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Abstract

Nonlinear dynamical system analysis based on embedding theory has been used for modeling and 

prediction, but it also has applications to signal detection and classification of time series. An 

embedding creates a multidimensional geometrical object from a single time series. Traditionally 

either delay or derivative embeddings have been used. The delay embedding is composed of 

delayed versions of the signal, and the derivative embedding is composed of successive 

derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to 

take multiple timescales into account. Both embeddings provide information on the underlying 

dynamical system without having direct access to all the system variables. Delay differential 

analysis is based on functional embeddings, a combination of the derivative embedding with 

nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent 

relevant dynamic features of time series data are selected from a pool of candidate models for 

detection or classification.

We show that the properties of DDEs support spectral analysis in the time domain where nonlinear 

correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. 

These can be efficiently computed with short time windows and are robust to noise. For frequency 

analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for 

higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier 

transform of multidimensional correlations. This method can be applied to short or sparse time 

series and can be extended to cross-trial and cross-channel spectra if multiple short data segments 

of the same experiment are available. Together, this time-domain toolbox provides higher 

temporal resolution, increased frequency and phase coupling information, and it allows an easy 

and straightforward implementation of higher-order spectra across time compared with frequency-

based methods such as the DFT and cross-spectral analysis.

1 Introduction

Delay differential analysis (DDA) uses delay differential equations (DDE) to reveal 

dynamical information from time series. A DDE unfolds timescales and couplings between 

those timescales. In nonlinear time series analysis, an embedding converts a single time 

series into a multidimensional object in an embedding space that reveals valuable 
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information about the dynamics of the system without having direct access to all the 

system’s variables (Whitney, 1936; Packard, Crutchfield, Farmer, & Shaw, 1980; Takens, 

1981; Sauer, Yorke, & Casdagli, 1991). A DDE is a functional embedding, an extension of a 

nonuniform embedding with linear or nonlinear functions of the time series. DDA therefore 

connects concepts of nonlinear dynamics with frequency analysis and higher-order statistics.

A Fourier series decomposes periodic functions or periodic signals into the sum of a 

(possibly infinite) set of simple oscillating functions (Fourier, 1822). The Fourier transform 

F(f) of the function f (t) has many applications in physics and engineering and is referred to 

as frequency domain and time-domain representations, respectively. The relationship 

between frequency analysis and the analysis of frequency or phase couplings in the time 

domain is poorly understood (see Hjorth, 1970; Chan & Langford, 1982; Raghuveer & 

Nikias, 1985, 1986; Stankovic, 1994).

This study introduces spectral DDE methods and applies them to simulated data. In a 

companion paper (Lainscsek, Hernandez, Poizner, & Sejnowski, 2015), the methods are 

applied to electroencephalography (EEG) data.

The letter is organized as follows. In section 2, DDA is introduced as a nonlinear time series 

classification tool. In section 3, functional embeddings serve as a link between nonlinear 

dynamics and traditional frequency analysis and higher-order statistics. The time-domain 

spectrum (TDS) and the time-domain bispectrum (TDB) are introduced. These are extended 

in section 4 to sparse data and in section 5 to the cross-trial spectrogram (CTS) and the 

cross-trial bispectrogram (CTB). The results are compared to traditional wavelet analysis. 

The conclusion in section 6 compares the complementary strength and weakness of time 

domain and frequency domain approaches to pattern detection and classification of time 

series.

2 DDA as a Nonlinear Classification Tool

Figure 1 illustrates the connections of DDA to nonlinear dynamics and global modeling. In 

nonlinear time series analysis, a single variable measurement (the blue box in Figure 1) 

comes from an unknown nonlinear dynamical system (pink box in Figure 1). In Figure 1 the 

Rössler system (Rössler, 1976) is used for illustration. A general existence theorem for 

embeddings in an Euclidean space was given by Whitney (1936). A generic map from an n-

dimensional manifold to a 2n + 1 dimensional Euclidean space is an embedding. Whitney’s 

theorem implies that each state can be identified uniquely by a vector of 2n + 1 

measurements, thereby reconstructing the phase space. This theorem is the basis for the 

embedding theorems of Packard et al. (1980) and Takens (1981) for reconstruction of an 

attractor from single time series measurements. Takens proved that instead of 2n + 1 generic 

signals, the time-delayed versions [y(t), y(t − τ), y(t − 2τ), …, y(t − nτ)] or the successive 

derivatives of one generic signal would suffice to embed the n-dimensional manifold. 

Although the reconstruction preserves the invariant dynamical properties of the dynamical 

system, the embedding theorems provide no tool to reconstruct the original dynamical 

system in the original phase space from the single measurement or the embedding.
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The Ansatz Library is a tool to reconstruct a general system from a single measurement that 

contains the original dynamical system as a subset (Lainscsek, 1999, 2011; Lainscsek, 

Letellier, & Gorodnitsky, 2003; Lainscsek, Letellier, & Schürrer, 2001). For example, for 

the Rössler system (Röossler, 1976),

(2.1)

the standard form (or the functional form of the differential embedding) is

(2.2)

where X = x2 and its successive derivatives define the new state-space variables X, Y, and Z. 

The function F(X, Y, Z) is explicitly

(2.3)

When we use the relations between the coordinates αr of the differential embedding and the 

coordinates ai,* the model of the Rössler system becomes

(2.4)

where the functions φx = φx(x, z) and φz = φz(x, z) are generic linear independent functions 

of x and z (see Lainscsek et al., 2003, and Lainscsek, 2011, for details). The parameters b 

and c specify the structure of the parameter space ai,* and d is an additional time-scaling 

parameter.
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Such a reconstruction is possible only for simple dynamic systems with no noise and can be 

seen as the theoretical limit for global modeling. It also shows that measurements from the 

same dynamical system on different timescales (and consequently frequency shifted) can be 

identified as belonging to the same dynamical system. Further, the time-scaling parameter 

can be reconstructed as a separate parameter. This is consistent with Takens’s theorem, 

which does not specify the sampling rate.

Since real-world data are noisy and generally originate from highly complex dynamical 

systems, global modeling from data is in general not feasible. Often it is sufficient to detect 

dynamical differences between data classes and quantify the difference. DDA can 

distinguish between heart conditions in EKG (electrocardiography) data (Lainscsek & 

Sejnowski, 2013) and EEG data between Parkinson’s patients and control subjects 

(Lainscsek, Weyhenmeyer, Hernandez, Poizner, & Sejnowski, 2013). Dynamical differences 

can be detected and analyzed by combining derivative embeddings with delay embeddings 

as functional embeddings in the DDA framework.

DDA in the time domain can be related to frequency analysis as shown in the next section. 

In linear DDEs (Falbo, 1995), the estimated parameters and delays of a DDE relate to the 

frequencies of a signal, and in nonlinear DDEs, the estimated parameters are connected to 

higher-order statistical moments.

3 Functional Embedding as a Connection Between Nonlinear Dynamics and 

Frequency Analysis

3.1 Linear DDE and Frequency Analysis

Lainscsek & Sejnowski (2013) show that the linear DDE (Falbo, 1995),

(3.1)

where xτ = x(t − τ), can be used to detect frequencies in the time domain: equation 3.1 with a 

harmonic signal with one frequency, x(t) = A cos(ωt + φ) can be written as

(3.2)

This equation has the solutions

(3.3)

This means that the delays are inversely proportional to the frequency f and the coefficient a 

is directly proportional to the frequency. For linear DDEs,
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(3.4)

a special solution is a harmonic signal with 2N − 1 frequencies,

(3.5)

and

(3.6)

where all delays τi are related to one of the frequencies. The expressions for the coefficients 

a are more complicated than in equation 3.3, and each of the coefficients a depends on all 

the frequencies in the signal.

Equation 3.1 can be expanded as a Yule-Walker equation (Yule, 1927;Walker, 1931; 

Boashash, 1995; Kadtke & Kremliovsky, 1999), . Applying the expectation 

operator , we get

(3.7)

For a harmonic signal with one frequency (this is a special solution of the linear DDE in 

equation 3.1; see Falbo, 1995, for details), x(t) = A cos(ωt + φ). This becomes:

(3.8)

and for sin(ωτ) = ±1 the special solutions for a and τ are

(3.9)

the same as in equation 3.3. For DDEs without explicit analytical solutions, Yule-Walker 

equations can be applied.

Lainscsek and Sejnowski Page 5

Neural Comput. Author manuscript; available in PMC 2015 March 26.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



The numerator in equation 3.7 can be rewritten as delay derivatives of the autocorrelation 

function in the case of a bounded stationary signal,

(3.10)

therefore,

(3.11)

Thus, the numerator in equation 3.11 is the delay derivative of the autocorrelation function 

〈x xτ〉. For a harmonic signal  with N frequencies, it is 

 and is used for pitch detection (Boersma, 1993; Roads & Curtis, 

1996).

The denominator 〈x2〉 will be used as frequency detector in the following way: Consider a 

signal

(3.12)

where  is the signal under investigation and  = D cos(Ωt + ϕ) is a probe signal. The 

expectation value  can be written in the form

(3.13)

The term 〈 〉 = 〈  D cos(Ωt + ϕ)〉 combines ℛ = 〈  cos(Ωt)〉 and ℐ = 〈  sin(Ωt)〉 used in 

discrete frequency analysis.
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3.1.1 Time Domain Spectrum—Let the amplitude of the probe signal be D = 1 

(arbitrary parameter). Then one way to define the time domain spectrum (TDS) is

(3.14)

L(Ω) is zero for frequencies Ω that are not part of the signal  and equal to the amplitude Ai 

of a frequency  if Ω = ωi, which follows directly from 

. The amplitude Ai is always positive, and cos(φi − ϕ) ranges 

between −1 and 1 with a maximum when ϕ = φi. For a given signal , we loop over a range 

of ϕ values between 0 and 2π and take the maximal value of . The 

value ϕ that maximizes cos(φi − ϕ) is then equal to the phase φi. Therefore, this 

simultaneously detects the amplitudes Ai and their phases φi in a signal. This method can 

detect frequencies and couplings only at lower than half the sampling rate since , 

where fs is the sampling rate, in cos(Ωt + ϕ) with the time t given in time steps needs to be 

smaller than π. This is the same as the Nyquist frequency limit for traditional methods 

(Nyquist, 1928).

3.1.2 Comparison to the Goertzel Algorithm and Discrete Frequency Analysis

—In discrete frequency analysis for a signal , the expectation 

values ℛ = 〈  cos(Ωt)〉 and ℐ = 〈  sin(Ωt)〉 are computed. ℛ and ℐ are nonzero only if Ω is 

contained in the signal. The amplitude of that frequency is then , and 

the phase is . The Goertzel algorithm (Goertzel, 1958; Jacobsen & Lyons, 

2003) is the numerical implementation of this principle and gives the same results as the 

computation of the TDS.

The TDS L(Ω) differs from discrete frequency analysis in two ways. First, D cos(Ωt + ϕ) is 

multiplied with the signal  instead of cos(Ωt). Second, only 〈 〉 = 〈  D cos(Ωt + ϕ)〉 is 

computed instead of ℛ = 〈  cos(Ωt)〉 and ℐ = 〈  sin(Ωt)〉. Amplitudes and phases are 

extracted from 〈 〉 instead of  and . An advantage of 

L(Ω) is that it can be more easily expanded to the computation of higher-order spectra (e.g., 

the bispectrum).

3.2 Nonlinear DDE and Bispectral Analysis

3.2.1 Quadratic Phase and Frequency Couplings—Frequency components do not 

always appear completely independent of one another. Nonlinear interactions of frequencies 

and their phases (e.g., quadratic phase coupling) cannot be detected by a power spectrum—

the Fourier transform of the autocorrelation function (second-order cumulant)—since phase 

relationships and frequency couplings of signals are lost. Such couplings are usually 

detected by bispectral analysis (Tukey, 1953; Kolmogorov & Rozanov, 1960;Leonov & 
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Shiryeav, 1959; Rosenblatt & Van Ness, 1965; Brillinger & Rosenblatt, 1967; Swami, 2003; 

Mendel, 1991; Fackrell & McLaughlin, 1995). The bispectrum or bispectral density is the 

Fourier transform of the third-order cumulant (bicorrelation function).

Consider the signal x(t) = A1 cos(ω1t + φ1) + A2 cos(ω2t + φ2), which is passed through a 

quadratic nonlinear system h(t) = bx2(t) where b is a nonzero constant. The output of the 

system will include the harmonic components: (2ω1, 2φ1), (2ω2, 2φ2), (ω1 + ω2, φ1 + φ2), 

and (ω1 − ω2, φ1 − φ2). These phase relations are called quadratic phase coupling (QPC) in 

general and quadratic frequency coupling (QFC) when the phases are zero (φ1 = φ2 = 0). For 

the signal x(t) = cos(ω1t) + cos(ω2t) + cos(ω3t), QFC occurs when ω3 is a multiple of one of 

the frequencies or of the sum or difference of the two frequencies.

The third-order cumulant is C3(τ1, τ2) = 〈x(t)x(t − τ1)x(t − τ2)〉, and the traditional 

bispectrum is the double Fourier transform of C3,

(3.15)

where ℱ(f) is the Fourier transform of x(t). An example is given in Figure 2.

3.2.2 Nonlinear DDE—The simplest nonlinear DDE,

(3.16)

where xτ = x(t − τ), extends linear spectral analysis to quadratic coupling analysis or 

bispectral analysis. This equation can be solved in the same way as the linear DDE:

(3.17)

For a harmonic signal with three frequencies x(t) = A1 cos(ω1 t + φ1) + A2 cos(ω2 t + φ2) + 

A3 cos(ω3 t + φ3), the coefficient a is nonzero only if there is quadratic coupling between the 

frequencies: ω3 = ω1 ± ω2, 2ω1, 2ω2, , or . Only the numerator  contains quadratic 

coupling information and can be rewritten for a bounded stationary signal:

(3.18)

The denominator in equation 3.17 is a constant independent of up to quadratic couplings in 

the signal. Therefore equation 3.17 can be rewritten as

(3.19)
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For , the expectation value is

(3.20)

Therefore,  is zero for a signal without QFC (Aj,k = 0) and nonzero if there is QFC in 

the signal. Without loss of generality, the delay τ can be set to zero in equation 3.20 and 

, and the coefficient a of the nonlinear DDE in equation 

3.16 is then nonzero only if QFC is present in the signal (Aj,k ≠ 0) and can be used as a 

bispectral detector. 〈x3〉 can detect the presence or absence of QFC but not the frequencies 

involved. To determine the frequencies, the time domain bispectrum is introduced.

3.2.3 Time Domain Bispectrum—To determine the frequencies of QFC, consider a 

signal

(3.21)

where  is the signal under investigation and  = D cos(Ωt + ϕ) is a probe signal. The 

frequencies fj and fk are coupled. 〈x3〉 is then
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(3.22)

The term 〈  2〉 is nonzero only when Ω̃ = 2Ω = ωi. It therefore can be used as an 

alternative definition of the time domain spectrum TDS in equation 3.14:

(3.23)

To define the time domain bispectrum (TDB), we set in our analysis D = 1:

(3.24)

The expression max 〈 2 〉 is zero for frequencies Ω that are not coupled and non-zero 

according to equation 3.22 for the coupling frequencies ωj ± ωk, ωj, ωk, and 2ωi. To get only 

a nonzero expression for ωj + ωk, ωj, and ωk, we use L(Ω̃) in equation 3.24 to filter out 2ωi.

Note that unlike the bispectrum, which is a function of two frequencies (see Figure 2), the 

TDB is a function of a single frequency. In Figure 3, the TDB is shown for the same signal 

used to illustrate the traditional bispectrum in Figure 2. Note that the 40 Hz component, 

which is not coupled, is absent in both the TBS and the bispectrum but is present in the 

TDS.

3.3 General Nonlinear DDE as Generalized Nonlinear Spectral Tool

Combining linear and nonlinear terms in a DDE makes all coefficients nonlinear. If we, for 

example, combine the DDEs of sections 3.1 and 3.2,

(3.25)

the solution can be written as

(3.26)

The coefficient a1 as well as the coefficient a2 contain both linear and nonlinear statistical 

moments. The moments and coefficients for combinations of sinusoids are given in Table 2 

with and without couplings.

3.3.1 Example 1: Data with No Couplings—To explore the properties of equation 

3.26, we start with a harmonic signal with four independent frequencies and no couplings:
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(3.27)

Using equation 3.26, we get for the two coefficients,

(3.28)

where . The nonlinear coefficient a2 vanishes in 

this case.

3.3.2 Example 2: Data with Couplings—Replace the fourth term in equation 3.27 with 

a coupling frequency,

(3.29)

The two coefficients are:

(3.30)

where  and A(2) = A2A3A4.

Equation 3.25 is therefore a QFC detector. For any signal without QFC, the coefficient a2 

will vanish. The detection of nonlinear couplings in the data is important in underwater 

acoustics (Nikias & Raghuver, 1987).

Lainscsek and Sejnowski Page 11

Neural Comput. Author manuscript; available in PMC 2015 March 26.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



4 Sparse Data

Real-world data often contain data segments that cannot be used for the analysis, such as 

artifacts in electroencephalography (EEG) data. Equation 3.14 can nonetheless be used even 

when many data points are missing. For a sparse signal x(T), where T is the vector of times 

for which the signal is good, the probe signal cos(ΩT + ϕ) can be used to detect the spectrum 

or any higher-order spectra. Equation 3.12 can be modified as

(4.1)

where T is a sparse time vector. The upper plot in Figure 4 shows an example where only a 

few data points of a signal were used. Those data and their time points were then used to 

compute the TDS using equation 3.14. The TDS for these sparse data is shown in the lower 

plot of Figure 4. Note that the sparse data have to satisfy the restrictions of the Nyquist 

theorem (Nyquist, 1928). Equation 3.24 can be used for the bispectrum of sparse data in the 

same way.

5 Cross-Trial Spectrogram and Bispectrogram

The same method can be used when very short segments of data need to be analyzed and 

there are multiple trials of the same experiment, as in event-related potential (ERP) analysis 

(Davis, 1939; Davis & Davis, 1936;Sutton, Braren, Zubin, & John, 1965; Luck, 2014). 

There are two different ways to define a cross-trial spectrogram (CTS). The first assumes 

that there is cross-trial phase coherence; the second does not.

5.1 Phase Coherence Across Trials

The first method assumes phase coherence across trials. Consider a signal x1(T1), x2(T2), …, 

xn(Tn) where all time series xi(Ti) are centered around the same event (e.g., a stimulus S for 

EEG data). Then all time vectors Ti can be considered equal and the signal can be 

concatenated into a single vector, x1(T), x2(T), …, xn (T); Li(Ω) is computed for this single 

vector. For a short data window that would be too short for spectral analysis, the data of all 

trials can be combined and the spectrum can be computed by using a probe signal with a 

time vector that consists of n repetitions of the time vector T for n data segments. In this 

manner, a cross-trial spectrogram can be computed by using short sliding windows when 

there is some phase coherence in the relevant frequencies.

To test this, we generated a signal i = i +Yi, where  is white noise andYi are short-

phase coherent (phases varied in a range from0 to π for each trial) data segments of 150 ms 

(t =[126, 279] ms, [350, 500] ms, [576, 726] ms, and [800, 950] ms). The frequencies in the 

first segment are 10, 20, and 30 Hz (QFC); the single frequencies in the following three 

segments are 20, 30, and 24 Hz, respectively. Twenty-one second data segments (i = 1, 2, 

…, 20) at a sampling rate of 500 Hz were generated to simulate data from repeated trials in 

an experiment.
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Figure 5a shows the mean signal of these 20 trials. Sliding windows of 100 ms (50 data 

points) with a window shift of 10 ms (5 data points) were used to compute the CTS in 

Figure 5c. This CTS was compared with traditional Morlet wavelet analysis (Mallat, 2008) 

in Figure 5b.

In a companion paper (Lainscsek et al., 2015), we apply this method to EEG data.

5.2 No Phase Coherence Across Trials

The second cross-trial method does not assume phase coherence across trials and is defined 

by computing Li(Ω) in equation 3.14 for each trial using sliding windows and then averaging 

over the 20 spectra Li(Ω) (i = 1, 2, …, 20).

Figure 5c shows the CTS assuming phase coherence in the signal, and Figure 5d shows the 

phase-independent CTS. All three methods identified the frequencies correctly, and both 

CTS methods produce similar results (the correlation coefficient between Figures 5c and 5d 

is 0.96).

The same experiment was repeated for completely phase-randomized data segments Yi. 

Figure 6a shows the mean of the data, Figure 6b the traditional Morlet wavelet analysis, 

Figure 6c the CTS assuming phase coherence, and Figure 6d the phase-independent CTS. 

Only the phase-independent CTS can identify the frequencies correctly. The correlation 

coefficient between Figures 6c and 6d drops to 0.15. Therefore, the correlation coefficient 

between the phase-dependent CTS and the phase independent CTS can be used to quantify 

the amount of phase coherence.

If multiple channels are available, data from different channels or different trials can be 

combined. Such cross-trial spectra are different from the cross-spectral density (Bracewell, 

1965; Papoulis, 1962) based on the cross-correlation between two signals.

Since the TDB in equation 3.24 is a function of a single frequency (one-dimensional plot 

instead of a two-dimensional plot for the traditional bispectrum), the TDB bispectrogram 

can be obtained in the same way as a spectrogram. The single-trial, cross-trial, or cross-

channel TDS (or spectrogram) can be extended to a single-trial, cross-trial, or cross-channel 

bispectrogram (CTB) by replacing L(Ω) with B(Ω). The bispectral detector 〈S3〉 in Figures 5f 

and 6f indicates the presence of QFC in the first data segment, and CTB in Figures 5e and 6e 

show couplings in the first data segment with the three coupled frequencies 10, 20, and 30 

Hz (10 + 20 = 30) present. There is no frequency coupling in other data segments.

6 Discussion

Delay differential analysis is a nonlinear dynamical time series classification and detection 

tool based on embedding theory. It combines aspects of delay and differential embeddings in 

the form of delay differential equations (DDEs), which can detect distinguishing dynamical 

information in data. We focused here on the connection between traditional frequency 

analysis and linear DDEs and between higher-order statistics and nonlinear DDEs.
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We introduced a new set of time domain tools to analyze the frequency content and 

frequency coupling in signals: the time domain spectrum(TDS), the time domain bispectrum 

(TDB), the time domain cross-trial (or cross-channel) spectrogram (CTS), and the time 

domain cross-trial (or cross-channel) bispectrogram (CTB). In addition, the CTS has a 

phase-dependent and a phase-independent realization.

These new time domain methods are complementary to traditional frequency domain 

methods and have several advantages:

• Because these new DDA spectral methods use time itself as a variable, they can be 

applied cross-trial and on sparse data.

• DDA can be applied to short data segments and therefore has an improved time 

resolution compared with the fast Fourier transform, which was developed to be 

computationally fast on longer time series.

•
Because some numerical components of  noise are not present, the new time 

domain spectrogram introduced here does not need normalization across 

frequencies. The sources of  noise will be discussed elsewhere.

• DDA is noise insensitive (Lainscsek, Weyhenmeyer et al. (2013)). Short data 

segments from the Rössler system with a signal-to-noise ratio between 10 dB and 

−5 dB (more noise than data) were well separated. This separation was also 

correlated to the dynamical bifurcation parameter and generalized well to new data.

• DDA can discriminate dynamical differences in data classes using a small set of 

features, thus avoiding overfitting. With DDA, only five features are sufficient for 

many applications, whereas traditional methods often rely on many more features. 

The goal is not to achieve the most predictive model but the most discriminative 

model.

• Higher-order nonlinearities are intrinsically included in DDA, in comparison with 

nonlinear extensions of spectral analysis, which are not straightforward and are 

complicated.

There are many applications of DDA, including classification of electrocardiograms 

(Lainscsek & Sejnowski, 2013), electroencephalograms (Lainscsek, Hernandez, 

Weyhenmeyer, Sejnowski, & Poizner, 2013), speech (Gorodnitsky&Lainscsek, 2004), and 

sonar time series (Lainscsek & Gorodnitsky, 2003).
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Figure 1. 
Delay differential analysis (DDA) and global modeling.
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Figure 2. 
Bispectrum magnitude (see equation 3.15) for the signal 

 with the frequencies, amplitudes, and 

phases listed in Table 1.
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Figure 3. 
Time domain spectrum TDS L(Ω) and time domain bispectrum TDB B(Ω) for the signal 

 with the frequencies, amplitudes, and 

phases listed in Table 1.
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Figure 4. 
Frequency detection from sparse data. Only 101 data points circled from a signal  = cos(2π 

ft) with f = 80 Hz and a sampling rate of 500 Hz and added white noise (SNR = 0 dB) (upper 

plot) were used to detect the frequency f (lower plot).
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Figure 5. 
Cross-trial spectrogram (CTS) of phase-coherent simulated data with white noise. Four 

segments of noisy short signals of 10, 20, 24, and 30 Hz with some phase coherence added 

to the data. Horizontal white dashed lines indicate frequencies present in each segment. (a) 

Mean over the 20 trials. (b)Wavelet spectrogram. (c) Phase-dependent CTS. (d) Phase-

independent CTS. (e) Bispectrogram CTB. (f) bispectral detector .
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Figure 6. 
Cross-trial spectrogram (CTS) of nonphase-coherent simulated data with white noise. Four 

segments of noisy short signals of 10, 20, 24, and 30 Hz with no phase coherence added to 

the data. (a) The mean over the 20 trials. (b) The wavelet spectrogram. (c) The phase-

dependent CTS. (d) The phase-independent CTS. (e) The bispectrogram CTB. (f) The 

bispectral detector .
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Table 1

Frequencies fi, Amplitudes Ai, and Phases φi for the Numerical Experiments Shown in Figures 2 and 3.

i fi Ai φi

1 31 1.14 0.53

2 40 0.92 1.14

3 69 1.13 0.09
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Table 2

Moments and Coefficients of Equations 3.25 and 3.26.

Couplings Present No Couplings

〈x2〉 Const. Const.

〈x3〉 Const. 0

〈x4〉 Const. Const.

〈xτ x〉 f (ωi, j, k, τ) f (ωk, τ)

f (ωi, j, k, τ) 0

a1 f (ωi, j, k, τ) f (ωk, τ)

a2 f (ωi, j, k, τ) 0

Note: The coefficient a2 is nonzero only if QFC is present in the data.
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