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Abstract
The high-latitude carbon (C) cycle is a key feedback to the global climate system, yet because of
system complexity and data limitations, there is currently disagreement over whether the region is
a source or sink of C. Recent advances in big data analytics and computing power have popularized
the use of machine learning (ML) algorithms to upscale site measurements of ecosystem processes,
and in some cases forecast the response of these processes to climate change. Due to data
limitations, however, ML model predictions of these processes are almost never validated with
independent datasets. To better understand and characterize the limitations of these methods, we
develop an approach to independently evaluate ML upscaling and forecasting. We mimic
data-driven upscaling and forecasting efforts by applying ML algorithms to different subsets of
regional process-model simulation gridcells, and then test ML performance using the remaining
gridcells. In this study, we simulate C fluxes and environmental data across Alaska using ecosys, a
process-rich terrestrial ecosystem model, and then apply boosted regression tree ML algorithms to
training data configurations that mirror and expand upon existing AmeriFLUX eddy-covariance
data availability. We first show that a ML model trained using ecosys outputs from
currently-available Alaska AmeriFLUX sites incorrectly predicts that Alaska is presently a modeled
net C source. Increased spatial coverage of the training dataset improves ML predictions, halving
the bias when 240 modeled sites are used instead of 15. However, even this more accurate ML
model incorrectly predicts Alaska C fluxes under 21st century climate change because of changes in
atmospheric CO2, litter inputs, and vegetation composition that have impacts on C fluxes which
cannot be inferred from the training data. Our results provide key insights to future C flux
upscaling efforts and expose the potential for inaccurate ML upscaling and forecasting of
high-latitude C cycle dynamics.

1. Introduction

High-latitude ecosystems play a key role in the global
carbon (C) cycle because it is the fastest warming
region on the planet (Serreze et al 2009) with large
stocks of C stored in permafrost soils (Hugelius et al
2014). However, estimates of current and future high-
latitude C balance are highly uncertain, as highlighted
by a current mismatch between process-models
(which estimate that the high-latitudes are currently

a C sink; McGuire et al 2012) and observation-
based estimates (some of which estimate that high-
latitudes are currently a C source; Commane et al
2017, Natali et al 2019). This uncertainty is driven
by high spatial and temporal variability (Grant et al
2017, Uhlemann et al 2021), a complex and interact-
ing set of environmental drivers and feedbacks (Arora
et al 2019), and limited data due to harsh envir-
onmental conditions and remoteness of northern
lands.
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Direct measurements of ecosystem C exchanges
are performed using eddy-covariance (EC), cham-
bers, and long-term plot based observations, but
these methods can only be applied at local scales and
provide spatially sparse estimates. Uses of this data
to inform regional estimates of current-day C fluxes
are typically divided into two approaches. Process-
based terrestrial ecosystem models, which simulate
physical, chemical, and biological responses to driv-
ing environmental variables, use site data for cal-
ibration and to validate model predictions. Upscal-
ing methods, in contrast, use the data to generate
statistical or machine learning (ML) models which
are then applied to predict across a larger study
domain. ML models typically outperform statistical
regression-based approaches in predictive power due
to their ability to capture complexity, non-linearities,
and interaction effects (Virkkala et al 2021). In recent
years, many studies have applied ML models to
upscale C fluxes at regional (Natali et al 2019, Peltola
et al 2019, Reitz et al 2021, Virkkala et al 2021,
Abbasian et al 2022) and global (Jung et al 2020,
Zeng et al 2020) scales. ML approaches have also been
applied to upscale other ecosystem processes includ-
ing vegetation dynamics (Pearson et al 2013, Bastin
et al 2019), crop yields (Crane-Droesch 2018), and
changes in soil C stocks (Mishra et al 2021, Naidu and
Bagchi 2021).

ML model performance is strongly dependent on
the size and spatial distribution of the training data-
set, particularly as the complexity of the modeled sys-
tem increases (Raudys and Jain 1991). High-latitude
ecosystems are highly complex systems with tightly
coupled C, heat, water, and nutrient cycles char-
acterized by strong heterogeneity, feedback loops,
and interaction effects (Nobrega and Grogan 2008,
Jorgenson et al 2010, Belshe et al 2012, Keuper et al
2012, Becker et al 2016, Cable et al 2016, Finger
et al 2016, Grant et al 2017, Jafarov et al 2018,
Arora et al 2019, Waldrop et al 2021, Mekonnen et al
2021b). However, data availability at high-latitudes
is very limited. Although Alaska is the high-latitude
region with the highest density of EC flux towers
(25 AmeriFLUX towers were active at some point
during the period 2010–2020), the footprint of each
flux tower is only ∼1 km2. Therefore, these EC flux
towers monitor only ∼0.002% of the Alaskan land
surface (148 1346 km2; Tramontana et al 2016). Per-
formance of ML models of highly complex ecosys-
tem processes trained on such limited data may suf-
fer from underspecification (D’Amour et al 2020),
shortcut learning (Geirhos et al 2020), and other
structural mismatches between available data and
underlying dynamics (Arjovsky et al 2020). Since
these effects cannot be quantified using the training
dataset, commonly employed techniques like k-fold
cross-validation (kCV) may lead to overestimation
of model performance. These issues may lead to

overconfidence in the ML model predictions, partic-
ularly since they are derived from data.

Some ML upscaling studies (Pearson et al 2013,
Bastin et al 2019, Natali et al 2019, Naidu and Bagchi
2021) use ML models generated using training data
from current climate conditions to forecast responses
of ecosystem processes to decades of climate change.
This approach is attractive because while ML mod-
els are challenging to generate they are easy to use
for predictions. However, many factors that drive and
interact with ecosystem processes will change signi-
ficantly under future climate conditions (e.g. atmo-
spheric CO2 concentration, air and soil temperatures,
nutrient and water availability, vegetation compos-
ition), leading to an expected degradation of ML
model performance. Validation of ML model per-
formance under future climate conditions is not pos-
sible today, and given the low interpretability of typ-
icalMLmodels, it is not clear how stronglyMLmodel
performance will be affected by these types of future
changes.

In this study, we develop an approach to charac-
terize the limitations of ML upscaling and forecast-
ing induced by limited data availability and climate-
induced changes to ecosystem processes (figure 1).
We use outputs from ecosys, a process-rich ecosys-
tem model that has been extensively tested against
EC fluxes under diverse arctic conditions (Grant et al
2009, 2015, Chang et al 2019, Mekonnen et al 2019,
Riley et al 2021, Shirley et al 2022), to train and
evaluate the performance of boosted regression tree
(BRT)MLmodels across Alaska.We first examine the
impact of variation in spatial and temporal training
data coverage on ML model predictions of microbial
respiration (Rh), net primary productivity (NPP),
and net ecosystem exchange (NEE). Then, we eval-
uate the ability of the highest performing ML model
to forecast the response of these C fluxes to climate
change throughout the 21st century. Finally, we use
convergent cross-mapping (CCM) to identify and
rank the drivers of ML model bias in Rh and NPP at
the end of the century. Since the internal complexity
of a process-model is much smaller than that of real-
world ecosystem processes and the simulated data is
not affected by noise or measurement error, the per-
formance of these ML models is significantly better
than if theywere trained on real-world datasets. How-
ever, this exercise allows us to estimate the ‘best-case’
performance of ML models used to upscale and fore-
cast high-latitude C balances.

2. Data andmethods

2.1. The ecosysmodel
Ecosys is a process-rich,mechanistic, hourly time-step
ecosystem model with coupled C, energy, nutrient,
and water cycles. The model is forced with hourly
meteorological inputs, and calculates energy balance
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Figure 1. Regional process model simulations can be used to independently evaluate ML upscaling and forecasting. The standard
methodology to upscale and forecast site observations of ecosystem processes is outlined in the left panel. Our approach to
independently evaluate ML performance is shown on the right. In this approach, a process model that has been validated using
the available site observations is used to simulate current and future ecosystem processes across a region of interest. Different
subsets of the simulated data are then used to generate ML predictions across space and time that can be independently evaluated
using the remaining simulated data.

using first-order closure schemes. Five Alaska plant
functional types (PFTs; deciduous shrub, evergreen
shrub, sedge, moss, lichen) compete in multi-layer
canopy and soil profiles for light, water, and nutri-
ents. Each PFT fixes CO2 according to the Farquhar
biogeochemical growth model (Farquhar et al 1980).
Canopy stomatal conductance optimizes chloroplast
CO2 concentration unless limited by water availabil-
ity. In the soil and litter layers, oxidation of dissolved
organic C, which is produced via hydrolysis of organic

matter pools (woody litter, non-woody litter, par-
ticulate organic matter, humus, microbial biomass),
drivesmicrobial growth andmetabolism. Plant nutri-
ent availability is regulated by stoichiometry ofmicro-
bial biomass and soil organic matter. A full descrip-
tion of algorithms, and parameters used in ecosys can
be found in the supplementarymaterial ofMekonnen
et al (2019).

Themodel is forced using hourly air temperature,
precipitation, incoming shortwave radiation, relative
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humidity, and wind speed from the North Amer-
ican Regional Reanalysis (Wei et al 2014) across a
0.25◦ × 0.25◦ grid that covers Alaska. Future cli-
mate anomalies for years 2018–2100 were taken from
the CCSM4 climate model forced by Representat-
ive Concentration Pathway 8.5 (RCP8.5). Initial soil
properties for each grid cell were taken from the
Unified North America Soil Map (Liu et al 2013)
and the Northern Circumpolar Soil Carbon Data-
base (Hugelius et al 2013). The frequency of stand-
replacing fire events under current climate conditions
was calculated from the LANDFIRE product (Rollins
2009), and increased throughout the 21st century
by a fixed amount that relates changes in environ-
mental conditions under the RCP8.5 climate scenario
with increases in lightning ignition as described in
Veraverbeke et al (2017).

Ecosys has been extensively tested at many sites
and against remote sensed observations across high-
latitude ecosystems. A detailed description of ecosys
performance at site and regional scales can be found
in the supplementary material of Shirley et al (2022).
Recently, ecosys has also been shown to accurately rep-
resent site observations of NEE at eight of the EC
towers located in Alaska (figure S1, Shirley et al 2022).

2.2. BRTs and kCV
BRT ML models are linear combinations of decision
trees that have been iteratively fit to reduce a loss
function. BRT models are able to capture non-linear
response curves and interaction effects between vari-
ables (Elith et al 2008) and were used to upscale C
fluxes in Natali et al (2019) and Virkkala et al (2021).
We implemented our BRT models in R using the
‘gbm’ package (Greenwell et al 2020) with a Gaussian
error distribution, bag fraction of 0.5, tree complex-
ity of 5, and a starting learning rate of 0.1 which was
switched to 0.3 if the optimal tree number exceeded
10 000. The optimal tree number was identified using
kCV. In kCV, the training dataset is first split into k
groups (here, ten groups are used). Then, k different
ML models are developed leaving out one group as
a test set. Performance metrics (deviance, correlation
coefficients) are calculated using the test set for each
model, and summary statistics are calculated from the
mean performance of the k models. The summary
statistics are used to select the optimal tree number,
and are also used to estimate ML predictive perform-
ance on independent datasets. We explored the sens-
itivity ofMLmodel performance to the tree complex-
ity and learning rate hyperparameters, and found that
the impact of these parameters on model perform-
ance is smaller than the impact of improvements in
spatial coverage (figure S2).

2.3. Convergence cross-mapping
Convergence cross-mapping (CCM) is a method
of causal inference that uses nonlinear state space

reconstruction to test for causation in weakly coupled
dynamical systems (Sugihara et al 2012). CCM has
been used to infer causal relationships in several cli-
mate, earth science, and ecological studies (Sugihara
et al 2012, van Nes et al 2015, Wang et al 2018, Díaz
et al 2022). In CCM, reconstructed state space of
one variable is used to predict the reconstructed state
space of a second variable. Cross-map skill is the cor-
relation between the predicted and actual reconstruc-
ted state space, with high skill indicating a strong
causative effect.

2.4. Data coverage and experimental design
In this study, we create BRT models to upscale and
forecast ten-dailyRh, NPP, andNEE simulated by eco-
sys across Alaska at 0.25◦ resolution. The predictor
variables for the BRT models (table 1) were chosen
to represent a realistic upscaling effort that might be
attempted with current publicly available data.

Alaska is one of the most well-studied high-
latitude regions, but spatial coverage of AmeriFLUX
towers is low. All 25 Alaska AmeriFLUX towers act-
ive between years 2010 and 2019 are located in 15 of
the 4319 ecosys 0.25◦ × 0.25◦ grid cells, and are not
optimally distributed to capture spatial and temporal
variability. We used spatially constrained k-means
clustering of simulated environmental data (SKATER
algorithm; AssunÇão et al 2006) to define 15 regions
in Alaska and found that AmeriFLUX towers occupy
only 6 of these regions. The number of active Alaska
AmeriFLUX sites increased throughout the decade
from 10 sites in 2010 to 18 sites in 2019, but year-
round data coverage is not available at all sites. Cover-
age is high during June and July but drops to less than
50% in winter (figure 2).

We trained BRTmodels of each C flux using seven
training data configurations to evaluate how train-
ing dataset spatial and temporal coverage impactsML
model performance. The AmeriFLUX (AF) training
dataset is intended to represent the current availab-
ility of EC flux tower data in Alaska. For this data-
set, ecosys outputs were included in the training data-
set when an AmeriFLUX tower was active within that
gridcell. The AmeriFLUX full coverage (AFfc) train-
ing dataset includes ecosys outputs for each of the
15 gridcells that contain an AmeriFLUX tower but
assumes continuous data coverage for years 2010–
2019. The km15 dataset optimizes the locations of 15
training gridcells by including the centroid gridcell of
the 15 regions identified using spatially constrained
k-means clustering (figure 2). Following Hoffman
et al (2013), we chose the centroids by minimizing
the distance between gridcells in each cluster and
the cluster centroid. For each of the four remaining
training datasets, we doubled the number of grid-
cells included in the training dataset, choosing the
locations using k-means clustering as above. These
training datasets are further described in table S1. We
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Table 1. Variables used to train the ML model. Name, description, units, and timescale are given for each variable used to train the ML
models.

Name Description Units Timescale Data source

Air T Daily mean air temperature ◦C 10-Daily NARR (Wei et al 2014)
SWin Daily mean incoming shortwave

radiation
Wm−2 10-Daily NARR (Wei et al 2014)

Soil T—10 cm Daily mean soil temperature at 10 cm ◦C 10-Daily ecosys output
Soil T—2m Daily mean soil temperature at 2 m ◦C 10-Daily ecosys output
SSM Surface soil moisture; Daily mean soil

water content 0–5 cm
m3 m−3 10-Daily ecosys output

RZSM Root-zone soil moisture; Daily mean soil
water content 0–100 cm

m3 m−3 10-Daily ecosys output

SOC Soil organic carbon in top 30 cm of soil gC m−2 Yearly ecosys output
LAI Ecosystem leaf area index — 10-Daily ecosys output
Sand Soil sand content kg kg−1 Fixed Unified North America

Soil Map (Liu et al 2013)
Silt Soil silt content kg kg−1 Fixed Unified North America

Soil Map (Liu et al 2013)
Tundra/boreal Tundra or boreal region — Fixed

Figure 2. Alaskan AmeriFLUX sites exhibit uneven spatial and temporal coverage. (top left) Temporal coverage of active
AmeriFLUX sites throughout the year. (bottom left) Percent of Alaskan AmeriFLUX sites that are active in each year. (right)
Locations of 15 Alaskan AmeriFLUX sites with data for years 2010–2019 (black dots). Ecoregions identified by spatially
constrained k-means clustering of simulated environmental data (SKATER algorithm) are shown in randomly assigned colors.

used eachmodel to extrapolate C fluxes across Alaska,
and excluded gridcells used in the training dataset for
evaluation of model performance.

We then evaluated the ability of ML models to
forecast C fluxes. The model trained on the largest
dataset (km240) was used to predict Alaska Rh, NPP,
and NEE throughout the 21st century. Sources of bias
between the ML model predictions and ecosys simu-
lations were evaluated using CCM. We explored the
extent to which changes in atmospheric CO2 con-
centration, air and soil temperature, deciduous shrub
NPP dominance, and fire introduced bias into ML
predictions of NPP, and the extent to which changes
in litter C, soil temperature, deciduous shrub NPP
dominance, and fire introduced bias into ML predic-
tions of Rh.

3. Results and discussion

3.1. MLmodel trained with current AmeriFLUX
availability and coverage predicts incorrect sign of
present-day Alaska net C exchange
When data is limited, kCV is typically used to evaluate
ML model performance. Here we find that the pre-
dictive power of the ML models trained using exist-
ing AmeriFLUX sites and coverage (AF) appears to
be excellent when evaluated using kCV. kCV correl-
ation coefficients for each C flux (Rh: r = 0.95; NPP:
r = 0.92; NEE: r = 0.86) are much higher than estim-
ated in ML C flux upscaling studies that use real data
(e.g. Natali et al (2019)—NEE, non-growing season
only: r = 0.75; Virkkala et al (2021)—NEE: r = 0.27;
Tramontana et al (2016)—NEE: r = 0.68). Our ML
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model performs better than ML models trained on
real data because training data used in this study
are generated by ecosys, which, while complex and
process-rich, is simpler than real ecosystems and is
free from noise, bias, and data gaps. When outputs
from the entire modeled domain are used for val-
idation the apparent performance of the AF model
decreases significantly. Correlation coefficients for
each flux are substantially lower (Rh: r = 0.75; NPP:
r = 0.77; NEE: r = 0.68), and mean absolute bias
(MAB) is high relative to the Alaska mean for each
C flux (figure 3). This result demonstrates that kCV
methods can give unreliably high confidence in the
performance of ML models used to upscale or spa-
tially extrapolate outside of the training set.

When extrapolated across Alaska, the AF model
incorrectly predicts the sign of present-day
net C exchange simulated by ecosys. Whereas
Alaska is a slight sink of C according to ecosys
(−19.7 gC m2 yr−1), the AF model predicts that
it is a strong source of C (60.7 gC m2 yr−1). The
AF prediction of Alaska means Rh is close to the
target value and MAB for Rh is much lower than
for NPP with this training data. These results
imply that the mismatch between ecosys and AF
predictions of present-day Alaska NEE is primar-
ily due to large underestimation of plant pro-
ductivity, particularly throughout southern Alaska
(figure S3).

3.2. Increased spatial coverage of training data
improves ML predictions of present-day Alaska net
C exchange
AmeriFLUX coverage in Alaska is both spatially and
temporally incomplete, but ML model predictions of
Alaska net C exchange improve more via training site
redistribution than increased temporal coverage. Sur-
prisingly, NPP and NEE MAB increase when the full
time series from each AmeriFLUX site is included in
the training data, and the ML model predicts that
Alaska is an even stronger net C source (figure 3).
On the other hand, when training data is taken from
the 15 identified eco-region centroids, instead of from
AmeriFLUX sites, NPP andNEEMAB decrease signi-
ficantly, correlation coefficients increase, and the ML
model correctly predicts that Alaska is a slight net sink
of C (figure 3).

As the number of training data sites increases
from 15 to 240, ML model performance improves
and correlation coefficients for each flux increase and
approach the values estimated by kCV. MAB for the
model trained with 15 sites is nearly twice as large
as for the model trained with 240 sites for each flux
(figure 3). Additionally, the spatial distribution of
bias changes as more sites are added.With fewer sites,
the bias is regional with spatially coherent patches
that either overestimate or underestimate C fluxes. As

the number of sites increases, positive and negative
biases decrease and become more evenly distributed
across Alaska (figure 4). Finally, the ML model dis-
tribution for each flux converges on the target dis-
tribution simulated by ecosys as the number of sites
increases above 100 (figure 3).

3.3. MLmodel performance degrades throughout
the century
In this section we investigate how the performance
of the ML model trained on 240 sites (km240)
changes throughout the 21st century. We chose this
model because it has the largest training dataset
and has excellent performance under current climate
conditions. For the years 2010–2019, ML estimates
of Alaska mean annual C fluxes agree very well with
ecosys (Rh: 197.6 vs 194.4 gC m2 yr−1; NPP: 214.3 vs
214.0 gC m2 yr−1; NEE:−19.6 vs−19.9 gC m2 yr−1)
and the model successfully captures the seasonal
dynamics of each C flux (figure S3). Further, the
relative influence of each training variable for the
ML models is consistent with expectations and pro-
cesses included in ecosys. The models for NPP and
NEE depend most strongly on air and soil temperat-
ure, radiation, and leaf area index (LAI), whereas the
model for Rh is dependent primarily on soil temper-
ature and LAI (which can be interpreted as a proxy for
plant litter C; figure S4). Two hundred and forty sites
across Alaska is extremely optimistic since installa-
tion and maintenance of EC flux towers is expensive.
However, we use this ideal scenario to set an upper
boundary on the ability of ML models trained with
real-world data to forecast ecosystem responses to cli-
mate change.

We find that the km240 ML model incorrectly
predicts changes in ecosystem processes induced by
climate change over the 21st century under anRCP8.5
scenario and that its performance degrades compared
to the underlying model on which it was based. The
end-of-century fluxes predicted by ecosys are large but
realistic (∼300–650 gC m−2 yr−1). Even larger NPP
values have been measured under current climate
conditions in Pacific Northwest and British Columbia
forests (Jassal et al 2007, Schwalm et al 2007). Ecosys
projected a two-fold increase in NEE MAB, a three-
fold increase in Rh MAB, and a four-fold increase in
NPPMABby year 2100 (figure S5).MLmodel predic-
tions of annual mean Alaska Rh are reasonably sim-
ilar to ecosys through year 2040, but by the end of the
century are underestimated by 104 gC m2 yr−1. The
performance of the NPP ML model is even worse: its
estimates of annual mean Alaska NPP diverge from
ecosys by year 2030, leading to an underestimation of
204 gC m2 yr−1 at the end of the century. For both
Rh and NPP, the largest increase in bias occurs dur-
ing spring (figure S3). While the ML model is able to
capture an increase in end-of-century growing season
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Figure 3.ML estimation of ecosys carbon fluxes improves with increased spatial coverage of training data. Performance of ML
predictions is evaluated for Rh (left column), NPP (middle column), and NEE (right column). Correlation coefficients (top row)
are shown as evaluated by comparison of ML upscaling to ecosys simulations (blue) and kCV using the training dataset (green).
Mean absolute bias (MAB) for each flux is shown in the middle row (blue). C fluxes averaged across Alaska (bottom row) are
shown for ML upscaling (blue) and ecosys simulations (target, red dashed lines). The 25th–75th percentile range of Alaska C
fluxes is also shown for the ML upscaling (error bars) and ecosys simulations (shaded regions). Descriptions of the training
datasets used for each model can be found in table S1.

Figure 4.MLmodel bias decreases and becomes less clustered with increased spatial coverage of training data. Biases in Rh (top
row), NPP (middle row), and NEE (bottom row) relative to ecosys simulations are shown across Alaska for ML models trained
with different ecosys datasets. Descriptions of the training datasets used for each model can be found in table S1.

length (because it was trained on ten-daily data), it is
unable to capture increases in peak C fluxes during
the growing season (figure S3).

This degradation ofMLmodel performance leads
to a striking discrepancy between ecosys and ML
model estimates of end-of-century Alaska net C
exchange. Whereas ecosys predicts that Alaska C sink
strengthwill steadily increase throughout the century,
the km240 ML model predicts that Alaska will be net
C neutral from mid-century and onwards (figure 5)
and the AFMLmodel predicts that Alaskawill remain
a C sink until 2100 (figure S6). The km240MLmodel
predicts that 46% of grid cells will be C sources in

the 2090s, whereas only 7% of ecosys grid cells are
identified as sources. This result demonstrates that
even an ideal ML model trained and evaluated on
ideal data is unable to correctly predict the sign of net
C exchange simulated by a process model in Alaska
after a century of climate change.

3.4. MLmodel cannot predict ecosystem responses
to changing CO2 atmospheric concentrations and
vegetation structure
Over the 21st century, climate change will induce
large and complex changes to soil-plant-atmosphere
interactions. Process models like ecosys are designed
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Figure 5. Performance of ML models degrades throughout the century. Alaska mean annual Rh, NPP, and NEE are shown for
ecosys simulations (blue) and ML model trained on data from 240 sites (km240) for 2010–2019 (red). Shaded areas represent
25th–75th percentile ranges.

to simulate ecosystem responses to these changes,
but ML models can only make predictions based
on relationships contained in the training data. To
quantify which 21st century changes in soil-plant-
atmosphere interactions are primarily responsible for
the observed degradation in MLmodel performance,
we apply convergence cross-mapping (CCM), which
uses state space reconstruction to quantify causal
relationships between non-stationary and non-linear
time series (Methods). Here, we explore the extent
to which changes in atmospheric CO2, litter inputs,
vegetation composition, air and soil temperatures,
and fire frequency generate biases in ML predictions
of NPP and Rh.

We find that increasing atmospheric CO2 is the
primary driver of ML underestimation of 21st cen-
tury NPP. Increases in ML NPP bias are strongly
coupled to rising CO2 in 86% of grid cells (figure 6).
Elevated CO2 increases photosynthetic fixation rates
through changes to carboxylation, photorespiration,
and water and nitrogen use efficiency (Ainsworth
and Rogers 2007). These processes are represented
in ecosys, and have been tested against data from
free air CO2 enrichment experiments (Grant 2013).
Because training data is generated under present
day CO2 concentrations, ML techniques are unable
to capture changes to the relationships between
environmental variables and NPP under elevated
atmospheric CO2.

Since increases in NPP generate increases in plant
litter, underestimation of litter C follows from the
NPP underestimation by the ML model. Root and
shoot litter is highly labile, so increases in litter C
typically lead to increases in microbial respiration in
field studies (Adamczyk et al 2020) and in the ecosys
model (Grant et al 2020). Indeed, we find that litter
C is the leading driver of ML underestimation of 21st
century Rh, with increases inML Rh bias strongly tied
to increases in litter C in 40% of grid cells (figure 7).
In ecosys, increases in Rh drive increases in symbiotic
and non-symbiotic N2 fixation that in turn support
the large increases in NPP.

Shifting high-latitude vegetation composition is
a secondary but strong control on both NPP and
Rh ML biases. Increases in growth and abundance
of deciduous trees and shrubs have been observed
in high-latitude ecosystems in recent decades (Tape
et al 2006). Ecosys projects that vegetation compos-
ition will continue to change throughout the 21st
century, impacting C cycling via changes in phen-
ology, litter quality, nutrient acquisition and parti-
tioning, and surface energy budgets (Mekonnen et al
2019, 2021a). The inability of the ML model to cap-
ture these changes leads to underestimation of end-
of-century NPP (Rh) in 30% (34%) of grid cells. We
also find that warming air and soil temperatures and
increasing fire frequency are weaker drivers of ML
bias for both NPP and Rh (figures 6 and 7).
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Figure 6. Atmospheric CO2 concentration is the dominant control of bias in ML predictions of NPP throughout the century. The
following drivers of ML model bias in NPP throughout the 21st century are identified and ranked using CCM: (a) atmospheric
CO2 concentration, (b) NPP dominance of deciduous PFT, (c) mean annual air temperature, (d) mean annual temperature in the
top 25 cm of soil, (e) and years since the last fire. Mean bias control strength for each driver is shown in red. Drivers are ranked by
the fraction of grid cells with bias control strength greater than 0.8 (shown in blue).

Figure 7. Plant litter carbon is the dominant control of bias in ML predictions of Rh throughout the century. The following
drivers of ML model bias in Rh throughout the 21st century are identified and ranked using CCM: (a) shoot and root litter
carbon, (b) NPP dominance of deciduous PFT, (c) years since the last fire, and (d) mean annual temperature in the top 25 cm of
soil. Mean bias control strength for each driver is shown in red. Drivers are ranked by the fraction of grid cells with bias control
strength greater than 0.8 (shown in blue).
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4. Conclusion

We developed a method to independently evaluate
ML upscaling and forecasting of ecosystem C cycle
processes.We first used a well-testedmechanistic eco-
system model (ecosys) to simulate current and future
Rh, NPP, and NEE at 0.25◦ resolution across Alaska.
Different subsets of the ecosys gridcells were then
used to train BRT ML models for these C fluxes,
and the remaining gridcells were used to evaluate ML
predictions under current and future climates. This
approach represents a best-case ML model develop-
ment scenario since (a) the process-model complex-
ity, although substantial, is lower than real-world eco-
systems and (b) the process model results used to
train and test the ML model are free of noise, bias,
and gaps.

We found that the ability ofMLmodels to upscale
and forecast high-latitude C fluxes is limited by data
availability and future changes to ecosystem pro-
cesses. Cross-validationmethods, thoughwidely used
in ML applications, give poor indication of true pre-
dictive skill when training datasets do not provide
adequate coverage of the prediction space. Regarding
upscaling under current conditions, the ML model
trained with ecosys simulations at existing Ameri-
FLUX sites predicts an opposite sign of the Alaska
C balance. This result mirrors the current mismatch
between ecosystemmodel andML-based estimates of
high-latitude C balances and suggests that sampling
biases in generation of ML models, rather than
incomplete ecosystem model process representation,
may be at fault. We also found that increased spa-
tial coverage of the training dataset (well beyond the
current Alaska AmeriFLUX sites and beyond what is
practical with current funding) significantly improves
ML upscaling. Our results highlight the importance
of intentional site selection for training data collec-
tion and that a substantial increase in optimally-
located high-latitude EC flux tower site coverage is
needed to produce accurate ML estimates of large-
scale net C exchanges.

Regarding forecasting, we found that the ML
model has poor predictive capability at multi-decadal
scales. Even using the ML model trained with more
than ten times the existing EC flux tower sites,
changes in CO2 concentrations, litter C, and veget-
ation structure that cannot be captured by the train-
ing data led to large Alaska C flux prediction biases
under 21st century climate change. We therefore dis-
courage using ML to upscale ecosystem processes
and emphasize that changes in forcing and ecosystem
properties can lead to inaccurate ML forecasting even
under best-case conditions.
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