#### **UC Davis**

**Orthopaedic Surgery** 

#### Title

Metaphyseal Clamshell Osteotomy for Long Bone Deformity

#### Permalink

https://escholarship.org/uc/item/36r1m3pg

#### Authors

Bravin, Daniel A. Rice, Makenna L. Lee, Mark A.

#### **Publication Date**

2020

#### **Data Availability**

The data associated with this publication are not available for this reason: N/A

# Metaphyseal Clamshell Osteotomy for Long Bone Deformity

## UCDAVIS HEALTH

## INTRODUCTION

- Metaphyseal malunions and nonunions of the lower extremity pose a challenge in the setting of complex, multiplanar deformity and poor bone quality
- Optimal treatment corrects all parameters of deformity and provides stable fixation for early weight bearing and rehabilitation
- Current options for correction include single and double cut osteotomies stabilized with plate fixation, or gradual correction with fine wire circular fixation
- Both classic osteotomies and fine wire • circular frames have significant limitations
- The clamshell osteotomy was developed to simplify the correction of tibial and femoral diaphyseal malunions and nonunions, but had not been studied for use in metaphyseal and meta-diaphyseal deformities

### **OBJECTIVES**

- Is the clamshell osteotomy a valid option for treating complex metaphyseal and meta-diaphyseal deformities?
- What are the union rates and complications from metaphyseal and meta-diaphyseal clamshell osteotomies?

RESEARCH POSTER PRESENTATION DESIGN © 2012 WWW.PosterPresentations.com

## **METHODS**

- Retrospective chart review from January 2010 – December 2018 Inclusion criteria:
  - Metaphyseal and meta-diaphyseal deformity of tibia or femur
  - Clamshell osteotomy performed at UCD
  - iii. Age > 18 years old

Exclusion criteria:

- Follow up < 4 months
- 16 patients met inclusion and exclusion criteria
- Radiographic union assessed using modified RUST (mRUST) score





Figure 1. Depiction of malunion to be corrected

Figure 2. Osteotomized clamshell segment with IMN



Figure 3. Once the deformed segment is transected, the osteotomized segment is wedged open like a clamshell

## Daniel A Bravin MD<sup>1</sup>, Makenna L Rice<sup>2</sup>, Mark A Lee MD<sup>1</sup>

<sup>1</sup>Department of Orthopaedic Surgery, University of California, Davis <sup>2</sup>University of California, Davis School of Medicine

## **RESULTS**

- 13/16 (81.25%) patients achieved radiographic union\* (range 3-27 months, average 10 months)
  - 11/16 (68.75%) patients achieved union after initial procedure (range 3-13 months, average 8 months)
- 4/16 (25%) patients required revision surgery
  - 2/4 patients went on to union
- 7 patients had wound issues, 3 requiring surgical debridement
- 2 patients had a pulmonary embolus, 1 had a GI bleed

| Patient<br>ID | Varus | Valgus | Flexion | Extension | Reason  | Location | Mos. to<br>Union |
|---------------|-------|--------|---------|-----------|---------|----------|------------------|
| 1             | 15    |        | 21      |           | Mal     | Femur    | 8                |
| 2             |       | 12     |         | 5         | Non     | Femur    | 12               |
| 3             | 16    |        |         | 12        | Mal     | Tibia    | 11               |
| 5             | 61    |        | 31      |           | Mal     | Tibia    | 27**             |
| 6             |       | 16     |         | 15        | Mal     | Tibia    | 13               |
| 7             |       | 15     | 20      |           | Mal     | Tibia    | 10**             |
| 8             | 31    |        | 40      |           | Non     | Tibia    | * * *            |
| 9             | 14    |        |         | 8         | Non     | Femur    | 7                |
| 10            |       | 13     |         | 19        | Non     | Tibia    | 11               |
| 11            |       | 14     |         | 40        | Mal     | Tibia    | * *              |
| 12            | 12    |        |         |           | Non     | Tibia    | * *              |
| 13            |       | 22     | 10      |           | Mal     | Tibia    | 10               |
| 14            |       | 33     |         | 6         | Non     | Tibia    | 8                |
| 15            |       | 12     |         |           | Mal     | Tibia    | 4                |
| 17            |       | 36     | 8       |           | Mal     | Tibia    | 3                |
| 18            |       | 15     | 13      |           | Genetic | Tibia    | 5                |

Table 1. Summary of preoperative deformity, indication for procedure and time (months) to union

\*Union defined as mRUST score > 12

- \*\* Underwent second procedure (exchange IMN)
- \*\*\* Declined second procedure, lost to follow up prior to union

- diaphyseal deformities
- atraumatic technique
- graft



(center) and healed (right) radiographs

## ACKNOWLEDGEMENTS

Thank you to Dr. Mark Lee and Dr. Daniel Bravin for your excellent guidance and mentorship, and to UCDSOM and the Medical Student Research Fellowship for the opportunity and funding.

## Department of Orthopaedic Surgery

### CONCLUSIONS

• Clamshell osteotomy is a valid option for treating complex metaphyseal and meta-

• An acceptable union rate can be seen using modern nail designs and

• Advantages include early weight bearing, acute correction, and use of local bone

• Union times can be long, complications are not uncommon, and some patients will require secondary procedures

Figure 4. Preoperative (left), immediately postoperative

### REFERENCES

• Russell, et al. The clamshell osteotomy: a new technique to correct complex diaphyseal malunions. J Bone Joint Surg Am. 2009;91:314–324.

Litrenta, et al. Determination of Radiographic Healing: An Assessment of Consistency Using RUST and Modified RUST in Metadiaphyseal Fractures. Journal of Orthopaedic Trauma 29.11 (2015): 516-20.

Johnson. Multiplane Correctional Osteotomy of the Tibia for Diaphyseal Malunion. Clinical Orthopaedics and Related Research (1987): 223-32.