprises multiple common functions that we identify by summarizing existing

metadata normalization solutions. Because of the unified interfaces and its modular design,

Plaster facilitates the invention of new workflows where a user can connect different inferencers

to essentially create a new algorithm without re-implementing prior algorithms.
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5.2.1 Architecture

In Plaster, we abstract each method as an ensemble of components, and overall there

are four categories of components as illustrated in Fig. 5.1a: preprocessing, feature engineering,

inference models, and results delivery functions.

The preprocessing component includes standard functions such as denoising and outlier

removal for timeseries data, and lowercasing and punctuation removal for textual metadata, via

an interface to utilize existing libraries such as SciPy3 and Pandas4. There are also database (DB)

I/O functions for both the metadata and timeseries data. We use universally unique identifiers

to identify points and one can access both the textual metadata and timeseries data through the

identifiers. For the timeseries DB functions, Plaster builds upon an open-source library [arc14]

piggybacked on MongoDB, which is dedicated and optimized for timeseries data operations on

large data chunks. For feature engineering, there are a number of existing libraries, such as the

most widely used scikit-learn [PVG+11b] and a recent effort – tsfresh [CBNKL18]. However,

none exists as customized for the timeseries data from buildings, considering their uniqueness such

as the distinct diurnal patterns. Hence, we incorporate and extend the feature sets5 implemented by

Gao et al. [GB18], which contain various feature functions customized for building timeseries data.

In addition to the original feature sets, we provide straightforward programming interfaces for a

user to select a subset of features out of these predefined features and a lightweight yet effective

feature selection function based on LASSO [Tib96]. We shall demonstrate the effectiveness of

the feature selector in Section 5.3.4. Delivery components consist of the set of evaluation metrics

(detailed in Section 5.3.1), user interaction mechanisms to provide additional supervision for

inferencer update as needed, and serialization tools that convert the inference results into the

Brick format (e.g, triples and graphs).

3SciPy: https://www.scipy.org/, last access: 12/01/2019
4pandas, https://pandas.pydata.org/, last access: 12/01/2019
5We refer the readers to their original paper [GB18] for more details on each feature set.
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5.2.2 Inferencer

At the core of Plaster is a collection of state-of-the-art metadata inference methods. We

examine these algorithms and identify similar procedures among them. We therefore abstract

these procedures as a series of common functions, encapsulate each as a parameterized interface,

and formulate a standardized way of constructing an inference algorithm. We use an abstract class

– inferencer– to represent an algorithm (e.g., Scrabble, Building Adapter, etc), which maintains its

own model for metadata normalization under these abstract interfaces. Such abstraction decouples

the complex procedures in individual algorithm and allows new algorithms to be easily included

into the framework.

At a high level, an inference algorithm in the building metadata domain aims to achieve

the best possible accuracy with the largest coverage using the minimal set of labeled examples.

Therefore, an inferencer typically contains a few steps: 1) the algorithm selects as training set

the most “informative” example(s) based on its own criterion and acquires the labels for the

selected example(s) from a human expert; 2) the model updates its parameters based on the

latest training set after the new examples are added in the previous step, and then 3) the model

predicts all types of labels (e.g., point type, location, relationships, etc.) covered by the algorithm.

Plaster abstracts each of the above steps as a function, viz, select examples(), train(), and

predict(), respectively, as shown in Fig. 5.1c; and we design an inferencer to be a composition

of these functions. We shall note that, although these functions appear to be only able to compose

an active learning-based procedure, we design the select examples() function to be generic

enough such that any fully to semi-supervised learning algorithm can fit into this template. When

obtaining examples for a supervised or transfer learning algorithm, the select examples()

function simply includes all the labeled or transferred examples for training at one time, rather

than being iteratively done as in active learning. In an active learning approach, these steps are

repeated in iterations involving a human expert to best learn the model, while for a supervised

learning or transfer learning approach, these steps are mostly executed just once with already
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labeled examples.

We also define standardized input/output interfaces for these common functions to enable

the communication between different inferencers, which permits the creation of workflow as

we shall discuss shortly. For inputs, an inferencer accepts three types of sources: raw metadata,

timeseries data, and the corresponding labels of examples. We provide a wrapper to digest

two types of raw metadata commonly found in existing systems: 1) point names accessible

through vendor-given interfaces (e.g., Metasys) that are widely used in the literature, and 2)

metadata in BACnet [ASH16] including entries such as BACnet Description and BACnet

Unit. Timeseries data is stored as a series of timestamped values and the data for each specific

point is associated with a unique identifier of the point for indexing and future retrieving. As each

inferencer can learn and produce various types of labels as discussed in Section 5.1, an inferencer

can take three kinds of labels at different granularities: point type labels, labels for all entities

existing in the metadata, and character-level parsing with BIO tagging [RR09b].

The ultimate goal of each individual inferencer is to generate structured metadata. Since

Brick is capable of representing different kinds of metadata such as the types of entities and

the relationships between them, we express the predict() method’s outputs of each inferencer

following the Brick’s format. Particularly, the outputs are a list of triples for entities and

relationships in a building as explained in Section 3.1. Consequently, an inferencer is capable

of representing different inference results in the same format. For example, Zodiac [BVNA15a]

infers the point types, which can be represented as “X is a Y” triples, while Quiver [KBA+16]

infers the co-location relationship for multiple sensors expressed as “X1 hasLocation Y” and “X2

hasLocation Y”. Such different types of inference are serialized in the same format of Turtle [tur]

using the vocabulary in Brick.

Additionally, for each inferencer we include the confidence of its inference results pro-

duced by the original algorithm in its output so that an inferencer is able to more flexibly sift

through and use another inferencer’s results. Specifically, we store the confidence for each
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produced triple within the inferencer. However, the notion of confidence is unique per inference

algorithm with different meanings. For example, Support Vector Machine’s confidence is usually

measured by the distance to the hyperplane, while in Naı̈ve Bayes, it is the probability of observing

the example given the model’s parameters. Thus, we restrict the interpretation of confidence score

within each individual inferencer despite the values of those metrics being uniformly normalized

to be between zero and one. We shall show how this is useful in real workflows in Section 5.3.3.

As a natural outcome, Plaster provides a standard benchmark for different metadata

normalization algorithms. With the unified interfaces in inferencer, to do so is straightforward as

one only needs to specify the set of algorithms he/she wants to compare as well as the type(s) of

data to ingest and designate a building for the comparison. We will demonstrate with concrete

examples in Section 5.3.2.

5.2.3 Workflow

The standardized interfaces in inferencer also enable the creation of a workflow for

metadata normalization. A workflow is a hybrid method comprised of multiple algorithms, each

being an inferencer in Plaster, where the output of an inferencer is passed to another while each

inferencer executes its inference procedure independently. While a single inferencer usually

only infers one aspect of the metadata, a workflow would potentially be able to infer multiple

or all the aspects of the metadata by employing different inferencers. Each inferencer may have

a different learning objective as described in Section 5.1, and Plaster helps to systematically

leverage the advantages of each. For example, Building Adapter [HWOW15a] (BA) is a transfer

learning-based algorithm that infers point types without any human inputs, but usually with a

potential low recall. Instead of starting from scratch, the output of BA can constitute an initial

training set for Zodiac [BVNA15a] to jump-start its learning procedure and potentially reduce

the amount of manual labels required. Various use cases of workflow enabled by Plaster are

elaborated and evaluated in Section 5.3.3.
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When executing, the workflow function call will invoke the corresponding functions

(i.e., select examples(), train(), and predict()) in each of its inferencers in the order

specified in the workflow, with an additional connecting step that obtains and applies the previous

inferencer’s prediction results to the next. The process of applying a preceding inferencer’s results

vary across different inferencers so that a human integrator should specify how to digest such

predictions inside the inferencer’s methods. If the confidence of some of the inferred relationships

by the previous inferencer are low, the next inferencer should filter the results or simply avoid

using them. On the contrary, if the previous inferencer’s inference is higher confidece than

the current inferencer’s, it can discard its own inference and adopt the previous one. In the

example of connecting BA and Zodiac, Zodiac would need to be able to select only the prediction

results with high confidence from BA and subsequently add them into its own training set inside

select examples().

5.3 Evaluation

In this section, we demonstrate how Plaster enables systematic comparisons of differ-

ent metadata normalization algorithms, the creation of new workflows by connecting multiple

algorithms, and the programming interfaces for algorithm development such as feature selection.

5.3.1 Experimental Setup

Datasets

We obtain a subset of the study buildings used in Brick [BBF+16b], which consists of

five buildings from four different campuses, including the raw metadata and timeseries data for

about a month. Table 5.2 summarizes the details of each test building. While this collection

of five buildings is not comprehensive for building metadata research, we argue that they are

representative enough with regard to the diversity in vendors, sizes, years of construction, etc.
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Table 5.2: Case Study Buildings Information: These are office buildings in universities. JCI
and ALC stand for Johnson Controls and Automated Logic, respectively. The number of unique
words represents the complexity of the metadata.

Building Location Vendor Year Size (ft2) # Points # Point
Types

# Unique
Words

Engineering Building Unit 3B UC San Diego, San Diego, CA JCI 2004 150,000 4,594 108 426
Applied Physics and Mathematics UC San Diego, San Diego, CA JCI 2004 150,000 4,357 111 369
Rice Hall Univ. of Virginia, Charlottesville, VA Trane 2011 100,000 1,300 60 290
Sutardja Dai Hall UC Berkeley, Berkeley, CA JCI 2009 141,000 2,300 31 116
Gates Hillman Center Carnegie Mellon Univ., Pittsburgh, PA ALC 2009 217,000 8,292 147 179

For building D1, the original author did not release the timeseries data, and therefore, we shall

note that D1 will not be included later in evaluations that involve timeseries data.

Evaluation Metrics

Overall, we consider three aspects when evaluating each algorithm:

• Inference Accuracy: How accurate are the predictions of an algorithm in terms of its original

learning purpose?

• Inference Coverage: What kinds of labels can an algorithm infer?

• Human Efforts: How many examples does an expert need to provide in the learning process of

an algorithm?

In this study, each algorithm infers one or multiple kinds of labels for a point. For example,

Zodiac [BVNA15a] infers only one kind of label, which is the point type, whereas Scrabble

[KBS+18] also identifies other kinds of labels such as location aside from the point type. For each

kind of label, every possible Brick tagset is treated as a class (e.g., for point type we have room

temperature, supply air temperature, etc), and we evaluate the inference performance considering

all kind(s) of labels each algorithm produces. To measure how accurate the inference results are

for an algorithm, we calculate the Micro-averaged F1 (MicroF1), Macro-averaged F1 (MacroF1),

and example-level accuracy. MicroF1 globally counts the total true positives, false negatives and

false positives regardless of the class, while MacroF1 calculates the same quantities for each
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class and then finds their unweighted mean. MacroF1 indicates how many different classes can

be correctly inferred, which is an important metric for a building dataset that typically has an

(extremely) imbalanced class distribution, with the points related to heating and cooling clearly

dominating. For example, while Zone Temperature Sensors might frequently exist in HVAC

systems, specialized points such as Gas Meters are generally rare. For example-level accuracy,

it is defined as the ratio of the number of correctly labeled examples over the total number of

examples. Specifically, an example is considered to be correctly labeled if and only all of its

labels are correctly predicted. We use this metric along with the F1 scores when an algorithm

produces more than one kind of label.

We measure human efforts by the number of examples labeled by an expert during the

model learning process. For point type inference, an example is usually a mere point type label

given the raw metadata of the point. For the examples used for inferring all possible entities, they

contain more information aside from the point type label, such as equipment ID and location.

Although the amount of information in the examples is different, we consider the effort for

labeling an example to be the same because the required knowledge per example is similar.

Inference Algorithms Included in Plaster

We have refactored and incorporated the following algorithms into Plaster: Hong active

learning [HWW15] (referred to as AL Hong hereafter), Bhattacharya et al. [BHC+15b] (referred

to as ProgSyn), Zodiac [BVNA15a], Building Adapter [HWOW15a], and Scrabble [KBS+18].

We exclude algorithms from the evaluation that require the actual actuation and control in

buildings [KBA+16, PBCM15b] because such experiments are not practical in most buildings.

However, they fit into Plaster well as part of a workflow in the real world such as building

commissioning. Plaster is open-sourced and implemented in Python. The API documentation,

running examples, together with the data sets can be found at

https://github.com/plastering/plastering.
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(a) Learning rate for inferring point type by different algorithms on 4 buildings starting from scratch (i.e.,
zero training set).
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(b) Learning rate for inferring point type, exploiting
an existing building’s normalized metadata. X ⇒ Y
indicates applying X’s normalized metadata to initialize
the learning for Y.
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(c) Learning rate for inferring all enti-
ties in the raw metadata from scratch.

Figure 5.2: Comparisons of Different Algorithms on Various Buildings

(atop each figure) The alphabet represents a campus and the number represents a building on
that campus (e.g., A-1). We leave out Scrabble’s results for B-1 and ProgSyn’s results for A-1,
B-1 and D-1 due to the limited types of labels in these buildings. All experiments are averaged
over four runs and the legend is shared across all figures.
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5.3.2 Benchmarking

Enabled by the unified interfaces in inferencer, Plaster allows a user to easily select a

method and specify the type of input ingested, the test building to use, and the evaluation metric;

this facilitates systematic comparisons of different algorithms, i.e., benchmarking. We present the

results of three representative scenarios.

Active Learning for Point Type Inference

In this scenario, we evaluate a set of active-learning-based algorithms for their learning

efficiency in inferring point types, the most important aspect of building metadata. We include two

algorithms that exclusively work for this purpose – AL Hong [HWW15] and Zodiac [BVNA15a],

together with another two algorithms that can infer multiple aspects in metadata (type, location,

equipment, etc) – ProgSyn [BHC+15b] and Scrabble [KBS+18]. Although the latter two are

designed to learn all aspects of metadata, we make each to infer only the point type in this set

of experiments. We run each algorithm on four different buildings, starting with zero training

examples, and calculate the MicroF1 and MacroF1 of inferred type labels. The results are shown

in Fig. 5.2a.

We see that AL Hong marks a stark contrast to all the other algorithms for its steep

learning rate (by MicroF1) in the early stage for the first 75 examples. This is because of its

clustering-based example selection strategy, which excels in quickly selecting representative

examples that are also informative for model training. However, we also see that Zodiac and

Scrabble are able to catch up after 75 to 125 examples, surpassing in MacroF1, and even achieve

100% in F1 for some cases (on building A-1) after converging. These results suggest that Zodiac

and Scrabble are better in learning the minor point types that appear less frequently in a building,

which AL Hong is not able to learn even with more examples. We would also like to point out

that, due to the deterministic nature of the algorithm, ProgSyn and Zodiac may terminate early

(e.g, on C-1). Zodiac runs with a preset confidence threshold, and as it gradually acquires training
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examples, whenever the algorithm has high enough confidence in every testing instance, it will

terminate. For ProgSyn, it decides whether the learned rules are able to parse every example and

stops when it becomes the case. Furthermore, there is no clear winner in this set of experiments.

The implication, however, is that if one wants to quickly label the types with reasonably high

accuracy (e.g., 85%), AL Hong is an appropriate choice. When one desires better coverage of

less frequent types in the long run, Zodiac or Scrabble would be a better choice.

Jump-started Active Learning

All the original active learning-based algorithms [BVNA15a, HWW15, KBS+18] are

designed to work only within the same building, meaning that they do not consider or leverage

any information from other existing buildings. However, because the inferencer design in Plaster

makes it convenient to start from any training set, we will next show what the learning results

would be if we run an active learning-based algorithm using information from another building

for inferencer initialization. More specifically, we use another building’s point names along with

their labels (e.g., from A-1) to formulate the initial training set for an inferencer and then run the

algorithm on another building (e.g., C-1) as we did in Section 5.3.2. The results are shown in

Fig. 5.2b.

When added a building from a different vendor with almost completely distinct naming

conventions (e.g., A-1⇒ C-1 and C-1⇒ A-1), the type inference performance either remains

unchanged or even deteriorates in the early stage. This is expected as such transfer would

introduce more irrelevant patterns to the same point type for the algorithm to learn, which is

almost equivalent to injecting noise. Nonetheless, we still notice an increase in MicroF1 for

Scrabble in the early stage in the case of A-1⇒ C-1. This is largely due to Scrabble’s underlying

intermediate representation, which is able to learn more general patterns with different buildings.

On the other hand, when we add a building from the same vendor with a similar vocabulary

for point types (see A-2 ⇒ A-1), we observe a better starting point (71% in the first figure
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in 5.2b vs 58% in the first figure in 5.2a) and also a better converged MicroF1 for AL Hong.

We observe similar improvements for Scrabble and Zodiac in this case. We thus conclude that

having building(s) with a similar naming convention is useful for inferring subsequent buildings

by transferring the information in the raw metadata.

Active Learning for Multiple Entities

While detecting the point type is important, other types of entities encoded in the metadata,

such as the associated room and equipment, are also essential for building applications. We,

therefore, evaluate Scrabble and ProgSyn for their ability to identify multiple types of entities from

the given raw metadata, including the point type, room location, and associated equipment ID. As

shown in Fig. 5.2c, Scrabble outperforms ProgSyn in both MacroF1 and example-level accuracy.

The gain in performance of Scrabble is attributed to its more sophisticated representation learning

procedure where it first maps the input to an intermediate representation and then to actual labels,

while ProgSyn maps the raw metadata directly to final labels. For example, for a string ZNT,

Scrabble first learns its nuanced character-level BIO tags and then maps to the Brick tagset (i.e.e,

Zone Temperature Sensor), while ProgSyn directly learns its mapping rule to the tagset via

regular expressions.

5.3.3 Workflow

Having seen the results on comparing different algorithms individually, we next show

how they can interact with each other in Plaster. A key feature of Plaster is the ability to try

out different workflows, which integrate different algorithms in a different order. We present

and evaluate three exemplary workflows where two inferencers are connected together for better

performance than if they are used individually.
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Figure 5.3: Learning Efficiency for Inferring Point Type by Different Workflows

They all demonstrate synergistic improvement in performance.

Transfer Learning Benefits Active Learning

A completely automated method such as Building Adapter (BA) [HWOW15a] is able to

achieve relatively high inference precision for point types in a target building, though for only a

fraction of the points. It would be natural to connect and feed the labeled examples by BA to an

active learning-based method, such as Zodiac [BVNA15a], as a better starting point. This appears

to be similar to the jump-started active learning scenario in Section 5.3.2, in that both provide a

better starting point for active learning. However, a fundamental difference is that a method such

as BA, which transfers the learned model via timeseries data from a different building to facilitate

another learning process based on textual data, which is independent from these two buildings’

naming conventions, while in the previous scenario we will only see benefits when transferring

from a building with a similar naming convention. We implement such a workflow of combining

BA and Zodiac to again infer point types, with Fig. 5.3a showing the comparison results. We see
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that the combination achieves both higher MicroF1 and MacroF1 up to 70 examples, benefiting

from the transferred information. However, the incorrect labels from BA’s predictions (though

only a handful) remain as negative training examples to Zodiac and it cannot recover from such

noise in such a naı̈ve integration. These inherited incorrect labels would be corrected or filtered

out at the beginning if Zodiac could have the ability to quantify BA’s results based on its own

criterion. Yet, this will require additional modifications to the original algorithm and is hence out

of the scope of Plaster.

Specialty Complements Versatility

Some algorithms have high precision while others have high recall in their inference

results. For example, Zodiac infers only point types but with high precision, while Scrabble can

identify multiple kinds of entities with high recall. Thus we can filter Scrabble’s results by using

Zodiac’s results without compromising the results of either. More specifically, we feed Zodiac’s

results to Scrabble’s prediction and if there is a disparity between the two on an instance, Scrabble

will adopt Zodiac’s prediction for point type. As shown in Fig. 5.3b, we see there are about 1,500

corrections made to the point type predictions in total (note that we only count the number of

corrections made by this strategy, and an instance could be corrected multiple times) with little

additional computational cost.

Mutual Benefits between Different Types of Inference

Learning functional relationships often relies on perturbations to the control systems

(e.g., Quiver [KBA+16]) and, to correctly perform perturbations on a target point such as a VAV

on/off command, it requires knowing the point types apriori. Thus, it is natural to apply an active

learning algorithm (Zodiac) to infer point types as a prior step to a perturbation-based relationship

inference algorithm (Quiver). Furthermore, the inferred relationships can in return help examine

whether the point types have been correctly inferred. For example, the fact that a VAV typically
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contains only one for each type of its sensing and control points can help identify mistakes made

in type inference. Concretely, based on the manual perturbation to a VAV on/off command,

Quiver [KBA+16] identifies a group of co-located points and finds that there are two supply air

temperature sensors; it is highly likely that Zodiac has made a mistake in the type inference. For

this experiment, we emulate the above procedure by first running Zodiac to infer point types, and

for each predicted VAV on/off command, we use the ground-truth for the co-located points in

that VAV (since we are not able to actually run Quiver) and examine if there is any duplicate type

among these points, in order to correct any type mis-predictions. We see modest improvement

in the type inference results because we only consider ∼15 most common point types existing

in VAVs, as Quiver can only find the co-located points for VAVs. Although a workflow as such

exploits certain domain knowledge, it would be generally useful to practitioners with special

demands in building applications.

5.3.4 Timeseries Feature Selection

We also empirically inspect how well each timeseries feature set performs and how

effective the feature selection is in Plaster. To this end, we create a workflow that feeds the

timeseries data to each of the feature extraction modules included in Plaster, passes the features

to a random forest classifier (which is identified as the best performing classifier [GB18]), and

predicts the point type for evaluation. Fig. 5.4 summarizes our results.

We observe that each individual feature set roughly performs on par except the second set.

A simple fusion of all the dimensions from each feature set (marked as All in the figure), which

equates to a 106-dimensional feature set, does not yield much better performance. However,

the selected set of features does give a 3% increase overall than the best set with the number of

features reduced to 60. This demonstrates the usefulness of the feature selection and integration

provided by Plaster.

We notice the performance here by using timeseries data features is less competitive than
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Figure 5.4: Results for timeseries data based type inference

We show 7 different feature sets (each is shown as a group of bars and each bar represents the
result on a building), along with a fusion of them (All) and a better subset selected by Plaster
(Selected).

using textual metadata. The algorithms using textual metadata in Fig. 5.2) can achieve more more

than 95% accuracy with labels of less than 5% of the entire building. However, the implication is

that, as data features better suit transfer-learning-based tasks [HWOW15a], the better feature set

we have identified here would help to improve such a procedure, for instance, Building Adapter.

Moreover, we would also like to emphasize that subsequent users and/or researchers can easily

register their own feature set in the feature extractor interface in Plaster, and also perform feature

selection with our provided method to obtain an even better set of features for their target metadata

normalization problem.

5.3.5 Programming APIs and Examples

We next showcase a simple code snippet on how to evaluate an inferencer in Plaster

following the unified interface design. We see from the example that one only needs to specify an

algorithm along with some configurations including the buildings involved for evaluation and

parameters to the algorithm. We shall note that for more running examples on benchmarking,
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1 target_building, source_buildings = 'ap_m', ['ebu3b']
2 SAMPLE_SIZE = 100
3 srcids = LabeledMetadata.objects(building=target_building).distinct('srcid')
4 training_srcids = random.sample(srcids, SAMPLE_SIZE)
5 test_srcids = [srcid for srcid in srcids if srcid not in training_srcids]
6 scrabble = ScrabbleInterface(target_building, srcids, source_buildings)
7 scrabble.update_model(training_srcids)
8 metrics = scrabble.evaluate(test_srcids)

Figure 5.5: Example for Evaluating an Inferencer in Python

workflow, etc, one can refer to our documentation6 for details.

5.4 Plaster User Interface

For all the components in the process, Plaster [KHG+18] defines a common programming

interface in Python as well as a unified database model for all the necessary data types. It enables

the benchmark and integration of different algorithms and eases the process to develop a new

algorithm. However, due to the diversity of the algorithms, end-users, such as building managers

and commissioners, need better guidance in actual user interfaces.

As discussed in Section 5.2.2, the canonical functions in Plaster are insert examples,

select examples, update model, and infer. These functions are used throughout Plaster UI’s

workflow, whose steps are following:

1. Task Configuration: A user chooses an algorithm or a combination of algorithms based on

their optimization targets. The user also needs to load data.

2. Interactive Labeling: A user provides examples for metadata normalization. Algorithms

can choose the most informative examples with non-redundant patterns. It improves the

sample efficiency reducing human effort eventually. This is an iterative process that involves

training models, requesting new examples, and submitting labels.

6https://github.com/plastering/plastering/blob/master/examples
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3. Result Review: Once enough examples are given in the previous stage, the user can visually

review the result of metadata normalization in a graph or a table. The user can also export

the result to use it in external systems.

In the workflow, Interactive Labeling is the most complicated process as users need to

iteratively interpret visualized information and provide corresponding labels. Fig. 5.6 shows

the visualization, and the caption describes each component in detail. While we provide the

flexibility to revoke the actions, we visually guide users to only the required actions among many

possibilities. For example, in Fig. 5.6, Plaster has provided the entity’s type, so deactivate the

insertion action by showing “Inserted”, and then activate “Next”.

5.5 Discussion

Plaster provides a common programming model for different algorithms in metadata

normalization for buildings. The ultimate goal of metadata normalization research would be to

establish a grand model that can utilize any kind of data and labels for any purpose. We discuss

several algorithmic challenges for the goal.

A Robust Framework for Integrating Different Methods

Different algorithms are methodologically independent of each other and interpretation of

their results is solely up to the users. For example, assume Zodiac [BVNA15b] infers an entity

as Temperature Sensor with 90% confidence and Building Adapter (BA) [HWOW15b] infers

the same point as Temporary Occupancy Status with 80% confidence. We cannot judge which

one we should trust more only with the results inferred independently. An experiment where

we integrate BA and Zodiac confirms the observation as in Figure 5.3a. While Zodiac receives

benefits from BA’s inference in the early stage, Zodiac’s sample selection algorithm suffers from

BA’s false predictions in the later stage. Even though we could improve the results by putting
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Figure 5.6: A Screenshot of Plaster UI.

The bar and the ratio at the top of the screen show the progress of the current round. The left
panel visualizes different types of Raw Metadata. At the right panel, users can interactively
provide different types of labels. Users may select a customized number of examples to label in
a round with Get button, and move to different examples by Next/Previous buttons within the
round. Update Model trains the machine learning model based on the training examples labeled
so far. Blue buttons are the guided actions for the user, showing recommended next steps. White
buttons indicate the user have completed the actions but the user may revoke them. Gray buttons
are for inactivated actions at the current status.

some threshold to filter out BA’s less confident predictions, the filter’s design is still based on

personal interpretation of the results.

We should, in the future, introduce a statistically robust framework such as weakly-

supervised learning [RBE+17]. Weakly supervised learning frameworks learn dependencies

across different classifiers, assuming each classifier is imperfect, and learn a meta-model accom-

modating them. Within the framework, we could generalize a collection of different algorithms

with the same goal as a higher-order algorithm. Still, dependencies across classifiers require an

extensive data set to be robust per label, while the datasets we have observed so far do not have
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enough samples to be fed.

Noisy Labels

All the algorithms studied for metadata normalization assume that the labels are correct,

which is often not true. Metadata normalization tasks would be commonly done by multiple

domain experts, who could either make errors or have different understandings of the same

content. It becomes especially important when we wish to accumulate knowledge over many

buildings labeled by different people and institutions.

There are various frameworks for learning from noisy labels [NDRT13, WSL+19]. They

propose diverse methods to reweigh samples by learning surrogate functions that together explain

the credibilities of samples. Otherwise, we could also reuse the weakly-supervised learning

frameworks with training a model with a data set from a single annotator. Though it would not

distinguish incorrect labels within a model, the weakly-supervised framework would be able to

find an agreement on labeling from different data sources.

Privacy Preserving Transfer Learning

Metadata normalization for buildings has been studied in many places, but the efforts are

fragmented so far. One of the reasons is that people are hesitant to sharing their data publicly

because the data may contain both security and privacy information. Timeseries data often have

information about occupancy of buildings through temperature changes, energy usage, and just

occupancy data. Raw metadata often contain information about the network architecture and

system configuration Though such information cannot be directly used by attackers without

compromising the building network, building managers are not likely to take risks at the cost of

building compromise. Plaster’s future deployment should consider either filtering out sensitive

information from the beginning [FGC19] or developing a machine learning model robust to

differential privacy attacks [PMSW16].

143



5.6 Summary

Plaster has provided a standardized programming model for metadata normalization as

well as a Web interface for users to interact with data and algorithms. Through the standardization,

we can 1) benchmark different algorithms with the same datasets and metrics, 2) integrate different

algorithms to complement each other, and 3) ease the development process by providing essential

components in hand. Primarily, we can compare different algorithms and show the validity of

each algorithm in different cases. Our results reveal that each method has its pros and cons.

Users should choose an algorithm according to their requirements and combine different methods

complementarily to yield better results.

Plaster web service will also be the foundation for safely collecting data and collaborating

across different institutions for metadata normalization. Without a collaborative effort, all the

research in this problem will remain fragmented for specific buildings and needs. Future research

should help to bridge between different algorithms and data sets to accumulate knowledge over

many buildings.

Moreover, normalizing metadata is the first method needed to enable programming over

structured metadata in buildings. Along with various algorithms including the proposed algorithms

in Chapter 4, Plaster unifies the significant portion of the workflow to establish Brick-enabled

building application platforms.
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Chapter 6

An Access Control Model with Structured

Metadata

We have presented Brick schema, an extensible metadata schema for portable building

applications (apps), as well as the methods for instantiating Brick from unstructured data sources.

They bridge the gap between heterogeneous Building Management Systems (BMSs) and apps

agnostic to such systems via a standardized view over the BMS. Using BRICK, we envision devel-

opers can quickly implement and deploy building apps, akin to what we have in the smartphone

ecosystem. Under this standardized ecosystem, apps will be more accessible; developers can work

on a standard development environment of building apps targeting a scalable deployment. The

end users of these apps (e.g., building managers and owners) would quickly install and compare

different apps for their exact needs without demanding much engineering cost for customizing

apps individually. The Apps can be registered in a marketplace, similar to the Google Play

store, and building managers can download it into their building systems, and end-users could

simply use the app. Genie [BKWA16] is an exemplary app that has been deployed at Engineering

Building Unit 3B, UCSD for over five years. Genie is a Web service where users can remotely

control their own rooms’ temperature in commercial buildings. Ideally, a building manager could
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choose Genie from an app market and install it for a target building, and then tenants of the

building could remotely access their rooms through Genie without further hassles.

However, in the deployment process, the building manager should be able to understand

what types of resources Genie would access and be assured of Genie accessing only the required

resources and is not over-priviledged. This enforcement mechanism is called access control, and

it is crucial to limit access only to the necessary resources, restraining the damage from malicious

attacks or inadvertant misconfigurations to its minimum. It is a well-known security design called

the Principle of Least Privilege (PoLP) [SS75]. As a baseline compared with buildings, Android

has an access control workflow [Goob] as follows:

1. the user installs the app,

2. the app shows the manifest and asks its permissions to the user,

3. the user reviews the manifest listing all the possible access to resources in her phone such

as contacts and the camera,

4. the user approves the app’s access either at runtime or install-time,

5. the app’s permission is stored internally and referred to it whenever the app tries to access

the corresponding resources.

Basically, a user can simply review what an app can access and delegate her exact authority to the

app. Such a simple review-and-delegate process works well for smartphone systems because a

user is the owner of the target resources and, at the same time, the only end-user of the app.

However, the buildings’ app workflow is significantly different from smartphones’, for

which the review-and-delegate process is insufficient. First, the access requirements are too

complex and broad for a single person to review easily. For example, Genie, the Web thermostat,

needs to possibly access all the rooms for reading two sensors and two setpoints for each of the

rooms, and there can be hundreds of rooms in a medium-sized building. It is cumbersome for
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a single manager to review all the resources and their properties one by one. Second, buildings

are a multi-tenancy platform where multiple users would use a single app to access different

resources, and each of the users just needs specific access temporarily. Thus, it is over-privileged

to delegate the superset of all the potentially necessary permissions to a single app. For example,

while there are hundreds of users that possibly use Genie to control their rooms, only a subset

of the users use Genie per day. Thus, Genie does not need a continuous access to all the users’

rooms, whereas Genie is authorized for all of them in the review-and-delegate workflow. Third,

the resource owners and the end-users are different. Unlike a user, who can manage an app’s

permission in her smartphone, the entity approving an app should be aware of all the potential

users of the app in the authorization process.

In this chapter, to harness the access control of building apps, we present a systematic

workflow for authorizing apps in buildings that can guarantee the least privilege to the apps. We

first summarize our study from 125 building app papers from two major venues to understand the

access requirements of building apps [KHN+19]. Based on the study, we define access patterns

with Brick augmented with other data sources as an information model for access control. To

tightly enforce the access patterns, we also propose a dynamic authorization workflow where

actual authority is evaluated at runtime and distributed across apps and end-users so that the

minimal access is guaranteed per app and user. At the same time, the approver can simply

review an access pattern instead of the whole list of resources. Furthermore, we demonstrate

this workflow by implementing two apps, a Web thermostat and an energy dashboard, with the

workflow.

6.1 Building Operating Systems and Applications

In this section, we briefly introduce a general form of Building Operating Systems (BOSes)

and how they host apps. Unlike Building Management Systems designed for human operators,
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BOSes are for programs. BOSes provide Application Programming Interfaces (APIs) and related

administrative functions, with which programs or apps can interact with the underlying resources.

Example BOSes include industrial solutions such as NiagaraAX [nia] and open-source projects

such as XBOS [AKC+17] and BuildingDepot3 [bd319].

These BOSes have common components as APIs, drivers, metadata databases, time-

series databases, resource managers, and authentication/authorization mechanism, depicted in

Figure 6.1. APIs are the interface for apps to request required operations in a BOS, such as to get

or update timeseries data and register entities. BOSes are an interface over actual resources as

well, including sensors, setpoints, equipment, and even existing systems such as BACnet devices.

Drivers integrate such resources with a BOS by continuously logging resources’ status and deliver

the BOS’s requests to end-devices such as adjusting a temperature setpoint. BOSes would store

actual timeseries data in a timeseries database so that they can be referred to based on apps’

logic later. Metadata databases contain all the metadata about resources often in a structured

format such as Brick. As we have discussed, metadata is the key information for identifying the

right resources for either reading timeseries data or actuating devices. Thus, a metadata database

often stores the pointers to the corresponding timeseries data streams in the timeseries database

as well. BOSes are usually multi-tenancy platform, and multiple apps could try to execute the

same operation at the same time. A resource manager is in charge of resolving such conflicts,

for example, based on priorities. Lastly, the authentication/authorization module governs iden-

tifying the actor of a request and whether the request should be executed or not. There are

various authorization mechanisms such as Access Control List (ACL) [IET07], the most common

model as adopted in NiagaraAX, and Attributed-Based Access Control (ABAC) [HFK+13] in

BuildingDepot3 [bd319].

In the context of buildings, resources refer to the entities essential to building apps

[BBF+16b], including all the physical points (e.g., sensors), equipment (e.g., HVAC), the data

generated by these points, and the physical space (e.g., offices). We assume all the resources are
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Figure 6.1: An Overview of Application Workflow with Building Operating Systems

managed through a BOS, which provides programming interfaces for apps to interact with the

resources in the building.We thus regard the BOS as a trusted information source so that we can

augment its security measures on demand.

An app can manifest the necessary resources, and the owners should approve the app’s

access. As a building is typically managed by a building manager on behalf of the owner, (s)he

has the authority to arbitrate actions over the resources. However, a third-party company may also

deploy and manage additional resources in a building, and could directly manage these resources

or delegate the control to the building manager. In other words, multiple resource owners might

need to work together to decide on the access policy.

The various users (e.g., occupants and building managers) would inevitably have different

demands, and thus should be granted different permissions. For example, an occupant should be

able to change the temperature in her office but not her colleagues’. Since different apps and the

users need to access different resources, and there could be hundreds of apps with thousands of
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users. To manually create and maintain access control lists at this scale would require much effort

from the corresponding resource owners and quickly become unwieldy and hard to reason about.

Thus, the capability to rigorously represent and check what users can do with apps is crucial to

scaling access control for building apps.

6.2 Exact Access Requirements of Building Applications

Traditional access control patterns fail for two main reasons for buildings. Access Control

Lists (ACL) define fine-grained permissions to control what actions each user of an app can take

on each object. Using ACLs, a resource manager would need to manually approve the access per

user per app, which quickly becomes untenable. Grouping resources and users may provide more

descriptive patterns for access control. However, existing patterns, such as attributes [HFK+13]

and roles [San98], are not specific enough to represent only the exact resources and the access

conditions in buildings. Access control patterns for building apps should be specific enough for

resource managers to balance expressiveness, understanding, and scalability.

6.2.1 Analysis Setup

To holistically understand different access patterns, we have reviewed 125 papers pub-

lished at BuildSys1 from 2009 to 2018 and e-Energy2 from 2012 to 2018. The authors of these

papers have diverse industry and academic backgrounds, use heterogeneous testbeds ranging

from residential to office buildings, and cover an extensive range of building apps. While Balaji et

al. identified eight app categories [BBF+16b, BBF+18b], we expand them to 20 categories under

six high-level domains3. The first and the second columns of Table 6.1 list the app domains and

categories, respectively. The authors reviewed the papers and at least two authors cross-validated
1ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation.
2ACM International Conference on Future Energy Systems.
3The venues lack some app categories such as building security and healthcare though our analysis applies to

undiscovered categories in a similar manner.
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Table 6.1: Resource Access Patterns across Different App Categories.

An app may access only the resources meeting all the marked conditions. “rsrc” stands for
resource and “↔” for a relation between the two classes. Brick [BBF+16b, BBF+18b] compre-
hensively models “rsrc type” and “rsrc↔rsrc” but not the rest of the table.
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Maintenance FDD 6
Space Management 2

Building Environment Model 2
Modeling Structural Model 1

Energy Energy
Disaggregation

20

Analysis Appliance
Identification

1

Thermal Comfort
Model

7

Energy Model 8
Energy Footprinting 5

Efficient Model-Predictive
Control

11

Control Occupancy-Based
Control

21

Demand Response 20

Occupancy Occupancy
Detection

13

Modeling Occupancy
Identification

4

Activity Recognition 3
Behavior Modeling 2

User Web Displays 2
Interface Remote Controller 2

Participatory
Sensing

5

: #apps > 75% : 75% ≥ #apps > 50% : 50% ≥ #apps > 25% : 25% ≥ #apps > 0% : no apps

the results of each paper. The full analysis is available online4, and we cite app papers with their

4https://tinyurl.com/building-apps-access-control
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row number in this document as (R#). We identify three information dimensions that should be

examined for building apps to access the required resources:

• Who may use this app?

• What are the resources this app can possibly access?

• When, or in which context, can a user use this app?

Table 6.1 shows the access patterns required for each app category, based on the three dimensions.

They are complete in expressing the representative apps studied in this paper and we expect them

to generalize to other building apps.

6.2.2 Resource Access Patterns

Who: User Type

We mainly identify five types of users within buildings. Occupants typically use apps to

control their environment (e.g. manage temperature) or understand their behaviors (e.g., energy

usage). Building Managers oversee the operation of building with regard to space management,

equipment maintenance, energy efficiency, maintaining security, etc. They may use most of

the apps except the apps that primarily produce indirect results such as Energy Models. Some

apps are designed to be used by Other Apps: Analytical apps, such as a prediction model of an

electrical device’s energy consumption, may feed their output to other operative apps such as

demand response. Energy Providers are a unique type of users not residing in target buildings.

They collect information about a building’s energy usage and use that to control the building

equipment either directly or indirectly through utility pricing or demand response events, in

order to stabilize the electrical grids. Some apps are agnostic to user types, e.g., a public energy

dashboard (R9) or a location-based controller (R60) , which Anybody can use.
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What: Resource Identification

Resource Types: Resource type is the most important class of information, as any

building app must access some resource(s), whether it be a temperature sensor, a light bulb, or an

office. The resource type is also critical for reasoning about security since different resource types

have different capabilities, with different consequences if breached. For example, upon a security

breach, a motion sensor may leak private occupancy information while an airflow setpoint could

physically damage the controlled equipment.

Resource Relations: Relations between resources connote their relative functionalities,

enabling precise resource identification. For example, the causal control dependence between

points are critical for Fault Detection and Diagnostics (FDD) (R33) ; when the supply airflow of

a VAV is anomalous, the corresponding actuator in the same VAV is required for analysis. Except

for apps that need to access all the resources of some type (e.g., a tool visualizing all the building

energy meters (R9) ), resource relations are a crucial information dimension for describing apps’

requirements.

Resource-User Relations: Resources serve, monitor, and/or are controlled by users, and

thus expressing these relationships is a key. We identify three kinds of such relations. First, in

buildings, space is often assigned to a person whether it is an office, a lab, or a desk. Consequently,

a sensor in an assigned space reveals information about the person, e.g., presence or schedule.

Thus, space-related apps, such as occupancy detection, need to get approval from the associated

person who is being monitored when accessing these resources. Note that while theoretically

everyone needs to approve an app’s access to their data, this process may be delegated to someone

like a building manager. Delegation is out of the scope of this paper though it is complementary to

any access conditions. Second, people use personal or allocated devices to customize the indoor

environment such as lighting (R60) . It is thus necessary to consider what devices each user

has. Lastly, user preferences are frequently used in apps that improve the occupants’ comfort

and productivity. We discover that multiple apps need user preferences over conditions such as
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lighting and temperature to control the environment for the users based on their locations (R43).

When: Access Context

Resource access may be temporally granted based on the user/app context, so as to prevent

overprivileged apps with constant access.

User Location: As a user is physically present in a particular space, apps related to

occupants can refer to the user’s location. For example, an app for occupancy-based HVAC

control (R72) is currently granted access to all the VAVs in an entire building all the time, whereas

it should access only some VAV when the user is nearby.

Resource State: An app may need to be active based on resources’ states. For example, a

lighting controller should be active only when the associated room is occupied. Note that, the

difference between user location and resource state is that the user’s location is specific to a target

user while a resource’s state is occupant agnostic.

Schedule: Temporal bounds may be explicitly defined, whether they are regular schedules

or temporal bookings.

Demand Response: Demand Response (DR) events rarely occur – usually several times

per year even for program participants. Only when a DR event happens should automated DR

apps be active, which have a powerful capability to control the entire buildings.

One-time Access: Data-driven apps need to access historical data for training, but once

they train their models, the data should not be accessible and only the trained models should be

used.

User Request: Apps such as remote controllers convey users’ intention to control the

system. An app’s request should be valid only when it can be verified to be from the actual user.
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Table 6.2: Access Control Patterns Supported in Existing Smart Building and IoT Platforms

System Who What When

Wave [AKA+19] Individuals Predefined groups No
BuildingDepot3 [bd319] Custom groups Tag-based groups No

NiagaraAX [nia] Individuals & Roles Each object No
Cloud IoTs [aws19] Individuals & Roles Each object No

ESO [SST18a] Individuals Each object Yes

6.2.3 An Example for Access Pattern Evaluation

To evaluate and approve an access request from an app, a BOS needs to first identify the

app and user, i.e., authentication, and then check its access pattern — whether the request satisfies

the information dimensions (i.e., columns defined in Table 6.1), including the user’s role, whether

the user is trying to access permitted resource(s), whether the user’s demand has expired, etc. For

example, an HVAC remote control app can be authorized only when an occupant (user type) is

trying to control the temperature setpoint (resource type) of the terminal unit (resource-resource

relations) in his/her office (resource-user relation) when (s)he sends a request (user request event).

However, we shall note that, as each app may uniquely describe its required resources

and the relations among them, i.e., resource group, the request approval process thus involves

interpreting a potentially tremendous set of combinations. Since it is impossible to exhaustively

predefine static resource groups in BOSes to cover all the possible patterns, and rather, BOSes

should be able to verify different information at runtime.

6.2.4 Existing Access Control Platforms

BOSes (and IoT platforms) use different access control models for evaluating information

sources, as summarized in Table 6.2.

General IoT cloud services (e.g., AWS IoT) and commercial BOSes (e.g., NiagaraAX

[nia]) support only ACLs and roles [San98] for authorization.An ACL is a list of permissions for
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various users on a single resource and each resource maintains its unique ACL. Thus, although

ACLs and user roles alone could provide stringent access controls, even in one building, a system

manager would have to laboriously maintain an immense number of ACLs for tens of apps and

hundreds of users. To overcome ACLs’ limited expressibility, many access control patterns have

been proposed for multi-tenant cloud platforms [NDdL16]. However, these models are often too

specialized for computational resources, lacking interleaved relationships, and the context barely

changes over time while the users’ behaviors and built environments change over time.

Wave [AKA+19] and BuildingDepot3 (BD3) [bd319] support grouping resources for

authorizing apps. Wave allows delegating the authorization of a group of resources to another

entity, but does not specify the definition of groups, which could be based on the hierarchy of

location or equipment. In addition, apps need different groupings to follow the principle of least

privilege, as they may need different resources in the same group (e.g., on the same floor.) For

example, assuming an instance of the HVAC remote control app implemented with Wave that

groups the resources based on rooms, it will be allowed to take any actions on all the data points

(commonly ∼ 15) in a room, whereas it only needs to read the temperature sensor and change the

temperature setpoint. Such grouping unnecessarily exposes more resources to the app and the

ability to control safety-related points such as a minimum airflow setpoint.

BD3 [bd319] allows flexible grouping over resources based on tags. For example, a group

may consist of all the sensors with the “temperature” tag. BD3’s grouping is more flexible than

Wave’s as a resource may belong to multiple groups. Still, the groups are manually defined and

might not cover all the possible patterns.

Furthermore, Wave and BD3 do not employ contextual information such as a “user request”

event. An occupant might use the HVAC remote controller infrequently, e.g., when she is working

outside the regular schedule or during atypical weather. Thus, the app does not have to be granted

access for the user all the time. Instead, a BOS should incorporate a temporal authorization, such

as to set an expiration date or to schedule timed activation, while tracking the relevant events
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from trusted sources. Environmental Situation Oracles (ESOs) [SST18a] perform access control

based on events that can be generalized into When-type information. It is necessary to incorporate

dynamic events with metadata from different sources for the most general and expressive access

control patterns.

Still, while buildings are a multi-tenant platform, none of the aforementioned systems

are designed for apps serving multiple users, but rather they consider an app as a standalone

entity. When the HVAC remote controller is implemented with these systems, the app would

have permissions for the superset of all the possible users’ all the time, thus being unnecessarily

overprivileged. In other words, the app would be able to access hundreds of the terminals units in

the entire building all the time, while it should only access the rooms’ terminal units that users

actually request.

6.3 Access Control Patterns

We have shown that Who, What, and When are the three authoritative information dimen-

sions to tightly describe all the apps’ access patterns, which none of the existing BOSes represent

them comprehensively. For the secure adoption of smart building apps at scale, we identify

several design considerations for access control:

• Instead of preconfiguring resource groups, BOSes should adopt flexible groupings over the

complete view of building systems due to the heterogeneous apps’ access patterns. (What)

• BOSes should have a way to join a building’s metadata with the users’, and users should be

a part of the system modeling process. (Who and What)

• The metadata of buildings and users should be rigorously maintained. Access control

patterns would rely on the metadata, applied to all the resources. Automated verification

processes for metadata correctness is also desirable.
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• Resources’ context should be easily verifiable and it should be describable inside access

patterns from apps (When).

• An app’s access capability should be dynamically determined based on its users and the

context at runtime, instead of subsuming all the potential access requests.

Based on the above considerations, we introduce Access Control Patterns (ACPs) where

an app’s access behavior is represented through a pattern consisting of queries, instead of a static

permission list such as ACL. With ACP, resource owners do not have to evaluate all the resources

one by one manually. Instead, they need to interpret ACPs and put trust in the related data sources.

Such data sources may include actual people governing metadata, such as Human Resource (HR)

managers in charge of assigning offices to their employees, or sub-systems producing data, such

as a localization system.

The basic model to represent What is Brick that can precisely represent entities via their

types and relationships with each other. Besides, we add Person Class to Brick to represent

any human actors with buildings. People’s relationships with resources are a key signifier for

determining apps’ permission over resources. For instance, a tenant who has an office would

be able to access the temperature information of the office. Person types are also important

as identified in Section 6.2.2. For example, a building manager would likely be able to access

equipment status throughout the building. As a starting point, we introduce a few concepts

including person types (e.g., Tenant and Building Manager) and their relationships with other

Classes (e.g., manages and hasOffice) as visualized in Figure 6.2.

ACP should also include When type information, which is often represented by actual

data of resources such as timeseries data and structural information. Timeseries data represents a

device’s status or a person’s location, and a person’s location could be exploited together with

structural information, such as the geometry of the building, to identify proximity between a

person and a particular space (e.g., whether the person is currently in a specific room or not.)
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Figure 6.2: The Information Model for Access Control Patterns

It means that the combination of multiple databases represents access patterns, as described in

Figure 6.2. Points are associated with timeseries streams in a timeseries database, and structure

information of locations is stored in a structure database, for example, in the format of geometries5.

Thus, we define ACPs as a set of federated queries to accommodate the different data

models altogether. Figure 6.3a shows an example federation of heterogeneous queries. The

ACP consists of two data sources as Brick/SPARQL for metadata and PostgreSQL6. SPARQL

data model is explained in depth in Chapter 3. The timeseries data table in PostgreSQL, as in

Figure 6.3b, has columns of UUID, time, and values that could be either number or text7. We

can join the results from a set of queries sequentially over the shared variables. The queries

together can represent any combination of Who, What, and When, and they are comprehensible to

resource managers, especially when the queries are interpreted as a natural language. Figure 6.3c

gives an example interpretation of the federated query in a human language, which can be

either manually verified in advance or automatically translated [MLL99, NNBU+13]. Further

consolidation and optimization of query processing remain to be future work while there is

existing work [EKB17, SHH+11, DES+15].

5We use PostGIS [pos] as an experimental implementation.
6More precisely, we use TimescaleDB extension in PostgreSQL. TimescaleDB: https://www.timescale.com/
7The value types could be extended further in the future.
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1 queries:
2 - - brick
3 - >
4 select ?user ?user_loc ?znt ?room where {
5 ?user a brick:Tenant.
6 ?znt a brick:Zone_Air_Temperature_Sensor.
7 ?znt brick:hasLocation ?room.
8 ?room a brick:Room.
9 ?user brick:hasPoint ?user_loc.

10 ?user_loc a brick:Person_Location.
11 }
12 - timeseries
13 - >
14 SELECT uuid = ?user_loc AND text = ?zone
15 AND time > now() - interval '5 minute';
16 shared_variables:
17 - ?user_loc
18 - ?zone

(a) An Example Query Federation in YAML

This example query merges two different queries with
Brick and timeseries data. The result of the first query,
specified by shared variables, is embedded into
the next query. For access control, if the result of the
merged query is not empty, the corresponding request
is authorized.

1 Column Type Nullable
2 --------+----------+----------
3 uuid text not null
4 time timestamp not null
5 number double
6 text text

(b) The Table Schema for Timeseries Data

There are four columns in this table. uuid
represents the unique identifier of a point.
time is for the timestamp of the specific
datum. number and text are the values
while different points could have different
data types.

1 Any registered tenant can read the temperature sensors
2 located in her/his office when she/he is in the office.

(c) A Natural Language Version of the Federated Query in Figure 6.3a

Figure 6.3: The Representation of an Access Control Pattern in a Federated Query
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6.4 Dynamic Dual Authorization Workflow

With ACPs, we can precisely represent under which conditions an app is allowed to access

specific resources. In this section, we present an authorization workflow to enforce ACPs in

actual systems tightly.

Traditional authorization mechanisms such as OAuth2 [Har12a] approves an app to access

a certain set of resources statically. However, such static authorization is insufficient for building

app frameworks, as discussed in Section 6.2. First, building apps are often multi-tenant apps

where multiple users can use an app to access different sets of resources. For handling all the

requests for the multiple users, an app needs to maintain a superset of permissions that all the

users need. Second, there are dynamic conditions (When) to tightly represent ACPs. The results

of dynamic conditions are unknown when the app is approved.

We present a Dynamic Dual Authorization Workflow (DDA). In DDA, resource owners do

not statically delegate their authority for using resources to an app but rather approve it based on

its ACP which represents all the potentially needed resources and access conditions. ACPs are

evaluated at runtime because it may include dynamic conditions as well as those preventing an

app from subsuming all the potential authority continuously.

For the above properties, DDA consists of two processes as offline app approvals and

online authorization. In the app approval process, an app is approved by owners of all the

resources potentially it can access. The app’s developers need to represent its ACP accurately,

and resource owners need to understand what the app can potentially access from the ACP. As

we have shown in Figure 6.3c, representing the patterns in the natural language would help the

resource owners to understand the app’s effects.

For resource owners, approving an app’s ACP means that they put trust to the people

who could control the related information. An ACP’s related metadata and data change over

time, and so do the results of the ACP. Assume an owner has approved a Web thermostat app

161



Resource
Owner 

Tenant

System
Manager

App: Web 
Thermostat

Building Model in Brick

RoomRoom

Temp

same

hasOfficeHas
location

Any tenant can read 
temperature sensors 
of his/her office

understands approves

trusts

System
Metadata

User
Metadata

could
access

has ACP

manages

Access 
Control 
Pattern

manages

HR
Manager

Figure 6.4: The Trust Model in Dynamic Dual Authorization Workflow

that controls the HVAC for occupants’ rooms. Its ACP is, as described in Figure 6.4, that any

tenant can read the Temperature Sensor in her/his office. It means that the app can potentially

access any rooms’ AC given users, whether the users already exist when the app is approved

or come after the approval. Thus, resource owners approve an app based on their trust in how

the related metadata and data are maintained. For example, assume only an HR manager can

register all the users. The approvers believe that the HR manager will behave in a trustworthy

manner and that the BOS will allow only the HR manager to change user-related metadata. In

this way, the resource owner can avoid putting too much authority to an app and instead distribute

partial authorities to different actors for the app to be actually authorized. Figure 6.4 shows

the relationships. Thus, an owner’s authority delegation is partial and should be dynamically

complemented by the app’s access contexts.

Once an app is approved, users could use it if its ACP is satisfied at the moment of the
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Figure 6.5: Dynamic Dual Authorization Workflow for Apps in Buildings

request. Figure 6.5 summarizes the entire online authorization process. (1) The approved app can

be authenticated, for example, through a pair of client identifier and secret. (2) A user logins to

the specific authentication endpoint that the BOS maintains for the app. Both of the authentication

processes produce certificates that they are authenticated. This is to keep user information from

apps as well as not to overprivilege apps. (3) When the BOS confirms the user’s login, it activates

the corresponding pattern evaluator that evaluates the app’s ACP for the user, continuously if

necessary. (4) The evaluator updates the permission look-up table caching the information about

whether a user has access to a resource through an app. (5) The user from a browser can send

requests to the app with the user certificate, and (6) the app can embed the combination of the

app’s certificate and the user’s into an actual request to the API endpoint. (7-8) The API endpoint

can check if the user within the app has access to the requested resources in the permission table,

and then (9) the app can finally access the resource. Through this workflow, an app’s request is

dynamically evaluated under the exact context of requests instead of a superset of all the possible
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access throughout the app’s lifetime.

6.5 Example Applications with Brick

Given the BOS components (Section 6.1), Access Control Patterns (ACPs) (Section 6.3),

and Dynamic Dual Authorization Workflow (DDA) (Section 6.4), we exemplify the development

procedure via the implementation of real apps, Genie, a Web thermostat, and VEnergy, an energy

dashboard.

6.5.1 Genie, a Web Thermostat

Genie is a Web thermostat providing users control of the Air Conditioning (AC) unit

for the users’ offices [BKWA16]. Compared with physical thermostats, Genie is functionally

superior; Genie is more accessible, informative, programmable, and robust. The primary function

of Genie consists of informing the status of the room’s AC to the user and allowing the user to

control the room’s AC.

Genie’s app logic consists of identifying the right offices for the user and then appropriately

visualizing/controlling the offices’ relevant points. First, Genie identifies what rooms to control

based on the office identification query as in Figure 6.6a, and we model such information as

hasOffice between users and rooms. Genie can either potentially visualize the list of the rooms

for a user to select which room to control. Figure 6.6b describes the query for the access pattern.

To either understand the status or control, Genie needs to access the relevant points for a specific

room, including Temperature Setpoint for adjusting the target temperature, Occupancy -

Command for turning on/off the corresponding HVAC unit, and Temperature Sensor of the

room. Additionally, Genie might visualize energy usage of the user’s room represented by

Thermal Power Sensor. All of these points are associated with a certain VAV governing the

room’s associated HVAC Zone. Both of the ACPs specify the user type as Occupant to only allow
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1 @prefix brick: <https://brickschema.org/schema/1.1.0/Brick#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
3

4 SELECT ?office WHERE {
5 <A_USER> brick:hasOffice ?office.
6 ?office rdf:type brick:Room.
7 <A_USER> rdf:type brick:Occupant.
8 }

(a) Genie’s ACP for Identifying Offices in Brick/SPARQL

A USER may be replaced by an actual user’s identifier. This query will return all the offices registered for
the specific user.

1 @prefix brick: <https://brickschema.org/schema/1.1.0/Brick#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
3

4 select ?znt ?zntsp ?meter ?cmd where {
5 ?znt rdf:type brick:Zone_Air_Temperature_Sensor.
6 ?zntsp rdf:type brick:Zone_Air_Temperature_Setpoint.
7 ?cmd rdf:type brick:Occupancy_Command.
8 ?meter rdf:type brick:Thermal_Power_Sensor.
9 ?vav rdf:type brick:VAV.

10 ?vav brick:hasPoint ?znt.
11 ?vav brick:hasPoint ?zntsp.
12 ?vav brick:hasPoint ?occ.
13 ?vav brick:hasPoint ?meter.
14 ?zone brick:isFedBy ?vav.
15 ?zone rdf:type brick:HVAC_Zone.
16 <A_OFFICE> brick:isPartOf ?zone.
17 <A_USER> brick:hasOffice <A_OFFICE>.
18 <A_USER> rdf:type brick:Occupant.
19 }

(b) Genie’s ACP for Accessing HVAC Points

A USER may be replaced by an actual user’s identifier and A OFFICE is replaced by the office’s identifier of
interest, which is retrieved from the previous query in Figure 6.6a. The query will return all the points
functioning for A OFFICE’s HVAC unit.This query searches for VAVs but it can be generalized into HVAC if
necessary. This access pattern does not have dynamic conditions which could provide a more tight bound
over this pattern such as locational information as in Figure 6.3a.

Figure 6.6: Genie’s Access Control Patterns (ACP) in Brick/SPARQL

While these patterns can be directly used as resource discovery queries inside the app, they also
regulate the user type as Occupant, which provides more information about Who may use the
app for resource owners to determine approval.
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1 @prefix brick: <https://brickschema.org/schema/1.1.0/Brick#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
3

4 SELECT ?power ?target WHERE {
5 ?power rdf:type/rdf:subClassOf* brick:Power_Sensor. # Or Energy_Sensor.
6 # This includes Thermal_Power_Sensor, Electrical_Power_Sensor, etc.
7 ?power brick:isPointOf ?target.
8 ?target brick:isPartOf* ?building.
9 ?target rdf:type/rdfs:subClassOf* brick:Location.

10 FILTER ( NOT EXISTS{
11 ?target rdf:type/rdfs:subClassOf* brick:Room.
12 # Exclude room-level energy usage.
13 })
14 FILTER ( NOT EXISTS{
15 ?target rdf:type/rdfs:subClassOf* brick:Zone.
16 # Exclude zone-level energy usage.
17 })
18 <A_USER> rdf:type brick:Person.
19 }

Figure 6.7: VEnergy’s ACP for Identifying Energy Sensors in Brick/SPARQL

any occupants to use Genie.

6.5.2 V-Energy, an Energy Dashboard

Visualization of energy consumption would increase awareness of energy usage for the

people in an organization, which is the first step toward energy saving [AWG09]. Its basic

functionality is to visualize the timeseries data of energy usage (Power Sensor) for a particular

area (Location) in buildings. However, it should not reveal too fine-grained energy consumption

due to potential privacy leakage. For example, a room’s energy consumption is an indicator of its

occupancy. Thus, its ACP pattern, as in Figure 6.7, describes any type of Power Sensor which

measures a certain area, and the area could be a type of any location except types of Zone and

Room.
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6.6 Related Work

Access control has been well studied in various contexts over the past several decades.

The most prominent topics explored in access control are access control policies and architectures

to enforce access control. The basic categories of access control models are Discretionary Access

Control (DAC) [GD71], Mandatory Access Control (MAC) [BL73], Role-Based Access Control

(RBAC) [San98], and Attributed-Based Access Control (ABAC) [HFK+13]. In DAC (ownership),

MAC (system rules), and RBAC (users’ roles), access permission is determined based on explicit

relationships between a user’s identity and a resource. They all lack in expressivity of fine-

grained access control policies and dynamic conditions of access patterns commonly required

by IoT scenarios. On the other hand, ABAC can represent fine-grained contexts for access right

evaluation, and many IoT frameworks have adopted such models [RLPZ19]. While ABAC is a

general concept of using various attributes as a metric to make decisions on access control, it

is less expressive to represent attributes by simple properties of resources. Several efforts have

modeled and verified access policies using RDF for its expressivity [TMLK09, HPBL09] but

they lack in expressing dynamic conditions as in [NSB14, SST18b]. We have designed access

control patterns (ACPs) accommodating different data sources to represent various attributes in

smart buildings while ACPs can also specify trusted data sources.

There are also two basic categories of architectures for enforcing access control policies,

which are token-based architectures and policy-based architectures. OAuth [Har12b] is a widely

adopted token-based architecture for various platforms such as Web, smartphones, and IoT. A

user is once evaluated and receives an access token representing her permissions on resources. In

a native OAuth scenario, resource owners need to statically validate users per resource, which

is often not feasible for building apps that need many resources in dynamic contexts. IoT-OAS

automatically generates OAuth tokens based on application logic for users [CPG+14]. However,

its architecture relies on the OAuth workflow, and representing many resources at the same
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time needs many tokens for different services. XACML [ANP+03] is a standard architecture for

policy-based enforcement where policy is evaluated for access requests (mostly online). Because

access decisions can be automatically made based on a policy, policy-based architectures can

handle complex conditions needed by building apps. Our Dual Dynamic Authorization (DDA)

workflow additionally introduces multi-tenancy by considering apps and users at the runtime

policy evaluation stage to minimize an app’s access capability compared with static authorization

mechanisms. Because DDA evaluates policies at runtime, we need a careful optimization for

evaluating permissions, which we defer to future work.

6.7 Summary

While Brick by itself provides a complete representation for resource discoverability

to apps, there are other features required to deploy an app to arbitrary buildings in practice.

Representing and guaranteeing security measures is a necessity for building owners and property

managers to deploy third-party apps safely. Existing access control models fall short of represent-

ing comprehensible access control patterns in smart buildings with multi-tenancy and a primarily

relational resource representation. In this chapter, we have presented an extensive analysis of

125 app papers to find the exhaustive description of access requirements by apps as well as an

architecture to tightly enforce the access control patterns.

In our analysis of the app papers from two major venues, we have identified three

canonical information dimensions to represent access control patterns as Who, What, and When8.

To represent all the dimensions needed in evaluating access permissions, we have to refer to the

heterogeneous information sources including metadata and timeseries data. To accommodate

different information sources for access control, we have augmented Brick with user information

and proposed a model federating the augmented Brick and timeseries data.

8Again, When represents not just temporal information but dynamic conditions.
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We also found that, for the multi-tenancy of building apps and the dynamic conditions

in the access control patterns, users’ requests should be evaluated at runtime with the context of

users and apps together. Our proposed Dual Dynamic Authorization (DDA) workflow regulates

what an app can potentially access by users, instead of statically delegating a large set of

access permissions to the app. With DDA workflow, a resource owner approves an app with

a comprehensible but exhaustive access pattern, and the app is not overprivileged but keeps

the minimal authority in realtime. Our future work includes evaluating the usability and the

performance of access control patterns and DDA workflow in practice. We have developed and

tested two exemplary building apps, Genie, a Web thermostat, and VEnergy, an energy dashboard.

Through the apps, we have shown the feasibility of our workflow and the simplicity of the access

control patterns.

Our proposed access control patterns and security enforcement mechanism are the key

components to validate our thesis: a large-scale building app deployment should be built upon

a structured metadata. It is not scalable to list each of the components that an app can possibly

access in different contexts, because an app might access many resources which human managers

can hardly comprehend. Access control mechanisms should refer to the structured metadata,

Brick, and its associated data sources, which can be tightly enforced while human managers can

interpret the consequences at scale through access control patterns and DDA.
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Chapter 7

Future Work

The metadata models and methods presented in this dissertation have shown the feasibility

of a metadata schema, namely Brick, as a base for metadata organization. A successful use

of this schema can also enable a new regime of applications, Building Applications, that are

developed third-party companies, deployed and used by building operators as well as used

building occupants. This thesis provides early evidence that such applications and a new platform

are indeed feasible. However, in order to have an impact, this work and underlying schema needs

widespread education and adoption, activities that are beginning to appear.

The evolution of Brick Consortium (http://brickschema.org) represents a first step towards

both requirements. The consortium is currently led by Johnson Controls while participation

agreements are being pursued with both academic and industry partners. While non-profit

consortia have a rich history of adoption and success, there are challenges faced by Brick

consortium due to the nature of commercial activities and its intersection with security, safety

and public policy. It is not clear at this time, how widespread this adoption or buy-in into the

consortium will be, but it is a critical first step towards building a broader user community that

can provide feedback and develop new features and capabilities to create overall value.

As we discussed in Section 3.8, our primary role in designing Brick was to ensure the
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soundness, generality and integrity of the schema, whereas actual users would be needed to

fine-tune Brick’s scope. Brick will have a diverse set of users as a software engineer, database

experts, building engineers, policymakers, etc., and Brick will need to evolve to meet their needs

continuously.

As demonstrated in our examples, applications can be developed using the Brick schema

that makes them portable across buildings. Yet, the deployment process needs to be developed to

ensure necessary safety and privacy requirements that have not been a subject of this thesis. More

broadly, the existing building operating systems research has been centered on feasibility, optimal-

ity and to a limited extent on the cybersecurity of the systems. However, the guarantee of safety

and privacy is relatively unexplored and a continuing work in progress in the research community.

Without such guarantees, building owners would not simply install third-party application without

a human-centered agent (i.e., an applications provider company). An incorrectly implemented ap-

plication might malfunction equipment with significant financial or legal repercussions. Maturing

formal verification or model checking methods and tools could be used [LBL+16] by ensuring

capture and reasoning of the Brick model in a suitable logical framework amenable to these meth-

ods. Among the properties that will need to be ensure, there are specific needs stemming from

potential leak of private information by an application. A sandboxing or information flow control

architecture has been widely studied in the Web [GLS+12] and Android systems [BBH+15], and

these are being explored for use in smart buildings by projects such as CONIX (http://conix.io).

As we examined the metadata models and methods for buildings, we have found that

this is common in other system integration problems such as Internet of Things (IoT) and

smart cities [KSB+17]. A few projects have attempted to define a meta-structure to define the

core concepts that all the systems and possible apps would need [BAD+16a, BBB+14, KBKT15].

However, a major limitation continues to be an inadequate actual vocabulary to represent necessary

entities in a uniform manner. In principle, it is possible to repeat a Brick-style experiment

for bigger domains with the Brick’s structure to coherently extend concepts throughout the
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Classes. However, in the process, we would also need a much larger collaboration community

to organize important concepts in the target domains, along the lines described in Section 3.1.2.

Further, large-scale systems such as smart cities would face a similar problem of extracting

semantics out of unstructured information such as building metadata normalization, but at a

much larger scale and complexity. By contrast, Brick was possible because building metadata is

significantly more accessible from existing building systems than would be the case with Smart

Cities. Also, a city infrastructure is usually more operationally critical and privacy-sensitive

subject to extensive regulations by multiple administrative entities. We would need significantly

more infrastructure and workflows to carry out such research safely over such frameworks while

maximizing accessibility to the data and systems.
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Chapter 8

Conclusion

Recently, many researchers have shown the potential of optimizing and operating building

systems algorithmically to improve the quality of living and working environments through the

use of dynamic sensing and actuation capabilities. Indeed, buildings can be more energy-efficient,

accessible and controllable for their occupants, and more reactive upon various events such as

emergencies and dynamic pricing. Yet, such demonstrations have been limited to custom designed

strategies for individual buildings due to the heterogeneity of building systems, their information

captured through metadata generated and used by the building management systems. The inherent

potential for building as a sensing, computing and actuation platform remained unrealized because

of the manual “wiring” needed to tie each optimization procedure to individual buildings with

different information conventions, nomenclature and different configurations of its instruments.

This disparity between buildings and the needed application programming abstractions impedes

the seamless deployment of apps at any buildings, because of the lack of standard in how to

represent resources and their utilization methods.

This dissertation has focused on how to model and manage metadata for building systems

that can be used for capturing resources and entities in a standardized way so that building-

independent applications can consistently refer to underlying resources systematically across
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buildings, similarly to Hardware Abstraction Layer (HAL) in modern operating systems. With a

standard representation, apps can be agnostic to the heterogeneity in underlying hardware and

conventions.

In this dissertation, we have presented a metadata schema as a standard representation of

resources for buildings, and how to manage them at scale:

• We have presented Brick, a metadata schema to uniformly represent resources in buildings

that apps can refer to.

• We have presented two methodologies, Scrabble and Quiver, that can map unstructured

information sources in buildings into Brick with minimal human effort.

• We have presented a meta-framework, Plaster, composed of a programming interface and a

Web service, for different metadata methods.

• We have presented access control patterns with Brick and a dynamic dual authorization

(DDA) workflow that can tightly control building apps’ minimal access with Brick.

• We have exemplified Brick and DDA workflow with actual apps as Genie, a Web thermostat,

and VEnergy, an energy dashboard.

By evaluating the models and methods over real-world data and implementations, we have

shown the effectiveness and the feasibility of the models and methods. Brick can coherently model

buildings by representing canonical concepts as classes. Apps can rely upon Brick to identify

the right resources and represent their requirements. Our collection of metadata normalization

methods helps to bridge the gap between the formal model, Brick, and unstructured information

sources in the real world. Both the models and methods have been adopted in the industry in

various formats. Companies have either directly adopted Brick or developed their own schema

based on Brick. The research community and companies have used Scrabble and Plaster as a

baseline of their research or in their development process.
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Our broader vision is to enable buildings as a general application execution platform

similar to, for instance, Android app markets. Brick and our metadata mapping methods are

a stepping stone toward this vision as enabling coherent standardization of existing building

systems. However, to put trust in third-party apps, same as in smartphones, the entire Building

Operating Systems (BOSes) should provide usable security measures that building owners and

managers can easily interpret and safely trust at the same time. We have designed an access

control model based on Brick and Dynamic Dual Authorization (DDA) workflow based on a

comprehensive study of 125 app papers. The access control model and workflow can tightly

regulate apps’ access requirements while providing app manifests that app approvers, such as

building owners and managers, can easily interpret.

While we have demonstrated a definite progress towards greater accessibility to building

data and systems, Brick and its ecosystem are ultimately dependent upon various community

efforts including the other authors of the Brick code, community contributors, and actual users.

Brick can be useful only when the community shares the same philosophy. Various interest parties

should discuss and foster Brick schema and methods for the different parts of the building life

cycle. While we have shown feasibility of metadata models and methods, we continue to pursue

building an active community of system builders for smart building environments.

Our focus on buildings has enabled us to provide a successful demonstration of metadata

capture and use, the broader problem of managing heterogeneous data and systems appears in

many other domains. It would be a recurring theme whenever domains with heterogeneous

subsystems (or multiple domains) need to exploit computing engines in the loop for decision

making and knowledge discovery. Thus, even though its specification and implementation may

vary, the quintessential point in our main thesis would remain same in any other systems: always

schema-first.
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