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ABSTRACT
Cross-correlations between the lensing of the cosmic microwave background (CMB) and other
tracers of large-scale structure provide a unique way to reconstruct the growth of dark matter,
break degeneracies between cosmology and galaxy physics, and test theories of modified grav-
ity. We detect a cross-correlation between DESI-like luminous red galaxies (LRGs) selected
from DECaLS imaging and CMB lensing maps reconstructed with the Planck satellite at a
significance of 𝑆/𝑁 = 27.2 over scales ℓmin = 30, ℓmax = 1000. To correct for magnification
bias, we determine the slope of the LRG cumulative magnitude function at the faint limit
as 𝑠 = 0.999 ± 0.015, and find corresponding corrections on the order of a few percent for
𝐶

^𝑔

ℓ
, 𝐶

𝑔𝑔

ℓ
across the scales of interest. We fit the large-scale galaxy bias at the effective red-

shift of the cross-correlation 𝑧eff ≈ 0.68 using two different bias evolution agnostic models:
a HaloFit times linear bias model where the bias evolution is folded into the clustering-based
estimation of the redshift kernel, and a Lagrangian perturbation theory model of the clustering
evaluated at 𝑧eff . We also determine the error on the bias from uncertainty in the redshift
distribution; within this error, the two methods show excellent agreement with each other and
with DESI survey expectations.

Key words: large-scale structure of Universe, cosmic background radiation

1 INTRODUCTION

Modern cosmology hinges on observations of the large-scale struc-
ture of the Universe, which is rich with clues about gravity, dark
energy, and the mechanisms of cosmic expansion. Next-generation
galaxy surveys, including spectroscopic experiments such as the
Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration
et al. 2016) and deep imaging experiments such as the Large Syn-
optic Survey Telescope (LSST, LSST Science Collaboration et al.
2009), will map billions of galaxies in the coming decade and
tighten constraints on key fundamental parameters. While spectro-
scopic redshifts can be obtained for some subset of imaged galaxies,
the majority will increasingly rely on photometric redshift esti-
mates (see e.g. Hogg et al. 1998 and references contained therein)
or clustering-based redshift estimates (see e.g. Newman 2008 and
references contained therein), enabling higher number density but
noisier catalogs of galaxy positions.

Measurements of the cosmic microwave background (CMB)
provide another window into the growth of large-scale structure, due
to the lensing of the CMB photons as they free-stream through the
Universe and are deflected (on the order of a few arcminutes) by the
gravitational potentials of matter in their path. In the weak regime,
gravitational lensing remaps the CMB temperature and polarization

primary anisotropies in predictable ways that can be exploited to
reconstruct high resolution maps of the projected matter density over
the past 13 billion years (Zaldarriaga & Seljak 1999, Hu & Okamoto
2002, Lewis & Challinor 2006). Detections of this mass lensing
signal from the CMB have been made in a number of ways, including
cross-correlations with other tracers of large-scale structure (see e.g.
Planck Collaboration et al. 2020a; Omori et al. 2019 for recent lists;
also Krolewski et al. 2019).

CMB lensing offers the advantage of directly probing the un-
derlying distribution of dark matter, but suffers from information
loss since it is a two-dimensional projection of the three-dimensional
matter density integrated along the line of sight from the surface
of last scattering 𝑧 ≈ 1100 to the present day. In contrast, galaxy
samples with narrow redshift windows are relatively well localized
in position but are biased tracers of dark matter due to the complex
processes involved in galaxy formation. This leads to degeneracies
between these galaxy bias parameters and cosmological parame-
ters of interest such as 𝜎8 – with recent surveys reporting a range of
different inferences about the clustering amplitude (e.g. Planck Col-
laboration et al. 2020b; Troxel et al. 2018; Hikage et al. 2019; Tröster
et al. 2020; Philcox et al. 2020; eBOSS Collaboration et al. 2020,
and references therein). Cross-correlations between CMB lensing
and galaxy catalogs thus provide a means to chart the growth of dark
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matter with time and break the degeneracy between galaxy physics
and cosmology. Additionally, on a practical level, systematics in
the galaxy sample are unlikely to be correlated to systematics in
the CMB lensing maps, and a higher degree of uncertainty in the
galaxy redshift distribution can also be tolerated due to the broad
redshift kernel of the CMB lensing.

In this work, we leverage the high number density and com-
pleteness of the luminous red galaxy (LRG) target class as defined
by DESI and selected from deep multi-band imaging, in combi-
nation with the all-sky CMB lensing convergence maps of the
Planck collaboration (Planck Collaboration et al. 2020c), to de-
tect a galaxy-matter cross-correlation at high significance out to
small scales, ℓmax = 1000. We jointly model the angular auto-
and cross- spectra to probe the amplitude and evolution of the
galaxy bias. In the absence of spectroscopic redshifts, we use a
combination of photometric and clustering-based estimations of
the galaxy redshift distribution. Within a simple linear bias model
𝑃gg (𝑘, 𝑧) ≈ 𝑏g (𝑧)2𝑃mm (𝑘, 𝑧), the advantage of the clustering-
based method is that it allows us to measure an effective bias without
assuming a bias evolution model. By comparing the results using
photometric versus clustering redshift distributions, we also evalu-
ate the impact of the uncertainty in the redshift distribution on the
inferred parameters.

This paper is organized as follows: Section 2 describes the
lensing products and imaging data, and outlines the construction
of the DESI-like LRG catalog. In Section 3, we characterize the
redshift distribution of the galaxy sample based on angular cross-
correlations with external spectroscopic catalogs, and present a
framework for probing bias evolution using these results. Section 4
outlines our methods for measuring and modelling angular power
spectra and covariances on a partial sky. Section 5 is devoted to de-
termining and applying corrections for the effects of magnification
bias. In Section 6, we present and model the resulting spectra, with
Section 6.1 fitting the linear Eulerian galaxy bias under the HaloFit
(Smith et al. 2003) prescription while Section 6.2 interprets the re-
sults within a Lagrangian perturbation theory framework. Finally, in
Section 7, we summarize our findings and suggest future directions.

Throughout, we work in co-moving coordinates and assume the
fiducial cosmology of the Planck 2018 results (Planck Collaboration
et al. 2020b, Table 2, Column 7). All magnitudes are quoted as AB
magnitudes, unless otherwise specified.

2 DATA

2.1 Planck CMB lensing maps

Using the most recent reconstructed lensing convergence maps and
analysis masks provided in the Planck 2018 release1 (Planck Col-
laboration et al. 2020c), we focus mainly on the baseline estimates
obtained from the SMICA DX12 CMB maps with a minimum-
variance (MV) estimate determined from both the temperature and
polarization maps. To gauge the impact of the thermal Sunyaev-
Zeldovich (tSZ) effect, which has been shown to bias the lensing
reconstruction and contaminate cross-correlations with other tracers
of large-scale structure (see e.g. Osborne et al. 2014; van Engelen
et al. 2014; Madhavacheril & Hill 2018; Schaan & Ferraro 2019),
we also repeat the analysis using the lensing estimate obtained from
a temperature-only SMICA map where tSZ has been deprojected

1 https://wiki.cosmos.esa.int/planck-legacy-archive

using multifrequency component separation. Throughout the re-
mainder of this paper, these two lensing maps will be referred to as
BASE and DEPROJ, respectively.

The spherical harmonic coefficients of the reconstructed lens-
ing convergence maps are provided in HEALPix2 (Górski et al.
2005) format with maximum order ℓmax = 4096, and the associ-
ated analysis masks are given as HEALPix maps with resolution
𝑁SIDE = 2048. The approximate lensing noise power spectrum for
the fiducial cosmology used in Planck Collaboration et al. (2020c) is
also provided up to ℓmax = 4096. To minimize information loss, we
use the resolution of the Planck mask, 𝑁SIDE = 2048, as the resolu-
tion for our analysis. We consider the full lensing harmonics up to
ℓmax = 4096 and do not encounter any numerical issues associated
with the noise spike at high ℓ, which may become more significant
when attempting to downgrade the map to lower resolution while
there is significant power at the pixel level.

2.2 Photometric DESI LRGs

The Dark Energy Spectroscopic Instrument (DESI; DESI Collab-
oration et al. 2016) is an upcoming Stage IV3 dark energy experi-
ment, installed on the Mayall 4m telescope at Kitt Peak. DESI aims
to produce the largest ever three-dimensional map of the universe,
with a massively multiplexed spectrograph that uses robotic fiber
positioners to measure as many as 5000 spectra in parallel. Among
the four main classes targeted by DESI are luminous red galaxies
(LRGs) out to 𝑧 ≈ 1. LRGs, as their name suggests, are luminous
and intrinsically red due to their high stellar mass and lack of recent
star formation activity. LRGs are excellent tracers of large-scale
structure; as early-type galaxies with generally old populations of
stars, they are expected to reside in massive halos and therefore clus-
ter strongly. Furthermore, their inherent brightness and the strong
4000Å feature in their spectral energy distributions enable the effi-
cient selection of a homogeneous sample using photometry.

2.2.1 DECaLS imaging data

The DECam Legacy Survey (DECaLS) is a deep, wide-field sur-
vey providing the optical imaging used to conduct targeting for
approximately two-thirds of the DESI footprint, covering the region
bounded by 𝛿 . 32◦. Through the DECam instrument (Flaugher
et al. 2015) on the Blanco 4m telescope, DECaLS observes in three
optical and near-IR bands (𝑔, 𝑟, 𝑧), with four additional mid-IR bands
(𝑊1, 𝑊2, 𝑊3, 𝑊4) provided by the Wide-field Infrared Survey Ex-
plorer (WISE; Wright et al. 2010). DECam images are processed
and calibrated though the National Optical Astronomy Observatory
(NOAO) Community Pipeline, then fed into The Tractor4 (Lang
et al. 2016), which uses forward-modeling to perform source ex-
traction and produce probabilistic inference of source properties.

Our analysis is based on Data Release 8 (DR8), the latest data
release of the Legacy Survey (Dey et al. 2018), which contains DE-
CaLS observations from August 2014 through March 2019 (NOAO
survey program 0404). DR8 also includes some non-DECaLS obser-
vations from the DECam instrument, mainly from the Dark Energy
Survey (DES; DES Collaboration et al. 2005). In total, the DECaLS
+DES portion of DR8 covers approximately 14,996 square degrees
in the 𝑔-band, 15,015 square degrees in the 𝑟-band, 15,130 square

2 http://healpix.sf.net
3 As defined in the Dark Energy Task Force report (Albrecht et al. 2006).
4 https://github.com/dstndstn/tractor
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Figure 1. Color-color plots of the LRG target selection in DECaLS DR8,
with the color bar representing the total number of targets.

degrees in the 𝑧-band, and 14,781 square degrees in all three optical
bands jointly.5

2.2.2 Galaxy selection

DESI LRGs are selected from DECaLS by applying a complex
series of color cuts on extinction-corrected magnitudes in 𝑔, 𝑟, 𝑧,
and 𝑊1 bands:

𝑧fiber < 21.5
𝑟 − 𝑧 > 0.7

(𝑧 −𝑊1) > 0.8 (𝑟 − 𝑧) − 0.6
((𝑔 −𝑊1 > 2.6) AND (𝑔 − 𝑟 >1.4)) OR (𝑟 −𝑊1 > 1.8)
(𝑟 − 𝑧 > (𝑧 − 16.83) 0.45) AND (𝑟 − 𝑧 > (𝑧 − 13.80) 0.19)

(1)

We note that the faint magnitude limit uses fiber flux, which is
defined as the flux within a 1.5 arcsec diameter circular aperture
centered on the model convolved with a 1.0 arcsec FWHM Gaussian.
Color-color plots of the resulting sample are displayed in Figure 1.

2.2.3 Masks

Instrument effects and transients create artifacts in the images which
may impact the detection or fitting of sources. Additionally, bright
foregrounds, including point sources such as stars and extended
sources such as large galaxies, globular clusters, and planetary neb-
ulae, can contaminate the pixels around them with false targets,
thereby affecting the apparent angular distribution of the target sam-
ple. DR8 provides bitmasks which leverage the NOAO Community
Pipeline’s data quality map, as well as several external catalogs, to

5 Estimated from using randoms distributed uniformly across the footprint
to sum up the areas with at least one exposure in each band.

reject bad pixels and mask around foregrounds. The bits we use in
our analysis are summarized in Table 1 and briefly described below:

The ALLMASK_X bits are set for pixels that touch a bad pixel (as
flagged by the NOAO Community Pipeline) in all of the overlapping
𝑋-band images. The WISEM1 and WISEM2 bits are set for pixels that
touch a pixel in a mask around bright stars from the WISE catalog,
with the two masks using the 𝑊1 and 𝑊2 bands, respectively. The
MEDIUM bit is set for pixels that touch a pixel containing a medium-
bright (phot_g_mean_mag < 16) star from the Gaia DR2 catalog
(Gaia Collaboration et al. 2018) or a bright (𝑉𝑇 < 13) star from
the Tycho-2 catalog (Høg et al. 2000). The GALAXY bit is set for
pixels that touch a pixel containing a large galaxy, where the source
catalog used for this mask is taken from John Moustakas’ Legacy
Survey Large Galaxy Atlas6 work with Dustin Lang. Finally, clusters
and nebulae from OpenNGC7 are masked around using a circular
mask whose diameter is equal to the major axis of the object being
masked, and the CLUSTER bit is set for pixels touching this mask.

As demonstrated in Table 1, masking near foreground stars
causes the largest cut in observed objects. To determine whether
any additional stellar masking is warranted, we measure the density
of targets as a function of proximity to stars after the above bitmasks
have been applied. Using the Tycho-2 and WISE catalogs, we first
bin the stars by their magnitudes (using the 𝑉𝑇 and 𝑊1 bands,
respectively), and then determine the density of LRGs in annular
bins around these stacks of stars. We find that there are still residual
effects near Tycho-2 stars, particularly for the brightest bins, that are
not entirely captured by the bitmasks. We find even more significant
effects around WISE stars, with the LRG density peaking beyond
the radius of the bitmasks. We fit a magnitude-dependent masking
radius for each star catalog to apply as additional geometric masks:

𝑅 =

{
10 3.41 − 0.16 × 𝑉𝑇 arcsec, Tycho-2
10 2.87 − 0.13 × 𝑊 1 arcsec, WISE

(2)

The addition of the geometric masks results in a slight increase in
the total masked area.

2.2.4 Tests of potential systematics

Astrophysical foregrounds, poor observing conditions, and system-
atic errors in instrument calibration or data reduction can introduce
non-cosmological density variations in the galaxy sample, which
may in turn bias cosmological analyses (see e.g. Myers et al. 2006,
Crocce et al. 2011, Ross et al. 2011, Suchyta et al. 2016, Crocce
et al. 2016, Leistedt et al. 2016, Elvin-Poole et al. 2018, Ross et al.
2020, Weaverdyck & Huterer 2020 for studies of imaging system-
atics in the context of other surveys). A full analysis of the effect of
imaging systematics on the clustering of DESI main targets using
data from DECaLS DR7 is presented in Kitanidis et al. 2020. Here,
we briefly perform tests of the LRG density dependence on these
potential systematics using DR8 data and target selection.

We use the HEALPix scheme with 𝑁SIDE = 256 to divide
the footprint into pixels of equal area, over which we average each
systematic. This resolution is chosen to ensure most pixels contain
> 10 galaxies, for better statistics. These pixelised maps are shown
in Figure 2. The survey properties we look at are stellar density,
galactic extinction, airmass, seeing, sky background, and exposure
time. For full descriptions of these survey properties, how they are

6 https://github.com/moustakas/LSLGA
7 https://github.com/mattiaverga/OpenNGC
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Mask Number Area (deg2) 𝑓survey

no masks 9003243 14610.72 1.000

bits

ALLMASK_G 9002762 14610.72 1.000
ALLMASK_R 9002742 14610.72 1.000
ALLMASK_Z 9002458 14610.72 1.000
WISEM1 8578461 14230.96 0.974
WISEM2 8679070 14406.05 0.986
MEDIUM 8566358 13945.27 0.954
GALAXY 8996317 14599.17 0.999
CLUSTER 9003232 14609.73 1.000

all bits 8559863 13933.29 0.954

geometric
Tycho-2 8675511 14181.29 0.971
WISE 8488111 14094.18 0.965

all geometric 8399015 13859.42 0.949

all masks 8390823 13851.50 0.948

Table 1. Summary of foreground masks.

calculated, and why they are included in the analysis, see Section 6
of Kitanidis et al. 2020.

For each map, we bin the pixels by the value of the survey prop-
erty, and then determine the average density per bin. The resulting
plots of LRG density contrast 𝛿 = 𝑛/�̄� − 1 as a function of survey
properties are shown in Figure 3, with the cumulative sky fractions
shown in the upper panels and the dotted lines corresponding to 1%
fluctuations. We show that LRG density variation due to systematic
sources of error are controlled to within 5% and, more often than
not, 1%. As such, we conclude that imaging systematics should not
significantly affect our cross-correlation measurements.

3 GALAXY REDSHIFT DISTRIBUTION

In order to interpret the 2D measurements, information about the
distribution of the redshifts of the photometrically selected galaxies
is required. One option is to use photometrically determined red-
shifts (photo-z’s) for this purpose; for instance, Zhou et al. 2020
outlines a method for determining photo-z’s for DESI LRGs se-
lected from DECaLS DR7 using a machine learning method based
on decision trees. We use the DR8 version of the resulting 𝑑𝑁/𝑑𝑧
provided by Rongpu Zhou in private communications.

However, such methods have intrinsic scatter due to photomet-
ric errors and can be biased if the distribution of galaxies used in the
training set is not representative of the overall population. It is thus
useful to have an alternative method for estimating the redshift dis-
tribution, if only as a proxy to gauge the effect of errors in 𝑑𝑁/𝑑𝑧 on
the desired parameter estimation. We also apply a clustering-based
redshift method, as described in the following sections.

3.1 Clustering redshift formalism

As modern deep imaging surveys probe ever greater volumes, they
detect many more sources than can realistically be targeted for
spectroscopy. The idea of leveraging cross-correlations between a
spectroscopic sample and a photometric sample to infer redshift
information about the latter is not a new one (see e.g. Seldner &

Peebles 1979, Phillipps & Shanks 1987, Landy et al. 1996, Ho et al.
2008, Newman 2008). Since clustering-based redshift estimation
presents an attractive alternative to photometric redshift methods,
it has experienced a recent resurgence in popularity. Over the last
decade or so, a number of clustering 𝑑𝑁/𝑑𝑧 estimators have been
presented and analyzed (Matthews & Newman 2010, Schulz 2010,
Matthews & Newman 2012, McQuinn & White 2013, Ménard et al.
2013) and tested on real or simulated data (Schmidt et al. 2013,
Scottez et al. 2016, Hildebrandt et al. 2017, Scottez et al. 2018,
Davis et al. 2018, Gatti et al. 2018, Chiang et al. 2018, Krolewski
et al. 2019, Kitanidis et al. 2020).

We use a version of the estimator proposed by Ménard
et al. (2013), which exploits small-scale clustering information and
avoids using autocorrelation functions since they are necessarily
more impacted by systematic errors than cross-correlations. We
provide a detailed derivation of our formalism and its assumptions
in Appendix A, and simply state the key result here:

𝑤ps (\, 𝑧i) ∝ 𝜙p (𝑧i)
𝐻 (𝑧i)
𝑐

𝑏p (𝑧i)𝑏s (𝑧i)𝐼 (\, 𝑧i) (3)

where𝑤ps is the angular cross-correlation, 𝜙p (𝑧i) is the photometric
redshift distribution, 𝑏p (𝑧i) and 𝑏s (𝑧i) are the large-scale biases of
the two samples, and

𝐼 (\, 𝑧i) ≡
∫ 𝜒max

𝜒min

𝑑𝜒 bmm

(√︃
𝜒2

i \
2 + (𝜒 − 𝜒i)2, 𝑧i

)
(4)

can be computed directly from Hankel transforming the theoretical
dark matter power spectrum,

bmm (𝑟, 𝑧) =
∫ ∞

0

𝑑𝑘

2𝜋2 𝑘
2𝑃mm (𝑘, 𝑧) 𝑗0 (𝑘𝑟) (5)

Here, 𝜒min and 𝜒max are the co-moving distances corresponding to
the minimum and maximum redshifts of the photometric sample.

3.2 Bias evolution

Note that we do not need to know the amplitudes of the biases 𝑏p
and 𝑏s in order to leverage Equation 3, since they are degenerate
with the overall normalization of 𝜙p. We only need to know the
shapes of the bias evolutions. For the spectroscopic catalog, this
can be determined directly. For the photometric catalog, we use two
complementary methods for modelling 𝑏p (𝑧) = 𝑏0 × 𝑓 (𝑧) for some
unknown evolution 𝑓 (𝑧):

(i) Fit “effective” bias 𝑏eff ≡
∫
𝑑𝑧 𝑏p (𝑧)𝜙p (𝑧).

(ii) Assume parametric form for 𝑓 (𝑧), fit present day bias 𝑏0.

These two methods are explained in detail in the subsections below.

3.2.1 Fit 𝑏eff without parametric 𝑓 (𝑧)

In principle, we do not need to know the evolution of 𝑏p in order
to model the angular power spectra 𝐶ℓ , since 𝑏p (𝑧)𝜙p (𝑧) is the
quantity that enters the 𝐶ℓ integrals for a linear bias model (see e.g.
Equation 22). Equations 3-4 allow us to constrain 𝑓 (𝑧)𝑑𝑁p/𝑑𝑧 times
some unknown proportionality constant.8 After normalization, we
obtain the quantity

𝑞(𝑧) ≡
𝑓 (𝑧)𝑑𝑁p/𝑑𝑧∫

𝑑𝑧′ 𝑓 (𝑧′)𝑑𝑁p/𝑑𝑧′
(6)

8 We are using 𝑑𝑁 /𝑑𝑧 to refer to the un-normalized redshift distributions,
whereas 𝜙 (𝑧) is normalized.

MNRAS 000, 1–18 (2020)
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Figure 2. Maps of spatially-varying potential systematics in equatorial coordinates with Mollweide projection and the astronomy convention (east towards left).
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Figure 3. Density of LRGs as a function of stellar density, galactic extinction (color excess), airmass, seeing in each optical band, sky subtraction in each
optical band, and exposure time in each optical band. Densities and survey properties are smoothed over the scale of the pixelised maps in Figure 2. The upper
panels show the cumulative sky fractions for each survey property, and the dotted lines correspond to ±1% density fluctuations.
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Meanwhile, in the𝐶ℓ equations9, the term 𝑏p (𝑧)𝜙p (𝑧) can be rewrit-
ten

𝑏p (𝑧)𝜙p (𝑧) =
𝑏0 𝑓 (𝑧)𝑑𝑁p/𝑑𝑧∫
𝑑𝑧′ 𝑑𝑁p/𝑑𝑧′

=
𝑏0𝑞(𝑧)

∫
𝑑𝑧′ 𝑓 (𝑧′)𝑑𝑁p/𝑑𝑧′∫
𝑑𝑧′ 𝑑𝑁p/𝑑𝑧′

(7)

= 𝑏eff𝑞(𝑧) (8)

where 𝑏eff is the effective bias term

𝑏eff ≡
𝑏0

∫
𝑑𝑧 𝑓 (𝑧)𝑑𝑁p/𝑑𝑧∫
𝑑𝑧 𝑑𝑁p/𝑑𝑧

(9)

=

∫
𝑑𝑧 𝑏0 𝑓 (𝑧)𝜙p (𝑧) =

∫
𝑑𝑧 𝑏p (𝑧)𝜙p (𝑧) (10)

Thus, by not assuming a shape for the bias evolution, we are fitting
an integrated effective bias 𝑏eff rather than the present day bias 𝑏0.
This 𝑏eff essentially represents the bias weighted by the redshift
distribution; for a sharply peaked redshift distribution and weakly
evolving bias, as expected in the LRG sample, 𝑏eff ≈ 𝑏(𝑧eff).

3.2.2 Fit 𝑏0 with parametric 𝑓 (𝑧)

Working with a parametric form (e.g. 𝑏𝑝 (𝑧) = 𝑏0/𝐷 (𝑧) based on
DESI’s Final Design Report, where 𝐷 (𝑧) is the linear growth func-
tion), 𝑏0 can be measured directly. Equations 3-4 constrain 𝑑𝑁p/𝑑𝑧
times some unknown proportionality constant. After normalizing
to get 𝜙p (𝑧), we insert this into the 𝐶ℓ integrals, along with the
parametric 𝑓 (𝑧). Thus by “floating” 𝑏0 until theory matches obser-
vation, we obtain a value for 𝑏0.

3.3 Integrating over scales

Following the method of Ménard et al. 2013, we integrate 𝑤ps over a
range of angular scales as the sensitivity of the estimator is improved
by encoding information from many clustering scales. In order to
maximize the signal-to-noise, we weight each point by \−1, which
gives equal amounts of clustering information per logarithmic scale:

�̄�ps (𝑧i) =
∫ \max

\min

𝑑\
1
\
𝑤ps (\, 𝑧i) (11)

Hence, we have

�̄�ps (𝑧i) ∝ 𝜙p (𝑧i)
𝐻 (𝑧i)
𝑐

𝑏p (𝑧i)𝑏s (𝑧i)𝐼 (𝑧i) (12)

where

𝐼 (𝑧i) =
∫ \max

\min

𝑑\
1
\

∫ 𝜒max

𝜒min

𝑑𝜒 bmm

(√︃
𝜒2

i \
2 + (𝜒 − 𝜒i)2, 𝑧i

)
(13)

In order to integrate over the same range of physical scales for each
redshift bin, we take the following approach: for each photometric-
spectroscopic pair, we assume that the photometric object is at the
same redshift as the spectroscopic object, allowing us to convert
from angle \ to projected distance 𝑟𝑝 = 𝜒(𝑧i)\. Thus, we obtain an
𝑟𝑝-binned 𝑤ps measurement. Then, in our equations, we perform a
change of variables from \ to 𝑟𝑝 :

�̄�ps (𝑧i) =
∫ 𝑟p,max

𝑟p,min

𝑑𝑟p
1
𝑟p

𝑤ps (𝑟p, 𝑧i) (14)

9 In order to model the galaxy-convergence bias with this approach, we
assume that it has the same evolution as the galaxy-galaxy bias.

𝐼 (𝑧i) =
∫ 𝑟p,max

𝑟𝑝,min

𝑑𝑟p
1
𝑟p

∫ 𝜒max

𝜒min

𝑑𝜒 bmm

(√︃
𝑟2
p + (𝜒 − 𝜒i)2, 𝑧i

)
(15)

Note that in this section we have implicitly assumed scale-
independent biases. In Appendix A, we explore how scale-
dependent bias can make the shape of the estimated redshift distri-
bution sensitive to the choice of \min, \max.

3.4 Measurement

We use three well-defined spectroscopic samples that overlap sig-
nificantly with our LRG sample and span its full redshift range (see
Figure 4): CMASS galaxies from Data Release 12 of the Baryon
Oscillation Spectroscopic Survey (BOSS; Eisenstein et al. 2011,
Dawson et al. 2013); galaxies from the the final data release of the
VIMOS Public Extragalactic Redshift Survey (VIPERS; Scodeggio
et al. 2018); and the main sample of quasars (QSOs) from Data Re-
lease 14 of eBOSS (Dawson et al. 2016) in the South Galactic Cap.
We assume passive bias evolution for the CMASS and VIPERS
galaxies, based on previous clustering studies of these samples (see
e.g. Rodríguez-Torres et al. 2016 and Marulli et al. 2013, respec-
tively). For the eBOSS QSOs, we assume the functional fit to 𝑏(𝑧)
published in Laurent et al. 2017 (and further validated using finer
redshift bins in Krolewski et al. 2019).

To measure the angular cross-correlation 𝑤ps (\, 𝑧i) between
photometric sources and spectroscopic sources, with the latter first
divided into narrow redshift bins 𝑧i ± 𝛿𝑧i, we use the Landy-Szalay
pair-count estimator (Landy & Szalay 1993),

�̂�𝐿𝑆 (\) =
𝐷1𝐷2 − 𝐷1𝑅2 − 𝐷2𝑅1 + 𝑅1𝑅2

𝑅1𝑅2
(16)

where 𝐷𝐷, 𝐷𝑅, and 𝑅𝑅 are the counts of data-data, data-random,
and random-random pairs at average separation \, within annular
bins \ ± 𝛿\. We use 16 logarithmically spaced angular bins from
\ = 0.001◦ to \ = 1◦. For each redshift bin, we convert the angular
bins into bins of projected distance 𝑟𝑝 using the mean redshift of the
bin. If we make the modest approximation that every photometric
object is at the same redshift as the spectroscopic object it is be-
ing correlated with, we can obtain the angular correlation function
binned in 𝑟𝑝 rather than \, 𝑤ps (𝑟𝑝 , 𝑧i).

We estimate the errors on 𝑤ps using bootstrapping (Efron
1979). Rather than resampling on individual objects, which has
been shown to lead to unreliable errors (Mo et al. 1992, Fisher et al.
1994), we partition the sky into equal area sub-regions, using the
HEALPix scheme with coarse resolution 𝑁SIDE = 4. We discard
any sub-regions that are fully disjoint from either the photometric
or spectroscopic survey, then randomly select (with replacement)
from the remaining sub-regions until the number of randoms in
each bootstrap realization is similar to the total number of randoms
in the overlapping part of the footprint10. The mean and variance
are estimated from 500 bootstrap realizations, and are found to be
highly robust to increasing or decreasing the number of bootstrap
realizations.

As Table 2 and Figure 4 show, the three spectroscopic catalogs
vary widely in their available overlapping area, their number density,
and the widths of their redshift distributions. In order to maximize
the signal-to-noise of each cross-correlation, the hyper parameters

10 Since the randoms are uniformly distributed and massively oversampled,
the number of randoms can be treated as as a proxy for the effective area.
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Spectroscopic Catalog CMASS VIPERS eBOSS QSO

Overlapping Area (deg2) ∼7461 ∼23.5 ∼940
Overlapping Number 615,056 68,022 19,266
Redshift Bin Size Used 0.05 0.1 0.1
NSIDE Resolution Used 4 16 4

# Sub-Regions for Bootstrap 66 8 18
# Bootstrap Ensembles 500 500 500
𝑟p,min𝑟p,min𝑟p,min, 𝑟p,max𝑟p,max𝑟p,max (ℎ−1 Mpc) 0.5, 5 0.005, 1 0.5, 5

Table 2. Summary of the external spectroscopic catalogs and the parame-
ters of the cross-correlation analysis. “Overlapping Area” is the approximate
intersection of the spectroscopic and DESI-DECaLS DR8 footprints. “Over-
lapping Number” is the number of spectroscopic objects falling within this
overlap with redshifts in the range 0.1 < 𝑧 < 1.2 (see Figure 4 for a visual-
ization of the overlap in redshift distributions). For bootstrapping, we reject
any pixels lying entirely outside either survey; the remaining sub-regions
are sampled with replacement to create the bootstrap ensembles.
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Figure 4. Visualizing how the redshifts of the external spectroscopic catalogs
(histograms) overlap with the redshift distribution of DESI LRGs selected
from DECaLS, as estimated using photometric redshifts (solid line).

are adjusted individually. For instance, since VIPERS is made up of
two very small windows, we must use a higher resolution of 𝑁SIDE =

16 to create the sub-regions for bootstrapping. The greatest signal-
to-noise is achieved from the cross-correlation with the CMASS
sample, whose large overlapping area and high number density near
the peak of the LRG distribution allows us to use finer redshift bins
of 𝛿𝑧 = 0.05 compared to 𝛿𝑧 = 0.1 used for the other two samples.

3.5 Results

Following Equation 3, we obtain an estimate for 𝑑𝑁p/𝑑𝑧 from each
cross-correlation. Bootstrap errors from 𝑤ps are propagated to 𝜙(𝑧)
by performing the full calculation, including normalization, with
each bootstrap separately, and then determining the standard devi-
ation in 𝜙(𝑧). We use a cubic B-spline to fit the combined results,
where each value 𝜙𝑖 is weighed by the inverse of its standard de-
viation, 𝑤𝑖 = 1/𝜎𝑖 . A common rule of thumb recommends using a
value of the smoothness parameter 𝑠 in the range 𝑚 ±

√
2𝑚 where

𝑚 is the number of data points being fit. Based on this, we choose a
value of 𝑠 = 41, which results in 6 interior knots. In order the respect
the physicality of 𝜙(𝑧) ≥ 0 for all 𝑧, we force any negative spline
coefficients to be zero. The clustering-based 𝜙(𝑧) points and fit are
shown in Figure 5, along with the photo-z derived 𝜙(𝑧). Unsurpris-
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z

0

1

2

3

4

(z
)

Photo-z
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Figure 5. The normalized redshift distribution derived from cross-
correlations with external spectroscopy (gray error bars) and resulting cubic
B-spline fit (black solid line). The normalized redshift distribution derived
from photo-z’s is shown for comparison (red dashed line). The spline fit is
dominated by the cross-correlation with CMASS galaxies (blue highlight).

ingly, the spline fit is dominated by the CMASS cross-correlations
(highlighted in blue in the figure) due to the comparatively high
signal-to-noise of these cross-correlations. The photo-z and cluster-
ing redshift distributions are qualitatively similar but not identical,
with the clustering 𝜙(𝑧) having a sharper peak.

4 MEASURING ANGULAR POWER SPECTRA

4.1 Angular power spectra in the Limber approximation

Galaxy overdensity 𝛿𝑔 and CMB lensing convergence ^ are both
projections of 3D density fields, expressed as line-of-sight integrals
over their respective projection kernels. The angular cross-spectrum
between two such fields 𝑋 and 𝑌 is given by

𝐶𝑋𝑌
ℓ

=

∫
𝑑𝜒1

∫
𝑑𝜒2 𝑊𝑋 (𝜒1) 𝑊𝑌 (𝜒2)∫

2
𝜋
𝑘2𝑑𝑘 𝑃𝑋𝑌 (𝑘; 𝑧1, 𝑧2) 𝑗ℓ (𝑘 𝜒1) 𝑗ℓ (𝑘 𝜒2) (17)

where𝑊𝑋 and𝑊𝑌 are the projection kernels, 𝑃𝑋𝑌 is the real-space
power cross-spectrum, and 𝑗ℓ are spherical Bessel functions of the
first kind. As we are primarily interested in angular scales . 1◦
(ℓ & 100), we can adopt the Limber approximation (Limber 1953;
Rubin 1954) and its first order correction (Loverde & Afshordi
2008), under which the 𝑘 integral evaluates to

𝑃𝑋𝑌

(
𝑘 =

ℓ + 1/2
𝜒1

; 𝑧
) 1
𝜒2

1
𝛿𝐷 (𝜒1 − 𝜒2) (18)

Hence the angular cross-spectrum may be expressed as a single
integral over line-of-sight co-moving distance,

𝐶𝑋𝑌
ℓ

=

∫
𝑑𝜒 𝑊𝑋 (𝜒)𝑊𝑌 (𝜒) 1

𝜒2 𝑃𝑋𝑌

(
𝑘 =

ℓ + 1/2
𝜒

; 𝑧
)

(19)

=

∫
𝑑𝑧

𝐻 (𝑧)
𝑐

𝑊𝑋 (𝑧)𝑊𝑌 (𝑧) 1
𝜒2 𝑃𝑋𝑌

(
𝑘 =

ℓ + 1/2
𝜒

; 𝑧
)

(20)
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Figure 6. Projection kernels for the galaxy sample (dashed blue line) and
CMB lensing (dotted red line), both normalized to a unit maximum.

The projection kernels for galaxy overdensity and CMB lensing
convergence are, respectively,

𝑊𝑔 (𝑧) = 𝜙(𝑧) = 𝑐

𝐻 (𝑧) 𝜙(𝜒) =
𝑐

𝐻 (𝑧)𝑊
𝑔 (𝜒)

𝑊 ^ (𝑧) = 3
2𝑐

Ω𝑚0
𝐻2

0
𝐻 (𝑧) (1 + 𝑧) 𝜒(𝜒∗ − 𝜒)

𝜒∗
=

𝑐

𝐻 (𝑧)𝑊
^ (𝜒)

(21)

where 𝜒∗ = 𝜒(𝑧∗≈1100) ≈ 9400 ℎ−1Mpc is the distance to the
surface of last scattering, and 𝜙(𝑧) is the normalized redshift distri-
bution of the galaxy sample. These kernels are plotted in Figure 6.

Plugging in and simplifying the expressions for the spectra,

𝐶
^g
ℓ

=

∫
𝑑𝜒

3Ω𝑚0𝐻
2
0

2𝑐2
1 + 𝑧

𝜒2
𝜒(𝜒∗ − 𝜒)

𝜒∗
𝜙(𝜒)𝑃mg

(
𝑘 =

ℓ + 1/2
𝜒

; 𝑧
)

=

∫
𝑑𝑧

3Ω𝑚0𝐻
2
0

2𝑐𝐻 (𝑧)
1 + 𝑧

𝜒2
𝜒(𝜒∗ − 𝜒)

𝜒∗
𝜙(𝑧)𝑃mg

(
𝑘 =

ℓ + 1/2
𝜒

; 𝑧
)

𝐶
gg
ℓ

=

∫
𝑑𝜒 𝜙(𝜒)2 1

𝜒2 𝑃gg
(
𝑘 =

ℓ + 1/2
𝜒

; 𝑧
)

(22)

=

∫
𝑑𝑧

𝐻 (𝑧)
𝑐

𝜙(𝑧)2 1
𝜒2 𝑃gg

(
𝑘 =

ℓ + 1/2
𝜒

; 𝑧
)

𝐶^^
ℓ

=

∫
𝑑𝜒

( 3Ω𝑚0𝐻
2
0

2𝑐2
1 + 𝑧

𝜒2
𝜒(𝜒∗ − 𝜒)

𝜒∗

)2
𝑃mm

(
𝑘 =

ℓ + 1/2
𝜒

; 𝑧
)

=

∫
𝑑𝑧

𝐻 (𝑧)
𝑐

( 3Ω𝑚0𝐻
2
0

2𝑐𝐻 (𝑧)
1 + 𝑧

𝜒2
𝜒(𝜒∗ − 𝜒)

𝜒∗

)2
𝑃mm

(
𝑘 =

ℓ + 1/2
𝜒

; 𝑧
)

4.2 Estimating angular power spectra

Many different approaches for estimating angular power spectra
from cosmological maps exist in the literature, including maxi-
mum likelihood estimators (Bond et al. 1998, Wandelt & Hansen
2003), the optimal quadratic estimator (Tegmark 1997, Tegmark
& de Oliveira-Costa 2001), and Bayesian sampling techniques (e.g.
Eriksen et al. 2004, Taylor et al. 2008). While these methods have the
advantage of recovering the unbiased power spectrum directly, they
are computationally expensive to implement, particularly for the
high resolution maps produced by modern experiments, since they
scale as O(ℓ6

max). Sub-optimal but numerically efficient pseudo-
𝐶ℓ algorithms (Hivon et al. 2002) are a popular alternative when
dealing with multipoles ℓ > 30 (Efstathiou 2004a), as they take
advantage of speedy spherical harmonics transforms to recover the

power spectrum in O(ℓ3
max) time. Below, we briefly outline the

pseudo-𝐶ℓ approach.
Any scalar function, 𝑇 (�̂�), defined on a sphere may be ex-

panded into spherical harmonics, 𝑌ℓ𝑚, with expansion coefficients
𝑎ℓ𝑚 as

𝑇 (�̂�) =
∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝑎ℓ𝑚𝑌ℓ𝑚 (�̂�) (23)

𝑎ℓ𝑚 =

∫
4𝜋

𝑑Ω 𝑇 (�̂�) 𝑌∗
ℓ𝑚

(�̂�) (24)

The angular power spectrum 𝐶ℓ measures the amplitude as a func-
tion of wavelength averaged over direction,

𝐶ℓ =
1

2ℓ + 1

ℓ∑︁
𝑚=−ℓ

|𝑎ℓ𝑚 |2 (25)

This is the observed angular power spectrum of a given Gaussian
realization; the average over an ensemble of universes, 〈𝐶ℓ 〉 ≡
𝐶th
ℓ

, is specified by the physics (primordial perturbations, galaxy
formation, etc.) with uncertainty due to cosmic variance given by

𝜎2
ℓ
=
𝐶XX
ℓ

𝐶YY
ℓ

+ (𝐶XY
ℓ

)2

2ℓ + 1
(26)

However, in practice, we are not dealing with measurements
over the full sky, but rather a masked and weighted partial sky. We
must account for the effect of the masking window function 𝑊 (�̂�),
which couples different ℓ modes and biases the estimator. Naive cal-
culation of the spherical harmonics transform on a partial sky map
produces the pseudo angular power spectrum, whose coefficients
are a convolution of the mask and the true coefficients,

�̃�ℓ =
1

2ℓ + 1

ℓ∑︁
𝑚=−ℓ

|�̃�ℓ𝑚 |2 (27)

�̃�ℓ𝑚 =

∫
4𝜋

𝑑Ω 𝑇 (�̂�) 𝑊 (�̂�) 𝑌∗
ℓ𝑚

(�̂�) (28)

Fortunately, their ensemble averages are related simply as

〈�̃�ℓ 〉 =
∞∑︁

ℓ′=0
𝑀ℓℓ′ 〈𝐶ℓ′〉 (29)

where the mode-mode coupling matrix 𝑀 can be determined purely
from the geometry of the mask. This ℓ-by-ℓ matrix is generally sin-
gular in the case of large sky cuts. In order to perform matrix inver-
sion, a common method is to use a set of discrete bandpower bins
𝐿 and assume the angular power spectrum is a step-wise function
in each bin. Using this approach, the MASTER algorithm (Hivon
et al. 2002) is able to efficiently calculate and invert the 𝐿-by-𝐿
mode-mode coupling matrix to extract the binned angular power
spectrum from the binned pseudo angular power spectrum,

〈𝐶𝐿〉 =
∑︁
𝐿′

𝑀−1
𝐿𝐿′ 〈�̃�𝐿′〉 (30)

We use the implementation NaMaster (Alonso et al. 2019) to
calculate the mode-mode coupling matrix and decoupled angular
power spectra in bandpower bins. Multipole resolution is limited
by Δℓ ≈ 180◦/𝜑, where 𝜑 is the smallest dimension of the an-
gular patch, and the minimum multipole that can be meaningfully
constrained is the wavelength corresponding to this angular scale
(Peebles 1980). Since the angular power of the mask is concen-
trated at large modes, dropping to below 10% power at ℓ ∼ 20, we
choose a conservative binning scheme with linearly spaced bins of
size Δℓ = 20 from ℓmin = 30 to ℓmax = 1500. However, following
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the approach of Krolewski et al. (2019), we run NaMaster out to
ℓmax = 6000 to avoid power leakage near the edge of the measured
range.

Evaluating the observational results requires consistent appli-
cation of the same binning scheme to the theory curves. Since the
theory curves are not necessarily piecewise constant, they must
first be convolved with the mode-mode coupling matrix 𝑀ℓℓ′ , then
binned into the appropriate bandpowers, and then finally decoupled.

Additionally, the observed auto-spectra will be a combination
of signal plus noise,

𝐶
gg
𝐿

= 𝑆
gg
𝐿

+ 𝑁
gg
𝐿

(31)

𝐶^^
𝐿 = 𝑆^^𝐿 + 𝑁 ^^

𝐿 (32)

Here, 𝑁gg is the shot noise of the galaxy field, approximately equal
to 1/�̄� (where �̄� is the mean number of galaxies per square stera-
dian)11, while an estimate of the lensing noise 𝑁 ^^

ℓ
due to e.g.

instrumental and atmospheric effects is provided by the Planck col-
laboration and binned into bandpowers using the method discussed
above. In subsequent analysis, we have subtracted the noise terms
from the observed auto-spectra, as well as dividing out the appro-
priate pixel window functions.

4.3 Estimating covariance matrices

The Gaussian or “disconnected” part of the covariance matrix, i.e.
the covariance for perfectly Gaussian fields, dominates the total co-
variance matrix on linear and weakly nonlinear scales. While trivial
to compute for full-sky fields, the exact correlations between differ-
ent modes induced by a partial sky are computationally expensive to
calculate, requiring O(ℓ6

max) operations (Efstathiou 2004b, García-
García et al. 2019). A common approximation assumes that the
off-diagonal elements remain negligible after mode coupling and
simply modifies the diagonal elements by rescaling the number of
degrees of freedom,

ΣXY
ℓℓ′ = (𝜎XY

ℓ
)2𝛿ℓℓ′ (33)

(𝜎XY
ℓ

)2 =
[(𝐶XX

ℓ
+ 𝑁XX

ℓ
) (𝐶YY

ℓ
+ 𝑁YY

ℓ
) + (𝐶XY

ℓ
+ 𝑁XY

ℓ
)2]th

𝑓sky (2ℓ + 1)
𝑤4
𝑤2

2

where 𝑓sky is the fraction of the sky masked,

𝑓sky =

∫
4𝜋

𝑑Ω𝑊 (�̂�) (34)

and 𝑤𝑖 is related to the 𝑖th moment as

𝑤𝑖 =
1
𝑓sky

∫
4𝜋

𝑑Ω𝑊 𝑖 (�̂�) (35)

The factor 𝑓sky𝑤
2
2/𝑤4 accounts for the loss of modes induced by

masking. This analytic expression has been shown to reproduce
errors that are nearly identical to those obtained from Monte Carlo
simulations (Hivon et al. 2002).

We average over the bandpower bins with the inverse weighting

1
(𝜎XY

𝐿
)2

=
1
Δℓ

∑︁
ℓ∈𝐿

1
(𝜎XY

ℓ
)2

(36)

where Δℓ is the width of the bandpower bin.

11 We have checked that our fitting results are insensitive to the amplitude of
the shot-noise term we subtract from the galaxy-galaxy spectrum, and since
it is somewhat degenerate with the counter-term 𝛼𝑎 in the perturbation
theory model, we elect to fix the noise term to the Poisson expression.

4.4 Pixelised maps and masks

To create the galaxy density map, we pixelise the sky using the
HEALPix scheme with resolution 𝑁SIDE = 512, corresponding to a
pixel area of approximately 0.013 square degrees. This resolution
was chosen to avoid the shot noise limit in which most pixels contain
zero or one galaxies (for our sample with mean density ≈ 610 per
square degree, it produces an average of 5-10 galaxies per pixel),
while still probing the scales of interest, ℓmax ∼ 3× 𝑁SIDE ≈ 1500.
Using galaxy and random catalogs with the masks of Section 2.2.3
applied to both, we calculate the density contrast 𝛿 = 𝑛/�̄�−1 within
each pixel. Under the HEALPix scheme, pixels have identical areas;
however, the effective area of some pixels may be less than this if
they straddle the irregular shape of the footprint boundary or overlap
with masked regions around bright stars, large galaxies, etc. Since
our masks are applied to both the galaxy and random catalogs in a
consistent manner, we can use the random catalog to estimate the
effective area of each pixel, and thus calculate accurate mean galaxy
densities even in pixels that are partially masked.

To construct the pixelised galaxy mask, we measure where the
distribution of effective areas deviates from a Poisson distribution,
since the effective areas are estimated directly from the number
of randoms per pixel, which is a Poisson process. We determine
a cutoff of 𝑎eff/𝑎tot = 0.5, and confirm that the pixels below this
cutoff lie mainly along footprint boundary, as shown in Figure 7.
Here, the effective area is calculated by using the random catalog
pre-masking, hence why the distribution is centered at 𝑎eff/𝑎tot ≈ 1.
The equivalent distribution calculated using masked randoms results
in a slightly lower mean �̃�eff/𝑎tot ≈ 0.95 (matching the masked sky
fraction of Table 1) and an enhanced left tail since a substantial
fraction of pixels are now partially masked. However, we do not
necessarily need to discard these partially masked pixels as long as
we are able to accurately estimate the density within them, since the
pixelisation smooths the density on scales smaller than the pixel size.
Hence, for our binary pixel mask, we use the cutoff calculated using
the unmasked randoms, with the mask set to 1 for 𝑎eff/𝑎tot > 0.5
and 0 otherwise.

The galaxy density map and mask are then upgraded to
𝑁SIDE = 2048 to match the resolution of the Planck CMB lensing
map and mask, and converted from equatorial to galactic coordi-
nates. To improve the stability of the matrix inversion, the Planck
mask is apodized using a 1◦ FWHM Gaussian12. The resulting
masked galaxy density and CMB lensing convergence maps are
shown in Figure 8.

5 MAGNIFICATION BIAS

Magnification bias is a well-known weak lensing effect (for a re-
view of weak lensing, we refer the reader to Bartelmann & Schneider
2001) that modulates the number density of galaxies in a flux-limited
survey. When distant galaxies are magnified by gravitational lenses
along the line-of-sight, their observed number per unit area is de-
creased due to the apparent stretching of space between and around
them. At the same time, there is a corresponding increase in their ob-
served brightness. As a consequence, the lensed galaxies are drawn
from a fainter source population than the unlensed galaxies, leading
to an increase in the number count as galaxies that would normally
fall below the limiting magnitude of the survey become detectable

12 Krolewski et al. 2019 determined this to be the optimal smoothing scale
for the Planck mask by testing on Gaussian simulations.
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Figure 7. Upper: Histogram of the effective areas of pixels created with
HEALPix resolution 𝑁SIDE = 512, showing a slight deviation from a Poisson
distribution at the low end due to pixels straddling the footprint boundary
or holes from the galaxy mask. Lower: Binary map showing that pixels
selected as 𝑎eff/𝑎tot < 0.5 (red pixels) lie predominately on the edges of
the footprint. Most pixels have 𝑎eff/𝑎tot ≥ 0.5 and are shown in green.

with magnification. Through these two competing effects, magni-
fication induces correlations between the galaxies and intervening
matter in their foreground, and thus can bias the galaxy-galaxy and
galaxy-convergence angular power spectra (see e.g. LoVerde et al.
2008, Ziour & Hui 2008, and references contained therein).

In practice, the magnification bias introduces an additional
term in the galaxy window function,

𝑊𝑔 (𝑧) −→ 𝑊𝑔 (𝑧) +𝑊` (𝑧) (37)

which, to first order, is given by

𝑊` (𝑧) = (5𝑠 − 2) 3
2𝑐

Ω𝑚0
𝐻2

0
𝐻 (𝑧) (1 + 𝑧)

∫ 𝑧∗

𝑧
𝑑𝑧′𝑔(𝑧′) (38)

𝑔(𝑧′) = 𝜒(𝑧) (𝜒(𝑧′) − 𝜒(𝑧))
𝜒(𝑧′) 𝜙(𝑧′) (39)

where 𝑠 is the slope of the cumulative magnitude function, i.e. the
response of the number density of the sample to a multiplicative
change in brightness at the limiting magnitude of the survey,

𝑠 =
𝑑 log10 𝑛(𝑚 < 𝑚lim)

𝑑𝑚
|𝑚=𝑚lim (40)

This 𝑊` term in the galaxy window function leads to additional
terms in the galaxy-convergence and galaxy-galaxy angular power
spectra,

𝐶
^g
ℓ

−→ 𝐶
^g
ℓ

+ 𝐶
^`

ℓ
(41)

𝐶
gg
ℓ

−→ 𝐶
gg
ℓ

+ 2𝐶g`
ℓ

+ 𝐶
``

ℓ
(42)

We calculate 𝑠 by perturbing the observed optical and infrared
magnitudes of the imaged objects by a small differential in each
direction Δ𝑚 = ±0.01, then reapplying target selection (as defined

0.4 0.2 0.0 0.2 0.4
cmb

-1 1
gal

Figure 8. Maps of Planck BASECMB lensing convergence (upper) and DESI
LRG galaxy overdensity (lower) in galactic coordinates, using HEALPix
scheme with resolution 𝑁SIDE = 2048, Mollweide projection, and the
astronomy convention (east towards left). Both maps are multiplied by
their corresponding masks. The CMB lensing convergence is additionally
smoothed on a scale of 10 arcmin for visual clarity.

in Section 2.2.2) and measuring the corresponding shifts in the
number density of the new LRG samples. Using the finite difference
method, we determine 𝑠 = 0.999 ± 0.015, with the error computed
as Δ𝑠 = (log10 (𝑁) − log10 (𝑁 −

√
𝑁))/Δ𝑚.

We plot the magnification bias corrections13 as a fraction of the
observed spectra (after noise subtraction) in Figure 9. The correc-
tions to the galaxy-galaxy spectrum are at a level of approximately
5% over most of the range of scales considered, with 1-2% increases
at edges of the range ℓ < 100 and ℓ > 900, while the correction
to the cross-spectrum is flat within error bars14 at 4-5%. Though
the DESI LRG redshift distribution is relatively narrow and peaks
at 𝑧 < 1, the high number density and low clustering bias coupled
with a steep faint end slope contribute to effects at the level of a few
percent, as Figure 9 shows.

In all subsequent results, the magnification bias terms have
been subtracted from the observed spectra.

6 RESULTS

A cross-correlation measurement between DESI-like LRGs selected
from DECaLS imaging and CMB lensing from Planck 2018 is

13 These terms are calculated using the photometric redshift distribution,
so as to avoid assuming a bias evolution model.
14 The error bars are dominated by the errors in the cross-spectrum, which
become significant at ℓ > 700.
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Figure 9. The magnification bias terms of Equations 41 and 42 as a fraction
of the total observed (after subtracting shot noise, in the galaxy-galaxy case)
spectra, i.e. before correcting for magnification bias. The error bars represent
error on the fraction and are dominated by the errors of the denominator.

detected at a significance of S/N = 27.2 over the range of scales
ℓmin = 30 to ℓmax = 1000. In Figure 10, we plot per-multipole and
cumulative signal-to-noise ratios for both the galaxy-galaxy and
galaxy-convergence spectra, where the signal-to-noise ratio of the
𝑋𝑌 angular power spectrum at multipole ℓ is given by(

𝑆

𝑁

)
(ℓ) =

𝐶XY
ℓ

𝜎XY
ℓ

(43)

and the cumulative signal-to-noise ratio up to ℓmax is(
𝑆

𝑁

)
(< ℓmax) =

√√√√ ℓmax∑︁
ℓ′=ℓmin

(𝐶XY
ℓ′ )2

(𝜎XY
ℓ′ )2

(44)

The galaxy-galaxy S/N peaks at ℓ ∼ 500 whereas the galaxy-
convergence generally decreases over the range of scales consid-
ered. We note that the theoretical galaxy-convergence S/N would
be expected to peak at ℓ ∼ 100 and fall off at smaller ℓ; as this is
within the regime at which both the pseudo-𝐶ℓ framework and the
Limber approximation begin to break down, this feature is washed
out in the observed S/N.

We also compare the cross-spectrum using the baseline MV
CMB lensing map versus using the TT-only tSZ-deprojected map.
The two curves are shown in the top panel of Figure 11, and clearly
lie well within 1𝜎 of one another. The fractional difference is shown
in the lower panel. Since the error bars on the cross-spectra are
generally large, they dominate the errors on the fraction, but as
Figure 11 illustrates, the errors associated with tSZ are on the order
of a few percent and very subdominant to the overall lensing noise.

In the following sub-sections, we present the angular power
spectra and interpret them using two different models for the galaxy-
galaxy and matter-galaxy 3D power spectra: the HaloFit dark mat-
ter power spectrum multiplied by a linear large-scale bias, and a
convolutional Lagrangian effective field theory with Lagrangian
bias. Additionally, we perform the fits using both photometric-
and clustering-derived redshift distributions for the galaxy sam-
ple, which not only suggests an estimate of the error associated with
uncertainty in the redshift distribution, but also allows us to evaluate
the bias at an effective redshift 𝑧 ≈ 0.68 in both models and to test
the assumption of passive bias evolution.
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Figure 10. Per multipole (upper) and cumulative (lower) signal-to-noise
ratio for the galaxy-galaxy (blue dotted line) and galaxy-convergence (red
dashed line) angular power spectra measurements.

6.1 HaloFit Modeling

Within a framework for modeling the galaxy-galaxy and matter-
galaxy power spectra 𝑃gg (𝑘), 𝑃mg (𝑘), the observed angular power
spectra 𝐶

gg
ℓ

, 𝐶^g
ℓ

can constrain cosmological and galaxy bias pa-
rameters. A particularly simple and interpretable model is to use the
HaloFit (Smith et al. 2003) fitting function for the nonlinear dark
matter power spectrum, 𝑃HF

mm (𝑘), and multiply by scale-independent
linear biases to obtain the galaxy-galaxy and galaxy-matter power
spectra,

𝑃gg (𝑘, 𝑧) = 𝑏gg (𝑧)2𝑃HF
mm (𝑘, 𝑧) (45)

𝑃^g (𝑘, 𝑧) = 𝑏^g (𝑧)𝑃HF
mm (𝑘, 𝑧) (46)

Differences between 𝑏gg and 𝑏^g are expected, due in large part to
the stochastic contribution arising from the the fact that the galaxy
field is a discrete sampling of the underlying dark matter distribu-
tion. As such, this stochastic component, which may include scale-
dependent and non-Poissonian behavior, affects the galaxy-galaxy
auto-spectrum and matter-galaxy cross-spectrum differently.

Using the Boltzmann code CLASS (Blas et al. 2011) to calculate
the HaloFit dark matter power spectrum for the fiducial Planck
2018 cosmology, we take the photometric 𝜙(𝑧) and assume a bias
evolution 𝑏gg (𝑧), 𝑏^g (𝑧) ∝ 𝐷 (𝑧)−1. We then perform weighted
least squares fits of the present day biases. The results are given in
Table 3, with the fits repeated for ℓmax = 200, 400, 600, 800, 1000.
We find that the linear biases are unaffected by the choice of ℓmax
and that the cross bias 𝑏^g is consistently lower than the galaxy bias
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Figure 11. Upper: Comparison of observed cross-spectrum 𝐶
^𝑔

𝐿
calcu-

lated from BASE (red circles) versus DEPROJ (green triangles) lensing maps.
Lower: The difference between the two measurements as a fraction of the
theoretical prediction, with three bands illustrating 1%, 5% and 10%.

𝑏gg, with the latter agreeing well with DESI survey expectations
and the findings of Kitanidis et al. 2020. The lower-than-expected
𝑏^g could arise from choosing an incorrect fiducial cosmology (e.g.
loweringΩ𝑚 would reduce 𝑏^g with only a small impact on 𝑏gg; see
also Hang et al., in prep). It could also be due to the assumed bias
evolution, the assumed form for 𝜙(𝑧) or limitations of our model.
We shall consider these next.

We then repeat the same measurement using the clustering-
derived 𝜙(𝑧) discussed in Section 3, again finding that the choice of
ℓmax has negligible impact. The results, given in Table 4, show that
uncertainty in the redshift distribution causes a difference in the de-
rived galaxy bias parameters of 𝜎𝑏gg = 0.08. By contrast, the cross
bias is extremely stable with respect to changes in the redshift distri-
bution, not changing at all when the redshift distribution is changed
from the photometric estimate to the clustering estimate; this may
be explained by the fact that the cross-spectrum only depends on
one factor of 𝜙(𝑧) while the auto-spectrum requires 𝜙2 (𝑧).

Another advantage of using the clustering-based 𝜙(𝑧) is the
ability to extract a galaxy redshift kernel with bias evolution baked
in, rather than assuming a parametric form e.g. 𝑏(𝑧) ∝ 𝐷 (𝑧)−1.
As discussed in Section 3.2.1, this type of modeling allows us to
constrain 𝑏eff ≈ 𝑏(𝑧eff) rather than the present day bias. We find the
results, given in Table 5, to be in perfect agreement with the results
of Table 4 under the assumption 𝑏(𝑧) ∝ 𝐷 (𝑧)−1 used in the latter,
giving for instance 𝑏gg = 1.56± 0.01 and 𝑏^g = 1.31± 0.05 for the
ℓmax = 1000 case.
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Figure 12. The observed galaxy-galaxy (upper plot, blue diamonds) and
galaxy-convergence (lower plot, red diamonds) angular power spectra, after
subtracting noise and correcting for magnification bias. Solid lines corre-
spond to the the theoretical predictions using a HaloFit matter power spec-
trum and the best fit linear biases from Table 3. The dotted horizontal line is
the galaxy shot noise floor, and the dashed black curve is the lensing noise.

6.2 Perturbation Theory Modelling

We next apply an analytic model that allows more nuance in the
handling of bias. Higher order perturbation theory is a natural ap-
proach considering that the cross-correlation is most sensitive to
structure at large scales, as shown in see Figure 10. We use a La-
grangian bias model and the convolution Lagrangian effective field
theory (hereafter CLEFT) outlined in Vlah et al. 2016 and the ref-
erences contained therein. Under this formalism, the matter-galaxy
and galaxy-galaxy power spectra are (see e.g. Equation 2.7 from
Modi et al. 2017 and Equation B.2 from Vlah et al. 2016):

𝑃mg = (1 − 𝛼×𝑘2

2
)𝑃Z + 𝑃1L + 𝑏1

2
𝑃b1 +

𝑏2
2
𝑃b2 (47)

𝑃gg = (1 − 𝛼𝑎𝑘
2

2
)𝑃Z + 𝑃1L + 𝑏1𝑃b1 + 𝑏2𝑃b2+ (48)

𝑏1𝑏2𝑃b1b2 + 𝑏2
1𝑃b2

1
+ 𝑏2

2𝑃b2
2

where we have dropped the terms corresponding to shear bias as
we find they mainly affect scales ℓ > 1000. Here, 𝑃Z and 𝑃1L are
the Zeldovich and 1-loop dark matter contributions (see e.g. Vlah
et al. 2015), 𝑏1 and 𝑏2 are the Lagrangian bias parameters for the
galaxy sample, and the effective field theory terms𝛼× and𝛼𝑎 (which
are not necessarily the same) are free parameters encapsulating the
small-scale physics not modeled by Lagrangian perturbation theory.

Under the CLEFT formalism, the power spectrum contribu-
tions 𝑃Z, 𝑃1L, 𝑃b1 , 𝑃b2 , etc. can be computed analytically and
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HaloFit Model, Photo 𝜙 (𝑧)

ℓmax 𝑏gg 𝜒2
gg/d.o.f. PTEgg SNRgg (< ℓmax) 𝑏^g 𝜒2

^g/d.o.f. PTE^g SNR^g (< ℓmax)

200 1.57 ± 0.05 0.7 / 8 0.9995 15.5 1.27 ± 0.07 4.2 / 8 0.8386 17.6
400 1.63 ± 0.03 3.4 / 18 0.9999 29.9 1.32 ± 0.06 8.1 / 18 0.9771 23.1
600 1.66 ± 0.02 8.4 / 28 0.9999 41.3 1.32 ± 0.05 12.1 / 28 0.9961 25.2
800 1.67 ± 0.02 9.9 / 38 1.0000 49.0 1.32 ± 0.05 20.9 / 38 0.9890 26.5
1000 1.64± 0.02 30.4 / 48 0.9777 53.0 1.32± 0.05 26.8 / 48 0.9943 27.2

Table 3. Fitting linear bias from the observed 𝐶
gg
ℓ

, 𝐶^g
ℓ

up to different ℓmax using the HaloFit model for the nonlinear dark matter power spectrum, photometric
𝜙 (𝑧) , and the assumption 𝑏 (𝑧) ∝ 𝐷 (𝑧)−1.

HaloFit Model, Clustering 𝜙 (𝑧)

ℓmax 𝑏gg 𝜒2
gg/d.o.f. PTEgg SNRgg (< ℓmax) 𝑏^g 𝜒2

^g/d.o.f. PTE^g SNR^g (< ℓmax)

200 1.50 ± 0.05 0.8 / 8 0.9992 15.5 1.27 ± 0.07 4.0 / 8 0.8571 17.6
400 1.55 ± 0.03 3.4 / 18 0.9999 29.9 1.32 ± 0.06 8.0 / 18 0.9786 23.1
600 1.59 ± 0.02 8.7 / 28 0.9998 41.3 1.32 ± 0.05 11.9 / 28 0.9966 25.2
800 1.59 ± 0.02 10.2 / 38 1.0000 49.0 1.32 ± 0.05 20.8 / 38 0.9895 26.5
1000 1.56± 0.01 29.9 / 48 0.9812 53.0 1.32± 0.05 26.7 / 48 0.9946 27.2

Table 4. Fitting linear bias from the observed 𝐶
gg
ℓ

, 𝐶^g
ℓ

up to different ℓmax using the HaloFit model for the nonlinear dark matter power spectrum, clustering
𝜙 (𝑧) , and the assumption 𝑏 (𝑧) ∝ 𝐷 (𝑧)−1.

HaloFit Model, Clustering 𝑏 (𝑧)𝜙 (𝑧)

ℓmax 𝑏eff
gg 𝜒2

gg/d.o.f. PTEgg SNRgg (< ℓmax) 𝑏eff
^g 𝜒2

^g/d.o.f. PTE^g SNR^g (< ℓmax)

200 2.14 ± 0.07 0.8 / 8 0.9992 15.5 1.80 ± 0.10 4.0 / 8 0.8571 17.6
400 2.21 ± 0.04 3.4 / 18 0.9999 29.9 1.89 ± 0.08 8.0 / 18 0.9786 23.1
600 2.26 ± 0.03 8.7 / 28 0.9998 41.3 1.88 ± 0.08 12.0 / 28 0.9964 25.2
800 2.27 ± 0.02 10.2 / 38 1.0000 49.0 1.88 ± 0.07 20.8 / 38 0.9895 26.5
1000 2.23± 0.02 29.9 / 48 0.9812 53.0 1.88± 0.07 26.7 / 48 0.9946 27.2

Table 5. Fitting effective bias 𝑏eff ≈ 𝑏 (𝑧eff = 0.68) from the observed 𝐶
gg
ℓ

, 𝐶^g
ℓ

up to different ℓmax using the HaloFit model for the nonlinear dark matter
power spectrum, clustering 𝑏 (𝑧)𝜙 (𝑧) (normalized), and no assumptions regarding the shape of the bias evolution.

combined with the free parameters 𝛼×, 𝛼𝑎 , 𝑏1, 𝑏2. With these addi-
tional degrees of freedom, CLEFT provides a more flexible model
than the phenomenological approach of Section 6.1, and allows us
to fit the cross-spectrum and galaxy auto-spectrum simultaneously.

We use a version of the public code velocileptors15 (Chen
et al. 2020) to calculate the power spectrum terms and the MCMC
likelihood estimator emcee16 (Foreman-Mackey et al. 2013) to op-
timize our model parameters. To reduce model expense, we evaluate
the power spectrum terms at a single effective redshift,

𝑧𝑋𝑌eff =

∫
𝑑𝜒 𝑧 𝑊𝑋 (𝜒)𝑊𝑌 (𝜒)/𝜒2∫
𝑑𝜒 𝑊𝑋 (𝜒)𝑊𝑌 (𝜒)/𝜒2 (49)

which is 𝑧eff = 0.67 for ^𝑔 and 𝑧eff = 0.68 for 𝑔𝑔17. Given the
narrow redshift distribution and likely passive bias evolution of our

15 https://github.com/sfschen/velocileptors
16 https://github.com/dfm/emcee
17 To jointly fit the auto- and cross-spectrum, we assume 𝑧eff = 0.68 for
both.

galaxy sample, this substitution should not affect the 𝐶ℓ ’s signifi-
cantly (Modi et al. 2017), and we confirm that the overall impact on
the scales of interest is sub-percent level. Additionally, this allows
us to more easily interpret the Lagrangian bias parameters as be-
ing also evaluated at the effective redshift. We use the photometric
redshift distribution to eliminate the need to assume a shape for the
bias evolution.

We perform a joint fit on both the galaxy-galaxy auto-spectrum
and galaxy-convergence cross-spectrum using a simple Gaussian
likelihood function:

L(𝑑 |𝜗) ∝ exp
{
− 1

2
(�̂� (𝜗) − 𝐶) Σ−1 (�̂� (𝜗) − 𝐶)T

}
(50)

The vectors 𝐶 and �̂� (𝜗) are, respectively, the observed and pre-
dicted angular power spectra, with the auto- and cross-spectrum
measurements joined together as

𝐶𝐿 = (𝐶^g
𝐿
, 𝐶

gg
𝐿
) (51)

for each bandwidth bin 𝐿. The covariance matrix is created from
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Figure 13. Marginalized 1D and 2D posterior probability distributions of
the parameters. Vertical lines are median values.

the four constituent covariance matrices,

Σ𝐿𝐿′ =

(
Σ
^g
𝐿𝐿′ (Σ^𝑔−𝑔𝑔

𝐿𝐿′ )T

Σ
^𝑔−𝑔𝑔
𝐿𝐿′ Σ

gg
𝐿𝐿′

)
(52)

The covariance matrices Σ^g
𝐿𝐿′ and Σ

gg
𝐿𝐿′ are given by Equations 33.

Similarly, the Gaussian part of the covariance between the auto-
spectrum and cross-spectrum measurements is given by

Σ
^𝑔−𝑔𝑔
𝐿𝐿′ = (𝜎^𝑔−𝑔𝑔

𝐿
)2𝛿𝐿𝐿′ (53)

where
1

(𝜎^𝑔−𝑔𝑔
𝐿

)2
=

1
Δℓ

∑︁
ℓ∈𝐿

1
(𝜎^𝑔−𝑔𝑔

ℓ
)2

(54)

(𝜎^𝑔−𝑔𝑔
ℓ

)2 =
[2𝐶^g

ℓ
(𝐶gg

ℓ
+ 𝑁

gg
ℓ
)]th

𝑓sky (2ℓ + 1)
𝑤4
𝑤2

2
(55)

We use flat priors for the four model parameters, and addi-
tionally impose a loose Gaussian prior on 𝑏2 centered on the peak-
background split prediction for a given 𝑏1. The results of the MCMC
analysis are listed in Table 6 for ℓmax = 200, 400, 600, 800 and 1000.
Although the higher ℓmax are formally larger than the regime of va-
lidity of perturbation theory (ℓmax . 500) we nonetheless find that
the best fit parameters remain stable within error bars and the in-
clusion of the higher ℓ data helps to fix the EFT counter terms. The
corner plots visualizing the 1D and 2D posterior distributions are
shown in Figure 13, and the resulting theory predictions are plotted
against the binned data in Figure 14, both for the ℓmax = 1000 case.
The values and errors are based on 16th, 50th, and 84th percentiles
of the posterior distributions. The model is able to constrain 𝑏1 very
well, and provides a more flexible fit to the shape of the data.

We can compare the Lagrangian 𝑏1 to the Eulerian bias found
in the previous section,

𝑏(𝑧eff) = 1 + 𝑏1 (𝑧eff) (56)
= 𝑏(0)/𝐷 (𝑧eff) (57)

200 400 600 800 1000
L

10 7

10 6

10 5

10 4

C
gg L
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C
g L

LPT 
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Figure 14. The observed galaxy-galaxy (upper plot, blue diamonds) and
galaxy-convergence (lower plot, red diamonds) angular power spectra, after
subtracting noise and correcting for magnification bias. Solid lines corre-
spond to the predictions from the CLEFT perturbation theory framework
using MCMC fitted parameters for ℓmax = 1000 (Table 6). The dotted hori-
zontal line is the galaxy shot noise floor, and the dashed black curve is the
lensing noise. The reduced chi-squared statistic is given for the joint fit.

For 𝑧eff = 0.68, the best fit 𝑏1 = 1.31 corresponds to 𝑏(0) = 1.63, in
excellent agreement with the result from our HaloFit model using
the photometric redshift distribution. Furthermore, after account-
ing for the uncertainty associated with photometric versus clus-
tering redshift distributions 𝜎𝑏gg = 0.08, the effective bias from
the perturbation theory model is consistent with the effective bias
measured using the clustering 𝑏(𝑧)𝜙(𝑧) (Table 5). Thus, these two
models show excellent consistency with each other, and both are
consistent with the assumed bias evolution model. The LPT-based
model provides a statistically acceptable fit to both 𝐶

gg
ℓ

and 𝐶
^g
ℓ

for our fiducial cosmology, however if one artificially introduces
an additional degree of freedom that scales the amplitude of 𝐶^g

ℓ
we find an even better fit is obtained when the model prediction is
lowered by 10-20%. This is similar to the lower 𝑏^g preferred by
our HaloFit model, compared to 𝑏gg.

6.3 Bandpower covariance

In order to evaluate whether correlated bandpower bins contribute
to low reduced chi-square in the fits, we repeat the full analysis
using bandpower bins of Δℓ = 100 instead of 20. The recovered
bias parameters remain the same, and the reduced chi-square of the
fits do not appreciably change. Since 𝜒2 / d.o.f. should be preserved
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CLEFT Model, Photo 𝜙 (𝑧)

Posterior

Parameter Prior ℓmax = 200 ℓmax = 400 `max = 600 ℓmax = 800 ℓmax = 1000

𝑏1 ∈ [0.5, 1.5] 1.33+0.05
−0.05 1.30+0.05

−0.06 1.31+0.05
−0.05 1.32+0.04

−0.04 1.33+0.04
−0.04

𝑏2 ∈ [−1, 2], ∝ N
(
�̃�2, 0.3

)
0.529+0.292

−0.318 0.192+0.283
−0.316 0.347+0.291

−0.332 0.352+0.294
−0.305 0.514+0.255

−0.283

𝛼× ∈ [−100, 100] 94.42+4.09
−8.49 87.73+8.64

−12.78 50.51+9.90
−10.91 28.84+7.59

−7.60 19.74+5.94
−6.13

𝛼𝑎 ∈ [−100, 100] −77.88+33.45
−16.25 20.68+50.71

−55.44 21.33+38.25
−36.01 14.28+24.73

−24.88 33.23+17.54
−18.25

Table 6. Fits of the perturbation theory based model to 𝐶
𝑔𝑔

ℓ
and 𝐶

^𝑔

ℓ
as a function of ℓmax. The second column lists the priors used for the LPT model

parameters, while the third column is the medians and 1𝜎 confidence intervals based on the 16th and 84th percentiles of the posterior distributions. All priors
are flat except for the prior on 𝑏2, which is a Gaussian loosely centered at the peak-background split prediction for a given 𝑏1.

under changes in binning scheme if the bins are uncorrelated, we
consider this sufficient evidence that our bins of Δℓ = 20 are largely
uncorrelated. As another test, we also performed the fits using ℓmin =

100 instead of ℓmin = 30 and again found that the results and
goodness-of-fit remained stable suggesting that large scales are not
driving our fitting results.

7 CONCLUSIONS & FUTURE DIRECTIONS

In this paper, we present a cross-correlation between DESI-like
LRGs selected from DECaLS DR8 and all-sky CMB lensing maps
from Planck, and report a detection significance of 𝑆/𝑁 = 27.2 over
a wide range of scales from ℓmin = 30 to ℓmax = 1000.

To correct for the effects of magnification bias on the galaxy-
galaxy auto-spectrum and galaxy-convergence cross-spectrum, we
calculate the slope of the LRG cumulative magnitude function at
the limiting magnitude of the survey, determining a value of order
unity, 𝑠 = 0.999 ± 0.015. We find that the resulting corrections to
the spectra are on the order of 4-6%. We also test the impact of
tSZ bias in the lensing map, showing the associated errors on the
galaxy-lensing cross-correlation to be highly sub-dominant to the
overall lensing noise.

Within two different frameworks for modeling galaxy clus-
tering and using two different methods for estimating the redshift
distribution of the LRG sample, we fit the galaxy bias in multiple
complementary ways and cross-check the results, both for internal
consistency and to ascertain the impact of uncertainty in the redshift
distribution on the inferred bias parameters.

(i) Under a simple linear bias times HaloFit model, using a pho-
tometric 𝜙(𝑧) and an assumed bias evolution 𝑏(𝑧) ∝ 𝐷 (𝑧)−1, we
determine best fit values for the present day bias 𝑏gg = 1.64 ± 0.02
and 𝑏^g = 1.32 ± 0.05. This value of the galaxy bias is similar to
the prediction in the DESI Final Design Report (DESI Collabora-
tion et al. 2016), 𝑏LRG (𝑧) = 1.7/𝐷 (𝑧), though 𝑏^g is lower by a
statistically significant amount. This could indicate either a failure
of the model or input assumptions or that the fiducial “Planck 2018”
cosmology is incorrect.

(ii) Under a simple linear bias times HaloFit model, using a
clustering 𝜙(𝑧) and an assumed bias evolution 𝑏(𝑧) ∝ 𝐷 (𝑧)−1, we
determine best fit values for the present day bias 𝑏gg = 1.56 ± 0.01
and 𝑏^g = 1.32 ± 0.05. We note that the value of 𝑏gg changes by
𝜎𝑏gg = 0.08 in switching from the photometric estimate of 𝜙(𝑧) to
the clustering estimate of 𝜙(𝑧), whereas the cross-correlation is far

more robust to this uncertainty in the redshift distribution, with the
inferred parameter 𝑏^g unchanged.

(iii) Under a simple linear bias times HaloFit model, using a
clustering 𝑏(𝑧)𝜙(𝑧) with bias evolution implicitly folded into the
overall redshift kernel, we determine best fit values for the effective
bias 𝑏eff ≈ 𝑏(𝑧eff = 0.68), finding 𝑏eff

gg = 2.23 ± 0.02 and 𝑏eff
^g =

1.88±0.07. We find perfect consistency with the results of (ii) under
the latter’s assumed bias evolution.

(iv) Using perturbation theory with a Lagrangian bias model, and
using a photometric 𝜙(𝑧), we determine model parameters evaluated
at the effective redshift 𝑧eff = 0.68. The Lagrangian bias parameter
𝑏1 = 1.31 ± 0.05, when converted into Eulerian bias 𝑏 = 1 + 𝑏1,
agrees with the results of (iii) within the error found to be associ-
ated with uncertainty in the redshift distribution. Furthermore, after
applying the bias evolution assumption 𝑏(𝑧) ∝ 𝐷 (𝑧)−1, this result
is also in perfect agreement with the results of (i). In contrast to the
HaloFit model, the perturbative model (with scale-dependent bias)
provides a consistent, statistically good fit to both spectra over the
full ℓ-range considered with our fiducial cosmology. However even
with this model we find weak statistical preference for 𝐶^g

ℓ
to lie

lower than the theoretical prediction.

In summary, we find strong constraints on the present day
and effective linear bias, with the largest errors on these inferred
parameters originating from errors in the galaxy redshift distribution
but having negligible effect on the cross bias term 𝑏^g. We also
present a united framework for modeling bias in a bias evolution
agnostic way, and use this to validate the assumption of passive
bias evolution for LRGs. In future works, we intend to use the same
framework to perform joint constraints on cosmological and galaxy
bias parameters.

As this work was nearing completion we became aware of a
similar analysis by Hang et al. (2020). Those authors computed the
clustering of several photometric galaxy samples, constructed from
the Legacy Survey data, and their cross-correlation with the Planck
lensing maps. Where our results overlap they are in agreement,
with both analyses finding that the ^𝑔 spectrum is lower than the
predictions of a HaloFit-based model fit to the 𝑔𝑔 auto-spectrum.
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APPENDIX A: CLUSTERING REDSHIFT FORMALISM

A1 Detailed derivation

The angular cross-correlation function is related to the spatial cross-
correlation function by the equation

𝑤ps (\, 𝑧i) =
∫ ∞

0
𝑑𝜒1

∫ ∞

0
𝑑𝜒2 𝜙p (𝜒1)𝜙s (𝜒2)

× bps

(√︃
𝜒2

1 + 𝜒2
2 − 2𝜒1𝜒2 cos \, 𝑧i

)
(A1)

where the 𝜙(𝜒)’s are the normalized radial distributions, and are
related to the normalized redshift distributions 𝜙(𝑧) by 𝜙(𝜒) =

𝜙(𝑧)𝐻 (𝑧)/𝑐. Applying algebraic massaging to the argument of bps,
we have√︃

𝜒2
1 + 𝜒2

2 − 2𝜒1𝜒2 cos \ =√︄
2( 𝜒1 + 𝜒2

2
)2 (1 − cos \) + (𝜒2 − 𝜒1)2

2
(1 + cos \) (A2)

Since we are restricting to \ ≤ 1◦, we can use the small-angle
approximation18, cos \ ≈ 1 − \2/2, to simplify this expression.

𝑤ps (\, 𝑧i) =
∫ ∞

0
𝑑𝜒1

∫ ∞

0
𝑑𝜒2 𝜙p (𝜒1)𝜙s (𝜒2)

× bps

(√︂
( 𝜒1 + 𝜒2

2
)2\2 + (𝜒2 − 𝜒1)2, 𝑧i

)
(A3)

18 At 1◦, this approximation is accurate to within ≈ 4 × 10−9.
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Furthermore, if the redshift bins are sufficiently narrow, we can
treat the spectroscopic redshift distribution as a Dirac delta function
𝜙s (𝑧) ∝ 𝛿𝐷 (𝑧−𝑧i) for each bin and perform the 𝑑𝜒2 integral directly.
We also note that the 𝑑𝜒1 integral is, in practice, only evaluated over
the range of redshifts for which 𝜙p (𝑧) is non-zero, 𝑧min to 𝑧max.

𝑤ps (\, 𝑧i) ∝
∫ 𝜒max

𝜒min

𝑑𝜒 𝜙p (𝜒)

× bps

(√︂
( 𝜒 + 𝜒i

2
)2\2 + (𝜒 − 𝜒i)2, 𝑧i

)
(A4)

We now rewrite bps in terms of the underlying dark matter
correlation function times the linear biases of the photometric and
spectroscopic samples,

𝑤ps (\, 𝑧i) ∝
∫ 𝜒max

𝜒min

𝑑𝜒 𝜙p (𝜒)𝑏p (𝜒)𝑏s (𝜒i)

× bmm

(√︂
( 𝜒 + 𝜒i

2
)2\2 + (𝜒 − 𝜒i)2, 𝑧i

)
(A5)

Next, we apply the Limber approximation (generally valid for
scales \ ≤ 1◦), which assumes that 𝜙p and 𝑏p do not vary appre-
ciably over the characteristic scale defined by bmm, and thus can
be taken out of the integral. Since the integrand is sharply peaked
around 𝜒 = 𝜒i, this gives

𝑤ps (\, 𝑧i) ∝ 𝜙p (𝜒i)𝑏p (𝜒i)𝑏s (𝜒i)

×
∫ 𝜒max

𝜒min

𝑑𝜒 bmm

(√︃
𝜒2

i \
2 + (𝜒 − 𝜒i)2, 𝑧i

)
(A6)

= 𝜙p (𝑧i)
𝐻 (𝑧i)
𝑐

𝑏p (𝑧i)𝑏s (𝑧i)𝐼 (\, 𝑧i) (A7)

where

𝐼 (\, 𝑧i) ≡
∫ 𝜒max

𝜒min

𝑑𝜒 bmm

(√︃
𝜒2

i \
2 + (𝜒 − 𝜒i)2, 𝑧i

)
(A8)

can be computed directly from theory.

A2 Understanding 𝐼 (𝑧)

To understand the shape of 𝐼 (𝑧), it is useful to switch the integration
variable from 𝑑𝜒 to 𝑑𝑧 = 𝐻 (𝑧)/𝑐𝑑𝜒, such that we have

𝐼 (\, 𝑧i) =
∫ 𝑧max

𝑧min

𝑑𝑧
𝑐

𝐻 (𝑧) bmm

(√︃
𝜒2

i \
2 + (𝜒 − 𝜒i)2, 𝑧i

)
(A9)

For linear scales, bmm (𝑟, 𝑧) = 𝐷 (𝑧)2bmm (𝑟, 𝑧 = 0) =⇒

𝐼 (\, 𝑧i) =
∫ 𝑧max

𝑧min

𝑑𝑧
𝑐𝐷 (𝑧)2
𝐻 (𝑧) bmm

(√︃
𝜒2

i \
2 + (𝜒 − 𝜒i)2, 0

)
(A10)

Since the integrand is sharply peaked around 𝜒(𝑧) = 𝜒i,

𝐼 (\, 𝑧i) ≈
𝑐𝐷 (𝑧i)2
𝐻 (𝑧i)

∫ 𝑧max

𝑧min

𝑑𝑧 bmm

(√︃
𝜒2

i \
2 + (𝜒 − 𝜒i)2, 0

)
(A11)

This form tells us that 𝐼 (\, 𝑧i) ∝ 𝐷 (𝑧i)2/𝐻 (𝑧i) multiplied by an
integral that is only weakly dependent on 𝑧i through the co-moving
distance 𝜒i = 𝜒(𝑧i). Furthermore, we note that if both biases are
passively evolving 𝑏(𝑧) ∝ 𝐷 (𝑧)−1, then Equation A7 reduces to a
direct proportionality 𝑤ps (\, 𝑧i) ∝ 𝜙(𝑧i) for linear scales.

A3 Normalization and scale-dependent bias

One of the principal challenges of determining 𝜙(𝑧) through cross-
correlation analysis is the fact that each cross-correlation measure-
ment is only reliable over the subset of the redshift range in which the
two samples overlap. Hence, while it’s often touted that only the red-
shift dependence of the various functions such as bias are required
to constrain 𝜙(𝑧), as the many proportionality constants can be nor-
malized away, the different measurements must first be connected
piece-wise. Even when all nuisance parameters can be tracked and
accounted for, the analysis is ultimately limited by the fact that the
biases may be somewhat scale-dependent on the scales in which
signal-to-noise is high for angular cross-correlations. Hence, the
choice of which scales to integrate over, as discussed in Section 3,
can lead to additional factors. In practice, we often need to inte-
grate over different physical scales for different cross-correlations
to optimize S/N (for example, VIPERS has high surface density but
very small area, so the information lies mostly in smaller scales
compared to CMASS and eBOSS), leading to some residual offsets
between the measurements.

As an example to probe how scale dependence can change the
clustering-derived 𝜙(𝑧), we consider the “P-model” (Smith et al.
2007, Hamann et al. 2008, Cresswell & Percival 2009), where the
nonlinear correction to the bias is represented as an additional con-
stant in the power spectrum that accounts for non-Poissonian shot
noise associated with the 1-halo term (Peacock & Smith 2000, Sel-
jak 2000, Schulz & White 2006, Guzik et al. 2007, Wechsler &
Tinker 2018),

𝑃g (𝑘) −→ 𝑏2
g𝑃mm (𝑘) + P =⇒ (A12)

bps (𝑟) −→ 𝑏p𝑏sbmm (𝑟) + bP (𝑟) (A13)

where bP (𝑟) is simply the Hankel transformed P,

bP (𝑟) =
∫

𝑑𝑘

𝑘

𝑘3

2𝜋2 P 𝑗0 (𝑘𝑟) (A14)

=
P

2𝜋2

∫
𝑑𝑘 𝑘2 𝑗0 (𝑘𝑟) (A15)

Hence,

𝑤ps (\, 𝑧i) ∝ 𝜙p (𝑧i)
𝐻 (𝑧i)
𝑐

(𝑏p (𝑧i)𝑏s (𝑧i)𝐼 (\, 𝑧i) + 𝐽 (\, 𝑧i)) (A16)

where

𝐽 (\, 𝑧i) ≡
∫ 𝜒max

𝜒min

𝑑𝜒 bP

(√︃
𝜒2

i \
2 + (𝜒 − 𝜒i)2, 𝑧i

)
(A17)

Without knowing the value of P, the exact normalization (and,
indeed, the shape) of 𝜙p (𝑧) cannot be computed, since

𝜙p (𝑧i) ∝
𝑤ps (\, 𝑧i) 𝑐

𝐻 (𝑧i)
𝑏p (𝑧i)𝑏s (𝑧i)𝐼 (\, 𝑧i) + 𝐽 (\, 𝑧i)

(A18)

Assuming that the scale-dependent term is sub-dominant, 𝐽/𝐼 � 1,
we can expand in this ratio,

𝜙p (𝑧i) ∝
𝑤ps (\, 𝑧i) 𝑐

𝐻 (𝑧i)
𝑏p (𝑧i)𝑏s (𝑧i)𝐼 (\, 𝑧i)

1

1 + 𝐽 (\,𝑧i)
𝑏p (𝑧𝑖)𝑏s (𝑧𝑖) 𝐼 (\,𝑧i)

(A19)

≈
𝑤ps (\, 𝑧i) 𝑐

𝐻 (𝑧i)
𝑏p (𝑧i)𝑏s (𝑧i)𝐼 (\, 𝑧i)

(1 − 𝐽 (\, 𝑧i)
𝑏p (𝑧𝑖)𝑏s (𝑧𝑖)𝐼 (\, 𝑧i)

+ O2)

and thus obtain an estimate of the leading order effect of including
scale-dependent bias for a given P and range of redshifts and angles.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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