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Evaluation of Plasma Phosphorylated Tau217 for Differentiation
Between Alzheimer Disease and Frontotemporal Lobar
Degeneration Subtypes Among Patients With Corticobasal Syndrome
Lawren VandeVrede, MD, PhD; Renaud La Joie, PhD; Elisabeth H. Thijssen, PhD; Breton M. Asken, PhD;
Stephanie A. Vento, BS; Torie Tsuei, MSc; Suzanne L. Baker, PhD; Yann Cobigo, PhD; Corrina Fonseca, BS;
Hilary W. Heuer, PhD; Joel H. Kramer, PhD; Peter A. Ljubenkov, MD; Gil D. Rabinovici, MD; Julio C. Rojas, MD, PhD;
Howie J. Rosen, MD; Adam M. Staffaroni, PhD; Brad F. Boeve, MD; Brad C. Dickerson, MD; Murray Grossman, MD;
Edward D. Huey, MD; David J. Irwin, MD; Irene Litvan, MD; Alexander Y. Pantelyat, MD;
Maria Carmela Tartaglia, MD; Jeffrey L. Dage, PhD; Adam L. Boxer, MD, PhD

IMPORTANCE Plasma phosphorylated tau217 (p-tau217), a biomarker of Alzheimer disease
(AD), is of special interest in corticobasal syndrome (CBS) because autopsy studies have
revealed AD is the driving neuropathology in up to 40% of cases. This differentiates CBS from
other 4-repeat tauopathy (4RT)–associated syndromes, such as progressive supranuclear
palsy Richardson syndrome (PSP-RS) and nonfluent primary progressive aphasia (nfvPPA),
where underlying frontotemporal lobar degeneration (FTLD) is typically the primary
neuropathology.

OBJECTIVE To validate plasma p-tau217 against positron emission tomography (PET) in
4RT-associated syndromes, especially CBS.

DESIGN, SETTING, AND PARTICIPANTS This multicohort study with 6, 12, and 24-month
follow-up recruited adult participants between January 2011 and September 2020 from 8
tertiary care centers in the 4RT Neuroimaging Initiative (4RTNI). All participants with CBS
(n = 113), PSP-RS (n = 121), and nfvPPA (n = 39) were included; other diagnoses were
excluded due to rarity (n = 29). Individuals with PET-confirmed AD (n = 54) and PET-negative
cognitively normal control individuals (n = 59) were evaluated at University of California San
Francisco. Operators were blinded to the cohort.

MAIN OUTCOME AND MEASURES Plasma p-tau217, measured by Meso Scale Discovery
electrochemiluminescence, was validated against amyloid-β (Aβ) and flortaucipir (FTP) PET.
Imaging analyses used voxel-based morphometry and bayesian linear mixed-effects
modeling. Clinical biomarker associations were evaluated using longitudinal mixed-effect
modeling.

RESULTS Of 386 participants, 199 (52%) were female, and the mean (SD) age was 68 (8)
years. Plasma p-tau217 was elevated in patients with CBS with positive Aβ PET results (mean
[SD], 0.57 [0.43] pg/mL) or FTP PET (mean [SD], 0.75 [0.30] pg/mL) to concentrations
comparable to control individuals with AD (mean [SD], 0.72 [0.37]), whereas PSP-RS and
nfvPPA showed no increase relative to control. Within CBS, p-tau217 had excellent diagnostic
performance with area under the receiver operating characteristic curve (AUC) for Aβ PET of
0.87 (95% CI, 0.76-0.98; P < .001) and FTP PET of 0.93 (95% CI, 0.83-1.00; P < .001). At
baseline, individuals with CBS-AD (n = 12), defined by a PET-validated plasma p-tau217 cutoff
0.25 pg/mL or greater, had increased temporoparietal atrophy at baseline compared to
individuals with CBS-FTLD (n = 39), whereas longitudinally, individuals with CBS-FTLD had
faster brainstem atrophy rates. Individuals with CBS-FTLD also progressed more rapidly on a
modified version of the PSP Rating Scale than those with CBS-AD (mean [SD], 3.5 [0.5] vs 0.8
[0.8] points/year; P = .005).

CONCLUSIONS AND RELEVANCE In this cohort study, plasma p-tau217 had excellent diagnostic
performance for identifying Aβ or FTP PET positivity within CBS with likely underlying AD
pathology. Plasma P-tau217 may be a useful and inexpensive biomarker to select patients for
CBS clinical trials.
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T au protein accumulation is the neuropathological
hallmark of several neurodegenerative diseases
referred to as tauopathies.1 Four-repeat tauopathies

(4RT) are primary tauopathies defined by aggregation of tau
with 4 repeats of the microtubule binding region,2,3

whereas Alzheimer disease (AD) is a secondary tauopathy
associated with equal 3R/4R tau accumulation in the pres-
ence of amyloid β (Aβ).4 To our knowledge, no disease-
modifying therapies exist for patients with primary tauopa-
thies (a major unmet medical need),5 but lecanemab, an
amyloid-clearing antibody, has recently been proposed as a
disease-modifying therapy for early amnestic presentations
of Alzheimer disease (AD).6 Recent clinical trial data7 sug-
gest different tauopathies do not respond identically to
therapeutics, perhaps due to structural differences in tau
aggregates identified by cryoelectron microscopy.8 There-
fore, for clinical diagnosis, participant selection for clinical
trials of tau-directed therapies, and potentially future
access to pathology-targeted treatments, identifying the
precise underlying neuropathology is important during life.

Several clinical syndromes are classically associated
with underlying 4RT, including corticobasal syndrome
(CBS), progressive supranuclear palsy Richardson syndrome
(PSP-RS), and the nonfluent variant of primary progressive
aphasia (nfvPPA).9-13 However, the clinical utility of these
syndromes to accurately predict an underlying 4R tau pro-
teinopathy varies considerably.14 PSP-RS is essentially
pathognomonic for 4RT, which has facilitated clinical trials
of agents targeting abnormal tau in this population,5,7,15-17

and apraxia of speech in nfvPPA is strongly associated with
4R-tau pathology.18,19 CBS poses a greater diagnostic chal-
lenge due to heterogeneous underlying neuropathology.
Despite CBS being commonly associated with 4RT and fron-
totemporal lobar degeneration (CBS-FTLD), up to 40% of
clinically diagnosed CBS cases are associated with AD
pathology (CBS-AD) without the presence of FTLD.20,21 This
neuropathological heterogeneity has limited the predictive
value of the CBS diagnosis in isolation, which has hindered
research efforts, particularly clinical trials of disease-
modifying agents targeting neuropathology in CBS.

To improve etiologic prediction in CBS, new biomarkers
are needed, preferably ones that are readily available, inex-
pensive, and noninvasive. Despite technological advances
in neuroimaging and positron emission tomography (PET)
radiotracers,22,23 no 4RT-specific biomarkers, to our knowl-
edge, have yet achieved sufficient diagnostic accuracy to
merit clinical use,24 although a cerebrospinal fluid bio-
marker of the microtubule binding region is promising.25

For AD, both cerebrospinal fluid and PET biomarkers for Aβ
and tau are in use clinically, and these biomarkers have
been proposed to refine CBS diagnostic cohorts.10 However,
despite validation efforts showing excellent differentiation
between CBS-AD and CBS-FTLD,26 issues with cost, access,
and patient acceptance have limited their usefulness in
CBS clinical trials. Fortunately, several AD biomarkers have
been successfully translated into plasma-based assays,
including Aβ peptide ratios and tau phosphorylated at
various residues (including threonine181, threonine217, and

threonine231).27-29 Of these, phosphorylated tau217
(p-tau217) may have the best diagnostic accuracy for AD and
strongest correlation with Aβ and tau PET30-32 and therefore
may be useful in identifying AD as a primary etiology in
CBS.

In this study, plasma p-tau217 was validated against Aβ and
tau PET in the 3 most common 4RT syndromes—CBS, PSP-RS,
and nfvPPA—in a multicenter longitudinal observational study,
the 4R-tauopathy Neuroimaging Initiative (4RTNI). These data
were used to determine the optimal diagnostic cutoff for
plasma p-tau217 to detect Aβ PET positivity. Then, within CBS,
plasma p-tau217 was used to define diagnostic groups to ex-
amine differences in clinical and neuroimaging measures of
disease progression in patients with likely underlying AD
(CBS-AD) vs CBS-FTLD.

Methods
Study Design
This retrospective study included research participants
presenting between January 2011 and September 2020
at the University of California, San Francisco (UCSF), or at a
participating 4RTNI site, including the University of
Pennsylvania, Philadelphia; the University of Toronto,
Toronto, Ontario, Canada; the University of California,
San Diego; Massachusetts General Hospital, Boston; Johns
Hopkins University, Baltimore, Maryland; the Mayo Clinic,
Rochester, Minnesota; and Columbia University, New York,
New York. Follow-up was conducted at 6, 12, and 24
months. All available data for 4RTNI participants were que-
ried (n = 322), and participants with CBS (n = 113), PSP-RS
(n = 121), or nfvPPA (n = 39) were selected for inclusion. Par-
ticipants seen at the UCSF Alzheimer Disease Research
Center with typical amnestic AD syndrome and positive
amyloid PET results (by expert visual read) were included as
positive control individuals (n = 54), and cognitively normal
Aβ PET-negative control individuals from 4RTNI (n = 20)
were supplemented by inclusion of participants with Aβ
PET-negative results in the UCSF Longitudinal Brain Aging

Key Points
Question What is the clinical utility of plasma phosphorylated
tau217 (p-tau217) in individuals with corticobasal syndrome (CBS)?

Findings In this cohort study, plasma p-tau217 was elevated in
patients with CBS with positive results on amyloid or tau positron
emission tomography (PET), correlated with both biomarkers, and
had excellent diagnostic performance in predicting PET positivity.
Additionally, p-tau217 identified 2 cohorts within CBS with
different clinical characteristics and rates of disease progression,
consistent with different underlying etiologies.

Meaning The findings suggest that plasma p-tau217 accurately
differentiated individuals with underlying Alzheimer disease from
those with frontotemporal lobar degeneration among patients
with CBS, supporting its use as a diagnostic biomarker, including
for patient selection in clinical trials for CBS.
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Program (n = 39). CBS-AD and CBS-FTLD were defined in
later analyses by PET-validated plasma p-tau217 cutoff in
patients with CBS with plasma data (n = 83) and a subset
with longitudinal magnetic resonance imaging (MRI; n = 51).
Participants provided written informed consent at the time
of recruitment. The study was approved by the institutional
review board of each research site from which participants
were recruited. The study followed the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE)
reporting guideline.

Clinical Assessments
All participants underwent a standardized clinical evaluation
that included collection of demographic data, structured par-
ticipant or informant interview, functional assessment, neu-
rological examination, and neuropsychological testing. Blood
draw and neuroimaging were typically performed at the same
visit as clinical evaluation, and first available data were con-
sidered baseline. The primary clinical syndrome was deter-
mined based on available data at the time of clinical evalua-
tion by an experienced neurologist or panel of neurologists and
neuropsychologists, and followed established diagnostic
criteria.10-12

Fluid Biomarkers
Nonfasting blood samples were obtained by venipuncture and
processed for plasma following Alzheimer Disease
Neuroimaging Initiative protocol.33 The plasma p-tau217 as-
say was performed on the Meso Scale Discovery platform, as
reported previously.30 Operators were blinded to the cohort,
and assays were performed in duplicate on the same sample
aliquot and processed together in the same batch on a
streptavidin small spot plate. All available data were in-
cluded in the analyses.

Neuroimaging
MRI data were acquired from multiple centers and scanners;
acquisition and processing details are available in the
eMethods in Supplement 1. In voxel-based morphometry, a
general linear model was fit at each voxel using the Oxford
Centre for Functional MRI of the Brain (FMRIB) Software
Library version 6.0 (FSL), and all comparisons accounted for
age and total intracranial volume.34 Familywise error cor-
rection was performed using 5000 permutations and
threshold-free cluster enhancement.35 Voxel-based time tra-
jectories of gray and white matter atrophy were modeled
using hierarchical empirical bayesian linear mixed-effects
methods.36 Annualized atrophy rates were calculated
within each group. Atrophy rates were compared between
disease group and healthy control individuals after account-
ing for age and total intracranial volume. In supplemental
region of interest analyses, gray matter and white matter
volumes were summed in Desikan regions37 and grouped by
lobe or brainstem. Linear mixed-effect models were used to
determine baseline atrophy and annualized atrophy (region
of interest × time interaction). The models allowed random
intercepts at the individual level and were adjusted for age
and total intracranial volume.

For amyloid PET, positivity was defined by expert visual
read of PET acquired with carbon 11–labeled Pittsburgh
Compound B, [18F]florbetapir, or [18F]florbetaben tracers,
whereas quantitative analyses used Centiloids (CL) calcu-
lated using standard methods.38-40 Tau PET was acquired with
[18F]flortaucipir (FTP) tracer, and standardized uptake value
ratios (SUVR) were calculated from temporal structures using
inferior cerebellum as a reference, with SUVR greater than 1.27
defining positivity.41,42

Nonimaging Statistical Analysis
Statistical comparisons were performed with 1-way analysis
of variance with pairwise post hoc Bonferroni correction,
Pearson χ2 test, or Kruskal-Wallis with pairwise post hoc
Dunn test and Bonferroni correction when data were not
normally distributed. Correlations between biomarkers
were calculated using Pearson R. Receiver operating charac-
teristic (ROC) analyses determined diagnostic accuracy, and
areas under the curve (AUC) and confidence intervals were
computed from binary logistic regression. Cutoff values
were calculated using Youden indices to maximize sensitiv-
ity and specificity.43 Linear mixed-effect models were used
to evaluate differences in the rate of clinical measure
changes over time between clinical syndrome groups. The
model allowed random intercepts at the individual level and
were adjusted for age, sex, and education. Statistical analy-
ses were done using Stata version 17.0 (StataCorp), SPSS ver-
sion 28.0.1.0 (IBM), and R version 4.1.1 (R Foundation).

Results
Clinical Characteristics
Overall, cohorts were well matched on age, sex, and educa-
tion (Table). All neurodegenerative cohorts were at a com-
parable stage of disease severity as measured by duration
and Clinical Dementia Rating plus National Alzheimer
Coordinating Center FTLD scores.44 On the Schwab and
England Activities of Daily Living scale, a motor measure of
independence for basic function,45 individuals with PSP-RS
were the most dependent. On the PSP Rating Scale (PSPRS),
a severity scale for PSP-related symptomatology, individu-
als with PSP-RS and CBS had the highest values. A proposed
modific ation of the PSPRS (mPSPRS), foc using on
reproducible and clinically relevant PSP-related motor
symptomatology,46 differentiated the CBS and PSP-RS
cohorts. Individuals with AD had the lowest Montreal
Cognitive Assessment scores, and all individuals with 4RT
were impaired compared with control individuals. Lexical
and semantic fluency were lowest in individuals with
nfvPPA, and depressive symptomatology on the Geriatric
Depression Scale was higher in all neurodegenerative
cohorts than in the cognitively normal cohort.

Quantitative Comparison of AD Biomarkers
in 4RT Syndromes
Plasma p-tau217 concentration was highest in individuals
with AD compared to those in other cohorts. Those with
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CBS had more variable p-tau values than those with PSP-RS
or nfvPPA and higher p-tau217 than cognitively normal con-
trol individuals (Figure 1A; Table). In individuals with CBS,
p-tau217 was higher in those with positive Aβ or FTP PET
results (mean [SD] CBS-Aβ+, 0.57 [0.43] pg/mL; CBS-Aβ−,
0.14 [0.06] pg/mL; P < .001; CBS-FTP+, 0.75 [0.30] pg/mL;
CBS-FTP−, 0.14 [0.07] pg/mL; P < .001), whereas p-tau217
did not differ by PET status in individuals with PSP-RS
(mean [SD] PSP-Aβ+, 0.22 [0.07] pg/mL; PSP-Aβ−, 0.20

[0.15] pg/mL; P = .76; PSP-FTP+, 0.19 [0.09] pg/mL;
PSP-FTP−, 0.20 [0.15] pg/mL; P = .86) or nfvPPA (mean [SD]
nfvPPA-Aβ+, 0.16 [0.05] pg/mL; nfvPPA-Aβ−, 0.17 [0.10]
pg/mL; P = .75; nfvPPA-FTP+, 0.15 [0.03] pg/mL; nfvPPA-
FTP−, 0.17 [0.07] pg/mL; P = .68) (Figure 1B). Individuals
with PSP-RS and nfvPPA had a lower proportion of Aβ and
FTP PET positivity compared to those with CBS (Table).

Aβ PET CL values were higher in individuals with AD
compared to those in other cohorts (Figure 1C; Table).

Table. Baseline Clinical Characteristics

Characteristic

Mean (SD)

CN
(n = 59)

AD
(n = 54)

CBS
(n = 113)

PSP-RS
(n = 121)

nfvPPA
(n = 39)

CBS-AD
(n = 22)

CBS-FTLD
(n = 61)

Demographic characteristics

Age, y 67 (10) 65 (10)a 67 (8) 69 (7) 71 (6)b 66 (8) 69 (8)

Female, No. (%) 30 (51) 30 (56) 57 (50) 64 (53) 18 (46) 10 (45) 31 (51)

Male, No. (%) 29 (49) 24 (44) 56 (50) 57 (47) 21 (54) 12 (55) 30 (49)

Education, y 18 (2)a,b,c,d 16 (4)e 16 (4)e 15 (4)e 15 (4)e 17 (3) 16 (4)

Race and ethnicityf

Asian 2 (4) 2 (4) 8 (8) 6 (6) 2 (5) 0 (0) 6 (10)

Black 1 (2) 2 (4) 4 (4) 2 (2) 0 (0) 0 (0) 1 (2)

Hispanic 0 (0) 0 (0) 0 (0) 3 (3) 0 (0) 0 (0) 1 (2)

Native American 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0)

White, No. (%) 53 (94) 41 (91) 91 (88) 97 (90) 35 (95) 21 (95) 50 (86)

Clinical measures

Disease duration, y NA 5.6 (2.3) 4.8 (3.1) 5.4 (3.2) 4.4 (2.8) 4.7 (2.9) 4.9 (3.3)

CDR + NACC FTLD, global 0.0 (0.1)a,b,c,d 1.0 (0.4)e 0.9 (0.6)e 1.2 (0.7)e 1.1 (0.7)e 1.0 (0.5) 0.9 (0.5)

CDR + NACC FTLD, box score 0 (0)a,b,c,d 6 (3)e 4 (4)d,e 6 (3)c,e 5 (5)e 5 (3) 4 (3)

SEADL 100 (0)a,c,d 65 (21) 61 (24)e 55 (26)a,e 71 (22)d,e 61 (23) 62 (26)

PSP-RS 1 (2)c,d NA 25 (12)a,e 33 (15)a,e 11 (9)c,d 19 (10)g 28 (12)g

mPSPRS 0.2 (0.6)c,d NA 3.5 (3.2)a,d,e 7.7 (5.1)a,c,e 1.0 (1.2)c,d 2.3 (2.4) 3.9 (3.3)

MoCA 28 (2)a,b,c,d 17 (6)a,c,d,e 22 (6)b,e 22 (4)b,e 22 (6)b,e 21 (5) 22 (6)

D-Wordsh 16 (5)a,b,c,d 10 (6)a,c,d,e 8 (4)a,b,e 7 (4)b,e 5 (3)b,c,e 11 (5)g 8 (4)g

Animalsi 23 (6)a,b,c,d 12 (6)e 13 (6)d,e 11 (5)c,e 10 (6)e 14 (7) 13 (6)

GDS-15 1 (1)a,b,c,d 3 (2)c,d,e 4 (3)b,e 6 (4)b,e 4 (4)e 5 (3) 4 (4)

AD biomarkers

P-tau217, pg/mL 0.12 (0.05)b,c 0.72 (0.37)a,c,d,e 0.29 (0.33)b,e 0.19 (0.16)b 0.18 (0.11)b 0.72 (0.38)g 0.13 (0.05)g

Aβ PET, CL 7 (12)b 97 (32)a,c,d,e 28 (46)b 13 (18)b 7 (13)b 85 (48)g 4 (13)g

Tau PET, temporal SUVR 1.13 (0.06)b 2.05 (0.44)a,c,d,e 1.34 (0.40)b,d 1.12 (0.09)b,c 1.15 (0.08)b 1.81 (0.53)g 1.15 (0.09)g

Aβ+ PET, No./total No.
(% positive)

0/59 (0) 54/54 (100) 23/65 (35) 7/41 (17) 6/32 (19) 15/16 (94) 5/40 (13)

Tau+ PET, No./total No.
(% positive)

0/18 (0) 50/50 (100) 14/50 (28) 3/41 (7) 4/30 (13) 9/12 (75) 2/26 (7)

Abbreviations: Aβ, amyloid-β; AD, Alzheimer disease; CBS, corticobasal
syndrome; CDR, clinical dementia rating scale; CL, Centiloid; CN, cognitively
normal; FTLD, frontotemporal lobar degeneration; GDS, Geriatric Dementia
Scale; MoCA, Montreal Cognitive Assessment; mPSPRS, modified Progressive
Supranuclear Palsy Rating Scale; NA, not applicable; NACC, National Alzheimer
Coordinating Center; nfvPPA, nonfluent variant of primary progressive aphasia;
p-tau, phosphorylated tau; PET, positron emission tomography; PSP-RS,
progressive supranuclear palsy Richardson syndrome; SEADL, Schwab and
England Activities of Daily Living; SUVR, standardized uptake value ratios.
a Significant at P < .05 vs CN.
b Significant at P < .05 vs AD.
c Significant at P < .05 vs CBS.
d Significant at P < .05 vs PSP-RS.

e Significant at P < .05 vs nfvPPA.
f Race and ethnicity data were self-reported by study participants. At the

University of California San Francisco Health, race, ethnic group, and ethnicity
data are collected from patients using the We Ask Because We Care form.
Reporting race and ethnicity in this study was mandated by the National
Institutes of Health, consistent with the inclusion of women, minorities, and
children policy. Race and ethnicity were collected to assess equity in
participation and generalizability of results.

g Significant at P < .05 (CBS-AD vs CBS-FTLD).
h D words named in 1 minute as a test of lexical generative fluency.
i Animals named in 1 minute as a test of semantic fluency.
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Individuals with CBS with positive Aβ or FTP PET results
had CL values comparable to those with AD (mean [SD] CBS-
Aβ+, 75 [49] CL; CBS-Aβ−, 1 [11] CL; P < .001; CBS-FTP+, 81
[50] CL; CBS-FTP−, 4 [15] CL; P < .001) (Figure 1D), whereas
individuals with PSP-RS with visually positive Aβ PET

results showed only marginal CL increases relative to indi-
viduals with PSP-RS with negative PET results (mean [SD]
PSP-Aβ+, 37 [16] CL; PSP-Aβ−, 8 [14] CL; P < .001), and no
difference was seen for individuals with nfvPPA (mean [SD]
nfvPPA-Aβ+, 13 [8] CL; nfvPPA-Aβ−, 6 [14] CL; P = .24). FTP

Figure 1. Plasma Phosphorylated Tau217 (P-Tau217) and Positron Emission Tomography (PET) Biomarkers in 4-Repeat (4R)-Tau Syndromes
Compared to Alzheimer Disease (AD) and Cognitively Normal (CN) Cohorts
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a Significant at P < .05.
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temporal SUVR values were elevated in individuals with AD
compared to other cohorts (Figure 1E; Table), and in those
with CBS-Aβ PET positive results (mean [SD] SUVR, 1.68
[0.51]) compared to those with CBS-Aβ PET negative results
(mean [SD] SUVR, 1.15 [0.09]; P < .001) (Figure 1F).

Validation of Plasma P-Tau217 Cutoff for AD PET Biomarkers
Plasma p-tau217 was correlated with both Aβ PET CL
(R, 0.72; P < .001) (Figure 2A) and FTP PET temporal SUVR
(R, 0.82; P < .001) (Figure 2D). Among all participants,
p-tau217 accurately predicted expert visual read of Aβ PET
(AUC, 0.92; 95% CI, 0.88-0.96; P < .001) (Figure 2B and C),
with an optimal cutoff by Youden Index of 0.25 pg/mL.
P-tau217 also accurately predicted temporal SUVR-defined
FTP PET positivity (AUC, 0.93; 95% CI, 0.88-0.97; P < .001)
(Figure 2E and F), with a slightly higher cutoff of 0.27
pg/mL. Within CBS (eFigure 1 in Supplement 1), plasma
p-tau217 accurately predicted Aβ and FTP PET positivity
(AUC Aβ PET, 0.87; 95% CI, 0.76-0.98; P < .001 vs AUC FTP

PET, 0.93; 95% CI, 0.83-1.00; P < .001), but was less accu-
rate in PSP-RS (AUC Aβ PET, 0.69; 95% CI, 0.41-0.97; P = .29
vs AUC FTP PET, 0.63; 95% CI, 0.23-1.00; P = .56) and
nfvPPA (AUC Aβ PET, 0.50; 95% CI, 0.28-0.72; P > .99 vs
AUC FTP PET, 0.45; 95% CI, 0.21-0.69; P = .78). This differ-
ence in predictive ability is consistent with quantitative
analyses showing only borderline elevation in PET-positive
cases of PSP-RS and nfvPPA (Figure 1D and F).

Comparison of CBS-AD and CBS-FTLD Defined
by Plasma P-Tau217 Concentration
The optimal plasma p-tau217 diagnostic threshold (≥0.25
pg/mL) was used to define CBS-AD and CBS-FTLD in subse-
quent analyses. At baseline, cross-sectional comparison of
these cohorts showed that individuals with CBS-FTLD were
more severely impaired on the PSPRS and had lower lexical
fluency compared to those with CBS-AD, with no differ-
ences on other clinical measures (Table). In the combined
CBS cohort, baseline and longitudinal patterns of regional

Figure 2. Quantitative Comparison of Plasma Phosphorylated Tau217 (P-Tau217) and Alzheimer Disease (AD) Positron Emission Tomography (PET)
Biomarkers and Prediction of PET Positivity
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atrophy aligned with prior studies (Figure 3A),47 with quan-
titative region of interest analyses confirming lower base-
line volume and increased rates of atrophy in the midbrain
and pons in individuals with CBS compared to control indi-
viduals and those with AD (eTable 1 in Supplement 1). Base-
line voxel-based morphometry analysis comparing indi-
viduals with CBS-AD and CBS-FTLD to control individuals
showed similar patterns of atrophy overall, with increased
posterior cortical atrophy in those with CBS-AD (Figure 3B).
Subsequent quantitative region of interest analysis con-
firmed reduced temporal and parietal lobe volume in indi-
viduals with CBS-AD compared to those with CBS-FTLD
(eTables 2 and 3 in Supplement 1), especially in the precu-
neus, consistent with prior work.47 Longitudinal bayesian
linear mixed-effects analyses within CBS revealed differ-
ences in the patterns of volume loss between individuals
with CBS-AD and CBS-FTLD (Figure 3B); these were most
pronounced in brainstem region of interest analyses, where
annual atrophy rates in the midbrain and pons were 1.5 to 2

times higher in individuals with CBS-FTLD than in those
with CBS-AD (eTables 2 and 3 in Supplement 1).

Due to the correlation between disease progression
measured on the PSPRS and brainstem atrophy (R, −0.53;
n = 347; P < .001), clinical correlations to the imaging find-
ings within CBS were explored using PSPRS. Baseline PSPRS
was higher in individuals with CBS-FTLD than in those with
CBS-AD (Table), but no differences were seen in rates of pro-
gression longitudinally (Figure 4A and B; eTable 4 in
Supplement 1). However, when looking at individual PSPRS
domains, which include cognitive and motor subscales,
CBS-FTLD progressed faster in the Gait domain (eFigure 2
and eTable 4 in Supplement 1). Interestingly, longitudinal
disease progression measured by the mPSPRS, which is
focused on PSP-related motor phenomenology, revealed
faster progression for individuals with CBS-FTLD compared
to those with CBS-AD (Figure 4C and D). No other statisti-
cally significant differences were found on other longitudi-
nal clinical measures (eTable 4 in Supplement 1).

Figure 3. Baseline and Longitudinal Atrophy in 4-Repeat (4R)-Tau Syndromes

Map of atrophy of those with 4R-tau syndromes vs control individualsA

Map of atrophy in individuals with CBS-AD and CBS-FTLD vs control individualsB
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A, Left panel shows voxel-based
morphometry; right panel, bayesian
linear mixed effects. B, Left panel
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longitudinal data. All analyses
corrected for age and total
intracranial volume. AD indicates
Alzheimer disease; CBS, corticobasal
syndrome; GM, gray matter; FTLD,
frontotemporal lobar degeneration;
nfvPPA, nonfluent primary
progressive aphasia; PSP-RS,
progressive supranuclear palsy
Richardson syndrome; WM, white
matter.
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Discussion

In this multicenter longitudinal cohort study, we explored
the clinical utility of plasma p-tau217 for detecting AD in
individuals with CBS and found plasma p-tau217 was
elevated in patients with CBS with positive amyloid or tau
PET results and showed excellent diagnostic performance
for identifying PET positivity in this cohort. Comparatively,
as we have reported previously,30 individuals with PSP-RS
and nfvPPA showed minimal to no increase in plasma
p-tau217, which had less diagnostic utility in these syn-
dromes likely because AD is typically only seen as an inci-
dental copathology, not as primary neuropathology. Using
ROC analyses of plasma p-tau217 that showed excellent pre-
diction of Aβ PET positivity within CBS, we derived an opti-
mal cutoff of 0.25 pg/mL to define a diagnostic threshold for
CBS-AD vs CBS-FTLD, a cutoff that was reassuringly identi-
cal to prior community-based validation studies.48 Using
this p-tau217 cutoff, we found interrelated differences in

clinical and neuroimaging characteristics in CBS-AD and
CBS-FTLD, such as faster rates of progression on both the
mPSPRS and PSPRS Gait subscale and more prominent lon-
gitudinal brainstem atrophy in CBS-FTLD, consistent with
our expectations from different protein etiologies.20,21

This study was motivated by the need to find new
therapies for CBS, as to date only a handful of clinical trials
have been conducted in this population. A key challenge for
CBS clinical trial development has been the underlying neu-
ropathological heterogeneity, leading to variability in rates
of disease progression and uncertainty about which thera-
pies should be selected for investigation. Differentiating
CBS-AD from CBS-FTLD would reduce clinical and neuro-
pathological heterogeneity in tau-directed therapeutic
trials, as initially proposed in the CBD criteria.10 Prior clini-
cal trials enrolling individuals with CBS have used Aβ PET or
cerebrospinal fluid for this purpose, but this approach has
significant study costs and has prevented participation of
centers who lacked access to PET as well as enrollment of
participants unwilling to undergo lumbar puncture.7,49

Figure 4. Clinical Trajectories Within 4-Repeat (4R)-Tau Syndromes
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The study findings support plasma p-tau217 as a promis-
ing alternative to PET and cerebrospinal fluid to detect AD in
CBS clinical trials. Specifically, plasma p-tau217 could stratify
CBS into CBS-AD and CBS-FTLD to balance treatment arms and
evaluate differential treatment response in tau-directed bas-
ket trials. Alternatively, one could use plasma p-tau217 to screen
for AD as an inclusion criterion to increase diagnostic preci-
sion and decrease cost barriers in clinical trials for CBS-AD, per-
haps targeting the underlying AD neuropathology. These con-
texts of use are especially important as we found neuroimaging
and clinical differences between individuals with CBS-AD and
those with CBS-FTLD both at baseline and longitudinally, with
individuals with CBS-AD showing more temporoparietal at-
rophy at baseline and those with CBS-FTLD having more mid-
brain and pons atrophy longitudinally. Importantly, these neu-
roimaging changes correlated with clinical changes measured
by the PSPRS, suggesting that the MRI-measured atrophy re-
flects clinically meaningful end points.50 These differing clini-
cal trajectories could potentially be used to increase diagnos-
tic and prognostic confidence in clinical practice as well as to
better assess therapeutic efficacy in CBS clinical trials.

In individuals with PSP-RS and nfvPPA, AD is exceed-
ingly rare as the primary neuropathological etiology, but may
be present as a copathology in older individuals.51,52 Here, we
provide quantitative support, as individuals with PSP-RS and
nfvPPA had AD biomarker levels similar to age-matched, cog-
nitively-normal, Aβ-negative control individuals. This was true
even in cases with a positive Aβ PET results by visual read,
where quantitative measures of AD biomarkers were low or bor-
derline compared to Aβ-positive control individuals with AD.
These findings suggest that in individuals with PSP-RS and
nfvPPA, binary determination of positivity using AD biomark-
ers may lead to incorrect assumptions about the driving eti-
ology, whereas quantitative approaches may help detect AD
copathology and evaluate the contribution of this copathol-
ogy to the clinical picture. This also highlights the impor-
tance of diagnosing the clinical syndrome prior to indiscrimi-
nate application of AD biomarkers, as clinical utility differed

even between these interrelated neurodegenerative syn-
dromes. Better biomarkers, such as those specific for 4RT,
would enable more precise etiological classification in the
future.

Limitations
Our current study has limitations, including unequal diagnos-
tic groups, reliance on PET to define AD, and the lack of a rep-
lication cohort. Planned future work will address this gap to
validate p-tau217 against autopsy to determine precise con-
texts of use within 4RT-associated syndromes. Only plasma
p-tau217 was included in this study, given the similarity in per-
formance to other phosphorylated isoforms, such as p-tau181,29

but isoforms like p-tau231 may have different utility for the
milder range of the AD spectrum.53 Additionally, inclusion of
other plasma biomarkers, such as Aβ ratios,28 neurofilament
light chain,32 and glial fibrillary acidic protein,54 may have roles
in prognostic stratification or as exploratory outcomes in clini-
cal trials, and future studies should explore the added value
of these biomarkers. Additionally, AD as copathology in 4RT
is of uncertain clinical significance, so plasma p-tau217 could
be used as a research tool to explore the impact of AD copa-
thology in PSP-RS and nfvPPA.

Conclusions
In this study of individuals with CBS, 1 of the major 4R-tau syn-
dromes, plasma p-tau217 was correlated with both Aβ PET CL
and FTP temporal SUVR and accurately predicted both clini-
cally defined Aβ and FTP PET positivity. These findings sup-
port the use of plasma p-tau217 as an inexpensive tool in fu-
ture CBS clinical trials to stratify patients into CBS-AD and CBS-
FTLD groups, to improve power to detect treatment effects,
or to define populations who may be more responsive to a par-
ticular therapeutic modality. Plasma p-tau217 could also be
helpful in clinical practice to better estimate CBS rate of dis-
ease progression.
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