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The dissertation seeks to understand how urban commuters adjust their schedules and 

modes to congestion, as well policy implications of this adjustment.  An equilibrium 

simulation model of commuting traffic on a hypothetical, urban highway corridor is 

developed.  The demand side is a discrete choice model of mode and time of day, estimated 

with data from the San Francisco Bay Area.  The supply side is a speed-flow function that 

predicts travel time from flows leaving the corridor. 

The research has three objectives: to simulate the effects of capacity expansion, 

optimal toll, and six other pricing policies; to test hypotheses relating to schedule shifts in 

response to congestion and policy changes; and to estimate biases in policy effects when 



 
 xiv 

schedule shifts are ignored.  An iterative procedure is developed to compute optimal tolls that 

vary with time of day. 

 

Policies are examined from five perspectives: welfare (consumer surplus, toll revenue, 

and total benefits), peaking (traffic counts and share in the peak 15-minute period), congestion 

(average and peak 15-minute travel delays), schedule delay (average variable schedule delay), 

and mode mix (mode shares, average occupancy, and total traffic). 

Five results emerge.  First, although an optimal toll can achieve substantial benefits, 

savings in travel delay are accompanied by increases in schedule delay.  Second, a toll equal 

to the marginal social externalities of an additional trip at different times of day at a base case 

can achieve benefits equivalent to those of an optimal toll, which is equal to the marginal 

social externalities of an additional trip at different times of day at an social optimum.  Third, 

schedule delay has variable and constant components.  The constant component is the 

equilibrium level at a base case when travel is free-flow.  The variable component changes 

with congestion and policies.  Fourth, urban commuters shift their schedules in response to 

congestion and policy changes.  Heavy congestion forces people away from the peak; capacity 

expansion attracts people back to the peak; an optimal toll discourages people driving alone in 

the peak.  Fifth, the benefits of capacity expansion and an optimal toll are substantially 

overestimated if trip scheduling is ignored. 
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 INTRODUCTION 

 

Congestion pricing, as a method to allocate road space efficiently, has long been 

advocated by economists.  Scarcity of road funds in 1990s has revived the interest (Small, 

1992c).  A national conference was held in Washington, D.C. in 1993, and a private toll road 

is under construction in Southern California that will demonstrate congestion pricing 

(Fielding, 1993).  Yet transportation researchers cannot answer basic questions about how 

peak-period traffic would adjust itself to alternative trip making once congestion pricing is 

adopted (Small, 1992a, p. 156). 

Congestion pricing imposes charges that vary widely by time of day.  If adopted, it 

could bring about dramatic changes in travel behavior.  Some travelers might shift to 

alternative routes, modes; others may change residential and employment locations, while 

others might forego discretionary trips.  Trip schedules would change in many different ways. 

 Analysis of congestion pricing has been limited, however, either to models that ignore trip 

scheduling, or models of trip scheduling that oversimplify travelers' characteristics. 

This dissertation aims to fill a gap in our understanding of how urban commuters 

adjust their schedules and modes to congestion, as well as the policy implications of this 



 
 2 

adjustment.  It does so by developing a realistic, equilibrium simulation model of commuting 

traffic on a hypothetical, urban highway corridor.  The demand side is a discrete choice model 

for both mode and time of day, estimated with a sample of commuters from the San Francisco 

Bay Area.  The  

supply side is a speed-flow function that predicts travel time from flows leaving the corridor.  

An iterative procedure is developed to calculate optimal tolls that vary with time of day. 

The research relates mainly to three literature themes about commuting behavior and 

transportation policy analysis.  The first theme is equilibrium analysis of urban transportation 

policies, using mode choice models.  Small (1983) and Viton (1983, 1986) are the major 

contributors of this work, though the models they develop ignore trip scheduling. 

The second theme is abstract modeling of trip scheduling.  There are three major 

models: the Vickrey (1969) model, the Henderson (1974, 1977) model, the Mahmassani and 

Herman (1984) model.  All three focus on the journey to work for a fixed number of 

commuters traveling on the same highway between home and work.  Commuters are specified 

as identical or slightly different in work start times or values of time.  These models do 

provide insights to scheduling behavior, but they are too simple to provide useful policy 

guidelines. 

The third theme is econometric modeling of trip scheduling.  This theme includes 

Small (1982), Abkowitz (1980), and Hendrickson and Plank (1984).  However, Small (1982) 

does not include mode choice; Abkowitz (1980) does not specify any variables measuring 



 
 

 
 

3

3 

schedule delays; and Hendrickson and Plank (1984) do not include socioeconomic variables. 

The dissertation consists of this introduction, two parts, and conclusions.  Part I 

focuses on the theme of abstract modeling, while Part II applies a reformulated, abstract 

model from Part I to data from the San Francisco Bay Area.  Part I makes four contributions:  

First, it shows that the Henderson and the Mahmassani and Herman models lack equilibrium.  

This is a subtle, but easily missed problem.  It is subtle because conclusions drawn from non-

equilibrium solutions can be erroneous; it is easily missed because trip cost is constant at the 

solutions to these two models.  This condition of constant trip cost is necessary for 

equilibrium, but is often treated as sufficient. 

As a second contribution, the Henderson model is reformulated.  The reformulated 

model differs from the original Henderson model by assuming that, travel time for any 

commuter is determined by the arrival flow he arrives with at work rather than by the 

departure flow he departs with from home.  The reformulated model eliminates the problem of 

lacking equilibrium in the original Henderson model. 

Third, Part I compares the reformulated model with the Vickrey model both 

analytically and using simulations.  The two models are found to result in the same buildup 

and decay of congestion in equilibrium.  The behavior of the Vickrey model is found to 

become identical to that of the reformulated model as the elasticity of travel delay becomes 

bigger.  The Vickrey model has been widely used in the literature, while the Henderson model 

is rarely used.  This limiting relationship links the two models. 
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Fourth, Part I examines modeling of hyper-congestion in the context of the 

Mahmassani and Herman model.  Hyper-congestion describes a situation where average flow 

is decreased because more vehicles are forced into a roadway; it happens when the density 

exceeds the level that gives the maximum flow.  Hyper-congestion is inefficient.  But to 

analyze it properly, a model that allows hyper-congestion is required.  The Mahmassani and 

Herman model is the only such model, but can fail to achieve equilibrium.  Therefore, it is 

useful to explore the behavior of the Mahmassani and Herman model to discover whether the 

model can be improved. 

Part II applies the reformulated Henderson model to data from the San Francisco Bay 

Area, and simulates the equilibrium effects of eight transportation policies.  The policies 

include (1) an optimal toll, (2) an incremental capacity expansion, and six alternative pricing 

policies: (3) a base-externality toll, (4) a piecewise-linear toll, (5) a coarse toll, (6) a uniform 

toll, (7) an optimal toll with bus and carpool users exempted, (8) an optimal toll with an 

incremental capacity expansion. 

Part II also estimates biases in these policy effects when schedule shifts are ignored.  

Conventional models of peak-period congestion assume away scheduling behavior by using 

constant demand over a predetermined period.  One way to measure these biases is to 

compare two simulations of a given policy: one with scheduling shifts allowed and the other 

with schedule shifts constrained.  

Policies are simulated from five perspectives: (i) welfare (consumer surplus, toll 
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revenue, and total benefits), (ii) peaking (traffic counts and share in the peak 15-minute 

period), (iii) congestion (average and peak 15-minute travel delays), (iv) schedule delay 

(average schedule delay and ratio of schedule to travel delay), and (v) mode mix (mode 

shares, average occupancy, and total traffic).   

An optimal toll is the first best solution, but can be difficult to calculate and 

implement.  Therefore, it is useful to consider alternative pricing policies that are easier to 

calculate and implement.  If these simple tolls can achieve a substantial proportion of the 

benefits of an optimal toll, they could be worthwhile.  Capacity expansion is also examined 

for three purposes: first is to contrast the effects of an incremental expansion with those of an 

optimal toll, second to examine the miscalculation of effects from an incremental expansion, 

and to compare this miscalculation with that of an optimal toll, and third to see how the 

benefits of an incremental expansion compare with and without an optimal toll. 

The original contributions of this dissertation are in Part II.  First, the indirect utility 

function to be used in discrete choice models of trip scheduling is specified, based on utility 

maximization.  This function is often specified without a theoretical foundation.  Small (1982) 

is one exception.  He extends models of time allocation (Gary Becker, 1965) by making travel 

cost and time dependent on scheduling.  Small's setup has two shortcomings, however.  First, 

duration of work, but not duration at the work site, enters the time budget.  The gap is either 

time early or time late for work.  This gap is the focus of those discrete choice models of trip 

scheduling.  Second, Small's setup does not lead to an operational specification of the utility 
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function. 

Second, Part II establishes a marginal-cost pricing rule in the context of a discrete 

choice model of mode and schedule.  It shows that a time-varying toll that maximizes social 

welfare, the sum of consumer welfare and toll revenue, is a marginal-cost toll.  Such 

marginal-cost pricing rules have only been established in the context of simple continuous 

choice models without scheduling considerations (Walter, 1961). 

Third, Part II is the first effort in the literature to empirically calculate an optimal 

time-varying toll based on a realistic model of commuting traffic on urban highways.  An 

optimal toll measures the marginal externality of an additional trip made at a given time at a 

social optimum.  Small (1992a, pp. 121-122) identifies two approaches to calculate an optimal 

toll, but neither works with the more realistic model here.  The approach used is to start from 

the definition of marginal externality of travel at a given time, using an iterative procedure. 

Fourth, Part II is the first effort in the literature to test hypotheses and questions about 

trip scheduling that are of policy and methodological interest.  The hypotheses concern how 

people adjust their mode and schedule choices in response to congestion and policy changes.  

Part II examines the following hypotheses: 

(h1) Whether congestion deters people to alternative schedules. 

(h2) Whether capacity expansion leads to further peaking. 

(h3) Whether optimal congestion pricing leads to peak spreading. 

The questions concern the effects of optimal pricing and other forms of pricing policies, and 
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miscalculation of the effects of optimal pricing and capacity expansion when schedule shifts 

are ignored: 

(q1) What are the welfare effects of an optimal toll? 

(q2) Does an optimal toll affect peaking, congestion, schedule delay, and mode mix?  

(q3) How do the total benefits of other pricing policies compare with those of an 

optimal toll? 

(q4) Does an incremental capacity expansion affect peaking, congestion, schedule 

delay, and mode mix?  

(q5) Are the effects of an optimal toll biased when schedule shifts are ignored? 

(q6) Are the effects of a ten-percent expansion biased when schedule shifts are 

ignored? 

Part I consists of chapters 1 through 4.  Chapter 1 shows the lack of equilibrium of the 

original Henderson model (Henderson 1974, 1977), and extends it for lateness.  Chapter 2 

reformulates the Henderson model, and solves it analytically.  Chapter 3 compares the 

reformulated model with the Vickrey model.  Chapter 4 explores the behavior of the 

Mahmassani and Herman model.  It does not solve its lack of equilibrium.  It does, however, 

give the features of the model that Mahmassani and Herman (1984) do not explore, and 

aspects that need to be improved. 

Part II consists of chapters 5 through 8.  Chapter 5 specifies the indirect utility 

function for discrete choice models of mode and time of day based on utility maximization, 



 
 

 
 

8

8 

and establishes the marginal-cost pricing rule.  Chapter 6 estimates the discrete choice model 

of mode and time of day with data from the San Francisco Bay Area.  Chapter 7 assembles a 

simulation model by combining a supply model of the form in chapter 2 with the demand 

model from chapter 6.  Sample enumeration is used to connect the supply and demand sides 

(Ben-Akiva and Lerman, 1985).  Chapter 7 also describes an iterative procedure to calculate 

optimal tolls that vary with time of day.  Chapter 8 reports simulation results on equilibrium 

characteristics of a base case, the effects of the eight policies, and miscalculations of these 

effects when schedule shifts are ignored.  Chapter 8 also tests hypotheses and questions 

formulated above. 
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PART I ABSTRACT MODELS OF PEAK-PERIOD CONGESTION 
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 CHAPTER 1 

 THE HENDERSON APPROACH REEXAMINED 

 

This chapter examines the original Henderson approach and illustrates its problems.  

Section 1.1 reviews the original Henderson model that prohibits lateness (Henderson, 1977).  

An example is used to show that it lacks equilibria.  Section 1.2 extends the original 

Henderson model for lateness.  The example is used again to show that the extended 

Henderson model does have equilibria, but contains two peculiar features: 1) commuters can 

arrive earlier by starting later at the priced equilibrium; 2) the limits of the equilibria are no 

longer equilibria as the unit cost of being late goes to infinity.  
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 1.1 Original Henderson Model: Lateness Prohibited 

 

Consider the journey to work, where a fixed number of identical commuters, N , one 

per vehicle, travel on the same road  m  miles to work.  All must arrive at work no later than a 

common work-start time  t* .  Each chooses a home-departure time, t , to minimize the private 

trip cost, C(t) , which includes three parts.  The first part is the travel time cost, α[m/S(t)] , 

where  α  is the unit cost of travel time, and  m/S(t)  is the travel time.  The second part is the 

schedule delay cost, β[t*- t - m/S(t)] , where  β  is the unit cost of schedule delay early--time 

wasted waiting for work to start, and  t + m/S(t)  is the arrival time at work.  The third part is 

the toll, τ(t) , if any is imposed.  So  

Let  R  be the road capacity, Smax  the free-flow speed, and  F(t)  the departure rate at time  t .  

Henderson (1977) assumes a power speed-flow function given by 

. (t)  +  
S(t)
m  -  t  - t    +  

S(t)
m  = C(t) * τβα 








 

 ,
R

F(t)  +  
S

1 = 
S(t)
1   







γ

max
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following Vickrey (1965).  That is, the travel time for any commuter who departs at  t  is 

determined solely by the departure flow at the same time  t .  This supply model requires that 

departure flows at different times be independent.  The second term of (1.2) measures the 

travel delay associated with departure flow  F(t) .  The parameter  γ  measures the elasticity of 

this travel delay with respect to  F(t) .   

Unpriced Solution.  Equilibrium obtains when no commuter can reduce his trip cost 

by altering his departure time unilaterally.  With identical commuters, it is necessary that the 

private trip cost be constant across departure times, or 

which, given  α > β , implies 

Let  C  be the constant private trip cost.  Those departing first at  i  travel at the free-

flow speed: S(i) = Smax ; using (1.1), 

where  Tf ≡ m/Smax , the free-flow travel time.  Solving (1.4) with condition (1.5) yields the 

equilibrium travel time function given by 

 ,0 =   -  
S(t)
m 

dt
d)  -  ( = 

dt
dC(t) ββα 








 

. 0 > 
  -  

 = 
S(t)
m

dt
d

βα
β









 

 ,) T  -  i  - t(   +  T  = C f
*

f βα  
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Let  n  be the on-time departure time: n + m/S(n) = t* , or 

All  N  commuters depart in  [i, n] : 

 

 

To solve for  i, n , and  C  analytically, (1.2) and (1.6) are used to write  F(t)  in terms 

of  t  and  i , and the resulting  F(t)  is substituted into (1.8).  (1.7) and (1.8) are then used to 

solve for  i  and  n , and (1.5) is used for  C .  The solution is 

. ) i  -  (t  
  -  

  +  T = 
S(t)
m

f βα
β  

. ) i  -  n (  
  -  

  +  T = n  - t f
*

βα
β  

. N = dt F(t) n
i ∫  

 ,  + T  = C
 ,  -  T  -  t = n

 ,    -  T  -  t = i

 ,m   -  
  + 1 

R
N = 

f

f
*

f
*

1  + 1

Φ
Φ

Φ









Φ

αα

β
α
βα

β
γ
γ

γ
γ
γ
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where  Φ  is the maximum travel delay, which occurs at  n .
1
 

Total variable cost of travel  TVC , total cost of travel delay  TCC , and total cost of 

schedule delay  TSC  can be calculated as: 

 

 

 

                                                           
     1Henderson (1977, p. 175) solves for  i , n , and  C  numerically. 

 

Optimally Priced Solution.  To minimize the total cost of transporting  N  commuters 

 ,
 2 + 1

 + 1   N   = dt   T  -  
S(t)
m F(t)   = TCC f

n
i γ

γαα Φ







∫  

 ,
 2 + 1

   N   = dt  
S(t)
m  -  t  - t F(t)   = TSC *n

i γ
γαβ Φ








∫  

.   N   = TSC  +  TCC = TVC Φα  
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to work, the traffic planner chooses  F(t) , t ∈  [i, n] , to minimize 

subject to (1.8).  The Lagrangian of this optimal control, given  i  and  n, is 

where  λ  is the Lagrangian Multiplier of (1.8).  The first order condition with respect to  F(t)  

is  given by 2  

Henderson (1977) interprets  λ  as the social cost of transporting the marginal traveller 

on the road at any departure time  t ; so (1.15) requires that this marginal social cost be equal 

across all departure times.  Commuters privately incur the first two terms in (1.15); the 

optimal toll is equal to the third term in (1.15), or 

                                                           
     2Henderson (1977) ignores the derivative of the schedule delay term with respect to  
F(t)  and results in an error in his first-order condition, which replaces  (α - β)  by  α  in 
the second term of (1.15).  This amounts to calculating the extra travel delay caused by 
the marginal commuter but failing to offset its cost by the change in schedule delay. 
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Using (1.1), this can be written as 

With this toll imposed, the private trip cost becomes 

Equation (1.5) also holds at the optimally priced solution.  Differentiating (1.18) with 

respect to  t , and solving the resulting equation with condition (1.5) yields the travel time 

function under optimal pricing 

The equation that defines  n  changes from (1.7) to  

Equations (1.2) and (1.18) are used to solve for  F(t) , and the resulting  F(t)  is substituted 

into (1.8).  Equations (1.8) and (1.20) are then used for  i  and  n , and (1.5) is used for  C .  
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The solution is 

 

where  Φ  is given by (1.9).  The aggregate costs can be calculated as 

 

Lack of Equilibrium.  Using the example given in Table 1.1, this section illustrates the 

lack of equilibria of the original Henderson approach when lateness is prohibited. 
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The supply model (1.2) assumes that the travel time for any commuter is determined 

solely by the departure flow he departs with.  This can lead to overtaking, i.e., arriving earlier 

by starting later.  For example, a group departing a bit later than a larger group would arrive 

earlier.  As Henderson (1977) notes, by assuming  α > β , no overtaking can happen during 

the period of departures from  i  to  n .  A problem comes after the period of departures, 

however; commuters can reduce their private trip cost by unilaterally shifting departure to 

after  n .  The example given in Table 1.1 is used to illustrate the problem.  

 

 Table 1.1. Parameter Values for Abstract Models
a
 

──────────────────────────────────────────────────────────── 
Demand side   Supply side      
──────────────────────────────────────────────────────────── 

N = 1000    R = 3817 vehicles/hour 

α = $ 6.40/hour   γ = 4.08         

β = $ 3.90/hour   Smax = (60/2.48) miles/hour 

v = $15.21/hour   m = 15 miles     

t*= 8:00 A.M.   Tf ≡ m/Smax = 0.62 hours = 37.2 minutes 

──────────────────────────────────────────────────────────── 

a
 Arnott et al. (1990) use the same values for  α , β , and  v .  Parameters for the supply side 

are based on Small (1992a, p. 70).  Using data from Dewees' (1978) simulation experiments 

on city arterials, Small estimates a speed-flow curve of T = 2.48 + 0.254(V/1000)
4.08

, where  T 

 (travel time) and  V  (traffic flow) are measured in minutes per mile and vehicles per hour, 
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respectively.  The coefficient 0.254  is converted into the denominator in the parentheses to 

get  R = 3817  vehicles per hour.  Smax  is  60/2.48  miles per hour, and  γ  is 4.08 .  The trip 

distance is set at  15  miles, the number of commuters at  1000 , and the common work start 

time at  8:00 A.M.  

 

 

 

 

Panels  a  and  b  of Figure 1.1 show the cumulative departures and arrivals for the 

unpriced and priced solutions, respectively.3  The slopes of the cumulative curves measure 

rates of departure and arrival, respectively; the horizontal distance between the two 

cumulative curves measures travel time if no overtaking happens; and the horizontal distance 

between the cumulative arrival curve and a vertical line at  t*  measures schedule delay.  The 

first group travels with free-flow speed (the slopes of the cumulative departure curves are zero 

at  i), but incurs maximum schedule delay; the last group incurs no schedule delay, but travels 

with maximum travel delay; everyone departs during departure period. 

At both solutions, no one has an incentive to shift unilaterally either across  i  because 

                                                           
     3If we let  t′  be the arrival time associated with departure time  t , CF(t) the 
cumulative departures, and CA(t′) the cumulative arrivals, then the following 
relationships hold: 

. dx F(x)  = CF(t) = )CA(t�   ,
S(t)
m + t =t� t

i ∫
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those departing at  i  travel at the free-flow speed, or among times between  i  and  n  because 

private trip cost is constant during this period.  But if  

one shifts unilaterally across  n , one can travel almost at the free-flow speed, and overtake the 

group departing at  n .  Instead of spending the time between  n  and  t*  in congestion as the 

group departing at  n  does, one spends the time waiting for work to start.  Since travel delay 

is more costly than schedule delay, this unilateral shift lowers one's private trip cost.  In fact, 

one could unilaterally depart shortly before  t*
 - m/Smax  and suffer neither travel nor schedule 

delay.  Thus, the solutions of the original Henderson model are not equilibria. 

What contributes to this lack of equilibria?  The assumptions of both no lateness and 

travel time being determined by departure flow play a role.  While assuming travel time being 

determined by departure flow makes overtaking possible, prohibiting lateness leads to a speed 

at  n  that is below the free-flow level.  To improve the original Henderson model, the 

assumption of no lateness is relaxed next, and chapter 2 reformulates the assumption of travel 

time being determined by departure flow. 
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 Figure 1.1  
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 1.2 Extended Henderson Model: Lateness Allowed 

 

To extend the original Henderson model for lateness, define  t  as an early departure 

time and  t* - t - m/S(t)  as schedule delay early if  t + m/S(t) - t*  is negative.  Define  t  as a 

late departure time and  t + m/S(t) - t*
  as schedule delay late if  t + m/S(t) - t*

  is positive.  

Define  n  such that 
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Let  v  be the unit cost of schedule delay late and  u  the last departure time.  The private trip 

cost is (1.2) for early departures; for late departures it is 

 

Unpriced Solution.  Those who depart at  u  do not incur travel delay:  

S(u) = Smax , or 

The equilibrium travel time function is (1.6) for early departure times.  For late departure 

times, differentiating (1.26) with respect to  t , and solving the resulting equation with 

condition (1.27) yields 

 

 

The private trip costs at  i  and  u  must be equal, and all  N  commuters depart 

between  i  and  u .  That is,  

. 0 = t - S(n)
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Equations (1.2), (1.26), (1.6), and (1.28) are used to solve for  F(t) , and the resulting  F(t)  is 

substituted into (1.29).  Equations (1.7) and (1.29) are then used for  i , n , and  u , and (1.5) is 

used for  C .  The solution is 

where  δ = βv/(β+v) , and  Ψ  is the maximum travel delay, which occurs at  n .  The 

aggregate costs can be calculated as: 

 

. N = dt F(t) 

 ,C(u) = C(i)
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i ∫
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Optimally Priced Solution.  If there is a marginal-cost toll to support the social 

optimum where the total variable cost of transporting  N  commuters to work is minimized, 

the traffic planner needs to choose  F(t)  to minimize 

subject to the second constraint of (1.29).  Let  λ  be the Lagrangian Multiplier of this 

constraint; the Lagrangian for this optimal control, given  i  and  u , is 

The first order condition with respect to  F(t)  is (1.15) for early departure time;  

for late departure time, it is 

The constant  λ  can be interpreted as the marginal social cost of departing at any time 

 t ; so (1.15) and (1.36) requires that this cost be equal across all departure times.  Commuters 

privately incur the first two terms in (1.15) for early departure times, and in (1.36) for late 

departure times.  The optimal toll is (1.17) for early departure times; for late departure times, 
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it is 

 

The private trip cost is (1.18) for early departures; for late departures it is  

The travel time function for early departure times is (1.19); for late departure times, 

differentiating (1.38) with respect to  t , and solving the resulting equation with condition 

(1.27) yields 

Equations in (1.29) still hold; but the equation that defines  n  changes to  

Equations (1.18), (1.38), (1.19), and (1.39) are used to get  F(t) , and the resulting  F(t)  is 

substituted into (1.29).  Equations (1.29) and (1.40) are then used for  i , n , and  u , and (1.5) 

is used for  C .  The solution is 
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where  Ψ  is given by (1.30).  The aggregate costs can be calculated as 

where  Γ1  and  Γ2  are given by 

 

Overtaking and Limiting Solution.  This section first examines whether the above 

solutions are equilibria, and if they are, whether overtaking can happen.  Supply model (1.2) 
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requires that traffic flows that depart at different times from home be independent.  But 

overtaking violates this independence.  It then examines the limit of each equilibrium as the 

unit cost of being late goes infinity.  One would expect that such limits would still be 

equilibria if there is no problem within the model. 

Panels  a  and  b  of Figure 1.2 show the cumulative departures and arrivals for the 

unpriced and priced solutions, respectively, using parameters in Table 1.1.  The dashed lines 

in panel  b  are explained below.  Private trip costs are the same across departure times; 

speeds are at the free-flow level at both ends of the departure period.  So no one has an 

incentive to shift unilaterally either within or outside the period; both solutions are equilibria. 

 

 

 Figure 1.2 
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To examine the possibility of overtaking in equilibrium, one examines arrival times  t 

+ m/S(t) .  Using the equilibrium travel time functions in (1.6) and (1.28) for the unpriced 

equilibrium, and in (1.19) and (1.39) for the priced equilibrium, one gets  d[t + m/S(t)]/dt > 0  

within the periods of early and late departures, respectively.  That is, in each of the periods 

before and after the on-time departure, the change in travel delay for those traveling later is 

not enough for them to catch up given the difference in departure times.  So no overtaking 

happens within each period. 

No overtaking within each period, however, does not rule out overtaking across the 
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two periods.  Whether overtaking happens depends on whether travel 

delay drops suddenly across the two periods.  At the unpriced equilibrium, the only cost for 

those departing at and immediately after  n  is travel time.  Given identical unit costs of travel 

time, the condition of equal private trip costs requires travel times to be equal at and 

immediately after  n .  This rules out overtaking at the unpriced equilibrium.   

At the priced equilibrium, however, the condition of equal private trip costs does not 

require equal travel times across  n  because the toll imposed can make up the difference.  In 

fact, the toll given by (1.17) and (1.37) jumps discontinuously across  n .  The result is a 

discontinuous drop in both toll and departure rate across  n .  Figure 1.3 shows the toll 

schedule and departure rates.  So overtaking happens across  n  at the priced equilibrium. 

The two dashed lines in panel b of Figure 1.2 are explained as follows.  Let  n′  

be the arrival time for those who depart just after  n , n1  the  

 

 

 Figure 1.3 
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departure time for those who depart before  n  and arrive at  n′ , and  n2  the departure time for 

those who depart after  n  and arrive  at  t* .  Those who depart between  n  and  n2  overtake 

those who depart between  n1  and  n .  The two dashed lines show the cumulative arrivals for 

the two segments of the curve of cumulative departures from  n1  to  n  and  from  n  to  n2  

respectively.  The real curve of cumulative arrivals between  n′  and  t*
  is obtained by adding 

the number of overtaking vehicles, i.e., those departing between  n  and  n2  and arriving 
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between  n′  and  t*
 , to the lower dashed line.   

The limits of the equilibria are examined now.  When the unit cost of schedule delay 

late  v  approaches infinity, δ  approaches  β ; Ψ  and the last departure time at both solutions 

become: 

Figure 1.4 shows the cumulative departures and arrivals of the limits.  In the limit of 

the unpriced equilibrium, departures occur after the on-time departure.  Those who depart 

after the on-time departure also arrive on time, but incur different travel delays.  This cannot 

be true in equilibrium.  This is why the unpriced solution shown in Figure 1.1a looks entirely 

different from this limit. 

The limit of the priced equilibrium in Figure 1.4b is not an equilibrium.  Compare the 

private trip costs at  i  and  u , at which there is no travel delay or toll.  But departure at  i  

incurs schedule delay as well as the free-flow travel time, while departure at  u  incurs only 

the free-flow travel time. 
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To explain the two dashed lines, let  n′  be the arrival time for those who depart just 

after  n  and  n1  the departure time for those who depart before  n  and arrive at  n′ .  Those 

who depart between  n  and  u  overtake those who depart between  n1  and  n .  The two 
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dashed lines show the cumulative arrivals for the two segments of the curve of cumulative 

departures from  n1  to  n  and  from  n  to  u  respectively.  The real curve of cumulative 

arrivals between  n′  and  t*
  is obtained by adding the number of overtaking vehicles, i.e., 

those departing between  n  and  u  and arriving between  n′  and  t*
 , to the lower dashed line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1.3 Summary 
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The original Henderson approach assumes that travel time for any commuter is 

determined solely by the departure flow he departs with from home; and that traffic flows that 

depart at different times are independent.  The section shows that the original Henderson 

approach has the following problems: a) the original Henderson model that prohibits lateness 

lacks equilibria; b) equilibria do exist in the extended Henderson model that allows lateness, 

but have two peculiar features: 1) commuters can arrive earlier by starting later at the priced 

equilibrium; 2) their limits are no longer equilibria as the unit cost of being late goes to 

infinity.   
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 CHAPTER 2 

 THE HENDERSON APPROACH REFORMULATED 

 

The original Henderson approach assumes that travel time for any commuter is 

determined solely by the departure flow he departs with from home; and that traffic flows that 

depart at different times are independent.  Chapter 1 shows that the original Henderson 

approach has problems: a) the original Henderson model that prohibits lateness lacks 

equilibria; b) equilibria do exist in the extended Henderson model that allows lateness, but has 

two peculiar 

features: 1) commuters can arrive earlier by starting later at the priced equilibrium; 2) their 

limits are no longer equilibria as the unit cost of being late goes to infinity.   

The assumption of travel time being determined by departure flow plays a key role in 

the existence of these problems: it makes overtaking possible.  When lateness is prohibited, 

the speed at the end of the departure period is below the free-flow level.  This low speed at 

the end of the departure period and the possibility of overtaking after the departure period 

create an incentive to shift schedule across the end of the departure period.  When lateness is 

allowed, on the other hand, overtaking that occurs in the priced equilibrium violates the 

assumption of independent traffic flows. 

This chapter reformulates the original Henderson approach by assuming that the travel 

time for any commuter is determined solely by the arrival flow he  



 
 

 

37

arrives with at work.  This reformulation no longer requires that traffic flows that depart at 

different times from home are independent. 

This new formulation is just as plausible as that in Henderson (1977): both are 

approximations to reality.  In fact, it was used, without comments, for a different scheduling 

problem of commuters by Henderson (1981, 1985) to model production effects of staggered 

work hours, and by Henderson (1992) to investigate the biases inherent in cost-benefit 

analyses of capacity expansion that ignores scheduling behavior. 

So the reformulated Henderson approach modifies congestion technology (1.2) so that 

travel speed, s(t′) , is determined by arrival flow, f(t′) , through 

where  t′  is any arrival time at work.  The elasticity  γ  may not be the same as in (1.2).  

Since the solution method for the reformulated Henderson approach is the same as for the 

original Henderson approach, the same numbers will be used with the first digit changed from 

 1  to  2 .  For example, (2.2) indicates that it is similar to (1.2). 
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 2.1 Reformulated Henderson Model: Lateness Prohibited 

 

Each commuter chooses an arrival time  t′ , no later than  t* , to minimize 

where  p(t′)  is the toll schedule if any is imposed. 

 

Unpriced Equilibrium.  Equilibrium requires travel time to change at the following 

rate: 

The private trip cost of arriving first at  i′  is given by 

The equilibrium travel time function is given by 
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The last group arrives at  t*
 , and all  N  commuters arrive in  [i′, t*

] : 

Equations (2.2) and (2.6) are used to get  f(t′) , and the resulting  f(t′)  is substituted into (2.8). 

 Equation (2.8) is then used for  i′ , and (2.5) is used for  c. The solution is given by 

 

where  Φ′  is the maximum travel delay, which occurs at  t* .  For later comparison, the first 

and last departure times, i  and  n , are given by 

Once  i′  and  c  are determined, the aggregate costs can be calculated as  
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It is interesting to compare the unpriced solution of the reformulated Henderson 

approach, given by (2.9)-(2.12), with that of the original Henderson approach, given by (1.9)-

(1.12), assuming that the elasticities of travel delay of the two approaches in (1.2) and (2.2) 

are the same.  The maximum travel delay  Φ′ , given by (2.9), is less than  Φ , given by (1.9). 

 Given the parameter values in Table 2, Φ′ = 0.466  and  Φ = 0.991 .  Comparing (1.9) with 

(2.9), the period of departures both starts and ends later in the reformulated Henderson 

approach.  Comparing (1.10)-(1.12) with (2.10)-(2.12), aggregate costs are smaller in the 

reformulated Henderson approach. 

One possible explanation for this difference between the original and reformulated 

Henderson approaches is that at the unpriced solution of the original Henderson approach, 

commuters can lower their private trip cost by shifting departures later.  Without a full 

adjustment of departures to reach an equilibrium, the period of departures both starts and ends 

too early; aggregate costs are too high. 

 

Optimally Priced Equilibrium.  The traffic planner chooses  f(t′)  to minimize 

subject to (2.8).  Let  λ  be the Lagrangian Multiplier of (2.8); then the Lagrangian for this 
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optimal control problem, given  i′ , is 

The first order condition with respect to  f(t′)  is 

The constant  λ  can be interpreted as the marginal social cost of arriving at any time  

t′ ; (2.15) requires that this cost be equal across all arrival times.  The optimal toll is the third 

term, or 

Using (2.2), this can be written as 

With this toll imposed, the private trip cost of arriving at  t′  becomes 

The equilibrium travel time function becomes 
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Equations (2.2) and (2.19) are used to solve for  f(t′) , and the resulting  f(t′)  is 

substituted into (2.8).  Equations (2.8) and (2.5) are then used for  i′  and  c .  The solution is 

where  Φ′  is given by (2.9).  For later comparison, i  and  n  are given by 

 

The aggregate costs can be calculated as 
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It is interesting to compare the priced solutions of the original and reformulated 

Henderson approaches in (1.21)-(1.24) and (2.21)-(2.24), respectively, assuming the same 

elasticities of travel delay in the two approaches.  Since  Φ′  is less than  Φ , the reformulated 

approach gives a departure period that ends later (using (1.21) and (2.21)); it also gives a 

smaller total cost of travel delay (using (1.22) and (2.22)).   

The relative values in the first departure time, total cost of schedule delay, and total 

variable cost of travel all depend on the relative values of  (1+γ)Φ′  and  [1+γ(1 - β/α)]Φ .  

Given the parameters in Table 1.1, (1+γ)Φ′ = 2.365  and  [1+γ(1 - β/α)]Φ = 2.569 .  This 

leads to the same result as for the unpriced solutions: the period of departures starts and ends 

later, and aggregate costs are smaller in the reformulated Henderson approach than in the 

original approach. 

 

 

 

 

 2.2 Reformulated Henderson Model: Lateness Allowed 

 

If one arrives after  t* , one is late by an amount  t′ - t* .  t′ > t*  will be refereed to as 

late arrival times.  The private cost is (2.1) for  t′ ≤ t*
 ; for  t′ > t*

 , it is 
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Unpriced Equilibrium.  Those who arrive at the end, u′ , incur no travel delay: s(u′) = 

Smax , or 

The equilibrium travel time function is (2.6) for  t′ ≤ t*
 .  For  t′ > t*

 , differentiating (2.26) 

with respect to  t′ , and solving the resulting equation with condition (2.27) yields 

The private trip costs at  i′  and  u′  must be equal, and all  N  commuters arrive 

between  i′  and  u′ .  That is,  

 

Equations (2.1) and (2.28) are used to solve for  f(t′) , and the resulting  f(t′)  is substituted 

into (2.29); equation (2.29) is used for  i′  and  u′ , and (2.5) is used for  c .  The solution is 

given by 
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where  Ψ , given by (1.30), is the maximum travel delay, which occurs at  t* .  For later 

comparison, the first, on-time, and last departure times, i , n , and  u , are 

The aggregate costs can be calculated as  

Again, one can compare the unpriced solutions of the original and reformulated 

Henderson approaches given by (1.30)-(1.33) and (2.30)-(2.33), respectively.  The unpriced 

solutions are identical if the elasticities of travel delay are the same.  This is no surprise 

because unlike the unpriced solution without lateness, the unpriced solution with lateness in 
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the original Henderson approach is a real equilibrium without overtaking. 

One can also compare the aggregate costs of the reformulated Henderson approach at 

the unpriced equilibria with and without lateness, given by (2.31)-(2.33) and (2.10)-(2.12) 

respectively.  Allowing lateness saves aggregate costs by a fraction of  (Φ′ - Ψ)/Φ′ = 1 - 

(v/(β+v))γ/(1+γ) , where  Ψ  and  Φ′  are given by (1.30) and (2.9) respectively.  The larger the 

elasticity of travel delay  γ , or the larger the relative unit costs of being early and late, the 

larger is this saving.  Given the parameter values in Table 1.1, this is about a 17 percent 

saving. 

 

Optimally Priced Solution.  The traffic planner chooses  f(t′)  to minimize 

subject to the second constraint in (2.29).  Let  λ  be the Lagrangian Multiplier of this 

constraint; then the Lagrangian for this optimal control problem, given  i′  and  u′ , is 

The first order condition with respect to  f(t′)  for  t′ ≤ t*  is (2.15); for  t′ > t* , it is 
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The constant  λ  can be interpreted as the marginal social cost of arriving at any time  

t′ .  Commuters privately incur the first two terms in (2.15) for  t′ ≤ t* , and in (2.36) for  t′ > t* 

; the optimal toll is given by (2.16), the third term in (2.15) or (2.36). 

The private trip cost then is (2.18) for  t′ ≤ t* ; when  t′ > t* , it is  

The equilibrium travel time function for  t′ ≤ t*  is (2.19); for  t′ > t* , it is  

Solving (2.29) for  i′  and  u′ , and using (2.5) for  c  yields 

where  Ψ  is given in (1.30), with  γ  being the elasticity of travel delay with  

respect to arrival flow of the reformulated Henderson approach.  The first,  

on-time, and last departure times, i , n , and  u , are given by 
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The aggregate costs can be calculated as 

 

Cumulatives and Limiting Equilibria.  This section uses the example in Table 1.1 to 

illustrate that the reformulated Henderson approach is free of the problems noted earlier in the 

original Henderson approach.   

Panels a and b of Figure 2.1 show the cumulative arrivals and departures for the 

unpriced and priced solutions, respectively, without lateness.  Arrivals start at  i′  and end at  t*
 

.  Private costs are the same across arrival times; there is no incentive for any commuter to 
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change arrival time within  [i′, t*
] .  Commuters arriving at  i′  travel at the free-flow speed; 

arriving earlier than  i′  is worse off.  So is arriving later than  t*
 .  So both solutions in Figure 

2.1 are equilibria. 

Panels a and b of Figure 2.2 show the unpriced and priced solutions with lateness.  

Private cost associated with any arrival time between  i′  and  u′  is the same; nobody can do 

better by changing arrival time within this period of arrivals.  Neither can anybody outside the 

period because travel associated with the start and end of the period is at the free-flow speed. 

The equilibria with lateness converge to those without lateness as the unit cost of 

being late  v  goes to infinity; therefore the curves of cumulative departures and arrivals for 

the limiting equilibria are not shown separately. 
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 Figure 2.1 
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 Figure 2.2 
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 2.3 Summary 

 

This chapter reformulates the original Henderson approach by assuming the number of 

travelers arriving together at their destination, instead of departing together at their origin, 

determines their travel time.  This chapter shows doing so eliminates all the problems of the 

original Henderson approach investigated in chapter 1. 

The chapter also finds that giving travelers the flexibility of being late for activities at 

the destination can result in substantial savings.  The larger the elasticity of travel delay with 

respect to arrival flow, or the larger the relative unit costs of being early and being late, the 

larger are these savings.  For typical values of the elasticity and unit costs of schedule delays, 

these savings are about twenty percent. 
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 CHAPTER 3 

 A COMPARISON WITH THE VICKREY APPROACH 

 

This chapter compares the behavior of the reformulated Henderson approach of 

chapter 2 with the Vickrey approach, focusing on: a) pattern of travel; b) five known results of 

the Vickrey approach.  Section 3.1 reviews the Vickrey approach, based on ADL (1990); 

section 3.2 presents the comparison.  ADL (1990) formalize the model in Vickrey (1969), and 

focus on the characteristics of equilibrium with various pricing schemes.  Since ADL (1990) 

is followed closely in reviewing the Vickrey model, the term "Vickrey-ADL" model will be 

used in detailed discussions.  Models with lateness are used. 
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 3.1 The Vickrey Model: Lateness Allowed 

 

ADL (1990) set up the journey to work as follows.  Travel is not congested except at a 

single segment of the road (the bottleneck) through which at most  k  vehicles can pass per 

unit of time; if the departure rate exceeds  k , a queue develops at the bottleneck.  The length 

of queue for those leaving home at  t  is 

where the low limit is the last departure time before  t  when there was no queue.  Q(t)⁄k  is 

their queuing delay.  Let  T(t)  be the travel time ; then  

[ ] du ,   k  -  F(u)   = Q(t) t
t ∫ �  
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Each commuter chooses a departure time  t  to minimize the private cost 

where  τ(t)  is the toll schedule if any is imposed. 

 

 

 

 

 

 

 

Unpriced Equilibrium.  As ADL (1990) show, all commuters except the first and last 

experience congestion, and they depart home at a piecewise constant rate given by 

The equilibrium travel-time function is given by 
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The first, one-time, and last departure times, i , n , u , can be solved with 

The first states that all  N  commuters leave home between  i  and  u ; the second specifies 

that the private costs are the same at  i  and  u ; and the last defines  n .   

 

 

 

 

Solving (3.6) yields 

where  (δ/α)(N/k)  is the maximum queuing delay, which occurs at  n .  Substituting  i  into 








 ≤

.n  >for t   )  t -(u   
  +  

  +   T

,n  for t 

f να
ν
βα

β   ) i  -  t ( 
  -  

  +   T
  = T(t)

f

 

. ) i  -  n ( 
  -  

  +   T = n  - t

 ,) t  -   T  +u   (   +   T  = ) T  -  i  - t (   +   T 

 ,
  +  
k  ) n  -u   (  +  

  -  
k  ) i  -  n ( = N

f
*

*
fff

*
f

βα
β

ναβα
να

α
βα

α

 

 ,
k
N   +   T  - t =u 

 ,
k
N   -   T  - t = n

 ,
k
N   -   T  - t = i

f
*

f
*

f
*

ν
δ
α
δ
β
δ

 



 
 

 

57

(3.6) yields the constant private trip cost 

The aggregate costs are calculated as 

At the unpriced equilibrium, total cost of schedule delay is half of total variable cost of travel; 

total variable cost of travel is independent of the unit cost of travel time  α .  

 

 

 

Optimally Priced Equilibrium.  ADL (1990) show that at the social optimum at which 

total variable cost of travel is minimized, there should be no queuing.  It follows that at the 

social optimum, F(t) = k  for  t ∈  [i, u] , and speed of travel is constant at  m/Tf .  
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This social optimum can be decentralized by a time-varying toll over [i, u] : With 

(3.7), this toll can be written alternatively as  

As ADL (1990) show, this optimal toll does not change the period of arrivals, the 

private trip cost, or total cost of schedule delay; but it eliminates queuing and thereby cuts 

total variable cost of travel in half.  That is, i  and  u  are the same as in (3.7), C  is the same 

as in (3.8), but  n  changes to 

The aggregate costs are  TCC = 0 , TSC = δN 2/2k , and  TVC = δN 2/2k .   
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ADL model.  Travel patterns are compared numerically.  The five results are examined 

analytically as well as numerically. 

The five results of the Vickrey-ADL model are: 1) total cost of schedule delay is half 

of total variable cost of travel at the unpriced equilibrium; 2) the optimal toll saves 100 

percent of total cost of travel delay, 0 percent of total cost of schedule delay, and 50 percent 

of total variable cost of travel; 3) the optimal toll does not change the period of arrivals; 4) the 

optimal toll does not change the equilibrium private trip cost; and 5) total variable cost of 

travel is independent of the unit cost of travel time at both the priced and unpriced equilibria.   

 

Analytical.  In the reformulated Henderson model, the five results of the Vickrey-ADL 

model do not hold for any finite value of  γ : 

1) With (2.32)-(2.33), the ratio between total cost of schedule delay and total variable 

cost of travel (SDR) at the unpriced equilibrium is given by 

2) With (2.31)-(2.33) and (2.42), the fractional savings in total cost of travel delay 

(STCC), total cost of schedule delay (STSC), and total variable cost of travel (STVC) due to 

optimal pricing are given respectively by 

. 
2
1 < 

 2 + 1
 = SDR

γ
γ  
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STSC  is negative, but both  STCC  and  STVC  are positive.  The increase in total cost of 

schedule delay due to optimal pricing is the result of travel being spread over a wider interval; 

but it is more than offset by the saving in total cost of travel delay.   

3) With (2.30) and (2.41), the fractional lengthening of the period of arrivals due to 

optimal pricing is given by 

The optimal toll lengthens the period of arrivals by forcing the first arrival earlier and the last 

one later.  The changes in the first and last arrival times due to optimal pricing are given 

respectively by 

4) With (2.30) and (2.41) again, the fractional change in the private trip cost due to 

optimal pricing is given by 
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The optimal toll increases the equilibrium private trip cost. 

5) With (1.30), (2.33), and (2.42), total variable cost of travel depends on the unit cost 

of travel time  α , with a factor of  α1/(1+γ) , at both the priced and unpriced equilibria.  It also 

depends on the schedule-delay parameters  β  and  v  through  δ , just as in the Vickrey-ADL 

model. 

The five results hold, however, in the limit as  γ  goes to infinity.  This is because as  

γ  goes to infinity, Ψ  goes to  (δ/α)(N/R)  and  (1+γ)1/(1+γ)  goes to unity.  In the limit, the 

equilibria of the reformulated Henderson model become exactly the same as those of the 

Vickrey-ADL model, with  k  replaced by  R .  The intuition behind this limiting behavior of 

the reformulated Henderson model is that the speed-flow function (2.2) approaches a shape as 

  , which is exactly the relationship implicitly assumed in the Vickrey-ADL model.   

 

Numerical.  The models are specified to compare the patterns of travel between the 

two models, and to examine to what extent the five results of the Vickrey-ADL model hold in 

the reformulated Henderson model. 

Model Specification.  One difficulty of this specification is to find appropriate values 

of supply-side parameters of the two models so that they are comparable; only then is 

comparison between the two approaches helpful.  The parameter values in Table 1.1 are for 

the reformulated Henderson model.  The value for the bottleneck capacity is determined for 

. 0 >  1 - ) + (1 = c   + 1
1
γγ∆  
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the Vickrey-ADL model so that the two models yield the same total variable cost at the 

unpriced equilibrium.  The same free-flow travel time is used in the two models. 

With (1.30), (2.33), and (3.11), the condition of equal total variable cost at the 

unpriced equilibrium yields the following level of capacity for the Vickrey-ADL model: 

where  Ψ  is given by (1.30).  k  defined above approaches  R  as  γ  approaches infinity. 

Model Comparison.  Results using the base set of parameter values just described are 

reported in Table 3.1 and Figures 2.2 and 3.1.  Table 3.1 presents equilibrium characteristics 

of both models.  Figure 2.2 presents cumulative departure and arrivals for both models.  

Figure 3.1 presents departure and arrival rates for the two models.  The travel patterns are 

discussed first. 

At the unpriced equilibrium the two models yield the same travel time function.  With 

the total variable costs of travel being equal, the first and last arrival times, as well as private 

trip cost, are all the same (see Table 3.1).  This is verified by comparing equations (2.6) and 

(3.5).  The difference between the equilibria of the two models is in departure and arrival rates 

(see Figure 3.1). 
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Table 3.1  Equilibria for Alternative Approaches and Pricing Schemes
a
 

──────────────────────────────────────────────────────────── 
   Vickrey     Henderson   

       ─────────────────────────────────────────── 
  Unpriced  Priced  %   Unpriced   Priced   % 

────────────────────────────────────────────────────────────

First arrival time   7:22 7:22 NA
b   7:22 7:07 NAb     

Last arrival time    8:10 8:10 NAb   8:10 8:13 NAb    

Peak length: minutes  48 48 0%   48 66 +38%  Private 

trip cost: $/trip  2.48 2.48 0%   2.48 3.42 +38%  Average Toll: 

$/trip  0 1.24 NAb   0 1.52 NAb     Total cost of travel 

delay: $ 1240 0000 -100%    1375 373 -73%    Total cost of schedule 

delay: $ 1240 1240 0%   1105 1522 +23%  Total variable cost of 

Travel: $ 2480 1240 -50%   2480 1895 -24%    

──────────────────────────────────────────────────────────── 

a
 Demand-side parameters for both approaches, and supply-side parameters for the 

reformulated Henderson approach are given in Table 1.1.  For the Vickrey approach, 

supply-side parameter  Tf  is the same as  m/Smax  in the reformulated Henderson approach; 

parameter  k  is determined by setting its total cost of travel at the unpriced equilibrium equal 

to that of the reformulated Henderson approach: 

k = 1251 vehicles/hour 

b Percentage changes do not apply here. 
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 Figure 3.1 
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Panels  a  and  c  of Figure 2.2 show the cumulative departures and arrivals in the 

unpriced equilibrium for both models.  Panels a and c of Figure 3.1 show the corresponding 

departure and arrival rates.  In the Vickrey-ADL model, traffic flows enter the road at a 

constant rate of 3203 vehicles per hour, which is 2.6 times larger than the bottleneck capacity 

(1251 vehicles per hour).  A queue grows steadily and speeds decline continuously until the 

on-time departure time   

n.  Thereafter, traffic flows enter at a constant rate of 373 vehicles per hour, far  

below the bottleneck capacity.  The queue shrinks and speed increases until the end  u.  

Traffic flows exit at the constant rate of the bottleneck capacity.   

In the reformulated Henderson model, however, commuters enter the road at an 

increasing rate from 0 at the beginning  i  to 3988 vehicles per hour at the on-time departure 

time  n, and at a decreasing rate thereafter from 461 at  n  to 0 vehicles per hour at the end  u. 

 Unlike in the Vickrey-ADL model, speed is determined by arrival flows, which exit at an 

increasing rate from 0 at  i′  to 1558 vehicles per hour at  t* , and at a decreasing rate from 

1558 at  t*
  to 0 vehicles per hour at the end  u′.   

Panels  b  and  d  of Figure 2.2 depict the cumulative departures and arrivals, and 
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those of Figure 3.1 depict the rates of departure and arrival at the priced equilibrium for both 

models.  With the optimal toll, the first and last arrival times are no longer the same between 

the two models.  Neither are their travel time functions. 

Specifically, the departure rate in the Vickrey-ADL model reduces to the level of the 

bottleneck capacity, resulting in free-flow travel for everyone.  The period of arrivals is not 

changed since each commuter now pays the optimal toll instead of queuing at the bottleneck. 

In the presence of the optimal toll in the reformulated Henderson model, commuters 

leave home still at an increasing rate before the on-time departure, and at a decreasing rate 

thereafter.  The arrive rate is smaller than at the unpriced equilibrium, increasing continuously 

from 0 at the beginning to 1131 vehicles per hour at  t* , and decreasing continuously to 0 at 

the end.  The result is less severe congestion throughout.  Unlike in the Vickrey-ADL model, 

the period of arrivals lengthens with the first arrival earlier and the last one later.   

With an understanding of the equilibria of both models, it is ready to numerically 

examine the five results listed earlier.  Only the first four are considered.  This discussion is 

based on Table 3.1. 

The first result is that total cost of schedule delay is 50 percent of total variable cost of 

travel at the unpriced equilibrium in the Vickrey-ADL model.  Using parameter values in 

Table 1.1, total cost of schedule delay is about 44 percent of total variable cost of travel in the 

reformulated Henderson model.   

The second result is that the optimal toll saves 100 percent in total cost of travel delay, 
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0 percent in total cost of schedule delay, and 50 percent in total variable cost of travel in the 

Vickrey-ADL model.  Again using the base set of parameter values in Table 1.1, the optimal 

toll saves about 73 percent in total cost of travel delay, minus 23 percent in total cost of 

schedule delay, and about 24 percent in total variable cost of travel in the reformulated 

Henderson model. 

The third result is that the optimal toll leaves the period of arrivals unchanged in the 

Vickrey-ADL model.  In the reformulated Henderson model with the parameter values of 

Table 1.1, however, the period of arrivals lengthens by 38 percent.   

The fourth result is that the optimal toll leaves private trip cost unchanged in the 

Vickrey-ADL model.  With parameter values of Table 1.1, private trip cost increases by about 

38 percent in the reformulated Henderson model. 

As emphasized above, these percentages in the reformulated Henderson model are 

based on the base set of parameter values in Table 1.1, while those in the Vickrey-ADL model 

are independent of any of its parameters.  One natural question is: do these percentages in the 

reformulated Henderson model vary with its parameters; and, if so, how?  The answer is that 

these percentages in the reformulated Henderson model depend only on the elasticity of travel 

delay with respect to arrival flows, γ , as shown in equations (3.15)-(3.19) and (3.21).   

How do these percentages in the reformulated Henderson approach vary with  γ?  The 

variation of these percentages with  γ  is shown in Figures 3.2-3.4 with  γ  ranging from 1 to 

30 .  These percentages converge to those of the Vickrey-ADL model as  γ  approaches  ∞  
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(i.e., infinity).  The base value for  γ  is 4.08 , which lies between 2.5 and 5 , a range 

suggested for  γ  (Small, 1992a). 

Figure 3.2 shows the percentage ratio between total cost of schedule delay and total 

variable cost of travel at the unpriced equilibrium.  This ratio reaches 40 and 45 percent as  γ 

= 2 and 5 respectively.  After 5, it levels off, and converges to 100 percent (the Vickrey-ADL 

level) as  γ = ∞ . 

Figure 3.3 shows the percentage savings in aggregate costs.  With  γ = 4.08 , 

percentage savings in total cost of travel delay, total cost of schedule delay, and total variable 

cost of travel are 73 , -23 , and 24 , respectively; as  γ = 5 , they are 88 , -35 , and 39 ; they 

converge to 100 , 0 , and 50 (the Vickrey-ADL levels) as  γ = ∞ . 

Figure 3.4 shows the percentage lengthening of the period of arrivals.  It is 38 percent 

as  γ = 4.08 , 35 percent as  γ = 5 , and 0 (the Vickrey-ADL level) as  γ = ∞ .  The percentage 

increase in the private trip cost with respect to  γ  is not separately shown because it follows 

the same pattern as the percentage lengthening of the period of arrivals (see (3.19) and (3.21)). 

Some comments are in order on the cusps in Figures 3.3 and 3.4 in the lengthening of 

the period of arrivals and in the savings of total cost of schedule delay.  These cusps actually 

occur at  γ = e - 1 ≈ 1.72 , where  e is the base of natural logarithm.  It is intuitive to have the 

largest increases in total cost of schedule delay and in the period of arrivals occur together 

because it is the spreading of arrivals that causes total cost of schedule delay to increase.  But 

it is not intuitive that these largest increases occur at 
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γ ≈ 1.72 . 

 

 

 

 

 

 

 

 Figure 3.2 
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 Figure 3.3 
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 Figure 3.4 
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 3.3 Summary 

 

This chapter compares the behavior of the reformulated Henderson approach of 

chapter 2 with that of the Vickrey approach both analytically and using simulations.  It finds 

that the behavior of the reformulated Henderson approach varies with its elasticity of travel 

delay with respect to arrival flow at destination, while the Vickrey approach lacks such a 
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flexibility; that the behavior of the Vickrey approach is the limit of that of the reformulated 

Henderson approach as the elasticity of travel delay goes to infinity; and that the behaviors of 

the two approaches are not close when the elasticity of travel delay varies between 2.5 and 5 , 

the range suggested in the literature. 



 
 

 

74

 CHAPTER 4 

 ON MODELING OF HYPER-CONGESTION 

 

This chapter explores the behavior of the Mahmassani and Herman model and shows 

a subtle, but easily missed problem.  It does not solve the problem.  It does give the features 

of the model that Mahmassani and Herman (1984) do not explore, and aspects that need to be 

improved. 

Data for midtown Manhattan on a typical weekday in 1983 show that traffic density 

exceeds that for the maximum flow from 11 A.M. to 7 P.M (Vickrey, 1991).  As a result, the 

more vehicles forced into the street network, the lower is the average flow.  This phenomenon 

is often called hyper-congestion in the economics literature, or congested flow condition in the 

engineering literature.  Given this pattern of travel in midtown Manhattan, the marginal social 

cost of traveling two-mile at 11 A.M., as Vickrey (1993) claims, can be around $1000.  

Hyper-congestion is inefficient because the same flow can be carried at a much lower cost.   

To achieve a socially optimal travel pattern, an optimal toll based on the marginal 

social cost in equilibrium needs to be imposed.  Vickrey's claim presumes no change in driver 

behavior; but the whole point of the toll is to modify travel patterns.  How can we compute 

the marginal social cost of traveling in a street network like midtown Manhattan not under 

current conditions as Vickrey tries to do but in equilibrium? 

To address this properly, a structural model of peak-period congestion for a street 
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network is required.  The model should explicitly treat not only travelers' scheduling 

decisions, but also allows hyper-congestion.  The model should also be tractable for economic 

analysis. 

Most structural models of peak-period congestion either do not allow hyper-

congestion or are too complex for economic analysis.  The bottleneck model (Vickrey, 1969; 

Hendrickson and Kocur, 1981) is tractable but does not allow hyper-congestion.  When a 

queue exists at the bottleneck, traffic leaves the bottleneck always at the rate of the bottleneck 

capacity; when there is no queue, traffic leaves at the rate as it arrives at the bottleneck.  The 

Henderson model (Henderson, 1977; Chu, 1993) is also tractable but does not allow hyper-

congestion either; traffic flows entering a roadway at different times do not interfere 

throughout the trip.  Instead of treading a roadway homogeneous as in Mahmassani and 

Herman (1984) by using average density, speed, and flow over the whole road, Newell (1988) 

treats a roadway heterogeneous and works with location-specific density, speed, and flow in a 

theoretical model.  So do Chang, Mahmassani, and Herman (1985) with computer simulation 

models.  But tractability is lost in both cases.  The model by Mahmassani and Herman (1984) 

is the exception: it is tractable and allows hyper-congestion. 

Newell (1988) criticizes the Mahmassani and Herman model precisely for the 

possibility of hyper-congestion on an isolated section of a roadway.  Newell correctly states 

that the density in the isolated section can not exceed that for its maximum flow.  If it did, the 

wave velocity for this density would be negative; the density perturbation would propagate 
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further upstream, causing it to back out of the isolated section.  The critique does not hold, 

however, if the Mahmassani and Herman model is adapted to non-isolated roadways that have 

downstream bottlenecks.  A city street network such as midtown Manhattan is full of such 

bottlenecks. 

Is it reasonable to adapt the Mahmassani and Herman model to a street network?  For 

detailed studies of traffic operations, either the computer simulation approach or Newell's 

theoretical approach would be more appropriate because both treat a street network as 

heterogeneous.  For economic analysis, however, they are too complex.  Instead, we may 

consider the entire area under study as a homogeneous mass of streets over which some traffic 

relationships are assumed to hold (Vickrey, 1993).  This is the approach by Mahmassani and 

Herman (1984). 
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 4.1 Model Review 

 

The notation follows Mahmassani and Herman.  A fixed number  N  of identical 

commuters desire to go from home to work along a single road.  The common desired arrival 

time is  A.  Every commuter chooses a time  t  to enter the road to minimize trip cost 

where  τ(t)  and  A - t - τ(t) > 0  are the travel time and schedule delay, respectively; α1  and  

α2  are their unit costs. 

The road has two distinct sections: the upstream section has  l  miles; the downstream 

section has  m  miles.  Congestion can only occur in the upstream section, refereed later as the 

congestable section.  Let  k(t)  and  v(t)  be the average density and speed, respectively, along 

the congestable section at time  t .  The average flow along the congestable section at time  t , 

q(t), is defined as: 

Mahmassani and Herman make three additional assumptions: 

1. Greenshields' linear relationship between the average speed and average density 

[ ](t) - t - A  + (t)  = c(t) 21 τατα  

. v(t)  k(t) = q(t)  
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along the congestable section holds at any time  t : 

 

where  vm  is the free-flow speed and  kj  the jam density. 

2. Let  λ(t)  be the number of commuters entering the congestable section at time  t  

(the input flow at time  t).  The following conservation equation holds on the congestable 

section: 

3. The travel time  τ(t)  for a commuter leaving home at time  t  is 

where  l/v(t)  is the travel time on the congestable section; τf ≡ m/vm , the travel time on the 

non-congestable section.  Equation (4.5) uses the average speed prevailing on the congestable 

section at the time when a commuter enters the section to compute his travel time.  The 

average speed, however, varies with the average density of the congestable section while one 

travels.  If the average density increases during one's journey, one's travel time would be 

underestimated; if it decreases, one's travel time would be overestimated. 

k  k(t)  ,
k

k(t) - 1   v = v(t) j
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
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Evidence from Austin and Dallas, Texas shows that (4.2) holds in a street network 

(Ardekani and Herman, 1987).  The Greenshilds linear relationship (4.3) is a special case of 

those in Ardekani and Herman (1987) estimated for traffic in street networks.  For street 

networks, input flow would include not only traffic entering the area but also traffic originated 

from parking lots within the area.  Similarly, output flow would include not only traffic 

leaving the area but also traffic terminated at parking lots within the area.   

 

Mahmassani and Herman solve the model as follows.  It is necessary in equilibrium 

that the user cost be constant for all departure times.  This leads to 

for  α1 > α2.  Differentiating (4.5) and using (4.3) yields  

where  τm ≡ l/vm , the free-flow travel time on the congestable section.  Combining (4.6) and 

(4.7) and rearranging yields a differential equation for the normalized average density, K(t) ≡ 

k(t)/kj , along the congestable section: 
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Define departure time  t0  such that  K(t0) = 0 .  The solution for  K(t)  is 

Substituting (4.9) into (4.3) and using (4.5) yields the travel time function given by 

where the second term measures travel delay.  The average flow function is obtained from 

(4.9) through (4.2) and (4.3).  The departure rate function is obtained by substituting (4.2) and 

(4.3) into (4.4) and rearranging as follows: 

Define departure time  tf  such that  

where  τ(tf)  is given by (4.10).  All  N  commuters depart between  t0  and  tf , or 

[ ] . K(t) - 1   
 - 
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where  λ(t)  is given by (4.11).  Equations (4.9) through (4.13) can be used to determine  t0  

and  tf  numerically.  The period of departures is defined by  t0  and  tf . 

 

 

 

 

 

 

 

 

 

 

 4.2 Model Behavior 

 

It is crucial to understand how the Mahmassani and Herman model behaves not only 

within but also after the period of departures.  Neither Mahmassani and Herman nor Newell 

(1988) examine the latter.  This section first solves the model for the period of no departures.  

It then identifies the condition under which hyper-congestion may occur and the condition 

under which overtaking may occur.  At the end, it shows that the Mahmassani and Herman 

 dt (t)  = N t
t 
f

0
λ∫  
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model lacks equilibrium. 

After the period of departures, λ(t) ≡ 0  and (4.6) no longer applies.  From (4.11), the 

normalized average density  Kn(t)  on the congestable section satisfies 

where the subscript, n , indicates no departures.  Using the initial condition that 

Kn(tf) = K(tf)  and solving equation (4.14) yields 

where  K(tf)  is given by (4.9) and  exp  represents the exponential function.  Substituting 

(4.15) into (4.3) and using (4.5) yields the travel time function after the period of departures 

 

 

The average flow along the congestable section is obtained from (4.15), using (4.2) and (4.3). 

  

Figures 4.1 - 4.3 show the behavior of the model both before and after the period of 
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departures for three different lengths of the congestable section.  The parameter values chosen 

are listed at the top of each figure.  The following parameters are the same for all three 

figures:  N = 500 , A = 8:00 , α1 = 6.4 , α2 = 3.9 , kj = 220 , vm = 30 , and  m = 10  miles.  

Mahmassani and Herman use the same values for  A  and  kj .  Arnott, de Palma, and Lindsey 

(1990) use the same values for  α1  and  α2 .  The length of the congestable section, l , is  2  

miles in Figure 4.1; 4  miles in Figure 4.2 ; and  1  miles in Figure 4.3 . 

In each figure, the five variables  λ(t) , k(t) , v(t) , q(t) , and  τ(t)  are plotted in the 

five boxes labelled as "Departure Rate," "Density," "Speed," "Flow," and "Travel Time," 

respectively.  In all boxes, the horizontal axis measures clock time, scaled from  t0  to  A .  

Variables on the vertical axis vary with boxes.  Notice that a horizontal line is also drawn in 

the Density box at half of the jam density, at which flow reaches its maximum flow, qm, as 

labeled in the Flow box.  The system behaves differently within and after the period of 

departures.  For example, average density and travel time both increase with time within the 

period of departures, but both decrease with time after the period of departures.   

 

Four features of the Mahmassani and Herman model are explored here.  First, the 

condition under which hyper-congestion may occur is identified.  Hyper-congestion occurs in 

both Figures 4.1 and 4.3 , but not in Figure 4.2 .  In fact, hyper-congestion occurs if and only 

if  K(tf) > 1/2 , or, from (4.9), 
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This is equivalent to  τ(tf) - τf > 2τm .  That is, when the parameters are such that the travel 

delay, τ(tf) - τm - τf , for the last departure at  tf  is greater than the free-flow travel time along 

the congestable section, hyper-congestion occurs within the period of departures. 

Second, the condition under which one can arrive earlier by starting later--a 

phenomenon called overtaking is identified.  Given  α1 > α2 , overtaking can not occur within 

the period of departures because arrival time  t + τ(t)  increases with departure time  t.  But 

overtaking can occur after the period of departures.  To see this, one can examine the 

difference in arrival times between those who depart at  tf  and any hypothetical commuter 

who would depart at some time  t  after  tf : 

The function in (4.18) is plotted in the three figures, labeled as "Overtaking."   

The purpose is to see whether there is any set of parameters at which  ∆(t) < 0  for 

some time  t > tf .  Since  ∆(t)  is zero at  tf  and its second derivative is positive after  tf , 

overtaking will occur if the first derivative of (4.18) given by 
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has a root larger than  tf .  In fact, (4.19) is zero for some  t > tf  if and only if (4.17) holds. 

Unlike hyper-congestion, however, overtaking occurs only after the period of departures.  

Thus, neither or both overtaking and hyper-congestion occur for a given set of 

parameters.  To see this in the figures, note hyper-congestion occurs when the average density 

exceeds the horizontal line at half the jam density in the Density box; overtaking occurs when 

the curve in the Overtaking box is below the horizontal line at zero.  They occur in Figures 

4.1 and 4.3; but neither occurs in Figure 4.2. 

Third, the overtaking problem lessens when the congestable section is shorter.  Figure 

4.2 has the shortest congestable section but no overtaking; Figure 4.3 has the longest 

congestable section but the most serious problem of overtaking.  

Lastly, Mahmassani and Herman's model lacks user equilibrium for those sets of 

parameters that lead to hyper-congestion.  This is a direct result of the overtaking problem.  

When a commuter can overtake those departing at  tf  by unilaterally departing after  tf , he can 

reduce his trip cost by the schedule shift.  By definition, the corresponding solution is not a 

user equilibrium. 

 

 

 

 

 Figure 4.1 
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 Figure 4.2 
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 Figure 4.3 
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 4.3 Summary 

 

The Mahmassani and Herman model treats a roadway homogeneous and allows 

hyper-congestion to occur.  Its framework can be useful for considering marginal-cost pricing 

in city street networks where hyper-congestion are likely to occur.  In fact, Vickrey (1991) 

does just that for midtown Manhattan.  But their formulation of the framework can lead to 

lack of user equilibrium for parameters that result in hyper-congestion.  Is this a general 

problem of assuming homogeneity in traffic or just a result of their particular formulation?  If 

the later is the case, can we modify their formulation so that it retains tractability and the 

possibility of hyper-congestion, and at same time it admits equilibrium?  It is hoped that the 

findings on the behavior of their model will help stimulate further research on their framework 

and lead to answers to these questions. 
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PART II AN APPLIED MODEL OF PEAK-PERIOD CONGESTION 
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 CHAPTER 5 

 THEORETICAL FRAMEWORK 

 

This chapter develops a theoretical framework for an equilibrium simulation model of 

peak-period congestion.  The demand side is a discrete choice model of both mode and time 

of day.  The indirect utility function of the choice model is specified analytically with utility 

maximization.  The supply side is a bottleneck model in discrete form or a speed-flow 

function of chapter 2.  This chapter derives equilibrium conditions and a marginal-cost pricing 

rule. 

The indirect utility function to be used in discrete choice models of trip scheduling is 

often specified without a theoretical foundation.  Variables on time being early or late for 

destination activities are arbitrarily added.  Small (1982) is one exception.  He extends models 

of time allocation (Becker, 1965) by making travel cost and time dependent on scheduling.  

Small's setup has two shortcomings, however.  First, duration of work, but not duration at the 

work site, enters the time budget.  The gap is either time early or time late for work.  This gap 

is the focus of those discrete choice models of trip scheduling.  Second, Small's setup does not 

lead to an operational specification of the utility function. 

Marginal-cost pricing rules have only been established in the context of simple 
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continuous models without scheduling considerations (see for example, Walter, 1961).  This 

chapter analytically establishes a marginal-cost pricing rule in the context of a discrete choice 

model of mode and schedule.  It shows that an optimal toll that maximizes social welfare, the 

sum of consumer welfare and toll revenue, is a marginal-cost toll. 

Section 5.1 extends Train and McFadden (1978) to include both mode and time of 

day.  Section 5.2 describes alternative models of supply.  Equilibrium conditions and the 

marginal-cost pricing rule are derived in section 5.3.  
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 5.1 Demand 

 

Train and McFadden (1978) show how to specify an indirect utility function for a 

mode choice model based on utility maximization.  Their formulation given in Small (1992a, 

pp. 40-43) is extended to time-of-day choice. 

 

Systematic Utility 

Consider a sample of  N  commuters.  Commuter  i (i = 1 ,..., N) has daily unearned 

income  Yi , wage rate  wi , total time available  Ti , and work-start time  si .  Each commuter 

consumes some amount of a numeraire commodity denoted by  Z , and spends time  L  in 

pure leisure, H  in working, and  tms  in commuting with mode  m  and schedule  s .  Define 

schedule delay early as  SDEs = si
 - s  if  s < si

 , and schedule delay late as  SDLs = s - si
  if  s 

≥ si .  Train and McFadden (1978) assume that time spent in working or commuting enters 

utility with an adjustment to  L , so that utility depends on  Z  and 'effective leisure' _ :  
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Adjustments for  SDEs  and  SDLs  have been added for the extension here. 

Conditional on mode  m  and schedule  s , each commuter chooses  Z  and  _  to 

maximize direct utility,  Ums , given by  

 

subject to a money budget 

and a time budget 

where  ln  represents natural logarithm; b  is a parameter; cms  and  τms  are non-toll travel cost 

and toll, respectively, to and from work with mode  m  and schedule  s .  Only one of the two 

schedule delay variables has an effect on the time budget; which one is in effect depends on 

whether one is early or late for work.  The first two terms, Wi
ms , in (5.2) comprise the direct, 

systematic utility.  The last term in the right hand side of (5.2) is an idiosyncratic taste 

constant, which measures the unobserved attraction of mode  m  and schedule  s  to the 

commuter.  Figure 5.1 shows an example of the time budget when  s < si .   

t + SDL   + SDE   + H  + L = L msms
 s ,m

slseh   αααα ∑  
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An additional term, SDEs  or  SDLs , is added to the time budget to take into account 

the time the commuter waits for work to start in the morning, SDEs , if  s < si
  or to subtract 

the time the commuter is late for work, SDLs , from work hours  H  if  s > si
 .  This is to put 

the duration at the work site, not the duration of work, in the time budget.  Commuters are 

assumed to leave the work place in the afternoon right at the work-end time  si + H .  Thus, 

travel time for the afternoon commute is independent of schedule  s .  

Using (5.1), the time budget can be rewritten as 

Solving constraints (5.3) and (5.5) for  Z  and  _ , substituting them into (5.2), maximizing 

with respect to  H , and substituting the solved  H  into (5.2), yields the indirect, systematic 

utility  Wi
ms  conditional on mode  m  and schedule  s : 

This specification implies a marginal utility of income given by 

a marginal value of commuting time with mode  m  and schedule  s  given by 

t )   -  1 (  -  SDL  )   +  1 (  -  SDE  )   -  (1  -  H )   -  1 (  -  T  =  L msmsslseh
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a marginal value of schedule delay for early schedule  s  given by 

and a marginal value of schedule delay for late schedule  s  given by 

 

 

 

 

 

                                                                

     La        ta
ms     SDEs                        H                         tp

m         Lp  
╧══════╧══════╧═══╧════════════════════════╧════════╧═════╛ 
6:00                    s      si                                                                 22:00 

                                              

Figure 5.1.  An Example of Time Allocation for a Commuter who Arrives at Work Early.  He 

sleeps between 22:00 P.M. and 6:00 A.M.  He spends  L = La + Lp  in leisure.  He arrives at 

work at  s , being early for work by  SDEs = si - s .  He spends  ta
ms and  tp

m  for A.M. and P.M. 
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commutes, respectively.  tms = ta
ms + tp

m .  He works  H  hours. 

 

 

 

 

 

 

Discrete Choice 

Suppose the morning peak-period is divided into  S  discrete intervals, and there are  

M  modes available in each of the intervals.  A commuter will choose mode  m (m = 1 ,..., M) 

 and schedule  s (s = 1 ,..., S)  with a probability given by 

such that  ∑ms Pi
ms = 1 .  Here  s  is used to index any of the discrete time intervals.  Each 

interval is  d  minutes long. 

Suppose  ui
ms  are identically distributed across modes and time intervals and 

independent across modes but correlated across time intervals, according to the nested logit 

model (McFadden, 1978).  The choice probabilities are:  

[ ]S  , ... ,  1 =s� ,  M  , ... ,  1 =m� ;  u  +  W  u  +  W  Prob i
s�m�

i 
s�m�

i
ms

i 
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where  Ii
m  in (5.12) is the inclusive value for schedule choice conditioned on mode  m ; 1 - ρm 

 is a parameter, measuring correlation of  ui
ms  across schedules. 

 

 

 5.2 Supply 

                     

Speed-flow curves with a maximum flow (Walter, 1961, for example) could be useful 

for representing hyper-congestion (or congested flow conditions) in urban street networks, as 

argued in chapter 4.  It may also be satisfactory for representing moderate levels of congestion 

in off-peak periods or long-tern analysis (Keeler and Small, 1977).  It is unsatisfactory, 

however, for describing demand conditions where demand for highway use exceeds highway 

capacity. 

One way to represent extreme demand conditions is to use a deterministic queuing 

model, a continuous form of which is given by (3.1)-(3.2).  For discrete choice analysis, it is 

useful to write the queuing model in a discrete form.  To do this, let  Vs  be the flow in 
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passenger car units per hour arriving at the bottleneck in time interval  s , Qs  and  qs  be the 

queue and queuing delay for those arriving at the bottleneck in time interval  s , and  Ts  be the 

sum of queuing delay and free-flow travel time, Tf .  For  s = 2 ,⋅⋅⋅, S , 

where  C  is the bottleneck capacity.  

An alternative is a Henderson-type supply model that has no maximum flow as given 

in (1.2) or (2.2).  This supply model is static in itself, and has been widely used in static 

analysis of traffic congestion (Small, 1992a, p. 70).  But as demonstrated in the first three 

chapters, it can also be satisfactorily used in dynamic analysis of traffic congestion.   
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 5.3 Social Optimum 

 

The purpose is to drive an optimal pricing rule within the context of a discrete choice 

demand model.  Let  gi
ms  denote the generalized travel cost; so 

where  SDEs = d(si - s)  if  s < si ; SDLs = d(s - si)  if  s ≥ si ; and  d  is the duration of each 

time interval.  Rewrite systematic utility in (5.6) as 
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where the toll per person  τms  may be written as the ratio of the toll per passenger car unit and 

the passenger car occupancy of mode  m : τs / rm .  

Following Small (1992a, p. 28), the following 

measures aggregate consumer welfare.  Its change equals a change in consumer's surplus.  The 

'bar' in (5.16) indicates a vector.  The factor  αi  in (5.16) is the weight applying to commuter  

i ; this weight equals the number of travelers commuter  i  represents in a population under 

study who are identical to commuter  i  on observed characteristics.  Toll revenue is 

 

 

 

where the factor  d/60  adjusts flow to number of vehicles traveling in an interval of duration  

d  minutes.  The objective is to maximize social welfare as follows: 
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The first order conditions are: 

 

These two sets of conditions state that the optimal toll and traffic flow in each time interval 

should be set such that the marginal increase in toll revenue is equal to the marginal decrease 

in consumer welfare.   

The first set of conditions (5.19) are conditions for a stochastic equilibrium (Anas, 

1990): a stochastic equilibrium results when the travel time in each interval is such that the 

expected number of commuters choosing to travel in the interval equals the traffic counts in 

that interval that gives rise to the travel time in that interval. 
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The second set of conditions give the optimal pricing rule:  

The right hand side of this pricing rule is the marginal increase in the expected generalized 

travel cost 

from an increase in traffic counts in a given time interval while holding  Pi
mk  constant.  So 

(5.21) is a marginal-cost pricing rule that maximizes social welfare. 

S , ... , 1 = sfor   
V 

) V(g  P      
d
60 = 

s

i
mki

mk
i

k  ,mi
s ∂

∂
∑∑ ατ  

) V(g  P       ) VTC( i
mk

i
mk

i

k  ,mi
α∑∑≡  



 
 

 
 

104

104 

 CHAPTER 6 

 ESTIMATION OF DEMAND MODEL  

 

This chapter empirically specifies and estimates the discrete choice model of mode 

and time-of-day proposed in chapter 5.  Data used in estimation are from the Urban Travel 

Demand Forecasting Project, University of California-Berkeley. 

Both Abkowitz (1980) and Hendrickson and Plank (1984) attempt to estimate discrete 

choice models of mode and time-of-day.  Neither is satisfactory for the current research for 

reasons reviewed later, and a new demand model must be estimated.  The data are described 

in section 6.1.  The demand model is specified in section 6.2, and results are reported in 

section 6.3.  
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 6.1 Data 

 

Data are for a sample of 991 commuters in the San Francisco Bay Area for the Urban 

Travel Demand Forecasting Project (UTDFP) at the University of California at Berkeley.  

Details are in Johnson (1976) and Reid (1977). 

 

Behavioral and Socio-economic Data.   

The UTDFP staff compiled behavioral and socioeconomic data for this sample of 991 

commuters from two personal surveys, Work Travel Study (WTS) and BART Impact Travel 

Study-1 (BITS).  Each survey included a home interview and a mailback questionnaire 

following the home interview. 

WTS was conducted in the Spring of 1972.  During this survey, BART had not yet 

begun operation.  Respondents consisted of "potential transit commuters" from the East Bay 

Area who lived within feasible range of BART service in the East Bay, and worked in 

Oakland, Berkeley, San Francisco, Daly City, or Emeryville.  There were 213 completed 

home interviews and 319 completed mailback questionnaires. 

  BITS was conducted in the Winter of 1973.  During this survey, BART offered 

daytime service in San Francisco and the East Bay; trans-bay service connecting the two 
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portions of the system was not yet available.  There were 1724 completed home interviews 

and 3447 completed mailback questionnaires. 

Under both surveys, the study area was divided into a number of geographic strata and 

then each stratum was sampled by multistage area probability sampling method (selecting, in 

order, study areas, blocks within selected areas, and houses within selected blocks) such that 

each household had equal probability of being selected.  At each household selected, 

screening questions were used to identify eligible respondents, i.e., those who worked in the 

centrally located cities identified for WTS and those who were eighteen years of age or older 

for BITS.  Only one person was interviewed per household; if a household contained more 

than one eligible person, a random procedure was used to select a respondent.  Questionnaires 

were limited to persons sixteen years of age or older from each household sampled for the 

home interviews. 

The home interviews determined the following information for each respondent: usual 

travel mode, work-start time, regular arrival time at work for the morning trip, and other 

standard socioeconomic characteristics such as household income, respondent's age, sex, 

occupation, etc.  Work-quit time was also reported but no departure time for the afternoon trip 

was reported.   

The questionnaires for WTS requested a coded description of every trip made on the 

first weekday following the home interview.  The questionnaires for the BITS requested a 

coded description of every trip made on the Tuesday following the home interview.  The 
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description included trip purpose, origin and destination, time started and ended, method of 

travel, number of blocks walked at start of the trip.  For car trips, the description also included 

number of people in the car, method of parking at the trip end, and cost of parking.  For transit 

trips the description also included number of transfers. 

Trip Time and Cost Data.  

Trip time and cost data were prepared by the Urban Travel Demand Forecasting 

Project.  The data reflect travel conditions in the San Francisco Bay Area in mid-1972.   

 

A. Data Source.  The core data source was the regional planning network data files maintained 

by the Metropolitan Transportation Commission for the San Francisco Bay Area as updated to 

represent conditions in January 1972.  This data source included a highway network file and a 

transit network file. 

The highway network file contained, for each link in the network, the node numbers at 

each end, the distance, and morning peak and midday travel times.  In addition, various 

characteristics of the link such as road classifications are coded.  The morning peak network 

values were defined to be the average travel time values for the peak AM hour of travel. 

The transit network file contained headways at each boarding or transferring point and 

line-haul times for all transit lines in the region for the morning peak, midday periods, and the 

afternoon peak.  Average walk access times within zones of the transit network were also 

coded.   
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The other major source was external travel-time data for the morning peak and the 

afternoon peak, respectively, from floating-car runs on major Bar Area freeways between 

1971 and 1973.  The data cover most freeways subject to congestion, usually in the congested 

direction only, and usually over a long enough period between 2.5 to 3 hours to completely 

include the buildup and decay of congestion for one peak.  Typically the data for one stretch 

of freeway consist of 20 to 40 runs taken over the same 2.5 to 3 hour period on two or three 

different days.  The data were collected by the Highway Operations Group of the Caltrans at 

San Francisco.   

Other data sources included origin and destination locations from the personal 

surveys, transit timetables for the region from transit operators representing 1972 conditions, 

an interzonal bus fare matrix from MTC representing late 1971 conditions, data on automobile 

operating and maintenance costs as a function of road type and speed from Keeler and Small 

(1975), and a survey of all off-street fee parking in the study area in 1972. 

 

B. Automobile Trip Time.  Three procedures were used to compute automobile travel times: a 

path-finding procedure using network travel times, a congestion curve-fitting procedure using 

external congestion data, and a time-calculating procedure using the fitted congestion curves. 

The path-finding procedure first calculated an impedance for each link in the highway 

network file.  The impedance approximates operating and maintenance costs plus a cost of 

time.  The cost of time was the link travel time times value of time at $1.68 per hour.  This 
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value of time was inferred from McFadden (1974).  The procedure then ran a path algorithm 

and produced one path for each work-to-home trip (using midday network times) and two 

paths for each home-to-work trip (using morning peak and midday network times, 

respectively) in the sample of 991 commuters.   

The congestion curve-fitting procedure fitted a congestion curve for each link in the 

highway network file.  If a link represents a freeway for which floating-car run data were 

available, two piecewise-linear curves were fitted to the floating-car run data, one for the 

morning peak and the other for the afternoon peak.  If a link represents a non-freeway or a 

freeway for which floating-car run data were unavailable, an approximation was used.  This 

approximation step uses the congestion curve for a nearby representative freeway stretch in 

the same area of a given link to determine the shape and the timing of congestion variation for 

that link.  

The travel time calculation procedure calculated travel times for 12 alternative arrival 

times for each home-to-work trip.  These 12 arrival times resulted from dividing the arrival 

time window for each sample commuter between 42.5 minutes early and 17.5 minutes late 

from his work-start time.  The procedure calculated travel time for each of these arrival time 

by starting from the work end of the trip and simulating the trip link-by-link toward the home 

end.  At each link, travel time was adjusted using the morning congestion curve if the work 

arrival time was before noon or using the afternoon congestion curve otherwise, and was 

cumulated to define a clock time for the next link.  For the work-to-home trip, travel time was 
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calculated using the only path.  For the each of the 12 alternative arrival times for the morning 

trip, both paths were adjusted in this way, impedances were re-calculated, and the one with 

lower impedance was chosen.  These two paths, one for the home-to-work and one for the 

work-to-home trip, were used for computing automobile operating and maintenance costs. 

C. Transit Trip Time Components.  The zone-average walk access times in the transit network 

file were thought inappropriate for UTDFP.  Instead, descriptions of residential and workplace 

locations or their nearest cross streets were used to derive spatially more disaggregated data.  

Calculated walk access times then were substituted for the zonal values in the transit network 

file.  Access time to transit by automobile was computed similarly. 

Other transit trip attributes were computed with a path-finding procedure and an 

attribute-computing procedure.  The path-finding procedure first calculated an impedance for 

each path using transit trip attributes in the transit network file for each transit line in the 

network and for the morning peak, midday, and the afternoon peak, respectively, and using 

attribute weights.  These weights were inferred from a mode choice model based on the WTS 

sample.  The procedure then ran a path algorithm using the origin and destination information 

for each trip in the sample, and determined a path for each trip. 

The calculation began with finding two schedule times for each line and each 

boarding or transferring point on the line from operators' timetables to determine which 

service (morning peak, midday, or afternoon peak) was available and its probable headways 

for each transit trip in the sample.  These two schedule times were then compared with the 
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work-end schedule and its adjustment for the elapsed time to other points on the path.  This 

procedure produced first headways, transfer headways, and line-haul times.  Number of 

transfers were from personal surveys; access times by walk or automobile were computed 

independently from the path-finding procedure. 

D. Auto Operating and Parking Costs.  Operating costs were defined as the sum of gasoline, 

oil, and maintenance costs for the average auto in the region in 1972.  Since the particular 

road classifications and speeds were available, they were used to identify the cost of using 

each highway link in the trip time adjusting programs.  Trip operating costs were the sums of 

those link operating costs.  Tolls were also separately accumulated for those trips that crossed 

the only toll bridge in the study area.  The commuter discount toll was used. 

The source of the parking cost data was a survey of all off-street fee parking in the 

study area in 1972.  Parking costs were associated with each round trip, if there was at least 

one off-street fee lot in the traffic zone where each survey respondent worked, and if the 

respondent noted in the project's household surveys that his employer did not provide free 

parking.  Fee parking in a zone was presumed to imply that no other free street parking was 

available.  Street meters were assumed inapplicable to commuters.   

 

E. Carpool Alternative Trip Attributes.  An average occupancy of 2.5 persons per carpool, 

evenly dividing costs, was uniformly applied for the trips.  The extra time involved with 

picking up and discharging passengers was assumed to be a uniform 6.25 minutes per trip.  
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Where priority lane time or cost savings were applicable, these were subtracted from the 

network line-haul times or costs for those trips. 

 

 

Data Reduction 

The reduction of data from the two personal surveys to the sample of 991 cases was 

carried out by the UTDFP.  The BITS included work trips and non-work trips, but the non-

work trips excluded from the 991 cases. 

For the estimation sample, the following criteria are used for data reduction: 

1) incomplete data on the variables used; 

2) usual work arrival time outside the one-hour interval between 42.5 minutes early 

and 17.5 minutes late relative to the work start time; 

3) no fixed work start time. 

Criteria 1) leaves 783 cases for the estimation of marginal mode choice models; criteria 2) and 

3) leave 569 cases for the estimation of the conditional schedule choice models.   
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 6.2 Specification 

 

Data on travel times are available for 12 arrival times for auto modes and available for 

work start time for bus modes.  As a result, the choice set on scheduling for auto users is 

limited to 12 relative intervals.  For bus users, only the on-time relative interval is available.  

Each relative interval is 5 minutes long, centered around one of the 12 arrival times.  The on-

time relative interval for a given individual is centered around his work start time.  Figure 6.1 

shows a nested logit structure for mode and schedule choices. 

The nested structure in Figure 6.1 assumes that unobserved preferences for the 

scheduling alternatives and for the mode alternatives are independent.  Two patterns of 

correlation other than independence have been hypothesized for  unobserved preferences for 

the scheduling alternatives (Brownstone and Small, 1989, p. 70).  One correlation pattern 

occurs among nearby alternatives, induced by an ordering of the scheduling alternatives, in 

which case an ordered generalized extreme value structure for the alternative schedules is 
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more appropriate (Small, 1987).  The other correlation pattern occurs among alternatives 

within each of the three groups: arriving early (alternative  1-8), on-time (alternative  9), and 

arriving late (alternatives  10-12), in which case a nested logit structure for the alternative 

schedules is more appropriate.   

There is evidence, however, indicating that neither of the two hypothesized correlation 

patterns is statistically significant.  Small (1987, Table II) reports results from the maximum 

likelihood method that fail (at a ten percent level using a one-sided test) to reject the 

independence hypothesis against the 

correlation pattern that would be consistent with an ordered generalized extreme value 

structure.  Brownstone and Small (1989, Table  1) report a maximum likelihood estimate of  

0.807  for the coefficient of inclusive values with a standard error of  0.178, which would fail 

(at the same significance level using a 

one-sided test) to reject the independence hypothesis against the correlation pattern that would 

be consistent with a nested logit structure.   

Auto mode is seperated into carpool and drive-alone to examine policies that affect 

carpool differently from drive-alone.4
  Bus mode is seperated into bus-with-walk-access and 

bus-with-auto-access because previous studies based on the same sample have reported more 

                                                           
     4Carpool is defined as autos with two or more occupants.  Small (1983b, p. 47) reports 
a somewhat better fit with carpool defined as autos with three or more occupants.  The 
data set in its current form does not allow constructing a dummy for carpool in this way.  
It is unclear which definition is more useful for policy analysis because occupancy 
requirement for high-occupancy-vehicle lanes in the United States is equally divided 
between the two (Transportation Research Board, 1990, p. 8). 
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plausible estimates with this separation.  

With these separations of modes, it is possible that there is a closer correlation among 

the unobserved preferences for the two auto modes and the two bus modes respectively.  For 

the easiness of model estimation and equilibration grouping of modes is not considered. 

   Since buses normally are operated on fixed schedules, bus users would have much 

less choice of arrival time at work than auto users.  Given this being the case the choice 

structure in Figure 6.1 may not be as limited as it may first appear.  Bus users will have 

different schedules if their work-start times differ.   

 

 

 Figure 6.1 
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To empirically specify the systematic utility in (5.6), it is decomposed into two 

components as follows: 

where  _m(Xi
m, Si; θ)  is a function of the observed attributes  Xi

m  associated with mode  m  

and socioeconomic characteristics  Si , _mj(Zi
mj, Si; φ)  is a function of the observed attributes  

Zi
mj  associated with mode  m  and relative interval  j  and  Si .  θ  and  φ  are two vectors of 

parameters to be estimated.  For ease of reference, the two components in (6.1) are further 

decomposed as follows:  

 ,) ;S ,Z(_ + ) ;S ,X(_ = W ii
mjmj

ii
mm

i
mj φθ  
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where  Xi
m  and  Si

  are defined as in (6.1), and in addition, αm  is a constant, a scaler 

component of  θ ; β  and  δ  are subvectors of  θ ;  η , ξ , and  ψ  are subvectors of  φ ; ωi
  is 

wage rate, a scaler component of Si
 ; TIMi

mj  is the on-vehicle time associated with relative 

interval j  and mode  m ; SDj  is the schedule delay associated with relative interval  j ; j = 1, 

⋅⋅⋅, 12  indexing the twelve relative intervals; m = 1  for auto-alone, 2  for bus with walk 

access, 3  for bus with auto access, and  4  for carpool.  

The mode-choice literature shows that transportation variables such as monetary costs, 

on-vehicle time, walk time, and wait time, are key determinants of mode-choice.  In this 

research, monetary costs include operating, maintenance, parking, and tolls for auto-alone; for 

carpool, costs are those for auto-alone divided by  2.5, the average occupancy of carpool in 

the sample.  On-vehicle time, walk time, and wait time are entered as separate variables.  

Overall,      

where  ci
m  is monetary costs in cents associated with mode  m; TWKi

m is walk time in 

minutes associated with mode  m ; TWTi
m = 5 + H/4  if  H > 10 ; H/2  otherwise; H  is 

headway for the first bus in minutes;5
 TXRi

m  is cumulated transfer time in minutes associated 

                                                           
     5Thus TWAITi

m, first-wait time, is set at one-half the headway up to 10 minutes, plus 
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with mode  m ; ∆23
 = 1 if m = 2, 3 ; 0  otherwise. 

In addition to transportation variables, socioeconomic characteristics such as age, 

occupation, household income, sex, and presence of young children are often reported as 

determinants of taste for modes and trip schedules in the literature.  One problem with certain 

socioeconomic characteristics is that they are often endogenous, causing biases in the 

coefficients for variables with which they are jointly determined.  Examples include 

automobile ownership and job and  residential locations.   

                                                                                                                                                                             
one-fourth the increment in headway beyond 10 minutes, following Train and McFadden 
(1975) and Small (1983b). 

 

Another issue with socioeconomic variables is how they should be specified.  One 

way is to treat them as utility-shift variables, specified as dummies interacted with alternative-

specific dummies.  The other way is to treat them as parameter-shift variables, specified as 
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dummies interacted with transportation variables.  For mode-choice, household income, 

presence of children under age seventeen, length of residence, age, and sex are included; 

except for sex, Small (1983b) has been followed.  They are specified as utility-shift variables 

as follows: 

for  m = 1, 4, and  Bm(Si; β) = 0  for  m = 2, 3.  In (6.4), βi (i = 1, 2, 3, 4, 5)  are components 

of vector  β ; Yi  is the household income of commuter  i  in thousands per year with a ceiling 

of ten;6 BAi  is the length of residence of commuter  i  in the Bay Area in years; CLDi = 1 if 

commuter  i  has children under  17  present; 0  otherwise; A45i
 = 1  if commuter  i  is  45  or 

older; 0  otherwise; MALi = 1  if commuter  i  is a male; 0  otherwise; ∆1 = 1  for auto-alone; 

0 otherwise. 

For time-of-day choice, occupation (professional and managerial) and age (forty-five 

years and older) are included as indicators of taste.  They are specified as parameter-shift 

variables interacting with schedule delay variables only, hypothesizing that these commuters 

value schedule-delay savings differently from others.  This results in  

                                                           
     6I have followed Small (1983a, 1983b) in using the truncated family income.  I myself 
tried actual family income, and the truncated family income seems work better. 

  MAL  + 45A  + CLD  + BA  + Y  = ) ;S(B 1 i
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i
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i
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and  

for  m = 1, 4, and  Fmj(SDj, Si
; ψ) = 0  for  m = 2, 3, where  Si

 , ξ , and ψ = (ψ1 , ⋅⋅⋅, ψ7)  are 

defined as in (6.2), A45  is defined as in (6.4); CPi = 1  for carpool; 0  otherwise; PFi = 1  for 

professional and managerial workers; 0  otherwise; SDEj = Max {0, 5(9-j)}, a measure of 

schedule-delay early;  

SDLj  = Max {0, 5(j-9)}, a measure of schedule-delay late; D1Lj = 1  if  j > 8; 0  otherwise. 

     TIMi
mj  in (6.5), the on-vehicle time associated with auto mode  m and relative interval  j , 

is measured by the sum of on-vehicle times of the afternoon trip at work-quit time and of the 

morning trip in relative interval  j ; TIMi
mj , for bus modes, is measured by the sum of on-

vehicle times of the morning trip at work-start and of the afternoon trip at work-quit time.  In 

doing so the following assumption is made explicit: the mode-choice decision is for the round 

trip but the scheduling decision is for the morning trip only.  Under fixed work-start and 

work-quit times, it is reasonable to assume that the arrival-time choice for the morning trip 

and the leaving time choice for the afternoon trip are independent decisions.   
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In reality, though, dependence of the two scheduling decisions could occur, and 

occurs usually for commuters with flexible work hours.
7  For example, a commuter who wants 

to make the afternoon trip in the shoulders of an extremely wide peak period may make the 

morning trip extremely early or late.  In doing so, the commuter takes into account travel costs 

at alternative schedules for the morning trip as well as for the afternoon trip.   

Considering either the scheduling decision for the afternoon trip or flexible work 

hours would require data that are unavailable.  Although it is possible to model flexible work 

hours with the concept of work schedule delay by setting schedule delay at zero for the 

alternatives within the flexible period, this approach would increase the number of time 

intervals so that the equilibration procedure may become infeasible.    

The specification in (6.7) assumes that the two auto modes have the same coefficients 

for all variables except that for schedule-delay early:  carpoolers are hypothesized to be less 

averse to arriving at work early than commuters driving alone.  The dummy for professionals 

and managerial workers interacts with  D1Lj  and  SDLj , hypothesizing that professionals and 

                                                           
     7Under flexible work hours, an employee typically chooses his work-start time within 
the flexible period, a fixed range of two hours, for example, early or late from a fixed 
point of time in the morning, and leaves his work place in the afternoon after a fixed 
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managerial workers are less averse to late arrival.  The dummy for commuters forty-five years 

and older 

interacts with  SDEj , hypothesizing that workers at least forty-five years old are  

                                                                                                                                                                             
number of hours of work.   



 
 

 

123

less averse to early arrival either because they are older or because they have less family-

related schedule constraints.
8
   

The specification above, which follows Small (1982) closely, catches the trade-off 

between travel time and schedule delay, and allows inferring values of schedule-delay 

savings.  These inferred values of schedule-delay savings can vary with socioeconomic groups 

such as occupation, age and will be extremely useful in measuring benefits of policy-induced 

schedule shifts. 

Abkowitz (1980, p. 164) does not include any measure of schedule delay, a factor that 

has been identified as the key to understand scheduling behavior and hence traffic-peaking, 

which greatly limits the usefulness of his model in measuring benefits of policy-induced 

schedule shifts.  This is one reason why a new demand model is needed.  Hendrickson and 

                                                           
     8Small (1982) does not try any age variable, but both Abkowitz (1980, p. 154) and 
Moore et al. (1984, p. 153) report that older workers are more likely to arrive early at 
work.   

Small (1982, p. 475) also includes reported flexibility as a taste indicator for time-
of-day choice despite the recognized endogeneity problem created by doing so.  In 
addition, Small (1982, p. 474) has family status (single or non-single) interact with both 
travel time and schedule-delay early; this leads to an extremely small and insignificant 
coefficient on travel time for non-single commuters and a wrong sign on travel time for 
single commuters.   
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Plank (1984, Table  2) do not include any socioeconomic characteristics and do not estimate a 

significant coefficient for travel time.    

As Small (1982, p. 472) reports, commuters tend to round off their reported times to 

the nearest five-minute as well as to the nearest ten- or fifteen-minute.  The five-minute 

rounding is eliminated with the five-minute intervals describing scheduling alternatives, and 

the ten- or fifteen-minute rounding, following Small (1982), is accounted for with reporting 

error variables:    

where  η1  and  η2  are components of  η ; R15j  is  1  for  j = 3, 6, 9, 12; 0  otherwise; R10j  is 

 1  for  j = 1, 3, 5, 7, 9, 11; 0  otherwise. 
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 6.3 Estimation 

 

Tables 6.1 and 6.2 show estimation results for the model specified above.  The 

sequential approach is used.9  Table 6.1 shows results for the conditional time-of-day choice; 

Table 6.2 shows results for the marginal mode choice.  

The time-of-day choice model is estimated first, conditioned on an auto mode chosen; 

since each bus mode only has the on-time alternative attached, bus users drop out of this 

stage.  The inclusive values for auto modes and bus modes are computed, respectively, as 

follows: 

                                                           
     9The two-stage approach has computational convenience but gives underestimated 
standard errors in the second stage.  The maximum likelihood (ML) method was tried, 
some coefficients are unable to be estimated probably because of the large number of 
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where  ˆ   indicates the estimate of a parameter.  The marginal mode-choice model is then 

estimated with the computed inclusive values as an additional variable.  The model is 

estimated both restricting the inclusive variable to have the same coefficient for all four modes 

and allowing it to have different coefficients for auto modes and bus modes.  A log likelihood 

test rejects the generic specification for the inclusive variable. 

 

                                                                                                                                                                             
parameters. 

 

Table 6.1 Sequential Estimation Results for Conditional Time-of-Day Choicea 
───────────────────────────────────────────────────────── 

Asymptotic
c 

Independent   Coefficient  Coefficient Standard          

Variableb   Symbol  Estimate Error            
───────────────────────────────────────────────────────── 
Reporting Error: 

R15    η1  1.1992  0.1090         

R10    η2  0.4120  0.1140         

 

Travel Time: 

TIM    ξ  -0.0857  0.0346    

 

Early Arrival: 

SDE    Ψ1  -0.0821  0.0084           

SDE⋅AGE45  Ψ2  0.0244  0.0081           
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SDE⋅CP   Ψ3  0.0176  0.0083           

 

Late Arrival: 

SDL    Ψ4  -0.1993  0.0285           

SDL⋅PF   Ψ5  0.0605  0.0344           

D1L    Ψ6  -0.9389  0.2121           

D1L⋅PF   Ψ7  0.6928  0.1890          
───────────────────────────────────────────────────────── 
Sample Size:   569 

Log-Likelihood:   -1118 at convergence  

-1414 with all coefficients zero 
───────────────────────────────────────────────────────── 
Notes to Table 6.1: 

 
a Dependent variable: relative interval chosen. 

 
b Definition of independent variables: R15 = 1 for j = 3, 6, 9, 12 ; 0 otherwise.  R10 = 1 for  j 

= 1, 3, 5, 7, 7, 9, 11 ; 0 otherwise.  TIM = on-vehicle time in minutes.  SDE = Max {0, 5(9-

j)}.  SDL = Max {0, 5(j-9)}.  D1L = 1 if j > 8 ; 0 otherwise.  AGE45 = 1  if individual age is 

45 years or older ; 0 otherwise.  

CP = 1 for carpool; 0 otherwise.  PF = 1 for professional and managerial workers; 0 

otherwise. 

 
c These standard errors are estimated in the first stage and are consistent. 

 

 

Table 6.2 Sequential Estimation Results for Marginal Mode Choicea 
───────────────────────────────────────────────────────── 

Asymptoticf 

Independent   Coefficient  Coefficient Standard          

Variableb   Symbol  Estimate Error            
───────────────────────────────────────────────────────── 
Inclusive value for auto  ρ14  0.6842  0.1133          

Inclusion value for bus  ρ23  0.2242  0.0841           

Cost/post-tax wage (min)  δ1  -0.0270  0.0056            

Walk time (min)c   δ2  -0.0722  0.0109           

First wait time (min)
c
  δ3  -0.0738  0.0239           

Transfer wait time (min)  δ4  -0.0469  0.0155           

Family income ($1000)
d  β1  0.1643  0.0465           
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Children under 17 (0-1)
d
  β2  -0.7755  0.2561 

Length of residence (years)
d
 β3  0.0127  0.0028            

45 years and older (0-1)  β4  -0.3723  0.2425 

Male respondent
e
   β5  0.7188  0.1634 

Mode 1 dummy (0-1)  α1  -4.3017  0.5810  

Mode 3 dummy (0-1)  α2  -2.3838  0.2971  

Mode 4 dummy (0-1)  α3  -5.1715  0.5782 
───────────────────────────────────────────────────────── 
Sample Size    783 

Log-Likelihood   -698 at convergence 

-1086 with all coefficients zero 
───────────────────────────────────────────────────────── 
Notes to Table 6.2: 

 
a Dependent variable: mode chosen.   

Modes: 1 = drive alone; 2 = bus-with-walk-access; 

3 = bus-with-auto-access; 4 = carpool. 

 
b Transportation variables are measured for the round trip. 

 
c The variable is specified on mode 2 and 3 only. 

 
d The variable is specified on mode 1 and 4 only. 

 
e The variable is specified on mode 1 only. 

 
f These standard errors are estimated in the second stage.  They are inconsistent and 

downward biased. 

 CHAPTER 7 

 THE SIMULATION MODEL 

 

This chapter develops a simulation model of commuting on a hypothetical stretch of 

limited-access urban highway.  The demand side determines the number of commuters, by 

mode and time of day in a given period, as a function of travel time and schedule delays 
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associated with alternative times of day.  The supply side predicts travel times for a given 

number of commuters on each mode in each clock time interval in a given period.  The 

sample enumeration connects the demand and supply sides.  Section 7.1 describes the supply 

side.  Section 7.2 specifies an enumeration sample.  Section 7.3 completes the simulation 

model. Section 7.4 shows the existence of an solution using Brouwer's Fixed Point Theorem.  

Section 7.5 describes how the simulation model can be used to calculate optimal tolls that 

maximize social welfare, the sum of consumer welfare and toll revenue. 

 

 

 

 

 

 

 

 

 7.1 The Supply Side 

 

A ten-mile long, limited-access highway connects a residential area where all 

commuters live and a work location where all commuters work.  Every commuter enters the 

highway from the home end and leaves the highway at the work end.  No mid-entry or exit is 
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allowed.  The highway has three lanes in each direction with a directional capacity of  5310  

vehicles per hour.  This number of  5310  is taken from Small (1983b, p. 32) for a stretch of 

the Eastshore Freeway in the San Francisco Bay Area.  Traffic on the highway is governed by 

the power function (2.2); its parameters are determined as follows.  A free-flow speed is 

assumed at sixty miles per hour, which implies  T0 = 1 .  T1 = 0.15 , following U.S. Bureau of 

Public Roads (1964).  Since there is no evidence on the value for  γ , two values, 1  and  2.5  

are used.  These are summarized in Table 7.1. 

The literature on trip scheduling has three alternative forms of supply model to the 

power function in (2.2).  One is the power function (1.2) used in the original Henderson 

approach.  Another one is used in Mahmassani and Herman (1984).  As discussed in chapters 

2 and 4, both of these two supply models can lead to lack of equilibrium.  My option is the 

bottleneck model used in the Vickrey approach: a continuous form is in (3.1) and (3.2); a 

discrete form is in (5.13).  The power function is chosen for two reasons. 

First, the bottleneck model leads to difficulty in convergence.  The bottleneck model 

requires traffic flows entering the highway to predict travel times.  But the demand model 

predicts traffic flows leaving the highway.  Rounding errors in the conversion between these 

two forms of traffic flow seem to create the convergence difficulty for the bottleneck model.  

The power function (2.2), however, does not require this conversion because it directly uses 

traffic flows from the demand model.  This reason is tentative; future research needs to 

investigate further the convergence properties of the bottleneck model. 
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Second, chapter 3 shows that the bottleneck model and the power function (2.2) could 

result in almost identical equilibria when the power parameter is large.  The two models 

always predict the same rate of build-up and decay in congestion in unpriced equilibria.  This 

can be seen by comparing the equilibrium travel time functions from the bottleneck model in 

(3.5) and from the power function (2.2) in (2.6) and (2.28).  The equilibrium travel time 

function from (2.2) needs to be converted from time leaving the highway to time entering the 

highway. 

 

 

 

 

 

 

 

 

 

 

 Table 7.1 The Supply Side 

─────────────────────────────────────────────────────────── 
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Ts = Travel time in minutes  

Vs = passenger car units per hour leaving the highway 

l  = 10 miles 

T0 = 1 minute per mile 

T1
 = 0.15 minutes per mile 

C  = 5310 passenger car units per hour 

γ  = 1, 2.5  

─────────────────────────────────────────────────────────── 

 

 

 

 

 

 

 

 7.2 Equilibration 

 

Demand for arriving on each mode and at relative interval can be obtained using the 
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sample enumeration method.  Sample enumeration uses a sample of the population of interest 

to represent the entire population.  Let the size of a population of morning commuters be fixed 

at  N , an exogenous parameter to be varied.  Let the size of an enumeration sample be  Nf .  

Each sample individual will be assumed to represent  N/Nf  commuters in the population.  The 

choice probability  Pi
mj  for commuter  i  in (5.12) represents  Pi

mj*(N/Nf)  number of 

commuters arriving at work on mode  m  at relative interval  j .  The subscript  s  for the 

choice probability in (5.12) is replaced with  j  because of a change in choice set noted in 

chapter 6.  These weighted choice probabilities for relative intervals can then be aggregated 

over the enumeration sample with assumed passenger car occupancy rate for each mode to 

obtain traffic flows leaving or entering the highway at absolute intervals. 

To obtain these traffic flows at absolute intervals, one need to determine the range of 

clock time to be considered.  This range is determined by the chosen window of relative 

intervals for the simulation and the range of work-start times in the enumeration sample.  If 

we let  tp  and  tp'  be the mid-points of the first and last absolute intervals, respectively, the 

number of absolute intervals will be  

where  d  is duration of these intervals.  One can choose  tp  and  tp'  such that the right hand 

side results in an integer.  An absolute interval is indexed with  s , 

s = 1 , ⋅⋅⋅ , S .   

1 + 
d

t - t pp′ = S  
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Second, one needs a one-to-one correspondence for each individual in the enumeration 

sample between his relative intervals and the absolute intervals.  Let  Ei
  be the work-start 

time for commuter  i  in the enumeration sample, and  Ts  the travel time at absolute interval  s 

.  Let  d  be the duration of a relative or absolute interval, and  jo  be the index for the on-time 

relative interval.  Then  Ei - d(jo - j)  is the midpoint of relative interval  j  in clock time 

leaving the highway; tp + d(s - 1) + Ts  is the midpoint of absolute interval  s , in clock time 

leaving the highway.  The correspondence between absolute interval  s  and relative interval  j 

 is  created by placing  Ei - d(jo - j)  in one of the absolute intervals.  Let  si
j  be the absolute 

interval where relative interval  j  locates for individual  i .  The correspondence between any 

combination of  s  and  j  for a given individual is given by 

The interval correspondence (7.2) is for the Vickrey or original Henderson model which 

requires flows entering the highway.  For the reformulated Henderson model, which requires 

flows leaving the highway, Ts  in (7.2) is set to zero. 

With the interval correspondence (7.2), the choice probabilities in (5.12) from the 

demand model, Pi
mj , can be aggregated in the following way.  The probability for commuter  i 

 to choose an auto mode  m (m = 1, 4)  at absolute interval  s  is  

[ ] [ ] T + 1) - (s d + t of  radius-
2
d e within this ) j - j ( d - E if spo
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where  J  is the total number of relative intervals used in the simulation model.  The number 

of commuters driving alone  Ns
1 , carpooling  Ns

4 , and taking bus  Ns
23  in absolute interval  s , 

respectively, are 

where  ∆i
s = 1  if  s = si

jo ; 0  otherwise;  ∆i
s  appears because bus modes are assumed available 

only in the on-time relative interval for each commuter.  Traffic flow in passenger-car-units 

per hour leaving the highway at absolute interval  s  is 

where  c  and  b  are the occupancy rates of carpool and bus, respectively, in passenger-car-

units.  Carpools are assumed to have a passenger occupancy of  

c = 2.5 , which was originally used in creating cost variables for carpools in the estimation 

sample.  Buses are assumed to have a passenger occupancy of 40 and a factor of passenger-

car-units of 3 .  This implies  b = 40/3 . 

Once traffic flows leaving the highway are obtained for all absolute intervals, the 

.otherwise 0 ); J , 1, = j ( s = sfor  i
j ••• P = P i

mj
is
m  

( )  ,P  - P  - 1
N
N  N

 ,P
N
N  N

 ,P
N
N  N

i
s

is
4

is
1

fi

s
23

is
4

fi

s
4

is
1

fi

s
1

∆≡

≡

≡

∑

∑

∑

 

 ,
c

N + 
b

N + N  
d
60 = V

s
4

s
23s

1s 






  



 
 

 

136

power function specified in Table 7.1 can be used to predict  

on-vehicle travel time  Ts  for these intervals.  This predicted travel time  Ts  for a absolute 

interval  s  then needs to be converted to that for a relative interval  j  for commuter  i : 

to be used in the demand model for the next iteration. 

One need not use the same values of  jo , d , and  J  in estimating the demand model 

for the simulation model.  The following will be used: d = 15 minutes; J = 5 ; and  jo = 4 .  So 

the window for relative intervals is 75 minutes; maximum schedule delay early is 45 minutes; 

maximum schedule delay late is 15 minutes.  It is a good idea to keep the durations of relative 

and absolute intervals equal.  Wider absolute intervals have two effects: they smooth peak 

without changing the distribution of work start times; and they reduce the number of absolute 

intervals for a given commute window to speed up computation.  These changes in interval 

definition require to redefine schedule delay variables accordingly. 

In addition to modifying interval definitions, the definition of transportation variables 

for the simulation model is also changed from measuring for the round trip to measuring for 

the morning commute only.  These variables include auto operating costs, bus walk and 

waiting times, and bus fares.  Since not enough information is available to separate auto 

operating costs, bus walk and waiting times and bus fares for the morning commute, half of 

their round trip values is used. 

. ) J ,  1, = (j s = sfor i
j ••• T = TIM s

i
j  
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Most work on empirical analysis of mode choice uses round trip measures.  It is 

believed that travelers choose modes taking into account factors of both trips.  Also some of 

the costs associated with a particular mode are joint costs for both trips.  Most work on trip 

scheduling, however, has assumed away the afternoon trip and deals with the morning trip 

only.  Henderson (1992) is one of few exceptions that deals with the afternoon trip.  

Henderson assumes perfect symmetry between the two trips.  His model examines how 

workers choose their work start times relative to a most desired work start time.  The 

symmetry assumption assumes that workers start working once they arrive at work, and they 

leave immediately after a fixed number of work hours.  This symmetry assumption is 

inappropriate when one is examining how workers choose their daily commuting schedule 

relative to a given work start time.  When work start time and number of work hours are 

fixed, workers do not necessarily start working once arriving at work; they do not all leave 

after the same number of work hours because they may start working at different times even if 

their work-start times are the same. 

Chapter 5 assumes that each commuter leaves the work place in the afternoon right at 

the work-end time.  As a result, travel time for the afternoon commute is independent of the 

morning schedule.  To get round-trip travel time for any given commuter, the morning travel 

time for the on-time schedule is added to all his schedules.  It seems reasonable given that 

workers have fixed number of work hours and can choose when to arrive at work but not 

when to start work.  But empirically, this assumption can lead to paradoxes when work start 
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times are very peaked.  I choose to follow the literature by focusing on the morning commute 

only, assuming that any bias from this assumption on mode choices, which we understand 

well, is much less serious than biases from assumptions on scheduling behavior for the 

afternoon trip, which we do not understand.  Focusing on the morning trip requires to modify 

all transportation variables measured for round trip in chapter 6. 
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 7.3 The Enumeration Sample 

 

The enumeration sample overlaps with the sample used in estimating the demand 

model of chapter 6.  Only those whose work-start time is between 390 and 570 minutes after 

midnight are selected to narrow the overall period to be equilibrated.  No mode-captive 

individuals are excluded because information on these individuals is unavailable.  Ideally only 

those who travel on an expressway for part of their commute are selected as in Small 

(1983b).10  Since information on expressway use is unavailable for the enumeration sample, 

expressway and non-expressway users are not distinguished.  There are 641 commuters in the 

enumeration sample. 

Table 7.2 presents summary statistics for some of the characteristics of the 

enumeration sample that will be used in the simulation model.  Figure 7.1 presents the 

distribution of work-start times of the enumeration sample.  Over 40 percent of sample 

individuals have a work start time at 8:00 A.M.  This distribution will lead to traffic narrowly 

peaked around 8:00 A.M. for the simulations because all individuals are assumed to work 

right off the highway.  In reality, however, a narrowly peaked distribution of work start times 

can still result in a smooth peak on major expressways because people normally travel further 

                                                           
     10The sample Small (1983b) uses is a subsample of the one used here. 
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once they get off a particular expressway for different length of time.  Figure 7.2 presents the 

cumulative distributions of post-tax wage rates and household income. 

 

 Table 7.2  Summary Statistics of the Enumeration Sample 
────────────────────────────────────────────────────────── 

Standard 

Variable                   Mean     Deviation 
────────────────────────────────────────────────────────── 
Transportation  

 

Drive-Alone Round Trip 

Distance (miles)      9.9  7.1 

On-vehicle time (minutes)     40.0  22.9 

Operating costs (cents)     138.0  102.0 

 

Car-Pool Round Trip 

Distance (miles)      11.3  6.5 

On-vehicle time (minutes)     57.3  20.6 

Operating costs (cents)     71.7  45.1 

 

Bus-Walk Round Trip 

Distance (miles)      7.2  6.1 

On-vehicle time (minutes)     53.1  25.2 

Walking time (minutes)     18.4  12.1 

Initial Headway (minutes)     13.8  10.8 

Fare (cents)       103.0  58.0 

 

Bus-Auto Round Trip 

Distance (miles)      18.4  7.8 

On-vehicle time (minutes)     94.6  32.3 

Walking time (minutes)     5.8  3.8 

Initial Headway (minutes)     16.6  15.6 

Fare (cents)       167.6  58.0 

 

Other 
 

Family income (10,000 dollars)     16.7  12.1 
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Post-tax wage rate (cents per minute)    8.3  6.6 

 

Value of on-vehicle time as a proportion of post-tax wage rate for 

Auto      2.1667 

Bus      0.7116 
────────────────────────────────────────────────────────── 
Table 7.2 continues  

 

 

 

 

Table 7.2 continued 
────────────────────────────────────────────────────────── 
Marginal rates of substitution between on-vehicle time and 

Schedule delay early (minutes/minute) 

Age 45 and older   0.6733 

Carpooler    0.7526 

Carpooler and age 45 and older 0.4679 

Others    0.9580 

 

Schedule delay late (minutes/minute) 

Professional    1.6196 

Others    2.3256 

 

Not being early (minutes) 

Professional    2.8716 

Others    10.9557 

 

Percentage of Sample in Categories 
 

Professional      39.6% 

Age 45 and older     33.5% 

Having children under 18 years older  20.6% 

Male       59.1% 

 

Family income < 10    32.5% 

Family income ≥ 10 and < 20   45.2% 

Family income ≥ 20     22.3% 

 

Wage rate < 5     28.6% 
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Wage rate ≥ 5  and < 10    51.5% 

Wage rate ≥ 10     20.0% 
────────────────────────────────────────────────────────── 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7.1 

 

 

 

 

 

 

 



 
 

 

143

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7.2 
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 7.4 Solution Method and Existence of Equilibrium 

 

Fixed-point algorithms have been developed (Scarf and Shoven, 1984; Todd, 1976) to 

solve equilibrium models that have a large number of variables.  These algorithms have been 

widely used in applied general equilibrium analysis for international trade and tax policies 

(Scarf and Shoven, 1984).  They have also been used in urban and transportation analyses: 
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Arnott and MacKinnon (1977) on allocating consumers to spatial locations in an urban area;  

MacFadden, Talvitie, and Associates (1977) and Talvitie and Hasan (1980) on allocating 

commuters to modes and routes along a corridor.  They have also been proposed to solve for 

unpriced equilibrium in a structural model of peak-period traffic congestion (Richter, Griffin, 

and Arnott, 1990). 

Fixed-point algorithms have disadvantages.  First, their computational time increases 

as least with the cube of the number of variables (Richter, Griffin, and Arnott, 1990, p. 1).  

Second, the intuition one gets from a simple Cobweb procedure is lost in these fixed-point 

algorithms.  Third, it is unknown how these fixed-point algorithms would perform when an 

endogenous congestion toll is being calculated.  Viton (1983) and Small (1983b) are followed 

to use an algorithm based on a Cobweb procedure, which is described below. 

 

 

 

Letting  V , P , and  T  denote the vectors  {Vs}, {Pis
m}, and  {Ts}, respectively, the 

equilibrium model can be represented as  

which can be re-written as 

t(V), = T v(P), = V p(T), = P  
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with some substitution.  The equilibrium solution to (7.7) is a vector  V*  which satisfies (7.8) 

and can be interpreted as a fixed point of the transformation  f(⋅) . 

Fixed-point algorithms will not be used for equilibration.  But McFadden, Talvitie, 

and Associates (1977) show that the idea can be useful to prove the existence of a solution.  

The transformation  f(⋅)  is continuous because all the functions in (7.7) are continuous.  For a 

continuous transformation whose domain and range are on a simplex (a set of vectors whose 

components are non-negative and sum to one), Brouwer's Fixed Point Theorem guarantees the 

existence of a fixed point.  To limit the domain and range of  f(⋅)  to a simplex, one creates a 

new vector  X 

 

 

 

 

 

and a new transformation  x(X) 
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Vmax  is the maximum flow possible.  Equations (7.9)-(7.10) satisfy both the continuity and the 

simplex conditions and result in a linear relation between  V and  X .  Once a fixed point  X*
  

for  x(⋅) is found, a fixed point for  f(⋅)  is calculated as follows: 

 

 

 

 

 

 

 

 

 7.5 Calculating Optimal Toll 

 

How an Optimal Toll Should be Calculated 

This section describes an algorithm to calculate optimal tolls.  The issue is: what is the 

correct measure of the marginal social cost of an extra trip at any time?  Is it the increase in 
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social cost of putting an extra user at that time, without announcement?  Or is it the increase 

in social cost, allowing other users to modify their choices in response to the added congestion 

caused by the extra user?   

The answer depends on what equilibrium the marginal social cost is measured at.  If 

measured at an optimum, marginal social cost is correctly computed either way because of the 

envelop theorem, which guarantees that marginal shifts on the part of users have only second-

order effects on social cost.  On calculating marginal social cost at the on-toll equilibrium in 

the Vickrey (1969) model, Arnott, de Palma, and Lindsey (1993, p. 166) comment: 

Marginal social cost should be computed mutatis mutandis [allowing other 

users to adjust their behavior], not ceteris paribus [not allowing other users to 

adjust their behavior]; that is, marginal social cost is computed incorrectly if 

one adds a commuter and computes the increase in social cost from doing so, 

without allowing other drivers to adjust their departure times.  The reason why 

computing marginal social cost ceteris paribus is incorrect is that the envelope 

theorem does not hold.  Because there is no toll, prices are distorted.  

Consequently, the adjustments that commuters make in their departure times 

in response to the added driver alter the deadweight loss from unpriced 

congestion. 

A researcher, however, normally does not know a priori the optimum before 

calculating the optimal toll, except cases of simplified theoretical models.  One example of 
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such exceptions is the Vickrey model.  Small (1992a, p. 125) first finds the Pareto optimum, 

and then calculates the marginal social externality at the optimum ceteris paribus.  This is one 

of the two ways that Small (1992a, pp. 121-122) identifies to determine optimal tolls in a 

model of trip scheduling.   

The other way is "to determine the short-run marginal cost (SRMC) of adding an 

additional traveler under prescribed conditions, define the fee formula that brings each 

traveler's perceived price equal to this SRMC, then solve for the new equilibrium with that fee 

formula applied." (p. 122)  This is what is done with the reformulated Henderson model in 

chapter 2.  The fee formula is given by (2.17) for early arrivals.  This fee then is added to 

individual trip cost to give (2.18).  A new equilibrium is solved to give (2.19), using (2.18).  

Substituting (2.19) into (2.17) gives the optimal fee for early arrivals as follows 

where  i′o  is the first arrival time at the optimum given by (2.21a).  

Chapter 5 establishes that the optimal toll that maximizes total welfare, the sum of 

consumer welfare and toll revenue, is a marginal-cost toll, as given by the pricing rule (5.21). 

 But (5.21) holds at an optimum only.  Thus, neither of the two approaches discussed above 

applies to the more realistic simulation model developed here.  The only approach applicable 

to this case is to start from the definition of marginal externality of travel at a given time, 

using an iterative procedure.   

)�i -(t�   
  +  1

 = )(t�p oo β
γ

γ  
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The strategy is the following.  Each iteration starts with a set of tolls for all the 

absolute intervals.  Given these tolls, the procedure iterates until a base convergence.  An 

aggregate travel cost is calculated at this base convergence, measuring the total cost for 

existing traffic before an extra vehicle is added to any of the absolute intervals.  For any given 

absolute interval, the procedure iterates again while a small arbitrary number of extra vehicles, 

MV , are added to that interval, increasing its flow rate by  MV�(60/d) .  At convergence, 

another aggregate travel cost is calculated, measuring the total cost for existing traffic after the 

extra vehicles are added and existing traffic has adjusted its behavior.  The difference between 

the two aggregate costs for existing traffic measures the marginal externality of traveling at 

that given absolute interval. 

 

How an Optimal Toll can be Calculated Numerically 

Optimal tolls are calculated with four subroutines: DEMAND(τ,T ; P,V), SUPPLY(V ; 

T), PRICE(τ ; τ), and TCOST(T,P ; TC), and three types of equilibration loops: GLOBAL, 

BASE, and TOLL.  The symbols following a subroutine name are major input and output 

variables, expressed in vectors; input variables are ahead of the semi-colon.  Figures 7.3, 7.5, 

and 7.6 give the flow charts for the GLOBAL loop and the BASE and TOLL loops, 

respectively.  Rectangles with one side open represent comments.  Circles represent 

connections.  Diamond shaped boxes represent decision making.     

Subroutines are described first.  DEMAND(τ,T ; P,V) takes toll, τ , and travel time, T 
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, as given and calculates choice probabilities, P , and traffic flow, V .  For the reformulated 

Henderson approach, this traffic flow measures arrivals;  for the Vickrey approach, this traffic 

flow measures departures.  It does so by first converting toll and travel time for absolute 

intervals from last iteration to relative intervals according to (7.2) and (7.6).  Again, this 

conversion depends on which supply model is used, as explained below (7.2).  SUPPLY(V ; 

T) takes traffic flow as given and calculates travel time for each absolute interval according to 

the supply model chosen.  Again, traffic flow measures arrivals for the reformulated 

Henderson approach and departures for the Vickrey approach.  The power function in Table 

7.1. is used for this analysis.  PRICE(τ ; τ) takes the toll from last iteration as given and 

calculates a new toll for each absolute interval.  It does so by computing two aggregate travel 

costs for existing traffic to measure the marginal externality of an added vehicle to that 

absolute interval.  PRICE(τ ; τ) is described in detail below as the loops are described.  

TCOST(T,P ; TC) takes travel time and choice probabilities as given and calculates an 

aggregate travel cost, TC , a scalar, including congestion costs, schedule delay costs, 

operating and maintenance costs, costs of waiting and walking times for bus users, and bus 

agency costs. 

The three loops are described as follows.  The GLOBAL loop, shown in Figure 7.3, 

governs the equilibration of the optimum.  The DEMAND(τ,T ; P,V), SUPPLY(V ; T), and 

PRICE(τ ; τ) subroutines interact with one another.  It terminates when both toll and traffic 

flow change less than a chosen tolerance level for each of the absolute intervals.  The toll in 
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convergence gives the optimal one.  This GLOBAL convergence (or the optimum) depends on 

the number of commuters and the demand and supply models. 

 

An arbitrary damping procedure is used in GLOBAL to prevent tolls to jump back and 

forth between iterations.  This damping procedure is shown in a box labeled as DAMPING in 

the GLOBAL loop; its detail is shown in Figure 7.4.  The damping only applies to  τp , the 

peak toll, because for the scenarios considered tolls at other times are much less volatile than 

the peak one.  Damping is not applied to flow either because it is toll that creates fluctuation 

in flow.  This damping procedure is developed through trial and error. 

The damping works as follows.  Each time a new toll is calculated, its peak value, τp , 

is checked to see whether it is within bounds, τl  and  τu .  If it is, new tighter bounds are 

created, depending on whether  τp  is larger than the peak toll from the last iteration, τp
o .  In 

either case, two new bounds are created with a damping parameter, β , which goes to zero as 

the GLOBAL loop iterates.  Depending on whether  τp  is larger than  τp
o , a new low bound is 

created by weighing  τl  and  τp  or  τp
o  with  β ; a new up bound is created by weighing  τu  

and  τp
  or  τp

o  with  β .  DEMAND(τ,T ; P,V) then is applied in the GLOBAL loop.  If the 

current peak toll is out of bounds, however, up to five new damping parameters, ranging from 

 0+ to  1- , are used to get a new starting value for peak toll that falls in the bounds.  Each 

time one such damping is used by weighing the bounds, the PRICE(τ ; τ) subroutine is used 

again to compute a new peak toll.  If five applications of damping cannot create a new peak 



 
 

 

153

toll that falls within bounds, one of the bounds is expanded, and the loop goes to the 

DEMAND(τ,T ; P,V) subroutine in the GLOBAL loop. 

 

Both the BASE and TOLL loops appear in the PRICE(τ ; τ) subroutine.  The BASE 

loop governs the equilibration of a base equilibrium against which tolls are calculated.  In the 

BASE loop, the DEMAND(τ,T ; P,V) and SUPPLY(V ; T) subroutines interact with each 

other, holding constant the tolls from the last GLOBAL iteration.  It terminates when traffic 

flow changes less than a chosen tolerance level for each of the absolute intervals.  At 

convergence, the  

TCOST(T,P ; TC) subroutine calculates the aggregate travel cost.  This BASE convergence 

depends only on the toll from the last GLOBAL iteration. 

For any given absolute interval, the TOLL loop calculates the expected travel costs for 

existing commuters after they have adjusted their choices for some fixed extra vehicles being 

added to that interval.  These travel costs are then subtracted by those calculated using the 

BASE loop to give the increase in travel costs on existing commuters due to the presence of 

the added vehicles.  The new toll for that absolute interval obtains by dividing this increase in 

travel costs by the number of added vehicles with the units appropriately adjusted.   

The TOLL loop achieves this with the DEMAND(τ,T ; P,V) and SUPPLY(V ; T) 

subroutines interacting with each other, while the same number of extra vehicles, MV , are 

being added to the flow  Vs  of a given interval  s  at each iteration and the toll from the last 
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GLOBAL iteration is being held constant.  The TOLL loop terminates for interval  s  when 

traffic flow, V , including the extra ones, change less than a chosen tolerance level for each of 

the absolute intervals.  At convergence, the TCOST(T,P ; TC) subroutine calculates the 

aggregate travel cost again for existing commuters, excluding the extra vehicles.   

The TOLL loop is done for each of the absolute intervals.  The new toll for any given 

absolute interval is the change in the expected travel costs from the BASE convergence to the 

TOLL convergence divided by the fixed number of extra vehicles and the unit is adjusted by  

60/d .  This gives a new set of tolls to be used in the next GLOBAL iteration. 
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 Figure 7.3 
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 Figure 7.4 
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 Figure 7.5 
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 Figure 7.6 
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 7.6 Summary 

 

The purpose of this chapter has been to put together an equilibrium simulation model. 
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 The demand model is estimated in chapter 6; the supply side is specified in this chapter.  

Sample enumeration method is used to connect the demand and supply sides.  The 

enumeration sample is a subsample of that used to estimate the demand model.  Using 

Brouwer's Fixed Point Theorem, it show the existence of an solution to the simulation model. 

 More importantly, it develops a computer procedure to calculate equilibrium and marginal-

cost tolls.  Chapter 8 will use the model developed in this chapter to simulate the effects of 

eight capacity expansion and congestion pricing policies. 
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 CHAPTER 8 

 POLICY EFFECTS AND THEIR MISCALCULATION 

  

This chapter reports simulation results on the effects of eight pricing and capacity 

expansion policies, and the miscalculation of these effects from ignoring schedule shifts.  

These policies include (1) an optimal toll, (2) a base-externality toll, (3) a piecewise-linear 

toll, (4) a one-step toll, (5) a uniform toll, (6) an optimal toll with bus and carpool users 

exempted from paying toll, (7) an optimal toll with a ten-percent capacity expansion, and (8) a 

ten-percent capacity expansion.  Policy (7) will be referred to as an optimal toll with HOV 

exemption. 

The effects of these policies are simulated from five perspectives: (i) welfare 

(consumer surplus, toll revenue, and total benefits), (ii) peaking (traffic counts and share in 

the peak 15-minute period), (iii) congestion (average and peak 15-minute travel delays), (iv) 

schedule delay (average variable schedule delay and ratio of variable schedule to travel delay 

for auto users), and (v) mode mix (mode shares, average occupancy, and total traffic).  

Miscalculation of policy effects from ignoring schedule shifts are examined for an optimal toll 

and the ten-percent capacity expansion. 

The array of simulations has three dimensions: elasticity of congestion with respect to 

arrival flow on the supply side, total number of commuters on the demand side, and policies.  

Each combination of congestion elasticity and total number of commuters represents a 
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separate scenario.  The effects of a given policy for a given scenario are obtained by 

comparing two simulations for that scenario, one after introducing the given policy and the 

other without that policy--a base simulation.   

The chapter is divided into four parts.  Section 8.1 introduces the eight policies and 

the base case, hypothesizes on equilibrium characteristics of the base case and miscalculation 

of policy effects, and formulates questions on the effects of the eight policies. 

Section 8.2 presents characteristics of the base case.  This is done with the same 

values of congestion elasticity and total number of commuters to be used for evaluating policy 

effects.  Also presented are traffic counts by mode and time of day for the most congested 

scenario.  These characteristics provide the benchmarks to evaluate the policy effects in 

sections 8.3 and 8.4. 

Section 8.3 presents the effects of the eight policies.  The effects of an optimal toll 

and the ten-percent capacity expansion are presented as percentage changes from the base 

case except for welfare measures.  The effects of other six policies are presented as percentage 

differences from the effects of an optimal toll.  Also presented are changes in traffic counts by 

mode and time of day due to each of the policies for the most congested scenario.   

Section 8.4 presents the miscalculation of effects of an optimal toll and the ten-percent 

capacity expansion that would occur if schedule shifts are analytically constrained.  

Conventional models of peak-period congestion assume away scheduling behavior by using 

constant demand over a predetermined period.  The question is, how biased are predictions of 
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policy effects by these conventional models?  One way to answer this question is to compare 

two simulations of a given policy: one with scheduling shifts and the other with schedule 

shifts analytically constrained.  
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 8.1 Questions and Hypotheses 

 

This section introduces the base case and eight policies, hypothesizes on equilibrium 

characteristics of the base case and miscalculation of policy effects, and formulates questions 

on the effects of the eight policies. 

 

Base Case 

The base case provides conditions before a policy is introduced.  The following are 

some of the questions about the characteristics of the base case: 

(b1) What is the cost of congestion? 

(b2) What is the social cost of a marginal traveler? 

(b3) Does the amount of congestion affect average occupancy? 

(b4) Do travelers shift their schedules as congestion worsens? 

(b5) How do schedule and travel delays compare with each other? 

One hypothesis on question (b4) is that travelers shift their schedules away from the 

peak as congestion worsens.  This peak spreading would create one form of latent demand for 
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traveling at the peak.  If a policy is such that commuters are better off by traveling in the peak 

than off-peak, this latent demand will return back to the peak.  This return of latent demand to 

the peak has two effects in opposite directions: it increases congestion at the peak; it decreases 

schedule delay and congestion off-peak. 

One hypothesis on question (b5) is that schedule delay is smaller, but comparable to 

travel delay.  Accepting this hypothesis would imply two types of bias from models of peak-

period congestion that ignore scheduling behavior.  The first type of bias is underestimation of 

total travel costs.  The second type of bias is changes in schedule delay resulting from a policy 

that induces schedule shifts. 

How does the amount of congestion affect variable schedule delay relative to travel 

delay?  The literature on trip scheduling has not hypothesized how the ratio of variable 

schedule to travel delay might vary with the amount of congestion.  Travel delay increases 

with congestion. If peak spreads as congestion worsens, does travel delay increase faster than 

variable schedule delay?  If the answer is yes, one would expect that the ratio reduces as 

congestion worsens.  One question then is: do conventional models result in small biases in 

cases of heavy congestion? 

 

Eight Policies 

For the capacity expansion policy, the same ten-percent applies to all scenarios 

considered.  The percentage is chosen arbitrarily.  Capacity expansion is also considered for 
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three purposes.  First is to contrast qualitatively the effects of an incremental expansion with 

those of an optimal toll.  Second is to examine the miscalculation of effects from an 

incremental expansion, and to compare this miscalculation qualitatively with that of an 

optimal toll.  Third is to see how the effects of an incremental expansion compare with and 

without an optimal toll. 

An optimal toll measures the marginal increases in total travel costs due to an 

additional trip made at different times of day.  It is a function of time.  These travel costs are 

measured at the optimum where total welfare, sum of consumer welfare and toll revenue, is 

maximized.  Consumer welfare is measured by (5.16).  Travel costs include costs of 

on-vehicle travel time, costs of bus walk and waiting time, costs of schedule delay, and auto 

operating and maintenance costs and bus agency costs.11  Individual travel costs are 

aggregated by weighting them with choice probabilities and enumeration sample weights as in 

(5.22).  Chapter 7 describes how an optimal toll and the corresponding optimum are 

calculated. 

Calculating and implementing an optimal toll can be difficult.  A researcher often does 

not know what an optimum looks like, let alone the marginal externality of traveling at 

different times of day at the optimum.  Even if one does know the optimum and calculates the 

corresponding optimal toll, one still has difficulty in implementing it, although the technology 

                                                           
     11I use existing fares in the enumeration sample as bus agency costs.  This makes two 
assumptions.  First, fares reflect bus agency costs.  Second, pricing policies considered 
here would not affect bus agency costs. 
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of Automated Toll Collection (ATC) can reduce this difficulty to some extent. 

Given the difficulties in calculating and implementing an optimal toll, it is important 

to consider alternative forms of toll that are easier to calculate or to implement or both.  Four 

alternatives are considered: a base-externality toll, a piecewise-linear toll, a one-step toll, and 

a uniform toll. 

A base-externality toll measures the marginal increases in total travel costs due to an 

additional trip at different times of day at the base equilibrium.  These marginal externalities 

are calculated after existing travelers have adjusted their behavior in response to the additional 

trip.  Calculating this toll is easier because a current condition can often be considered as a 

base equilibrium.  This toll, however, is as fine-tuned as an optimal toll, and would not reduce 

the difficulty of implementation.   

Figure 8.1 shows structures of a piecewise-linear toll and a one-step toll.  The vertical 

axis measures level of toll; the horizonal axis measures clock time.  tp  and  tp'  are the mid-

points of the first and last absolute intervals used in the simulation model.  The 

piecewise-linear toll starts with zero at  tl , increases linearly until at 8:00 , then decreases 

linearly to zero at  tl' .  Its start and end points are chosen by examining the timing of an 

optimal toll, which would start sometime between  tp  and  tl , and end sometime between  tl'  

and  tp' .  Its slope (the same on each side) is chosen semi-endogenously through screening 

with a small increment to maximize total welfare.  The start and end points, once chosen, 

apply to all scenarios.  The slope could vary with scenarios. 
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The one-step toll starts at  tc , stays constant, then ends at  tc' .  Its start and end points 

are chosen by examining the timing of an optimal toll.  Its level is also chosen semi-

endogenously through screening with a small increment to maximize total welfare.  As with a 

piecewise-linear toll, the start and end points apply to all scenarios; the level could vary with 

scenarios. 

A one-step toll is easier to implement.  Simple theoretical models predict that an 

optimal one-step toll can achieve more than half the benefits of the optimal toll for the same 

scenario (Arnott, de Palma, and Lindsey, 1993, Table 1).  It is interesting to see if a one-step 

toll can do as well using a more realistic model. 

 

 

 Figure 8.1 
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A uniform toll applies from  5:30 to 10:00.  Its level is also chosen semi-endogenously 

through screening with a small increment to maximize total welfare.  The same table in 

Arnott, de Palma, and Lindsey (1993) indicates that an optimal uniform toll can achieve 12 to 

30 percent of the benefits of the optimal toll, depending on demand elasticity. 

How do the effects of a pricing policy compare when bus users and carpoolers pay 

versus when they are exempted from paying the toll?  This is one of the frequently asked 

questions when a pricing policy is being proposed.  This chapter considers such a policy with 

an optimal toll recalculated conditional on exempting bus users and carpoolers. 
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The last pricing policy considered is an optimal toll with a ten-percent capacity 

expansion.  Optimal tolls are recalculated.  The ten-percent increment is arbitrarily chosen, 

and applies to all scenarios.  The purpose is to examine how the benefits of an incremental 

expansion compare with and without the presence of an optimal toll. 

Questions on the effects of these policies may be grouped in three categories: positive, 

normative, and methodological.  Positive ones concern effects on traffic peaking, congestion, 

schedule delay, and mode mix: 

(p1) Does an optimal toll affect traffic peaking, congestion, schedule delay, and mode 

mix? 

(p2) Does the ten-percent capacity expansion affect traffic peaking, congestion, 

schedule delay, and mode mix? 

 

(p3) How much of a change in traffic peaking due to an optimal toll or the capacity 

expansion comes from mode and schedule shifts, respectively? 

(p4) How do the effects of other pricing policies compare with those of an optimal 

toll? 

One hypothesis on the effects of capacity expansion on peaking is that an expansion 

leads to more peaking.  Normative questions concern welfare effects of these policies: 

(n1) What are the total benefits of an optimal toll? 

(n2) How do the total benefits of other pricing policies compare with those of an 
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optimal toll? 

(n3) How do the total benefits of the ten-percent expansion compare with and without 

an optimal toll? 

If simple toll forms can achieve a substantial proportion of the benefits of an optimal toll, they 

could be worthwhile.  One hypothesis on the benefits of capacity expansion is that the benefits 

of an incremental expansion are smaller when an optimal toll is present. 

Methodological questions concern the miscalculation of policy effects from ignoring 

schedule shifts.  This miscalculation is examined for an optimal toll and the ten-percent 

capacity expansion: 

(m1) Are the effects of an optimal toll biased when schedule shifts are constrained? 

(m2) Are the effects of an optimal toll biased when schedule shifts are constrained? 

(m3) How do the miscalculations for an optimal toll and capacity expansion compare 

qualitatively? 

The literature on trip scheduling suggests that miscalculations for an incremental 

expansion can go either way, depending on the model used (Small, 1992a; Henderson, 1992). 

 Abstract models have been exclusively used for this examination, which is made possible 

because capacity enters these models as an exogenous parameter.  Miscalculations for an 

incremental expansion are examined by doing two comparative static analyses on an 

aggregate measure (total benefits, for example): one with fixed schedule and the other with 

variable schedule. 
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This comparative static approach, however, does not apply to examining 

miscalculations for an optimal toll.  The reason is analytical complexity: an optimal toll not 

only is endogenous, but also is a function of time.  This may explain why no one has 

rigorously examined miscalculations for an optimal toll.   

Arnott, de Palma, and Lindsey (1990) is the only one that has touched on the issue.  

They use the Vickrey model (Vickrey, 1969).  As reviewed in chapter 3, the optimal toll in 

the Vickrey model eliminates queuing by charging a toll equal to the cost of queuing delay 

travelers incur at base equilibrium.  As a result, this optimal toll collects a toll revenue equal 

to half the total travel costs at the base equilibrium and leaves travelers indifferent.  So total 

benefits are half the total travel costs at the base.  They then compare these benefits with those 

from unrelated studies of congestion tolling that ignore scheduling behavior.  The small 

percentages of total benefits estimated from those studies lead them to suggest that ignoring 

schedule shifts can substantially underestimate the benefits of an optimal toll.  But these 

studies also differ in other aspects; one can not be sure the small savings from congestion 

tolling in these studies are due to ignoring scheduling flexibility. 

The simulation model developed in chapter 7 provides a unique opportunity to 

examine miscalculations of policy effects from ignoring schedule flexibility.  The strategy is 

to compare two simulations of a given policy: one with schedule shifts allowed and the other 

with schedule shifts constrained.  Constraining schedule shifts is achieved by equating the 

conditional probability of schedule choice at its base value in simulating the effects of that 
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given policy.  In this way, the effects of the same policy with and without constraining 

schedule shifts are compared with the same base case. 

 

 

 

 

 

 

 

 

 

 

 

 8.2 Base Case 

 

This section presents characteristics of the base case from the five perspectives 

mentioned above: welfare, peaking, congestion, schedule delay, and mode mix.  Also 

presented are traffic counts by mode and time of day for the most congested scenario.  

Table 8.1 presents characteristics of an base case as well as on marginal externality.  

All variables are measured for the morning trip.  Marginal externality is in cents per passenger 
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car unit per morning trip, in 1972 prices.  These characteristics are tabulated with two values 

of congestion elasticity and three values of total number of commuters to give a range of 

baseline congestion.  The two values of congestion elasticity are  1  and  2.5 , representing 

single interaction and multiple interaction, two of the six classifications of congestion by 

Vickrey (1969, p. 251). 

Under either single or multiple interaction, three numbers of total commuters are 

tabulated, representing a range of baseline congestion for a given congestion elasticity.  The 

three tabulated numbers are 12000, 24000, and 48000, listed in columns (1), (2), and (3), 

respectively.  If the spread of work start times is measured by four standard deviations of the 

distribution (132 minutes), these numbers are equivalent to the following ratios of number of 

passengers to capacity over that period: 1.03, 2.05, and 4.11.  That is, using the middle 

number, if all 24000 commuters drove alone and spread out evenly over this 132-minute 

period, the volume would be 2.05 times of capacity.  Column (4) gives differences between 

columns (3) and (1).  For variables measured in absolute units, these differences in column (4) 

are in percentages; for variables measured in percentage, these differences in column (4) are 

in percentage points. 

Change in consumer surplus measures change in average consumer welfare given by 

(5.16).  This change is in cents per passenger for the morning commute, 1972 prices.  It is 

measured relative to column (1). 

The externality of traveling at a particular time measures the marginal increase in total 
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travel costs at a base case.  Components of travel costs include costs of on-vehicle travel time, 

costs of bus walk and waiting times, costs of schedule delay, auto operating and maintenance 

costs and bus agency costs.  Externality for a base case is measured with peak externality and 

average externality.  Peak refers to the 15-minute period centered around 8:00 A.M. 

Externality is in cents per passenger car unit for the morning trip, 1972 prices.   

Peaking is measured with peak traffic and peak share of traffic.  Peak traffic is the 

number of passenger car units arriving at work within the peak 15-minute period centered 

around 8:00 A.M.  Peak share of traffic is the proportion of peak traffic out of total number of 

passenger car units over the whole period considered: from 5:30 to 10:00 A.M.  A change in 

peak share of traffic could result from mode shifts only, schedule shifts only, or a combination 

of them.  A change in peak traffic could result not only from mode or schedule shifts, but also 

from a change in total number of commuters.  Peak share of traffic is probably a better 

measure for peaking.   

 

 

 Table 8. Characteristics of Base Case  

 for Selected Amounts and Elasticities of Congestion  
──────────────────────────────────────────────────────────── 

  Number of Commutersa    %Difference 

    12000     24000     48000         (1)-(3) 

Single Interaction (γ = 1.0)a        (1)        (2)       (3)  (4) 
──────────────────── 
Welfare (cents/passenger) 

      

(01) Change in Consumer Surplus
b   0.00  -10.25  -29.43  NAg 
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Externality (cents/pcu) 

      

(02) Peak Externality
c,e

   58.29  88.16  127.68  119.04 

(03) Average Externality   26.18  44.99  67.41  157.49 

 

Peaking 

             

(04) Peak Traffic (pcu)c   1403.48  2701.66  5058.68  260.44 

(05) Peak Share of Traffic (%)  25.30  24.56  23.38  -1.92d 

 

Congestion (minutes) 

 

(06) Free-Flow Travel Time  10.00  10.00  10.00  0.00 

(07) Peak Travel Delayc   1.59  3.05  5.72  259.75 

(08) Average Travel Delay   0.90  1.76  3.37  274.44 

 

Schedule Delay 

 

(09) Constant Schedule Delay 

      of Auto Users (minutes)f  10.93  10.93  10.93  0.00 

(10) Variable Schedule Delay of  

      Auto Users (minutes)   0.15  0.29  0.53  253.33 

(11) Ratio of Variable Schedule to 

      Travel Delay for Auto Users (%) 18.86  18.32  17.59  -1.27d 

 

Mode Mix (measured with pcu's) 

 

(12) Drive-Alone Share of Traffic (%) 80.13  80.06  79.99  -0.14d 

(13) Bus Share of Traffic (%)  7.99  8.06  8.13  0.14d
 

(14) Carpool Share of Traffic (%) 11.88  11.88  11.87  -0.01
d
 

(15) Average Occupancy   2.16  2.17  2.18  0.93 

(16) Total Traffic    5547.54  8285.39  11000.20  98.29 
──────────────────────────────────────────────────────────── 
(Table 8.1 Continued)  
──────────────────────────────────────────────────────────── 
                         

  Number of Commutersa    %Difference 

    12000     24000     48000         (1)-(3) 

Multiple Interaction (γ = 2.5)a        (1)        (2)        (3)  (4) 
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────────────────────── 
Welfare (cents/passenger) 

      

(17) Change in Consumer's Surplus
b
 0.00  -57.25  -95.14  NA

g
 

 

Externality (cents/pcu) 

      

(18) Peak Externalityc,e
   95.27  298.66  564.74  492.78 

(19) Average Externality   33.60  113.66  255.23  659.61 

 

Peaking 

     

(20) Peak Traffic (pcu)c   1378.86  2363.98  3562.06  158.33 

(21) Peak Share of Traffic (%)  24.77  21.62  17.32  -7.45d 

 

Congestion (minutes) 

                 

(22) Free-Flow Travel Time  10.00  10.00  10.00  0.00 

(23) Peak Travel Delayc   1.65  6.35  17.69  972.12 

(24) Average Travel Delay   0.67  2.74  8.91  1229.85 

 

Schedule Delay 

 

(25) Constant Schedule Delay 

      of Auto Users (minutes)f  10.93  10.93  10.93  0.00 

(26) Variable Schedule Delay of     

      Auto Users (minutes)   0.21  0.76  1.94  823.81 

(27) Ratio of Variable Schedule to 

      Travel Delay for Auto Users (%) 39.09  34.52  27.47  -11.62d 

 

Mode Mix (measured with pcu's) 

 

(28) Drive-Alone Share of Traffic (%) 80.18  79.86  78.80  -1.38d 

(29) Bus Share of Traffic (%)  7.92  8.24  9.38  1.46d 

(30) Carpool Share of Traffic (%) 11.90  11.90  11.82  -0.08d 

(31) Average Occupancy   2.16  2.19  2.33  7.87 

(32) Total Traffic    5567.76  10935.88  20560.34  269.27 
────────────────────────────────────────────────────────── 
Notes to Table 8.1: 
────────────────────────────────────────────────────────── 
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a
 γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Numbers of commuters are exogenously chosen to give a range of 

baseline congestion. 

 
b
 It is change in consumer welfare given by equation (5.16) relative to column (1). 

 
c Peak refers to the 15-minute period centered around 8:00 A.M. 

 
d These are absolute changes. 

 
e Externality measures the marginal increase in total travel costs due to an additional trip after 

existing travelers have adjusted their choices.  Total costs include costs of on-vehicle travel 

time, costs of bus walk and waiting time, costs of schedule delay, auto operating and 

maintenance costs and bus agency costs.  It is in cents per passenger car unit for the morning 

commute, 1972 prices. 

    
f
 Constant schedule delay is the average schedule delay of auto users in equilibrium when 

travel is free-flow.  Thus, given their unobserved characteristics, auto users choose to arrive 

early or late for 11 minutes on average even when there is no congestion. 

 
g Difference does not apply here. 
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Congestion is measured with peak and average travel delays.  Schedule delay is 

measured with average variable schedule delay of auto users and ratio of variable schedule to 

travel delay for auto users.  Schedule delay is measured only for auto users because bus users 

are assumed to arrive on time.  The schedule delay tabulated is the variable component of 

average schedule delay; the constant component is the average schedule delay in equilibrium 

when travel is free-flow.  Thus, given their unobserved characteristics, auto users choose to 

arrive early or late for about 11 minutes on average even when there is no congestion. 

Mode mix is measured with drive-along share, bus share, and carpool share of traffic, 

average occupancy, and total traffic in passenger car units.  Carpool and bus occupancies are 

assumed at 2.5 and 40/3 per pcu, respectively.  So the mode shares presented are by passenger 

car unit not by passenger.  Average occupancy is the ratio of total number of commuters and 

the corresponding total traffic.  

(b1) What is the cost of congestion?  An average commuter's welfare drops by almost 

one dollar when average travel delay jumps from below one minute to nine minutes under 

multiple interaction.  An average commuter's welfare reduces by about 30 cents when average 

travel delay increases from just below one minute to over three minutes under single 

interaction.  These welfare losses are measured only for the morning trip in 1972 prices. 

(b2) What is the social cost of a marginal traveler?  The marginal externality for 

traveling in the peak 15-minute period ranges from 58 to 565 cents per passenger car unit for 
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all the scenarios considered.  The range for average externality is from 26 to 255 cents per 

passenger car unit.  These costs are for the morning commute only, in 1972 prices.  Under 

multiple interaction, peak externality becomes six times bigger and average externality 

becomes more than seven times bigger when the amount of congestion becomes more than 10 

times bigger.  Under single interaction, peak and average externalities increase by 119 and 

157 percent, respectively, when the amount of congestion more than triples.  Marginal 

externality increases with the amount of congestion as well as elasticity of congestion. 

(b3) Does the amount of congestion affect average occupancy?  Barely.  As the 

amount of congestion becomes 10 times bigger under multiple interaction, average occupancy 

increases by 7.87 percent from 2.16 to 2.33.  This percentage reduces to 2.78 under single 

interaction.  In both cases increase in occupancy results from minor shifts from drive-alone to 

bus.  Carpool share of traffic remains unchanged as congestion worsens.  Congestion elasticity 

appears to increase average occupancy slightly. 

(b4) Do travelers shift their schedules as congestion worsens?  Congestion leads to 

peak spreading: the heavier congestion is the lower the share of peak traffic.  The extent of 

this spreading depends on congestion elasticity: the higher the elasticity the more spreading.  

This increase in peak share of traffic as a result of heavier congestion is consistent with the 

increase in variable schedule delay as the amount of congestion increases. 

(b5) How do schedule and travel delays compare with each other?  The percentage 

ratio of variable schedule to travel delay for auto users ranges between 18 to 39 for all the 
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scenarios considered.  This ratio reduces as congestion worsens.  It reduces by more than 12 

percentage points under multiple interaction and 1 percentage point under single interaction.  

This reduction in their relative values result from a faster increase in travel delay than in 

schedule delay as congestion worsens.  This relative value of schedule delay is not as high as 

simple theoretical models predict (e.g., Arnott, de Palma, and Lindsey, 1990, predict a ratio of 

100 percent in monetary values).   

Table 8.2 presents traffic share and counts by mode and time of day for the most 

congested scenario.  Traffic is in passenger car units.  The occupancies of carpool and bus are 

assumed at 2.5 and 40/3 per pcu, respectively.  So the peak 15-minute period gets 17.32 

percent of total traffic (as presented in Table 8.1, row 21); the peak one-hour period gets 66.82 

percent of total traffic. 
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 Table 8.2 Traffic Counts by Mode and Schedule at Base Case
a
  

  

 (γ = 2.5 , Number of Commuters =  48000)
b
 

──────────────────────────────────────────────────── 
    Total 

Time Drive-Alone        Busd
   Carpool     Traffic      Share

c
  

(1)  (2)  (3)  (4)  (5)  (6) 

 

6:00  33.87  0.00  5.61  39.48  0.19 

6:15  148.80  0.00  24.77  173.57  0.84 

6:30  273.23  27.64  40.55  341.42  1.66 

6:45  488.05  3.90  82.72  574.67  2.80 

7:00  837.61  97.76  120.45  1055.82  5.14 

7:15  1316.90  7.23  250.09  1574.21  7.66 

7:30  1944.64  119.64  326.89  2391.17  11.63 

7:45  2531.06  67.47  397.98  2996.50  14.57 

8:00  2412.21  851.07  298.78  3562.07  17.32 

8:15  1995.50  126.18  298.02  2419.70  11.77 

8:30  1762.86  358.67  248.87  2370.41  11.53 

8:45  1021.58  11.83  152.93  1186.34  5.77 

9:00  1052.54  229.50  126.95  1409.00  6.85 

9:15  215.90  5.22  32.85  253.98  1.24 

9:30  143.82  23.23  18.42  185.47  0.90 

 

Total (1) 16201.49  1929.36  2429.49  20560.34  100.00 

 

Share (2)c 78.80  9.38  11.82  100.00 
──────────────────────────────────────────────────── 
Notes to Table 8.2: 

 
a Traffic is in passenger car units.  The occupancies of carpool and bus are assumed at 2.5 and 

40/3 per pcu, respectively. 

 
b γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give certain level 

of baseline congestion.  The most congested scenario is presented. 

 
c The shares in column 6 are percentages of traffic (in pcu's) in the 15-minute intervals 
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centered around the clock times in column 1.  The shares in row 2 are percentages of traffic 

by drive-alone, bus, and carpool, respectively. 

 
d
 Bus users are assumed to arrive on time. 

 

 

 8.3 Policy Effects 

 

This section compares the effects of the eight policies listed earlier.  Each policy is 

simulated with two values of congestion elasticity and three numbers of commuters as used in 

the base case.  For the optimal toll and capacity expansion polices, their effects are presented 

as percentage changes from the base case.  For other policies, their effects are presented as 

percentage differences from the effects of the optimal toll policy.  Changes in traffic counts by 

mode and time of day are also presented for the most congested scenario.   

Table 8.3 presents the equilibrium effects of an optimal toll for all the scenarios 

considered.  The optimal toll at a particular time is the marginal increase in total travel costs 

due to an additional passenger-car trip made at that time.  This optimal toll can vary 

significantly with time and scenarios.  Consumer surplus measures change in consumer 

welfare due to the optimal toll policy.  Total benefits sum consumer surplus and toll revenue.  

Welfare measures are in cents per passenger, 1972 prices.  Peak toll is the optimal toll for the 

peak  

15-minute period centered around 8:00 A.M..  The tolls are in cents per passenger car unit, 

1972 prices.  Other variables are defined as in Table 8.1 in section 8.2; those followed by  
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"%"  are in percentage changes from the base case; those not followed by  "%"  are in 

percentage points. 

(p1) Does an optimal toll affect traffic peaking, congestion, schedule delay, and mode 

mix?  In the most congested scenario, peak and average travel delays at the base case are 

about 18 and 9 minutes, respectively.  An optimal toll reduces peak traffic and peak share of 

traffic by about 36 percent and 4 percentage points, respectively.  It cuts peak travel delay by 

two-thirds and average travel delay by 57 percent.  Both variable schedule delay and the ratio 

of schedule to travel delay increase by about three-fourths.  An optimal toll also increases 

average occupancy by one fifth by shifting traffic from drive-alone to both bus and carpool.  

This increase in average occupancy is accompanied by a 16 percent reduction in total traffic. 

The answer to question (p1) is qualitatively unchanged with other scenarios.  

Quantitatively, however, the effects can vary substantially.  The effects on most measures 

increase with the amount and elasticity of congestion except for measures of schedule delay.  

The effects on both variable schedule delay and ratio of schedule to travel delay tend to 

decrease with congestion; the effects on variable schedule delay also tend to decrease with 

congestion elasticity. 

Table 8.4 presents the effects of the ten-percent expansion for the same scenarios as in 

Table 8.3.  The interpretation of variables, labels, and numbers remains the same as in Table 

8.3.  This expansion applies to all scenarios.   

(p2) Does the ten-percent capacity expansion affect traffic peaking, congestion, 
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schedule delay, and mode mix?  For the most congested scenario, peak traffic increases by 4.6 

percent; its share increases by half a percentage point.  Peak and average travel delays are 

reduced by about 12 and 14 percent, respectively.  Variable schedule delay reduces by about 

10 percent.   

 

 

 Table 8.3 Equilibrium Effects of An Optimal Tolla  

 for Selected Amounts and Elasticities of Congestion 
────────────────────────────────────────────────────────── 

  Number of Commutersb      

    12000     24000     48000   

Single Interaction (γ = 1.0)b         (1)        (2)        (3) 
──────────────────── 
Welfare (relative to base case; in cents/passenger) 

      

(01) Consumer Surplus
c    -10.85  -17.23  -24.98 

(02) Toll Revenue     11.09  18.14  27.74 

(03) Total Benefits     0.24  0.90  2.76 

 

Toll (cents/pcu) 

 

(04) Peak Toll     56.18  85.13  130.40 

(05) Average Toll     24.71  41.58  66.53 

 

Peaking (relative to base case) 

     

(06) Peak Traffic (%)d    -11.44  -14.26  -13.59 

(07) Peak Share of Traffic    -0.77  -10.64  -9.49 

 

Congestion (relative to base case) 

 

(08) Peak Travel Delay (%)d   -11.95  -14.16  -13.44 

(09) Average Travel Delay (%)   -6.67  -9.70  -9.66 

 

Schedule Delay (relative to base case) 
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(10) Variable Schedule Delay 

      for Auto Users
e
 (%)    286.67  213.79  175.47 

(11) Ratio of Variable Schedule to  

      Travel Delay for Auto Users   57.76  45.72  38.55 

 

Mode Mix (relative to base case; measured with pcu's) 

 

(12) Drive-Alone Share of Traffic  -0.98  -1.65  -2.64 

(13) Bus Share of Traffic    0.46  0.79  1.30 

(14) Carpool Share of Traffic   0.52  0.86  1.35 

(15) Average Occupancy (%)   3.24  5.05  8.11 

(16) Total Traffic (%)    -2.90  -4.84  -7.53 

──────────────────────────────────────────────────────────- 

 

(Table 8.3 Continued) 
────────────────────────────────────────────────────────── 

  Number of Commutersb    

    12000     24000     48000  

Multiple Interaction (γ = 2.5)b         (1)        (2)        (3) 
────────────────────── 
Welfare (relative to base case; in cents/passenger) 

      

(17) Consumer Welfare
c    -13.03  -26.50  -26.33 

(18) Toll Revenue     14.17  35.20  64.66 

(19) Total Benefits     1.14  8.71  38.32 

 

Toll (cents/pcu) 

 

(20) Peak Tolld     102.01  220.51  507.01 

(21) Average Toll     31.67  85.10  180.72 

 

Peaking (relative to base case) 

     

(22) Peak Traffic (%)d    -19.88  -26.66  -35.86 

(23) Peak Share of Traffic    -4.18  -4.16  -4.01 

 

Congestion (relative to base case) 

 

(24) Peak Travel Delay (%)d   -42.42  -54.02  -67.04 

(25) Average Travel Delay (%)   -35.82  -45.99  -56.90 
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Schedule Delay (relative to base case) 

 

(26) Variable Schedule Delay 

      for Auto Users
e
 (%)    309.52  138.16  78.35 

(27) Ratio of Variable Schedule to  

      Travel Delay for Auto Users   208.93  118.71  77.29 

 

Mode Mix (relative to base case; measured with pcu's) 

 

(28) Drive-Alone Share of Traffic  -1.24  -3.32  -6.69 

(29) Bus Share of Traffic    0.57  1.59  3.33 

(30) Carpool Share of Traffic    0.67  1.73  3.37 

(31) Average Occupancy (%)   3.70  10.50  20.17 

(32) Total Traffic (%)    -3.61  -9.21  -16.48 
────────────────────────────────────────────────────────── 
 

 

 

Notes to Table 8.3: 
────────────────────────────────────────────────────────── 
a An optimal toll measures the marginal increases in total travel costs due to an additional 

passenger car trip at different times of day at the optimum where total welfare, sum of 

consumer welfare and toll revenue, is maximized.  Travel costs include costs of on-vehicle 

travel time, costs of bus walk and waiting time, costs of schedule delay, and auto operating 

and maintenance costs and bus agency costs.  Tolls are in 1972 prices. 

 
b γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give a range of 

baseline congestion. 

 
c Consumer welfare is measured by equation (5.16). 

 
d Peak refers to the 15-minute period centered around 8:00 A.M. 

 
e The average schedule delay tabulated is the variable component of average schedule delay; 

the constant component is above the variable component.  The constant component is the 

average schedule delay of auto users in equilibrium when travel is free-flow.  
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 Table 8.4 Equilibrium Effects of a Ten-Percent Capacity Expansion  

 for Selected Levels and Elasticities of Congestion  

 
────────────────────────────────────────────────────────── 

  Number of Commutersb      

    12000     24000     48000   

       (1)        (2)        (3) 

Single Interaction (γ = 1.0)b 
──────────────────── 
 

Welfare (relative to base case; in cents /passenger) 

       

(01) Total Benefitsc     0.96  1.83  3.37 

 

Peaking (relative to base case) 

     

(02) Peak Trafficd (%)    0.37  0.67  1.12 

(03) Peak Share of Traffic    0.07  0.13  0.19 
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Congestion (relative to base case) 

 

(04) Peak Travel Delay
d
 (%)   -8.81  -8.52  -8.22 

(05) Average Travel Delay (%)   -8.89  -8.52  -8.31 

 

Schedule Delay (relative to base case) 

 

(06) Variable Schedule Delay 

      for Auto Userse (%)    -6.67  -6.90  -7.55 

(07) Ratio of Variable Schedule to  

      Travel Delay for Auto Users   0.07  0.09  0.12 

 

Mode Mix (relative to base case; measured with pcu's) 

 

(08) Drive-Alone Share of Traffic  0.01  0.03  0.05 

(09) Bus Share of Traffic    -0.02  -0.03  -0.06 

(10) Carpool Share of Traffic    0.01  0.00  0.01 

(11) Average Occupancy (%)   0.00  0.00  -0.45 

(12) Total Traffic (%)    0.08  0.15  0.29 

──────────────────────────────────────────────────────────- 

 

 

 

 

 

(Table 8.4 Continued) 
────────────────────────────────────────────────────────── 

  Number of Commutersb    

    12000     24000     48000  

       (1)        (2)        (3) 

Multiple Interaction (γ = 2.5)b 
────────────────────── 
 

Welfare (relative to base case; in cents /passenger) 

       

(13) Total Benefitsc     1.46  5.24  14.11 

 

Peaking (relative to base case) 

     

(14) Peak Trafficd (%)    1.13  2.98  4.63 
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(15) Peak Share of Traffic    0.25  0.55  0.57 

 

Congestion (relative to base case) 

 

(16) Peak Travel Delay
d
 (%)   -18.79  -15.28  -11.76 

(17) Average Travel Delay (%)   -189.40  -16.42  -13.80 

 

Schedule Delay (relative to base case) 

 

(18) Variable Schedule Delay 

      for Auto Userse (%)    -19.05  -14.47  -10.31 

(19) Ratio of Variable Schedule to  

      Travel Delay for Auto Users   0.38  0.85  1.00 

 

Mode Mix (relative to base case; measured with pcu's) 

 

(20) Drive-Alone Share of Traffic  0.01  0.02  0.22 

(21) Bus Share of Traffic    -0.02  -0.07  -0.24 

(22) Carpool Share of Traffic    0.08  0.00  0.02 

(23) Average Occupancy (%)   -0.46  0.00  -1.29 

(24) Total Traffic (%)    0.10  0.41  1.30 
────────────────────────────────────────────────────────── 
 

 

 

 

 

 

 

 

Notes to Table 8.4: 
────────────────────────────────────────────────────────── 
 
a Capacity expansion is exogenously chosen at ten percent of the base level. 

 
b γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give a range of 

baseline congestion for a given value of congestion elasticity.   

 
c Total benefits are changes in consumer welfare in equation (5.16). 
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d
 Peak refers to the 15-minute period centered around 8:00 A.M. 

 
e
 The average schedule delay tabulated is the variable component of average schedule delay; 

the constant component is above the variable component.  The constant component is the 

average schedule delay of auto users in equilibrium when travel is free-flow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

But ratio of schedule to travel delay increases by 1 percentage point--a result of faster 

reduction in travel delay than in schedule delay due to the capacity expansion.  There are 

some mode shifts from bus to drive-alone.   

The answer to question (p2) is not changed qualitatively for other scenarios.  For the 
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least congested scenario, peak traffic is increased by only one third a percent; peak share is 

barely changed.  Congestion is reduced by about 9 percent.  Variable schedule delay is 

reduced by about 7 percent.  Ratio of schedule to travel delay is barely increased.  Minor 

mode shifts from bus to drive-alone and increase in total traffic still exits.  Overall, the 

percentage reduction in both travel and schedule delays tend to decrease with the amount of 

congestion, which is likely because a fixed expansion apply to all scenarios.   

How do the effects of an optimal toll and the ten-percent expansion compare?  

Because the capacity expansion is arbitrary, a meaningful comparison is in the direction of 

effects rather than the magnitudes of effects.  Both polices reduce congestion and increase 

ratio of schedule to travel delay.  But they have opposite effects on peaking and mode mix.  

An optimal toll leads to peak spreading and reduction in share of drive-alone, while an 

incremental expansion in capacity leads to further peaking and increase in share of drive-

alone.  The relative benefits of an optimal toll versus the capacity expansion are much more 

favorable under multiple interaction than under single interaction. 

This difference in effects on peaking and mode mix between an optimal toll and the 

incremental expansion is better contrasted using changes from the base case in traffic counts 

by mode and time of day as presented in Tables 8.5 and 8.6 for the two policies, respectively. 

 As in Table 8.2, only the most  

congested scenario is presented; traffic is in passenger car units.  The bottom row gives 

changes in traffic counts for the three modes separated and all modes combined.  Column (5) 
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gives changes in traffic counts for each of the 15-minute intervals for all modes combined. 

The effects of an optimal toll and the incremental expansion on traffic differ as 

follows.  The ten-percent expansion increases traffic by 358 pcu's during the peak one-hour 

period between 7:30 and 8:30 A.M.  This traffic increase results partly from 51 more carpool 

pcu's and 74 less bus pcu's during the same period.  The optimal toll, on the other hand, 

decreases traffic by 3302 pcu's during the peak one-hour period.  This traffic reduction results 

partly from 253 more bus pcu's and 178 more carpool pcu's during the same period. 

(p4) How much of these changes in traffic during the peak one-hour period comes 

from mode and schedule shifts, respectively?  Schedule shifts account for about 8.4 percent of 

the reduction due to the optimal toll policy, and 15.4 percent of the increase due to the 

expansion policy.  The following calculation uses 40/3 and 2.5 passengers per pcu for bus and 

carpool, respectively.  It also assumes that mode shifts occur only between drive-alone and 

bus or drive-alone and carpool.  

Under the optimal toll policy, the increased 229 bus pcu's would have been 229*40/3 

= 3055 more drive-alone pcu's; shifts to bus mode reduces traffic by 3055 - 229 = 2826 pcu's. 

 Similarly, the increased 132 carpool pcu's would have  

 Table 8.5 Change in Traffic Counts due to an Optimal Tolla,b  

 by Mode and Schedule: Schedule Shifts Allowed 

   

 (γ = 2.5 , Number of Commuters =  48000)
c
 

───────────────────────────────────────────────────── 
   Total 

Time  Drive-Alone        Busd  Carpool    Traffic 

(1)   (2)  (3)  (4)  (5) 
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6:30   8.81  0.03  1.48  10.33 

6:45   39.84  0.01  6.29  46.14 

7:00   -42.02  2.78  4.03  -35.22 

7:15   16.10  0.42  18.46  34.98 

7:30   -399.45  12.77  21.34  -365.33 

7:45   -827.42  7.70  55.80  -763.93 

8:00   -1446.74  141.52  28.01  -1277.20 

8:15   -373.39  16.76  22.98  -333.65 

8:30   -616.23  50.38  4.11  -561.74 

8:45   2.02  0.81  12.22  15.06 

9:00   -237.57  19.30  -3.06  -221.33 

9:15   48.56  0.20  5.32  54.08 

9:30   4.14  0.28  0.62  5.03 

 

Total   -3818.97  252.98  178.38  -3387.61 
───────────────────────────────────────────────────── 
Notes to Table 8.5 

 
a An optimal toll measures the marginal increases in total travel costs due to an additional 

passenger car trip at different times of day at the optimum where total welfare, sum of 

consumer welfare and toll revenue, is maximized.  Travel costs include costs of on-vehicle 

travel time, costs of bus walk and waiting time, costs of schedule delay, and auto operating 

and maintenance costs and bus agency costs.  Tolls are in 1972 prices. 

 
b Traffic is in passenger car units.  The occupancies of carpool and bus are assumed at 2.5 and 

40/3 per pcu, respectively. 

 
c γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give certain level 

of baseline congestion.  The most congested scenario is presented. 

 
d Bus users are assumed to arrive on time. 

 

 

 Table 8.6 Change in Traffic Counts due to a Ten-Percent Expansiona,b  

 by Mode and Schedule: Schedule Shifts Allowed 

  

 (γ = 2.5 , Number of Commuters =  48000)c 
─────────────────────────────────────────── 
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   Total 

Time  Drive-Alone        Bus
d
  Carpool    Traffic 

(1)   (2)  (3)  (4)  (5) 

 

6:45   -7.36  0.00  -1.41  -8.77 

7:00   -8.16  -0.17  -1.59  -9.92 

7:15   -37.91  -0.01  -8.45  -46.37 

7:30   22.94  -1.02  3.12  25.05 

7:45   82.81  -0.74  14.78  96.85 

8:00   158.27  -14.69  21.27  164.85 

8:15   27.95  -2.41  5.71  31.26 

8:30   39.34  -5.63  6.07  39.79 

9:45   -18.31  -0.18  -2.57  -21.06 

9:00   3.42  -1.30  0.46  2.59 

9:15   -3.56  -0.01  -0.48  -4.05 

 

Total   257.50  -26.16  36.53  267.87 
─────────────────────────────────────────── 
Notes to Table 8.6: 

 
a Capacity expansion is exogenously chosen at ten percent of the base level. 

 
b Traffic is in passenger car units.  The occupancies of carpool and bus are assumed at 2.5 and 

40/3 per pcu, respectively. 

 
c γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give certain level 

of baseline congestion.  The most congested scenario is presented. 

 
d Bus users are assumed to arrive on time. 

 

 

 

 

 

 

 

 

 

been 132*2.5 = 330 less drive-alone pcu's; shifts to carpool reduces traffic by 330 - 132 = 198 
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pcu's.  So mode shifts to bus and carpool reduce traffic by 198 + 2826 = 3024 pcu's, which 

accounts for 91.6 percent of the total reduction during the peak one-hour period.  Schedule 

shifts account for the other 8.4 percent. 

Under the expansion policy, the traffic increase during the peak one-hour period can 

be similarly decomposed.  The reduced 24 bus pcu's would have been 24*40/3 = 327 less 

drive-alone pcu's; shifts to bus increases traffic by 327 - 24 = 303.  The increased 51 carpool 

pcu's would have been 51*2.5 = 127 less drive-alone pcu's; shifts to carpool reduces traffic by 

127 - 51 = 76 pcu's.  Net mode shifts to bus and carpool increase traffic by 303 - 76 = 227 

pcu's, which accounts for 84.7 percent of the total increase of 268 pcu's due to the expansion 

during the peak one-hour period.  The rest, 15.3 percent, comes from schedule shifts. 

Next the welfare effects of other policies are compared with those from an optimal 

toll, using Tables 8.7 through 8.10, and compare other pricing policies with an optimal toll on 

other effects, using Tables 8.11 through 8.18.   

Table 8.7 compares total benefits per passenger.  Total benefits of a policy sum toll 

revenue (for pricing policies) and the change in consumer's surplus from the base case due to 

the policy.  These benefits are for the morning commute.  The total benefits for an optimal toll 

are given in cents, 1972 prices; the total benefits for other policies are in ratio to those of an 

optimal toll.  For example, the number in column 3 and row 09 is 38.32, indicating that the 

optimal toll for this scenario increases social welfare per passenger by about 38 cents for the 

morning commute, in 1972 prices.   
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 Table 8.7 Comparison of Total Benefits per Passenger
a
  

 between an Optimal Toll and Other Polices
b
 

────────────────────────────────────────────────────────── 
  Number of Commuters

c
      

    12000     24000     48000   

       (1)        (2)        (3) 

 

Single Interaction (γ = 1.0)
c
 

───────────────────── 
 

(01) Optimal Toll (relative to base case) 

     (cents/morning trip, 1972 prices)  0.24  0.90  2.76 

 

Other Policies (in ratio to row 01) 

 

(02) Base-Externality Toll    1.00  0.99  1.00  

(03) Piecewise-Linear Toll    0.83  0.86  0.91  

(04) One-Step Toll     0.63  0.62  0.69  

(05) Uniform Toll     0.58  0.55  0.63  

(06) Optimal Toll with HOV Exemption  0.88  0.90  0.94  

 

(07) 10% Expansion    4.00  2.03  1.22  

(08) Optimal Toll with 10 % Expansion  4.83  2.88  2.10  

 

   

Multiple Interaction (γ = 2.5)c 
─────────────────────── 
 

(09) Optimal Toll (relative to base case)                     

     (cents/morning trip, 1972 prices)  1.14  8.71  38.32 

 

Other Policies (in ratio to row 09) 

 

(10) Base-Externality Toll    1.02
d
  0.99  1.02

d
 

(11) Piecewise-Linear Toll    0.61  0.78  0.93 

(12) One-Step Toll     0.38  0.58  0.77 

(13) Uniform Toll     0.26  0.43  0.65 

(14) Optimal Toll with HOV Exemption  0.89  0.93  0.93 

 

(15) 10% Expansion    1.28  0.60  0.37 
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(16) Optimal Toll with 10% Expansion  1.99  1.38  1.22 
────────────────────────────────────────────────────────── 
 

 

 

Notes to Table 8.7: 

 
a
 Total benefits sum toll revenue and change in consumer's surplus from the base case.  

Benefits for policies other than an optimal toll is in ratio to those of the optimal toll. 

 
b An optimal toll measures the marginal increases in total travel costs due to an additional 

passenger car trip at a given time interval at the optimum where total welfare, sum of 

consumer welfare and toll revenue, is maximized.  Travel costs include costs of on-vehicle 

travel time, costs of bus walk and waiting time, costs of schedule delay, and auto operating 

and maintenance costs and bus agency costs. The change in costs is calculated after existing 

travelers have adjusted their behavior in response to the added trip. 

 

A base-externality toll is the marginal increase in total travel costs at the base case as a result 

of an additional passenger car trip at a given time interval. 

 

A piecewise-linear toll starts with zero at 7:00 A.M., increases linearly until 8:00 A.M., 

decreases linearly to zero at 9:00 A.M.; its start and end points are chosen exogenously;  its 

slope (the same on each side) is chosen through screening at a 5-cent increment to maximize 

total welfare.   

    

A one-step toll starts at 7:30 A.M., stays constant, ends at 8:30 A.M.; its start and end points 

are chosen exogenously; its level is chosen through screening at a 10-cent increment to 

maximize total welfare.  

 

A uniform toll applies between 5:30 to 10:00 A.M.; its level is chosen through screening at a 

10-cent increment to maximize total welfare. 

 

An optimal Toll with HOV exemption is the marginal increase in total travel costs due to an 

additional passenger car trip at a given time interval with carpooler and bus users exempted. 

 

Capacity expansion is exogenously chosen at 10 percent of the base level. 

 

An optimal toll with expansion is the marginal increase in total travel costs due to an 

additional passenger car trip at a given time interval with the capacity expanded by 10 

percent. 
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c
 γ is a supply parameter measuring elasticity of travel delay with respect to traffic flow in the 

supply model (Table 7.1).  Number of commuters is exogenously   chosen to give a range of 

baseline congestion.  

 
d These larger than unity ratios are likely due to numerical inaccuracy. 

(n1) What are the total benefits of an optimal toll?  Table 8.3 presents change in 

consumer's surplus from the base case, toll revenue, and total benefits for the optimal toll 

policy.  These welfare measures are in cents, 1972 prices, for the morning commute.  Its total 

benefits range from one quarter a cent to 2 and three quarter a cent under single interaction.  

Under multiple interaction, however, the range of total benefits increases to from 1 to 38 

cents.   

Two points should be made about the welfare effects of an optimal toll.  First, 

significant welfare transfers occur from commuters to the government.  Under the least 

congested scenario, implementing an optimal toll would reduce average consumer welfare by 

10.85 cents for the morning trip, while the government collects 11.09 cents on each trip.  

Under the most congested scenario, the average commuter loses 26 cents due to the optimal 

toll policy, while the government collects 65 cents in toll revenue.  Second, once costs of toll 

collection are considered, it is probably not worthwhile to implement an optimal toll when 

congestion is light or congestion elasticity is low.  On the other hand, the aggregate benefits of 

an optimal toll can be substantial when the baseline congestion is heavy.  Under the most 

congested scenario, for example, the total benefits of 38 cents in 1972 prices per passenger 

per morning trip are equivalent to annual total benefits of more than 14.5 million dollars in 
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1992 prices for the 250 morning trips of 48000 commuters.  A deflator of 3.1856 is used to 

convert dollars from 1972 to 1992 prices. 

(n2) How do the total benefits of other pricing policies compare with those of an 

optimal toll?  A base-externality toll does just as well as an optimal toll for all scenarios. (A 

ratio of 1.02 under two of the scenarios, however, are likely due to numerical inaccuracies.)  

Recall that a base-externality toll is equal to the marginal externality of an additional 

passenger car trip at a given time interval at the base case.  This marginal externality is 

calculated after existing travelers have adjusted their behavior in response to the added trip, 

which should be much closer to the marginal externality at an optimum than the marginal 

externality calculated without allowing existing travelers to adjust their choices. 

Under single interaction, a piecewise-linear toll achieves from 83 to 91 percent of the 

benefits of an optimal toll; this percentage ranges from 62 to 69 percent for a one-step toll, 

from 56 to 63 percent for a uniform toll, and from 88 to 94 percent for an optimal toll with 

HOV exemption.  The amount of congestion does not seem to affect their total benefits much 

relative to those of an optimal toll.  Except for the policy of an optimal toll with HOV 

exemption, these percentages vary widely with the amount of congestion for a given policy 

under multiple interaction.  A piecewise-linear toll achieves about 61 to 93 percent of the 

benefits of an optimal toll; a one-step toll achieves about 38 to 77 percent; a uniform toll 

achieves about 26 to 65 percent.  Congestion elasticity does not seem to affect the total 

benefits of an optimal toll with HOV exemption relative to those of an optimal toll alone. 
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These percentages for a one-step toll are in line with the estimates by Arnott, de 

Palma, and Lindsey (1993, Table 1).  Their estimates for a uniform toll are smaller, however.  

Instead of allowing mode choice in addition to scheduling choice, they extend the Vickrey 

model (Vickrey, 1969) to allow elastic total demand.  With demand elasticity ranging between 

0.2 and 1, their estimate for an optimal one-step toll ranges from 58 to 62 percent; their 

estimate for an optimal uniform toll ranges from 12 to 31 percent.  Their estimates are based 

on a base scenario with an average queuing delay of about 36 minutes, which doubles the 

average travel delay under the most congested scenario here. 

(n3) How do the total benefits of the ten-percent expansion compare with and without 

an optimal toll?  The answer is obtained by subtracting unity from rows 08 and 16 and 

comparing the resulting numbers with those in rows 07 and 15, respectively.  With the most 

congested scenario under single interaction, the capacity expansion achieves total benefits of 

10 and 22 percent more than the optimal toll with and without the presence of an optimal toll, 

respectively.  With the most congested scenario under multiple interaction, the capacity 

expansion achieves 22 and 37 percent more with and without an optimal toll.  So the presence 

of an optimal toll can reduce the level of optimal capacity substantially. 

Tables 8.8 and 8.9 present peak and average tolls, respectively, for the pricing 

policies.  Tolls are in cents per passenger car unit for the morning commute, 1972 prices.  

Table 8.10 lists the entire toll schedules for the optimal toll, base-externality toll, piecewise-

linear toll, one-step toll, uniform toll, and optimal toll with HOV exemption under the most 
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congested scenario.   

 

 

 

 Table 8.8 Comparison of Average Tolls 

 between The Optimal Toll Policy and Other Pricing Policesa 

 

 (in cents per passenger car unit per morning trip, 1972 prices) 
───────────────────────────────────────────────────────── 

  Number of Commutersb      

    12000     24000     48000   

       (1)        (2)        (3) 

 

Single Interaction (γ = 1.0)b 
───────────────────── 
 

(01) Optimal Toll     25.  42.  67. 

 

(02) Base-Externality Toll    25.  43.  64.  

(03) Piecewise-Linear Toll    16.  47.  77.  

(04) One-Step Toll     14.  35.  60.  

(05) Uniform Toll     20.  40.  80.  

(06) Optimal Toll with HOV Exemption  24.  33.  67.  

(07) Optimal Toll with 10 % Expansion  23.  37.  66.  

 

   

Multiple Interaction (γ = 2.5)b 
─────────────────────── 
 

(08) Optimal Toll     32.  85.  181. 

 

(09) Base-Externality Toll    30.  96.  224. 

(10) Piecewise-Linear Toll    48.  121.  249. 

(11) One-step Toll     28.  90.  176. 

(12) Uniform Toll     40.  110.  290. 

(13) Optimal Toll with HOV Exemption  29.  80.  145. 



 
 

 

203

(14) Optimal Toll with 10% Expansion  22.  67.  187.
c
 

────────────────────────────────────────────────────────── 
 

 

 

 

 

 

 

 

 

 

Notes to Table 8.8: 

 
a An optimal toll measures the marginal increases in total travel costs due to an additional 

passenger car trip at a given time interval at the optimum where total welfare, sum of 

consumer welfare and toll revenue, is maximized.  Travel costs include costs of on-vehicle 

travel time, costs of bus walk and waiting time, costs of schedule delay, and auto operating 

and maintenance costs and bus agency costs. The change in costs is calculated after existing 

travelers have adjusted their behavior in response to the added trip. 

 

A base-externality toll is the marginal increase in total travel costs at the base case as a result 

of an additional passenger car trip at a given time interval. 

 

A piecewise-linear toll starts with zero at 7:00 A.M., increases linearly until 8:00 A.M., 

decreases linearly to zero at 9:00 A.M.; its start and end points are chosen exogenously;  its 

slope (the same on each side) is chosen through screening at a 5-cent increment to maximize 

total welfare.   

    

A one-step toll starts at 7:30 A.M., stays constant, ends at 8:30 A.M.; its start and end points 

are chosen exogenously; its level is chosen through screening at a 10-cent increment to 

maximize total welfare.  

 

A uniform toll applies between 5:30 to 10:00 A.M.; its level is chosen through screening at a 

10-cent increment to maximize total welfare. 

 

An optimal Toll with HOV exemption is the marginal increase in total travel costs due to an 

additional passenger car trip at a given time interval with carpooler and bus users exempted. 

 

Capacity expansion is exogenously chosen at 10 percent of the base level. 
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An optimal toll with expansion is the marginal increase in total travel costs due to an 

additional passenger car trip at a given time interval with the capacity expanded by 10 

percent. 

 
b γ is a supply parameter measuring elasticity of travel delay with respect to traffic flow in the 

supply model (Table 7.1).  Number of commuters is exogenously   chosen to give a range of 

baseline congestion.  

 
c The difference between this value and the corresponding optimal toll is within the tolerance 

level for convergence. 

 

 

 

 

 Table 8.9 Comparison of Peak Tolls
a 

 between The Optimal Toll Policy and Other Pricing Policesb
 

 

 (in cents per passenger car unit per morning trip, 1972 prices) 
───────────────────────────────────────────────────────── 

  Number of Commuters
c      

    12000     24000     48000   

       (1)        (2)        (3) 

 

Single Interaction (γ = 1.0)c 
───────────────────── 
 

(01) Optimal Toll     56.  85.  130. 

 

(02) Base-Externality Toll    58.  88.  128.  

(03) Piecewise-Linear Toll    25.  75.  125.  

(04) One-Step Toll     20.  50.  90.  

(05) Uniform Toll     20.  40.  80.  

(06) Optimal Toll with HOV Exemption  57.  65.  139.  

(07) Optimal Toll with 10 % Expansion  51.  72.  129.  

 

   

Multiple Interaction (γ = 2.5)c 
─────────────────────── 
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(08) Optimal Toll     102.  221.  507. 

 

(09) Base-Externality Toll    95.  299.  565. 

(10) Piecewise-Linear Toll    75.  200.  450. 

(11) One-Step Toll     40.  140.  320. 

(12) Uniform Toll     40.  110.  290. 

(13) Optimal Toll with HOV Exemption  104.  227.  534. 

(14) Optimal Toll with 10% Expansion  60.  182.  489. 
────────────────────────────────────────────────────────── 
 

 

 

 

 

 

 

 

 

 

Notes to Table 8.9: 

 
a Peak refers to the 15-minute period centered around 8:00 A.M. 

 
b An optimal toll measures the marginal increases in total travel costs due to an additional 

passenger car trip at a given time interval at the optimum where total welfare, sum of 

consumer welfare and toll revenue, is maximized.  Travel costs include costs of on-vehicle 

travel time, costs of bus walk and waiting time, costs of schedule delay, and auto operating 

and maintenance costs and bus agency costs. The change in costs is calculated after existing 

travelers have adjusted their behavior in response to the added trip. 

 

A base-externality toll is the marginal increase in total travel costs at the base case as a result 

of an additional passenger car trip at a given time interval. 

 

A piecewise-linear toll starts with zero at 7:00 A.M., increases linearly until 8:00 A.M., 

decreases linearly to zero at 9:00 A.M.; its start and end points are chosen exogenously;  its 

slope (the same on each side) is chosen through screening at a 5-cent increment to maximize 

total welfare.   

    

A one-step toll starts at 7:30 A.M., stays constant, ends at 8:30 A.M.; its start and end points 

are chosen exogenously; its level is chosen through screening at a 10-cent increment to 
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maximize total welfare.  

 

A uniform toll applies between 5:30 to 10:00 A.M.; its level is chosen through screening at a 

10-cent increment to maximize total welfare. 

 

An optimal Toll with HOV exemption is the marginal increase in total travel costs due to an 

additional passenger car trip at a given time interval with carpooler and bus users exempted. 

 

Capacity expansion is exogenously chosen at 10 percent of the base level. 

 

An optimal toll with expansion is the marginal increase in total travel costs due to an 

additional passenger car trip at a given time interval with the capacity expanded by 10 

percent. 

 
c γ is a supply parameter measuring elasticity of travel delay with respect to traffic flow in the 

supply model (Table 7.1).  Number of commuters is exogenously   chosen to give a range of 

baseline congestion.  

 

 

 

 Table 8.10 Comparison of Toll Schedulesa 

 (in cents per passenger car unit per morning trip, 1972 prices)      

 

 (γ = 2.5 , Number of Commuters = 48000)b   
────────────────────────────────────────────────────────── 

Base-  Piece-   Optimal      

Optimal nality  Linear Step  HOV 

Time  Toll  Toll  Toll  Toll  Exempted 

(1)  (2)  (3)  (4)       (5)  (6)   

             

6:30  1.91  2.62  0.00  0.00  1.93 

6:45  7.19  8.24  0.00  0.00  6.90 

7:00  35.96  49.67  90.00  0.00  31.25     7:15  58.48  

8:00  507.01  564.74  450.00  320.00  534.40 8:15  157.78  

9:00  115.03  170.55  90.00  0.00  110.29 9:15  0.44  

9:30  0.91  1.29  0.00  0.00  0.92 
────────────────────────────────────────────────────────── 
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Notes to Table 8.10: 

 
a An optimal toll measures the marginal increases in total travel costs due to an additional 

passenger car trip at a given time interval at the optimum where total welfare, sum of 

consumer welfare and toll revenue, is maximized.  Travel costs include costs of on-vehicle 

travel time, costs of bus walk and waiting time, costs of schedule delay, and auto operating 

and maintenance costs and bus agency costs. The change in costs is calculated after existing 

travelers have adjusted their behavior in response to the added trip. 

 

A base-externality toll is the marginal increase in total travel costs at the base case as a result 

of an additional passenger car trip at a given time interval. 

 

A piecewise-linear toll starts with zero at 7:00 A.M., increases linearly until 8:00 A.M., 

decreases linearly to zero at 9:00 A.M.; its start and end points are chosen exogenously;  its 

slope (the same on each side) is chosen through screening at a 5-cent increment to maximize 

total welfare.   

    

A one-step toll starts at 7:30 A.M., stays constant, ends at 8:30 A.M.; its start and end points 

are chosen exogenously; its level is chosen through screening at a 10-cent increment to 

maximize total welfare.  
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An optimal Toll with HOV exemption is the marginal increase in total travel costs due to an 

additional passenger car trip at a given time interval with carpooler and bus users exempted. 

 
b
 γ is a supply parameter measuring elasticity of travel delay with respect to traffic flow in the 

supply model (Table 7.1).  Number of commuters is exogenously   chosen to give a range of 

baseline congestion.  

 

 

 

 

 

 

How do a base-externality toll, piecewise-linear toll, one-step toll, and uniform toll 

compare with an optimal toll on their effects on peaking, congestion, schedule delay, and 

mode mix?  The answer is obtained using Tables 8.11 through 8.15.  Variables are the same 

as in Table 8.2; numbers now represent percentage differences in their effects relative to the 

effects of the optimal toll for a given scenario.  A positive number implies a larger effect in 

absolute value from the policy of concern than the optimal toll; a negative smaller than 100 in 

absolute 

value implies a smaller effect in absolute value in the same direction as the optimal toll; a 

negative larger than 100 in absolute value implies an effect in the opposite direction as the 

optimal toll; and a zero implies the same effect as the optimal toll. 

A base-externality toll, presented in Table 8.11, affects peaking, congestion, schedule 
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delay, and mode mix in the same direction as the optimal toll for a given scenario.  The base-

externality toll tends to have a larger effect in absolute value on all four aspects of travel 

under both single and multiple interactions.  When the number commuters is 48000 under 

single interaction and 12000 under multiple interaction, however, its effects on the four 

aspects of travel are smaller than those of an optimal toll in absolute values. 

A piecewise-linear toll, presented in Table 8.12, tends to have lower effects in 

absolute values on peaking, congestion, and schedule delay than the optimal toll policy.  The 

exception occurs to its effects on mode mix.  Except for the least congested scenario, a 

piecewise-linear toll has a larger effect in absolute value on mode mix than an optimal toll.  

For example, the piecewise-linear toll under the 

 Table 8.11 Equilibrium Effects of A Base-Externality Tolla  

 for Selected Amounts and Elasticities of Congestion 

 

 (in percentage difference from those of an optimal toll)f 
────────────────────────────────────────────────────────── 

  Number of Commutersb      

    12000     24000     48000   

Single Interaction (γ = 1.0)b         (1)        (2)        (3) 
──────────────────── 
Welfare 

(01) Consumer Surplus (%)
c   1.38  -17.23  -24.98 

(02) Toll Revenue (%)    1.35  18.14  27.74 

(03) Total Benefits (%)    0.00  0.90g  2.76g 

 

Toll 

 

(04) Peak Toll (%)d    3.76  85.13  130.40 

(05) Average Toll (%)    1.34  41.58  66.53 

 

Peaking 
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(06) Peak Traffic (%)
d
    4.85  -14.26  -13.59 

(07) Peak Share of Traffic (%)   5.83  -10.64  -9.49 

 

Congestion 

 

(08) Peak Travel Delay (%)
d   0.00  -14.16  -13.44 

(09) Average Travel Delay (%)   16.67  -9.70  -9.66 

 

Schedule Delay 

 

(10) Variable Schedule Delay 

      for Auto Userse
 (%)    4.65  213.79  175.47 

(11) Ratio of Variable Schedule to 

      Travel Delay for Auto Users (%)  4.76  45.72  38.55 

 

Mode Mix (measured with pcu's) 

 

(12) Drive-Alone Share of Traffic (%)  1.02  3.64  -3.79 

(13) Bus Share of Traffic (%)   0.00  3.80  -4.62 

(14) Carpool Share of Traffic (%)  1.92  3.49  -4.44 

(15) Average Occupancy (%)   0.00  9.09  -5.56 

(16) Total Traffic (%)    1.07  2.23  -3.70 

──────────────────────────────────────────────────────────- 

(Table 8.11 Continued) 
────────────────────────────────────────────────────────── 

  Number of Commutersb    

    12000     24000     48000  

Multiple Interaction (γ = 2.5)b         (1)        (2)        (3) 
────────────────────── 
Welfare 

      

(17) Consumer Welfare (%)c   -4.91  15.89  41.93 

(18) Toll Revenue (%)    -4.38  11.68  18.40 

(19) Total Benefits (%)    1.75g  -1.38  2.27g 

 

Toll 

 

(20) Peak Toll (%)d    -6.61  35.44  11.39 

(21) Average Toll (%)    -4.52  12.94  23.83 
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Peaking 

     

(22) Peak Traffic (%)
d
    -6.24  34.88  4.60 

(23) Peak Share of Traffic (%)   -6.70  49.04  -6.23 

 

Congestion 

 

(24) Peak Travel Delay (%)d   -4.29  24.49  3.12 

(25) Average Travel Delay (%)   -4.17  19.84  8.68 

 

Schedule Delay 

 

(26) Variable Schedule Delay 

      for Auto Userse (%)    -4.62  36.19  25.66 

(27) Ratio of Variable Schedule to 

      Travel Delay for Auto Users (%)  -7.40  42.98  42.70 

 

Mode Mix (measured with pcu's) 

 

(28) Drive-Alone Share of Traffic (%)  -4.84  12.05  25.86 

(29) Bus Share of Traffic (%)   -3.51  13.21  28.23 

(30) Carpool Share of Traffic (%)  -4.48  10.98  23.15 

(31) Average Occupancy (%)   -12.50  13.04  25.53 

(32) Total Traffic (%)    -4.48  11.26  22.18 
────────────────────────────────────────────────────────── 
 

 

 

Notes to Table 8.11: 
────────────────────────────────────────────────────────── 
a An base-externality toll measures the marginal increase in total travel costs due to an 

additional passenger car trip at a given interval at the base case.  Travel costs include costs of 

on-vehicle travel time, costs of bus walk and waiting time, costs of schedule delay, and auto 

operating and maintenance costs and bus agency costs.   

 
b γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give a range of 

baseline congestion. 
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c
 Consumer's surplus is change in consumer welfare in equation (5.16). 

 
d
 Peak refers to the 15-minute period centered around 8:00 A.M. 

 
e
 The average schedule delay tabulated is the variable component of average schedule delay; 

the constant component is above the variable component.  The constant component is the 

average schedule delay of auto users in equilibrium when travel is free-flow.  

 
f A positive number implies a larger effect in absolute value from the policy of concern than 

the optimal toll; a negative smaller than 100 in absolute 

value implies a smaller effect in absolute value in the same direction as the optimal toll; a 

negative larger than 100 in absolute value implies an effect in the opposite direction as the 

optimal toll; and a zero implies the same effect as the optimal toll. 

 
g These are likely due to numerical inaccuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 8.12 Equilibrium Effects of A Piecewise-Linear Tolla  

 for Selected Amounts and Elasticities of Congestion 

 

 (in percentage difference from those of an optimal toll)f
 

────────────────────────────────────────────────────────── 
  Number of Commutersb      

    12000     24000     48000   

Single Interaction (γ = 1.0)b         (1)        (2)        (3) 
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──────────────────── 
Welfare 

(01) Consumer Surplus (%)
c
   -34.65  14.22  16.53 

(02) Toll Revenue (%)    -34.27  12.73  13.95 

(03) Total Benefits (%)    -16.67  -14.44  -9.42 

 

Toll 

 

(04) Peak Toll (%)
d
    -55.50  -11.90  -4.14 

(05) Average Toll (%)    -34.93  13.76  15.80 

 

Peaking 

     

(06) Peak Traffic (%)d    -67.17  -31.34  -22.65 

(07) Peak Share of Traffic (%)   -79.37  -54.20  -47.44 

 

Congestion 

 

(08) Peak Travel Delay (%)d   -68.42  -31.11  -22.81 

(09) Average Travel Delay (%)   -66.67  -22.22  -14.58 

 

Schedule Delay 

 

(10) Variable Schedule Delay 

      for Auto Userse (%)    -76.74  -54.84  -52.69 

(11) Ratio of Variable Schedule to 

      Travel Delay for Auto Users (%)  -78.17  -53.46  -47.50 

 

Mode Mix (measured with pcu's) 

 

(12) Drive-Alone Share of Traffic (%)  -33.67  16.36  19.32 

(13) Bus Share of Traffic (%)   -32.61  20.25  21.54 

(14) Carpool Share of Traffic (%)  -34.62  12.79  16.30 

(15) Average Occupancy (%)   -28.57  18.18  22.22 

(16) Total Traffic (%)    -31.76  17.62  19.45 

──────────────────────────────────────────────────────────- 

(Table 8.12 Continued) 
────────────────────────────────────────────────────────── 

  Number of Commutersb    

    12000     24000     48000  
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Multiple Interaction (γ = 2.5)
b
         (1)        (2)        (3) 

────────────────────── 
Welfare 

      

(17) Consumer Welfare (%)
c   54.18  54.19  77.25 

(18) Toll Revenue (%)    46.72  35.43  27.05 

(19) Total Benefits (%)    -38.60  -21.81  -7.41 

 

Toll 

 

(20) Peak Toll (%)d    -26.48  -9.30  -11.24 

(21) Average Toll (%)    50.08  41.90  -38.00 

 

Peaking 

     

(22) Peak Traffic (%)d    -50.30  -28.99  -24.19 

(23) Peak Share of Traffic (%)   -73.68  -66.59  -77.06 

 

Congestion 

 

(24) Peak Travel Delay (%)d   -45.71  -24.49  -18.38 

(25) Average Travel Delay (%)   -37.50  -16.67  -5.72 

 

Schedule Delay 

 

(26) Variable Schedule Delay 

      for Auto Userse (%)    -61.54  -49.52  -38.82 

(27) Ratio of Variable Schedule to 

      Travel Delay for Auto Users (%)  -64.20  -42.49  -0.57 

 

Mode Mix (measured with pcu's) 

 

(28) Drive-Alone Share of Traffic (%)  55.65  47.89  47.98 

(29) Bus Share of Traffic (%)   64.91  54.09  53.15 

(30) Carpool Share of Traffic (%)  47.76  42.77  42.43 

(31) Average Occupancy (%)   62.50  47.83  51.06 

(32) Total Traffic (%)    58.13  45.21  40.16 
────────────────────────────────────────────────────────── 
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Notes to Table 8.12: 
────────────────────────────────────────────────────────── 
a
 A piecewise-linear toll starts with zero at 7:00, increases linearly until 8:00, decreases 

linearly to zero at 9:00; its start and end points are chosen exogenously;  its slope (the same 

on each side) is chosen through screening at a 5-cent increment to maximize total welfare.   

  
b
 γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give a range of 

baseline congestion. 

 
c
 Consumer's surplus is change in consumer welfare in equation (5.16). 

 
d Peak refers to the 15-minute period centered around 8:00 A.M. 

 
e The average schedule delay tabulated is the variable component of average schedule delay; 

the constant component is above the variable component.  The constant component is the 

average schedule delay of auto users in equilibrium when travel is free-flow.  

 
f A positive number implies a larger effect in absolute value from the policy of concern than 

the optimal toll; a negative smaller than 100 in absolute 

value implies a smaller effect in absolute value in the same direction as the optimal toll; a 

negative larger than 100 in absolute value implies an effect in the opposite direction as the 

optimal toll; and a zero implies the same effect as the optimal toll. 
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 Table 8.13 Equilibrium Effects of A One-step Toll
a
  

 for Selected Amounts and Elasticities of Congestion 

 

 (in percentage difference from those of an optimal toll)f 
────────────────────────────────────────────────────────── 

  Number of Commuters
b
      

    12000     24000     48000   

Single Interaction (γ = 1.0)b         (1)        (2)        (3) 
──────────────────── 
Welfare 

(01) Consumer Surplus (%)c   -41.66  -14.74  -6.65 

(02) Toll Revenue (%)    -41.57  -15.93  -9.08 

(03) Total Benefits (%)    -37.50  -37.78  -31.16 

 

Toll 

 

(04) Peak Toll (%)d    -64.40  -41.27  -30.98 

(05) Average Toll (%)    -42.25  -16.43  -9.45 

 

Peaking 

     

(06) Peak Traffic (%)d    -79.25  -62.01  -51.56 

(07) Peak Share of Traffic (%)   -92.83  -85.88  -80.13 

 

Congestion 

 

(08) Peak Travel Delay (%)d   -78.95  -62.22  -51.75 

(09) Average Travel Delay (%)   -66.67  -44.44  -33.33 

 

Schedule Delay 

 

(10) Variable Schedule Delay 

      for Auto Userse (%)    -79.07  -61.29  -51.61 

(11) Ratio of Variable Schedule to 

      Travel Delays for Auto Users (%)  -79.26  -61.53  -49.68 

 

Mode Mix (measured with pcu's) 
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(12) Drive-Alone Share of Traffic (%)  -41.84  -14.55  -6.82 

(13) Bus Share of Traffic (%)   -41.30  -12.66  -5.38 

(14) Carpool Share of Traffic (%)  -42.31  -16.28  -8.89 

(15) Average Occupancy (%)   -42.86  -9.09  -5.56 

(16) Total Traffic (%)    -39.22  -12.52  -4.91 

──────────────────────────────────────────────────────────- 

(Table 8.13 Continued) 
────────────────────────────────────────────────────────── 

  Number of Commuters
b
    

    12000     24000     48000  

Multiple Interaction (γ = 2.5)
b
         (1)        (2)        (3) 

────────────────────── 
Welfare 

      

(17) Consumer Welfare (%)c   -6.52  20.23  24.27 

(18) Toll Revenue (%)    -10.94  4.89  -3.56 

(19) Total Benefits (%)    -62.28  -41.91  -22.65 

 

Toll 

 

(20) Peak Toll (%)d    -60.79  -36.51  -36.88 

(21) Average Toll (%)    -11.05  6.15  -2.78 

 

Peaking 

     

(22) Peak Traffic (%)d    -78.45  -56.21  -46.70 

(23) Peak Share of Traffic (%)   -94.74  -91.83  -89.78 

 

Congestion 

 

(24) Peak Travel Delay (%)d   -75.71  -50.44  -38.62 

(25) Average Travel Delay (%)   -66.67  -37.30  -20.91 

 

Schedule Delay 

 

(26) Variable Schedule Delay 

      for Auto Userse (%)    -73.85  -39.05  -13.82 

(27) Ratio of Variable Schedule to 

      Travel Delay for Auto Users (%)  -79.36  -45.28  -12.08 
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Mode Mix (measured with pcu's) 

 

(28) Drive-Alone Share of Traffic (%)  -8.06  10.54  2.84 

(29) Bus Share of Traffic (%)   -3.51  13.84  5.41 

(30) Carpool Share of Traffic (%)  -11.94  7.51  0.00 

(31) Average Occupancy (%)   -12.50  13.04  4.26 

(32) Total Traffic (%)    -4.77  11.78  4.04 
────────────────────────────────────────────────────────── 
 

 

 

Notes to Table 8.13: 
────────────────────────────────────────────────────────── 
a A one-step toll starts at 7:30 A.M., stays constant, ends at 8:30 A.M.; its start and end points 

are chosen exogenously; its level is chosen through screening at a 10-cent increment to 

maximize total welfare.  

  
b γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give a range of 

baseline congestion. 

 
c Consumer's surplus is change in consumer welfare in equation (5.16). 

 
d Peak refers to the 15-minute period centered around 8:00 A.M. 

 
e The average schedule delay tabulated is the variable component of average schedule delay; 

the constant component is above the variable component.  The constant component is the 

average schedule delay of auto users in equilibrium when travel is free-flow.  

 
f A positive number implies a larger effect in absolute value from the policy of concern than 

the optimal toll; a negative smaller than 100 in absolute 

value implies a smaller effect in absolute value in the same direction as the optimal toll; a 

negative larger than 100 in absolute value implies an effect in the opposite direction as the 

optimal toll; and a zero implies the same effect as the optimal toll. 
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most congested scenario reduces drive-alone share by 48 percent more than the optimal toll, 

increases bus and carpool shares by 53 and 42 percent, respectively, more than the optimal 

toll.  As a result, it increases average occupancy by 51 percent more and reduces total traffic 

by 40 percent more than the optimal toll. 

A one-step toll, presented in Table 8.13, leads to a smaller effect than the optimal toll 

on peaking, congestion, and schedule delay.  That is, a one-step toll reduces peaking and 

congestion by less than the optimal toll, but increases variable schedule delay by more than 

the optimal toll.  With the two higher number of commuters, however, a one-step toll has a 

larger effect in absolute value on mode mix than an optimal toll.  That is, when congestion is 

light, a one-step toll decreases drive-alone share and total traffic and increases bus and carpool 

shares and average occupancy by less than the optimal toll.  But when congestion is heavier, 

the opposite occurs.  This may be no surprise because its effects relative to an optimal toll 

tend increase with the amount of congestion. 
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The effects of a uniform toll, presented in Table 8.14, on peak share of traffic for all 

scenarios and on variable schedule delay for the most congested scenarios are in the opposite 

direction of an optimal toll.  That is, a uniform toll tends to increase peak share of traffic but 

decrease variable schedule delay, while an optimal toll reduces peak share but increases 

variable schedule delay.  On the other hand, it tends to result in smaller effects in absolute 

values on other variables and scenarios except for its effect on mode mix under the most 

congested scenarios.  A uniform toll tends to induce more shifts from drive-alone to bus and 

carpool when congestion is heavy. 

 Table 8.14 Equilibrium Effects of A Uniform Toll
a
  

 for Selected Amounts and Elasticities of Congestion 

 

 (in percentage difference from those of an optimal toll)f 
────────────────────────────────────────────────────────── 

  Number of Commutersb      

    12000     24000     48000   

Single Interaction (γ = 1.0)b         (1)        (2)        (3) 
──────────────────── 
Welfare 

(01) Consumer Surplus (%)
c   -18.16  -1.74  23.82 

(02) Toll Revenue (%)    -18.67  -3.86  17.74 

(03) Total Benefits (%)    -41.67  -44.44  -36.96 

 

Toll 

 

(04) Peak Toll (%)d    -64.40  -53.01  -38.65 

(05) Average Toll (%)    -19.06  -3.80  20.25 

 

Peaking 

     

(06) Peak Traffic (%)d    -81.40  -72.80  -61.84 

(07) Peak Share of Traffic (%)   -104.04  -108.02  -115.38 
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Congestion 

 

(08) Peak Travel Delay (%)
d
   -78.95  -73.33  -61.40 

(09) Average Travel Delay (%)   -83.33  -61.11  -45.83 

 

Schedule Delay 

 

(10) Variable Schedule Delay 

      for Auto Userse (%)    -95.35  -95.16  -95.70 

(11) Ratio of Variable Schedule to 

      Travel Delay for Auto Users (%)  -96.07  -94.38  -91.70 

 

Mode Mix (measured with pcu's) 

 

(12) Drive-Alone Share of Traffic (%)  -17.35  -1.21  25.00 

(13) Bus Share of Traffic (%)   -15.2  2.53  28.46 

(14) Carpool Share of Traffic (%)  -19.23  -4.65  20.74 

(15) Average Occupancy (%)   -14.29  0.00  27.78 

(16) Total Traffic (%)    -14.23  1.12  25.37 

──────────────────────────────────────────────────────────- 

(Table 8.14 Continued) 
────────────────────────────────────────────────────────── 

  Number of Commutersb    

    12000     24000     48000  

Multiple Interaction (γ = 2.5)b         (1)        (2)        (3) 
────────────────────── 
Welfare 

      

(17) Consumer Welfare (%)
c   33.15  51.28  149.15 

(18) Toll Revenue (%)    24.56  24.57  39.95 

(19) Total Benefits (%)    -73.68  -56.83  -35.05 

 

Toll 

 

(20) Peak Toll (%)d    -60.79  -50.12  -42.80 

(21) Average Toll (%)    26.30  29.26  60.47 

 

Peaking 

     

(22) Peak Traffic (%)d    -80.78  -69.96  -58.57 
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(23) Peak Share of Traffic (%)   -106.46  -126.68  -173.07 

 

Congestion 

 

(24) Peak Travel Delay (%)
d
   -78.57  -65.01  -50.59 

(25) Average Travel Delay (%)   -70.83  -57.14  -33.53 

 

Schedule Delay 

 

(26) Variable Schedule Delay 

      for Auto Userse (%)    -96.92  -102.86  -115.79 

(27) Ratio of Variable Schedule to 

      Travel Delays for Auto Users (%)  -96.29  -92.73  -80.08 

 

Mode Mix (measured with pcu's) 

 

(28) Drive-Alone Share of Traffic (%)  31.45  32.45  79.97 

(29) Bus Share of Traffic (%)   40.35  42.77  91.29 

(30) Carpool Share of Traffic (%)  23.88  30.64  68.25 

(31) Average Occupancy (%)   37.50  39.13  85.11 

(32) Total Traffic (%)    35.53  35.85  64.82 
────────────────────────────────────────────────────────── 
 

 

 

Notes to Table 8.14: 
────────────────────────────────────────────────────────── 
a A uniform toll applies between 5:30 to 10:00 A.M.; its level is chosen through screening at a 

10-cent increment to maximize total welfare. 

 
b γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give a range of 

baseline congestion. 

 
c Consumer's surplus is change in consumer welfare in equation (5.16). 

 
d Peak refers to the 15-minute period centered around 8:00 A.M. 

 
e The average schedule delay tabulated is the variable component of average schedule delay; 

the constant component is above the variable component.  The constant component is the 
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average schedule delay of auto users in equilibrium when travel is free-flow.  

 
f
 A positive number implies a larger effect in absolute value from the policy of concern than 

the optimal toll; a negative smaller than 100 in absolute 

value implies a smaller effect in absolute value in the same direction as the optimal toll; a 

negative larger than 100 in absolute value implies an effect in the opposite direction as the 

optimal toll; and a zero implies the same effect as the optimal toll. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally the effects of an optimal toll with HOV exemption are discussed as presented 

in Table 8.15.  Two patterns emerge from Table 8.14.  First, an optimal toll with HOV 

exemption reduces consumer's surplus much less than an optimal toll alone.  In fact, average 

consumer's surplus is increased under the most congested scenario considered.  But the 

average toll revenue is less than half of that from the optimal toll under the same scenario.  As 

a result, its total benefits are still 6.5 percent lower than those of the optimal toll.  Second, it 
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tends to change mode mix more than an optimal toll alone. 

Tables 8.16, 8.17, and 8.18 present changes in traffic counts from the base case by 

mode and time of day for the optimal toll with HOV exemption, the one-step toll, and the 

uniform toll, respectively, under the most congested scenario.  The uniform toll reduces total 

traffic more than the one-step toll by switching more drive-alone vehicles to bus and carpool.  

The uniform toll reduces traffic in every 15-minute period.  A one-step toll reduces traffic 

only when the toll applies.  Traffic increases before and after the toll.  The optimal toll with 

HOV exemption reduces traffic by 3370 pcu's, 2 percent more than under the optimal toll 

alone.  With a similar calculation as with Table 8.4, mode shifts account for 99.86 percent of 

this traffic reduction.  The figure for the optimal toll alone is 91.59 percent. 

 

 

 

 

 Table 8.15 Equilibrium Effects of An Optimal Toll with HOV Exemptiona  

 for Selected Amounts and Elasticities of Congestion 

 

 (in percentage difference from those of an optimal toll)f 
────────────────────────────────────────────────────────── 

  Number of Commutersb      

    12000     24000     48000   

Single Interaction (γ = 1.0)b         (1)        (2)        (3) 
──────────────────── 
Welfare 

(01) Consumer Surplus (%)
c   -24.61  -38.65  -27.06 

(02) Toll Revenue (%)    -24.35  -37.27  -24.98 
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(03) Total Benefits (%)    -12.50  -10.00  -5.80 

 

Toll 

 

(04) Peak Toll (%)
d
    0.59  -23.70  6.56 

(05) Average Toll (%)    -3.52  -19.82  0.93 

 

Peaking 

     

(06) Peak Traffic (%)d    -0.11  -21.35  3.05 

(07) Peak Share of Traffic (%)   -4.93  -29.01  -5.45 

 

Congestion 

 

(08) Peak Travel Delay (%)d   0.00  -20.00  2.63 

(09) Average Travel Delay (%)   0.00  -16.67  6.25 

 

Schedule Delay 

 

(10) Variable Schedule Delay 

      for Auto Userse (%)    -11.63  -27.42  -15.05 

(11) Ratio of Variable Schedule to 

      Travel Delay for Auto Users (%)  -11.65  -28.54  -11.75 

 

Mode Mix (measured with pcu's) 

 

(12) Drive-Alone Share of Traffic (%)  44.90  20.00  57.58 

(13) Bus Share of Traffic (%)   6.52  -12.66  10.77 

(14) Carpool Share of Traffic (%)  78.85  51.16  101.48 

(15) Average Occupancy (%)   14.29  0.00  22.22 

(16) Total Traffic (%)    14.58  -5.52  19.56 

──────────────────────────────────────────────────────────- 

(Table 8.15 Continued) 
────────────────────────────────────────────────────────── 

  Number of Commutersb    

    12000     24000     48000  

Multiple Interaction (γ = 2.5)b         (1)        (2)        (3) 
────────────────────── 
Welfare 
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(17) Consumer Welfare (%)
c
   -29.16  -39.02  -102.96 

(18) Toll Revenue (%)    -27.66  -31.16  -45.82 

(19) Total Benefits (%)    -10.53  -7.35  -6.52 

 

Toll 

 

(20) Peak Toll (%)
d    1.71  3.13  5.40 

(21) Average Toll (%)    -7.04  -6.31  -19.59 

 

Peaking 

     

(22) Peak Traffic (%)d
    -1.17  -2.11  -8.39 

(23) Peak Share of Traffic (%)   -4.31  -10.10  -20.70 

 

Congestion 

 

(24) Peak Travel Delay (%)
d
   0.00  -1.75  -5.99 

(25) Average Travel Delay (%)   0.00  0.79  -3.16 

 

Schedule Delay 

 

(26) Variable Schedule Delay 

      for Auto Userse (%)    -15.38  -21.90  -45.39 

(27) Ratio of Variable Schedule to 

      Travel Delays for Auto Users (%)  -14.36  -16.17  -28.46 

 

Mode Mix (measured with pcu's) 

 

(28) Drive-Alone Share of Traffic (%)  48.39  56.63  55.01 

(29) Bus Share of Traffic (%)   8.77  6.92  -3.60 

(30) Carpool Share of Traffic (%)  82.09  102.31  112.46 

(31) Average Occupancy (%)   12.50  17.39  8.51 

(32) Total Traffic (%)    16.30  15.83  7.66 
────────────────────────────────────────────────────────── 
 

 

 

Notes to Table 8.15: 
────────────────────────────────────────────────────────── 
a An optimal Toll with HOV exemption is the marginal increase in total travel costs due to an 
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additional passenger car trip at a given time interval with carpooler and bus users exempted. 

 
b
 γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give a range of 

baseline congestion. 

 
c Consumer's surplus is change in consumer welfare in equation (5.16). 

 
d Peak refers to the 15-minute period centered around 8:00 A.M. 

 
e The average schedule delay tabulated is the variable component of average schedule delay; 

the constant component is above the variable component.  The constant component is the 

average schedule delay of auto users in equilibrium when travel is free-flow.  

 
f A positive number implies a larger effect in absolute value from the policy of concern than 

the optimal toll; a negative smaller than 100 in absolute 

value implies a smaller effect in absolute value in the same direction as the optimal toll; a 

negative larger than 100 in absolute value implies an effect in the opposite direction as the 

optimal toll; and a zero implies the same effect as the optimal toll. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 8.16 One-step Toll and Change in Traffic Countsa,b  
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 by Mode and Schedule: Schedule Shifts Allowed 

   

 (γ = 2.5 , Number of Commuters =  48000)
c
 

───────────────────────────────────────────────────── 
Time  Drive-Alone        Bus

d  Carpool    Traffic 

(1)   (2)  (3)  (4)  (5) 

 

6:45   35.53  0.00  5.39  40.92 

7:00   88.21  0.26  10.81  99.28 

7:15   395.29  0.02  32.52  427.83 

7:30   -1055.63  12.25  -21.06  -1064.44 

7:45   -1035.79  9.10  58.33  -968.35 

8:00   -886.80  147.16  58.94  -680.70 

8:15   -914.51  24.99  1.26  -888.27 

8:30   -842.12  67.38  -9.71  -784.45 

8:45   208.43  0.59  15.69  224.71 

9:00   48.65  4.74  4.65  58.04 

9:15   6.82  0.03  0.82  7.66 

 

Total   -3949.31  266.54  158.15  -3524.61 
───────────────────────────────────────────────────── 
  

Notes to Table 8.16:          

 
a A one-step toll starts at 7:30, stays constant, ends at 8:30; its start and end points are chosen 

exogenously; its level is chosen through screening at a 10-cent increment to maximize total 

welfare.  

 
b Traffic is in passenger car units.  The occupancies of carpool and bus are assumed at 2.5 and 

40/3 per pcu, respectively. 

 
c γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give certain level 

of baseline congestion.  The most congested scenario is presented. 

 
d Bus users are assumed to arrive on time. 
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 Table 8.17 Uniform Toll and Change in Traffic Counts
a,b

  

 by Mode and Schedule: Schedule Shifts Allowed 

   

 (γ = 2.5 , Number of Commuters =  48000)c 
───────────────────────────────────────────────────── 
Time  Drive-Alone  Bus

d
 Carpool  Traffic 

(1)   (2)  (3)  (4)  (5) 

 

6:00   -13.85  0.00  0.41  -13.44 

6:15   -62.61  0.00  0.89  -61.72 

6:30   -118.59  8.31  0.64  -109.64 

6:45   -229.70  0.64  -1.37  -230.43 

7:00   -379.16  36.34  -0.37  -343.20 

7:15   -629.21  2.61  -19.22  -645.82 

7:30   -772.89  42.99  18.20  -712.40 

7:45   -843.05  13.41  77.93  -751.70 

8:00   -756.36  164.37  62.87  -529.12 

8:15   -761.30  23.79  23.87  -713.64 

8:30   -663.14  74.21  18.23  -570.70 

9:45   -427.07  2.37  -1.99  -426.69 

9:00   -400.92  53.57  6.21  -341.14 

9:15   -91.17  1.51  2.78  -86.88 

9:30   -47.16  6.12  1.18  -39.84 

 

Total   -6203.61  429.54  190.54  -5583.52 
───────────────────────────────────────────────────── 
Notes to Table 8.17: 

 
a A uniform toll applies between 5:30 to 10:00 A.M.; its level is chosen through screening at a 

10-cent increment to maximize total welfare. 

 
b Traffic is in passenger car units.  The occupancies of carpool and bus are assumed at 2.5 and 

40/3 per pcu, respectively. 

 
c γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give certain level 

of baseline congestion.  The most congested scenario is presented. 
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d
 Bus users are assumed to arrive on time. 

 

 

 

 

 

 Table 8.18 Optimal Toll with HOV Exemption and Change in Traffic Counts
a,b

  

 by Mode and Schedule: Schedule Shifts Allowed 

   

 (γ = 2.5 , Number of Commuters =  48000)c 
───────────────────────────────────────────────────── 
Time  Drive-Alone  Busd  Carpool Traffic 

(1)   (2)  (3)  (4)  (5) 

 

6:30   5.93  0.04  0.77  6.74 

6:45   23.30  0.01  2.73  26.03 

7:00   -54.64  2.49  4.89  -47.25 

7:15   -51.12  0.38  -12.63  -63.37 

7:30   -493.61  11.43  42.48  -439.71 

7:45   -986.96  6.04  189.95  -790.96 

8:00   -1668.50  116.45  382.00  -1170.05 

8:15   -464.45  10.45  57.02  -396.99 

8:30   -692.48  36.74  83.13  -572.61 

8:45   -28.98  0.53  10.11  -18.34 

9:00   -260.05  15.92  17.71  -226.42 

9:15   36.53  0.12  1.82  38.47 

 

Total   -4628.50  200.78  780.58  -3647.14 
───────────────────────────────────────────────────── 
Notes to Table 8.18: 

 
a An optimal Toll with HOV exemption is the marginal increase in total travel costs due to an 

additional passenger car trip at a given time interval with carpooler and bus users exempted. 

 
b Traffic is in passenger car units.  The occupancies of carpool and bus are assumed at 2.5 and 

40/3 per pcu, respectively. 

 
c γ is a supply parameter measuring elasticity of travel delay with respect to arrival flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give certain level 
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of baseline congestion.  The most congested scenario is presented. 

 
d
 Bus users are assumed to arrive on time. 

 

 

 

 

 

 

 

 8.4. Miscalculation of Policy Effects 

 

This section presents miscalculation of policy effects that would occur if schedule 

shifts are ignored.  The policies of an optimal toll and a ten-percent capacity expansion are 

examined.  The same scenarios are used as in preceding sections.  This miscalculation for 

each policy is presented as percentage difference in its effects between constraining and not 

constraining schedule shifts. 

Table 8.19 presents miscalculations of the effects of an optimal toll on average 

welfare, toll, peaking, congestion, schedule delay, and mode mix.  Welfare measures and tolls 

are in cents for the morning commute, 1972 prices.  Total benefits include toll revenue and 

change in consumer surplus.  A positive 50 implies that ignoring schedule shifts overestimates 

the effect of an optimal toll in absolute value on the corresponding variable by 50 percent.  

Schedule shifts are constrained by equating the conditional probability of schedule choices to 

its base value at each iteration.  Optimal tolls are recalculated.   

(m1) Are the effects of an optimal toll biased when schedule shifts are constrained?  
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Constraining schedule shifts overestimates total benefits by a range from 92 to 371 percent 

under single interaction, and from 42 percent to 108 percent under multiple interaction.  This 

significant overestimation on the benefits of an optimal toll contradicts ADL's (1990) 

suggestion that conventional models of peak-period congestion substantially underestimate 

total benefits of an optimal toll.  This overestimation decreases with the amount of congestion 

and elasticity of congestion. 

Table 8.19 Percentage Miscalculation from Ignoring Schedule Shifts:
a
  

Optimal Toll
b 

────────────────────────────────────────────────────────── 
  Number of Commutersc      

    12000     24000     48000   

       (1)        (2)        (3) 

Single Interaction (γ = 1.0)c 
──────────────────── 
Welfare 

  

(01) Consumer Surplus    -19.82  -7.25  10.29 

(02) Toll Revenue     -11.36  1.43  18.46 

(03) Average Total Benefits
d   370.83  168.89  92.03 

 

Toll 

       

(04) Peak Tolle     -22.94  -1.72  21.53 

(05) Average Toll     -11.78  1.25  19.51 

 

Peaking 

     

(06) Peak Traffice     -73.88  -63.32  -52.04 

(07) Peak Share of Traffic    -94.17  -91.60  -90.38 

 

Congestion 

 

(08) Peak Travel Delaye    -5.26  -13.33  -21.05 

(09) Average Travel Delay    50.00  16.67  4.17 
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Schedule Delay 

 

(10) Variable Schedule Delay 

     for Auto Users
f
     -93.02  -93.55  -92.47 

(11) Ratio of Variable Schedule to  

     Travel Delay for Auto Users   -90.67  -87.49  -83.53 

 

Mode Mix (measured with pcu's) 

 

(12) Drive-Alone Share of Traffic  -14.29  -2.42  13.26 

(13) Bus Share of Traffic    -15.22  -3.80  10.77 

(14) Carpool Share of Traffic   -13.46  -1.16  14.81 

(15) Average Occupancy    -14.29  0.00  11.11 

(16) Total Traffic     -14.45  -3.77  10.80 
────────────────────────────────────────────────────────── 
(Table 8.19 Continued)  
────────────────────────────────────────────────────────── 

  Number of Commutersc    

    12000     24000     48000  

       (1)        (2)        (3) 

Multiple Interaction (γ = 2.5)c 
────────────────────── 
 

Welfare 

 

(17) Consumer Surplus    -15.50  13.28  81.96 

(18) Toll Revenue     -5.50  24.77  58.38 

(19) Average Total Benefitsd
   107.89  59.59  42.20 

 

Toll 

       

(20) Peak Tolle     -10.95  44.31  87.63 

(21) Average Toll     -6.09  24.09  66.94 

 

Peaking 

     

(22) Peak Traffice     -78.40  -57.22  -50.84 

(23) Share of Peak Traffic    -91.15  -84.62  -100.50 
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Congestion 

 

(24) Peak Travel Delay
e
    -35.57  -25.66  -23.95 

(25) Average Travel Delay    -25.92  -16.67  -9.07 

 

Schedule Delay 

 

(26) Variable Schedule Delay 

     for Auto Usersf     -95.79  -94.29  -86.84 

(27) Ratio of Variable Schedule to 

     Travel Delay for Auto Users   -89.80  -74.55  -43.67 

 

Mode Mix (measured with pcu's) 

 

(28) Drive-Alone Share of Traffic  -16.13  -3.31  13.90 

(29) Bus Share of Traffic    -17.54  -6.29  7.51 

(30) Carpool Share of Traffic   -14.93  -1.16  19.88 

(31) Average Occupancy    -25.00  -8.70  8.51 

(32) Total Traffic     -17.29  -5.15  7.43 
────────────────────────────────────────────────────────── 
 

Notes to Table 8.19: 

 
a Schedule shifts are constrained by equating the conditional probability of schedule choice 

(equation (5.12)) to its base value at each iteration. 

 
b The optimal toll for a given case is the marginal increase in travel costs (including on-vehicle 

travel time, bus walk and waiting time, schedule delay, auto operating costs and bus fares) at 

the optimum where total welfare, sum of consumer welfare and toll revenue, is maximized.   

 
c γ is a supply parameter measuring elasticity of travel delay with respect to traffic flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give a range of 

baseline congestion.    

 
d Total benefits sum consumer surplus and toll revenue. 

 
e Peak refers to the 15-minute period centered around 8:00 A.M. 

 
f The average schedule delay tabulated is the variable component of average schedule delay; 

the constant component is above the variable component.  The constant component is the 
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average schedule delay of auto users in equilibrium when travel is free-flow.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constraining schedule shifts on an optimal toll tends to underestimate tolls when 

congestion is light, but overestimate tolls when congestion is heavy.  Peak toll is 

underestimated by 23 percent under the least congested scenario; it is overestimated by 88 

percent under the most congested scenario.  Overestimation of an optimal toll is what one 

would expect from constraining schedule shifts because it is more costly to put an extra 

vehicle to travel at a given time when existing travelers are only allowed to change mode than 

when they are allowed to change schedule as well. 

Constraining schedule shifts on an optimal toll substantially underestimates peaking 

spreading.  Reduction in peak traffic is underestimated by a range from 51 to 78 percent.  
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Reduction in peak share is underestimated by a range from 85 to 100 percent.  As a result of 

underestimating traffic reduction in the peak interval, savings in peak travel delay due to an 

optimal toll are underestimated by a range from 5 to 35 percent.  Savings in average travel 

delay are overestimated under single interaction, but are underestimated under multiple 

interaction. 

Constraining schedule shifts substantially underestimates effects of an optimal toll on 

schedule delay.  This is what one would expect because an optimal toll induces peak 

spreading, which is prevented when schedule shifts are constrained.   

Constraining schedule shifts underestimates total traffic and overestimates average 

occupancy by overestimating the shares of bus and carpool vehicles and underestimating the 

share of drive-alone.  Because commuters can only shift modes, overestimating average 

occupancy is an expected result from constraining schedule shifts.  For the least congested 

scenario, however, constraining schedule shifts results in overestimating total traffic; but the 

overestimation is small. 

(m2) Are the effects of a ten-percent expansion biased when schedule shifts are 

constrained?  The answer is obtained from Table 8.20, which presents similar information for 

the ten-percent expansion as Table 8.19 does for an optimal toll.  The same expansion applies 

to all scenarios tabulated.  Constraining schedule shifts overestimates total benefits under all 

scenarios; the overestimation ranges from 1 percent under the least congested scenario to 22 

percent under the most congested scenario. 
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Constraining schedule shifts on an incremental expansion underestimates its effects on 

both peaking and variable schedule delay, but overestimates its effects on congestion and the 

ratio of schedule to travel delay.  Since capacity expansion increases peaking, miscalculation 

predicts somewhat less peaking than really occurs.  Since capacity expansion decreases travel 

delay, miscalculation predicts somewhat more travel delay than really occurs.  The effect of 

constraining schedule shifts on mode mix is negligible, which could be because the ten-

percent expansion has negligible effects on mode mix even when schedule shifts are not 

constrained (Table 8.4). 

(m3) What are the qualitative differences and similarities in these miscalculations 

between an optimal toll and an incremental expansion?  First, constraining schedule shifts 

overestimates total benefits for both policies.  Second, constraining schedule shifts 

underestimates schedule delay for an optimal toll, but overestimates schedule delay for 

capacity expansion.  Third, constraining schedule  

 

Table 8.20 Percentage Miscalculation from Ignoring Schedule Shifts:a  

Ten-Percent Expansion in Capacityb
 

────────────────────────────────────────────────────────── 
  Number of Commutersc      

    12000     24000     48000   

       (1)        (2)        (3) 

Single Interaction (γ = 1.0)c 
──────────────────── 
 

Welfare 

    

(01) Average Total Benefits
d   1.04  2.20  2.97 
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Peaking 

     

(02) Peak Traffic
e
     -75.19  -73.31  -70.68 

(03) Peak Share of Traffic    -100.00  -92.31  -100.00 

 

Congestion 

 

(04) Peak Travel Delaye    7.14  3.85  8.51 

(05) Average Travel Delay    0.00  0.00  3.57 

 

Schedule Delay 

 

(06) Variable Schedule Delay        

     for Auto Usersf     -100.00  -100.00  -100.00 

(07) Ratio of Variable Schedule to      

     Travel Delay for Auto Users   2571.43  1900.00  1316.67 

        

Mode Mix (measured with pcu's) 

 

(08) Drive-Alone Share of Traffic  0.00  0.00  0.00 

(09) Bus Share of Traffic    0.00  0.00  0.00 

(10) Carpool Share of Traffic   0.00  0.00  0.00 

(11) Average Occupancy    0.00  0.00  0.00 

(12) Total Traffic     0.45  0.41  0.30 
────────────────────────────────────────────────────────── 
 

 

 

 

 

 

(Table 8.20 Continued)  
────────────────────────────────────────────────────────── 

  Number of Commutersc    

    12000     24000     48000  

       (1)        (2)        (3) 

Multiple Interaction (γ = 2.5)c 
────────────────────── 
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Welfare                    

    

(13) Average Total Benefits
d
   6.85  16.41  22.06 

 

Peaking 

     

(14) Peak Traffic
e     -86.73  -81.21  -69.13 

(15) Peak Share of Traffic    -96.00  -96.36  -96.49 

 

Congestion 

 

(16) Peak Travel Delaye
    12.90  31.96  56.25 

(17) Average Travel Delay    7.69  22.22  32.52 

 

Schedule Delay 

 

(18) Variable Schedule Delay  

      for Auto Users f    -100.00  -100.00  -105.00 

(19) Ratio of Variable Schedule to  

      Travel Delay for Auto Users   2607.89  897.67  486.00 

 

Mode Mix (measured with pcu's) 

 

(20) Drive-Alone Share of Traffic  0.00  14.29  13.64 

(21) Bus Share of Traffic    0.00  14.29  4.17 

(22) Carpool Share of Traffic   0.00  0.00  0.00 

(23) Average Occupancy    0.00  0.00  0.00 

(24) Total Traffic     3.83  6.00  4.96 
────────────────────────────────────────────────────────── 
 

 

 

 

 

 

 

Notes to Table 8.20: 

 
a Schedule shifts are constrained by equating the conditional probability of schedule choice 

(equation (5.12)) to its base value at each iteration. 
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b
 Capacity expansion is exogenously chosen at 10 percent of base level.  The same expansion 

applies to all scenarios. 

 
c
 γ is a supply parameter measuring elasticity of travel delay with respect to traffic flow in the 

supply model (Table 7.1).  Number of commuters is exogenously chosen to give a range of 

baseline congestion.    

 
d Total benefits sum consumer surplus and toll revenue. 

 
e Peak refers to the 15-minute period centered around 8:00 A.M. 

 
f
 The average schedule delay tabulated is the variable component of average schedule delay; 

the constant component is above the variable component.  The constant component is the 

average schedule delay of auto users in equilibrium when travel is free-flow.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shifts overestimates total traffic for an optimal toll, but does not miscalculate  
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mode mix for capacity expansion.  Forth, constraining schedule shifts underestimates peaking 

and congestion for capacity expansion, but overestimates them for an optimal toll under 

multiple interaction and has mixed effects under single interaction. 
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 8.5 Summary 

 

This chapter has simulated the effects of eight capacity expansion and pricing policies. 

 Two values of travel-delay elasticity with respect to arrival flow at work are considered.  This 

section summarizes results for scenarios with travel-delay elasticity equal to 2.5.  The 

corresponding range of baseline congestion is between one and nine minutes of travel delay. 

 

 I. Base Case 

Urban commuters choose to arrive early or late for work by about 11 minutes even 

when there is no congestion.  This result comes about in this model but not in abstract models 

because while abstract models allow difference in observed attributes such as travel time, this 

model allows difference in observed as well as unobserved attributes. 

An average commuter's welfare drops by 57 to 95 cents in 1972 prices.  This is 

equivalent to an annual loss of 454 to 756 dollars in 1992 prices per commuter for the 

morning commute alone.  A significant portion of this welfare loss results from increases in 

schedule delay.  Therefore, models that ignore schedule shifts underestimate the social costs 

of congestion. 

 

 II. Policy Effects 
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Optimal toll.  The total benefits of an optimal toll can be substantial.  With a baseline 

travel delay of nine minutes, the total benefits are 38 cents in 1972 prices per passenger for 

the morning commute alone.  This is equivalent to annual total benefits of more than 14.5 

million dollars in 1992 prices for a population of 48000 commuters for the morning 

commuting alone. 

Significant welfare transfers also occur from commuters to the government.  Forty-one 

percent of toll revenue comes from losses in consumer welfare when the baseline travel delay 

is nine minutes.  The transfer becomes 91 percent when the baseline travel delay is one 

minute. 

An optimal toll reduces peak one-hour traffic by about one-third when a baseline 

travel delay is nine minutes.  Ninety-two percent of this reduction comes from mode shifts; 

the other 8.4 percent comes from schedule shifts.  Overall, an optimal toll results in one-fifth 

increase in average occupancy and one-sixth reduction in total traffic with the same baseline 

congestion.  What is notable is that an optimal toll cuts congestion by more than half, but at 

the same time increases schedule delay by three-fourths. 

Other Pricing Policies.  How do the total benefits of other pricing policies compare 

with those of an optimal toll?  One surprise is that a base-externality toll achieves total 

benefits equivalent to those of an optimal toll.  A base-externality  

toll is equal to the marginal externality of an additional trip at a given time at the base case, 

while an optimal toll measures the marginal externality at an optimum.   An optimal toll 
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with HOV exemption achieves 89 to 93 percent of the total benefits of an optimal toll alone.  

Two features of this policy are worth pointing out.  First, an optimal toll with HOV exemption 

reduces consumer welfare by much less than an optimal toll alone.  In fact, average consumer 

welfare is even increased when the baseline travel delay is 9 minutes.  Second, it encourages 

more carpooling than an optimal toll alone, but not bus use.  This comes about because toll 

savings to bus users are much smaller than to carpoolers. 

Relative to an optimal toll, a piecewise-linear toll achieves 63 to 91 percent of the 

benefits; a one-step toll achieves 38 to 77 percent of the benefits; a uniform toll achieves 26 to 

66 percent of the benefits.  These tolls result in less peak spreading and less congestion relief. 

 These tolls, however, have bigger effects on mode mix than an optimal toll when congestion 

is heavy.  That is, when congestion is heavy, these tolls shift more traffic from drive-alone to 

bus and carpool; average occupancy increases more, and total traffic is reduced more. 

Capacity expansion also affects traffic peaking, schedule delay, and mode mix.  The 

ten-percent incremental expansion leads to higher peak share, lower variable schedule delay, 

and higher share of drive-alone.  These effects are just in the opposite of those from an 

optimal toll. 

 

 III. Miscalculation 

Optimal toll.  When schedule shifts are ignored, total benefits of an optimal toll are 42 

to 108 percent higher.  One factor of this overestimation is that increased costs of schedule 
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delay are excluded. 

Ignoring schedule shifts also results in higher optimal tolls.  Peak toll is 88 percent 

higher when the baseline congestion is nine minutes.  This is because it is  

more costly to put an extra vehicle at a given time when only mode shift is allowed than when 

schedule shift is allowed as well. 

Ignoring schedule shifts from an optimal toll results in less peak spreading.  Reduction 

in peak traffic is 51 to 78 percent lower.  Reduction in peak share is 85 to 100 percent lower.   

Ignoring schedule shifts results in less congestion relief from an optimal toll.  Savings 

in peak travel delay are 26 to 36 percent lower.  Savings in average travel delay are 9 to 26 

percent lower. 

Ignoring schedule shifts from an optimal toll also results in lower total traffic and 

higher average occupancy by overestimating the shares of bus and carpool and 

underestimating the share of drive-alone. 

Capacity expansion.  Ignoring schedule shifts results in total benefits of an 

incremental capacity expansion 7 to 22 percent higher.  This overestimation in total benefits 

comes from an underestimation in peaking but an overestimation in congestion relief.  While 

reduction in peak share is 96 percent lower, savings in peak travel delay is 13 to 56 percent 

higher. 
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 CONCLUSIONS 

 

The dissertation seeks to understand how urban commuters adjust their schedules and 

modes to congestion, as well as policy implications of this adjustment.  The research has 

focused on three objectives: (1) to simulate the effects of an optimal toll, capacity expansion, 

and six other pricing policies; (2) to test hypotheses relating to schedule shifts in response to 

congestion and policy changes; (3) to estimate biases in policy effects when schedule shifts 

are ignored.   

Each objective is considered separately.  The chapter ends with suggestions for future 

research. 

 

 I. Policy Effects 

 

An optimal toll can achieve substantial benefits.  With a baseline travel delay of nine 

minutes, the total benefits are 38 cents per person in 1972 prices, for the morning commute.  

This is equivalent to annual benefits of 14.5 million dollars in 1992 prices for the morning 

commute of 48000 workers. 

These benefits of an optimal toll, however, are accompanied by welfare transfers.  

Forty-one percent of toll revenue comes from losses in consumer welfare when the baseline 

travel delay is nine minutes.  The transfer becomes 91 percent when the baseline travel delay 
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is one minute. 

 

An optimal toll reduces peak one-hour traffic by about one-third when the baseline 

travel delay is nine minutes.  Mode shifts account for 92 percent of this reduction; schedule 

shifts account for the other 8.4 percent.  Overall, an optimal toll results in one-fifth increase in 

average occupancy and one-sixth reduction in total traffic with the same baseline congestion.  

What is notable is that an optimal toll cuts congestion by more than half, but at the same time 

increases variable schedule delay by three-fourths. 

How do the effects of other policies compare with those of an optimal toll?  One 

surprise is that a base-externality toll achieves total benefits equivalent to those of an optimal 

toll.  Both tolls measure the marginal externality of an additional trip at a given time.  Both 

are calculated after existing traffic has adjusted its behavior in response to the added trip.  The 

two tolls differ, however, in where the externalities are measured.  A base-externality toll is 

measured at a base case where there is no policy.  An optimal toll is measured at an optimum 

where the sum of consumer welfare and toll revenue is maximized.  

An optimal toll with HOV exemption achieves 89 to 93 percent of the total benefits of 

an optimal toll alone when the baseline travel delay is one to nine minutes.  Two features of 

this policy are worth pointing out.  First, an optimal toll with HOV exemption reduces 

consumer welfare by much less than an optimal toll alone.  In fact, average consumer welfare 

is even increased when the baseline travel delay is nine minutes.  Second, it encourages more 
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carpooling than an optimal toll alone, but not bus use.  This comes about because toll savings 

to bus users are much smaller than to carpoolers. 

A ten-percent incremental expansion leads to higher peak share, lower variable 

schedule delay, and higher share of drive-alone.  These effects are just the opposite of those 

from an optimal toll. 

 

 II. Hypotheses Testing 

 

Schedule delay has variable and constant components.  The constant component is the 

equilibrium level when there is no congestion or policy.  The variable component changes 

with congestion and policies.  The constant component exists in this model but not in abstract 

models.  While abstract models allow differences in observed attributes such as travel time, 

this model allows differences in observed as well as unobserved attributes. 

Urban commuters shift their schedules in response to congestion and policy changes.  

Peak share of traffic is reduced by 7.5 percent as average travel delay increases from one to 

nine minutes; that is, heavy congestion forces people away from the peak.  The ten-percent 

capacity expansion reduces variable schedule delay by 19 and 10 percent when the baseline 

travel delay is one and nine minutes, respectively; that is, capacity expansion attracts people 

back to the peak.  An optimal toll increases variable schedule delay by 310 and 78 percent 

when the baseline travel delay is one and nine minutes, respectively; that is, an optimal toll 
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discourages people from driving in the peak. 

 III. Miscalculation of Policy Effects 

 

When schedule shifts are ignored, total benefits of an optimal toll are 42 to 108 

percent higher.  This overestimation results from two opposite biases.  While schedule delay 

is downward biased, resulting in overestimation of benefits, travel delay is upward biased, 

resulting in underestimation of benefits. 

Ignoring schedule shifts also results in higher optimal tolls.  The peak toll is 88 

percent higher when the baseline congestion is nine minutes, because an extra trip is more 

costly when only mode shift is allowed. 

Ignoring schedule shifts from an optimal toll reduces peak spreading.  With a baseline 

congestion of one to nine minutes, reduction in peak traffic is downward biased by 51 to 78 

percent, and reduction in peak share is downward biased by 85 to 100 percent.   

Ignoring schedule shifts results in less congestion relief from an optimal toll.  With the 

same range of baseline congestion, savings in peak travel delay are downward biased by 36 to 

24 percent, and savings in average travel delay are downward biased by 26 to 9 percent. 

Ignoring schedule shifts from an optimal toll also results in lower total traffic and 

higher average occupancy by overestimating bus and carpool shares but underestimating the 

drive-alone share. 

The total benefits of the ten-percent expansion are 7 to 22 percent higher when 
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schedule shifts are ignored, with a baseline travel delay of one to nine minutes.  This 

overestimation in total benefits also results from two opposite biases.  While reduction in 

variable schedule delay is downward biased by 100 percent, savings in peak travel delay are 

upward biased by 13 to 56 percent. 

 

 IV. Future Research 

 

The simulation model has two major strengths.  First, it allows behavioral differences 

not only in observed but also in unobserved characteristics.  These unobserved characteristics 

lead to urban commuters choosing to arrive early or late even when there is no congestion.  

Second, it allows general distributions in individual values of times and in individual work-

start times.  

The simulation model, however, has a number of deficiencies that requires additional 

research.  First, the key supply parameter, travel-delay elasticity with respect to arrival flow at 

work, is not empirically estimated.  Effort should be made to collect data that relates travel 

delay on a segment of urban highway to flows leaving the segment.  Second, the method used 

to calculate optimal tolls is ad hoc.  It should be improved for efficiency and for robustness 

with higher values of travel-delay elasticities.  Third, bus users should be allowed to shift 

schedules.  Fourth, rather than assuming that commuters know the buildup and decay of 

congestion with certainty, future research should incorporate unreliability of schedules.  
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Equilibrium models of mode and trip scheduling with uncertainty would be useful to evaluate 

policies that provide traffic information to drivers. 

Another deficiency in the current model is the exclusion of possible effects of mode 

shift on user inputs and agency costs.  This deficiency has possibly caused an underestimation 

of the benefits of pricing policies relative to those of capacity expansion.  The literature tends 

to show that increased use of buses lowers the sum of bus agency costs and costs of user 

inputs.  But this conclusion does not take into account the possibility that increased operation 

in the peak period requires more bus drivers for the whole day.  As a result, increased 

operation in the peak period may increase agency costs, and this increase may more than 

offset the savings in user costs.  The current model should be improved to incorporate these 

possible effects.  An improved model could be useful, for example, to evaluate a policy that 

allows a bus operator to use toll revenues from the same corridor to assist bus operation.   

Recent interest in high-occupancy-vehicle buy-in (HOV buy-in) lanes creates another 

possibility.  HOV buy-in lanes are tolled, but vehicles with certain level of occupancy are 

exempted (Fielding, 1993).  Small's (1983b) treatment of HOV lanes can be adopted.  The key 

is to allow low occupancy vehicles to choose between free and HOV buy-in lanes. 

Another direction for future research would be to analyze the geographical effects of 

congestion pricing.  What effects would congestion pricing have on land-use patterns?  To 

answer this question would require the incorporation of congestion pricing into a spatial 

model that allows endogenous location of residence or employment or both.  Such 
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geographical effects of congestion pricing are of great interest to transportation economists, 

planners, and geographers. 
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