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Abstract
Summary: The Local Disordered Region Sampling (LDRS, pronounced loaders) tool is a new module developed for IDPConformerGenerator, a
previously validated approach to model intrinsically disordered proteins (IDPs). The IDPConformerGenerator LDRS module provides a method for
generating all-atom conformations of intrinsically disordered protein regions at N- and C-termini of and in loops or linkers between folded regions
of an existing protein structure. These disordered elements often lead to missing coordinates in experimental structures or low confidence in
predicted structures. Requiring only a pre-existing PDB or mmCIF formatted structural template of the protein with missing coordinates or with
predicted confidence scores and its full-length primary sequence, LDRS will automatically generate physically meaningful conformational ensem-
bles of the missing flexible regions to complete the full-length protein. The capabilities of the LDRS tool of IDPConformerGenerator include
modeling phosphorylation sites using enhanced Monte Carlo-Side Chain Entropy, transmembrane proteins within an all-atom bilayer, and multi-
chain complexes. The modeling capacity of LDRS capitalizes on the modularity, the ability to be used as a library and via command-line, and the
computational speed of the IDPConformerGenerator platform.

Availability and implementation: The LDRS module is part of the IDPConformerGenerator modeling suite, which can be downloaded from
GitHub at https://github.com/julie-forman-kay-lab/IDPConformerGenerator. IDPConformerGenerator is written in Python3 and works on Linux,
Microsoft Windows, and Mac OS versions that support DSSP. Users can utilize LDRS’s Python API for scripting the same way they can use any
part of IDPConformerGenerator’s API, by importing functions from the “idpconfgen.ldrs_helper” library. Otherwise, LDRS can be used as a com-
mand line interface application within IDPConformerGenerator. Full documentation is available within the command-line interface as well as on
IDPConformerGenerator’s official documentation pages (https://idpconformergenerator.readthedocs.io/en/latest/).

Atomistic structures of proteins, which are computational
models of real proteins, have been a central goal of the field
of structural biology to generate hypotheses and deepen our
understanding of the relationship between protein structure
and function. Experimental structures determined by X-ray
crystallography, NMR spectroscopy and cryo-electron mi-
croscopy (cryoEM) have provided incredible structural
insights (Dokholyan 2020, Burley et al. 2022). Most recently,
accurate protein structure predictions have become available
using machine learning methods such as AlphaFold (Jumper
et al. 2021), RoseTTAFold (Baek et al. 2021), and ESMFold
(Lin et al. 2023).

Intrinsically disordered protein regions (IDRs) are not visible
by X-ray crystallography and cryoEM because data averaging
due to conformational heterogeneity leads to missing electron

density and, hence, missing coordinates in the final models
(Villarreal and Stewart 2014, Djinovic-Carugo and Carugo
2015, Nwanochie and Uversky 2019). Computational predicted
structures contain coordinates for IDRs, but these coordinates
generally have low confidence predictions and are not likely rep-
resentative (Ruff and Pappu 2021). Since about 30% of residues
within the human proteome are expected to be within IDRs
(Tsang et al. 2020), obtaining structural insights from ensemble
models of these flexible regions has become a focus.

A variety of computational sampling methods are available
to model single-chain intrinsically disordered proteins (IDPs)
ensembles, including IDPConformerGenerator (Teixeira et al.
2022), Flexible-meccano (Ozenne et al. 2012), TraDES
(Feldman and Hogue 2000, 2002), and others (Shrestha et al.
2021, Karamanos et al. 2022). FastFloppyTail (Ferrie and
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Petersson 2020) can be used to generate IDPs or IDRs at the
N- and C-termini of a folded domain. Currently, though,
there is no easy-to-use modular method of modeling confor-
mational ensembles of (i) IDRs between two folded domains
within an experimental structure, (ii) IDRs representing low
confidence regions of predicted structures, (iii) IDRs within
transmembrane proteins, or (iv) IDRs found in dynamic pro-
tein complexes. While cyclic coordinate descent (CCD) and
kinematic closure methods (KIC) (Canutescu and Dunbrack
2003, Boomsma and Hamelryck 2005, Stein and Kortemme
2013, O’Donnell et al. 2022) are able to model all-atom miss-
ing protein regions (i.e. breaks in the protein chain), these
approaches are limited to 12 residues. In addition, existing
“loop” closure methods such as CCD do not rely on statistical
relationships between backbone torsion angles and protein se-
quence, resulting in the lack of sampling of realistic fractional
secondary structure.

Here, we present the Local Disordered Region Sampling
(LDRS) module of IDPConformerGenerator, available in the
IDPConformerGenerator v0.7.10 update. The LDRS module
enables users to model all-atom sidechain-inclusive ensembles of
N-terminal and C-terminal IDRs (N-IDRs and C-IDRs, respec-
tively), as well as IDRs between folded elements (L-IDRs, for
loops or linkers). Because LDRS is a module of
IDPConformerGenerator, it uses the knowledge-based modeling
engine of IDPConformerGenerator, which generates physically
meaningful ensembles based on the torsion angle sampling
driven by the statistical relationship between protein sequence
and backbone torsion angles along with other chain geometry
within the RCSB PDB (Burley et al. 2022). While the resulting
IDR conformer ensembles have not been refined with experi-
mental data and are thus not necessarily accurate, they are
expected to be representative, based on our previously reported
observed agreement between IDPConformerGenerator ensemble
structural properties and experiment (Teixeira et al. 2022).
LDRS has been developed as a modular command-line interface
and Python library within the IDPConformerGenerator plat-
form (Teixeira et al. 2022), exploiting the flexibility and modu-
larity of IDPConformerGenerator’s design. The initial release of
IDPConformerGenerator could only model isolated IDPs and
IDRs, but with the LDRS update, using the new “ldrs” sub-
client, users are able to model IDRs within the context of pro-
teins having folded domains. Furthermore, these IDRs can be
modeled automatically in the context of a lipid bilayer surround-
ing a membrane-embedded domain, as well as in multi-chain dy-
namic complex systems. As of v0.7.10, both PDB and PDBx/
mmCIF formatted initial structural templates with missing
atomic coordinates for the IDRs to be modeled are accepted.

To showcase the multiple applications of LDRS, we have
modeled five protein systems having different combinations
of N-IDR, L-IDR, and C-IDR cases. We use structures from
the RCSB PDB (Berman et al. 2000) having missing coordi-
nates due to lack of data and from the AlphaFold structure
prediction database (Jumper et al. 2021, Varadi et al. 2022),
from which we removed the low confidence residues. We
modeled missing residues as ensembles using LDRS.
Sidechain atoms were modeled within
IDPConformerGenerator using Monte Carlo-Side Chain
Entropy (MC-SCE) (Bhowmick and Head-Gordon 2015),
and we exploited recent enhancements to MC-SCE that en-
able modeling post-translational modifications (PTMs), in-
cluding phosphorylation, methylation, N6-carboxylysine, and
hydroxylation (Han and Martinage 1992, Sirota et al. 2015).

We also demonstrate the capabilities to model IDRs in trans-
membrane proteins in the context of a phospholipid bilayer
and within multi-chain dynamic complexes. Full-length pro-
tein ensembles of these systems have not been previously mod-
eled/deposited on the Protein Ensemble Database (PED)
(Lazar et al. 2021, Ghafouri et al. 2023) at the time of writ-
ing. We deposited all modeled ensembles for this project and
have listed the PED IDs in Fig. 1 and Supplementary Fig. S2.
The primary sequence schematics for the folded and IDR ele-
ments for the studied systems are shown in Supplementary
Fig. S1.

Figure 1A presents a combination of the N-IDR and C-IDR
cases occurring in the 5-fold phosphorylated eukaryotic trans-
lation initiation factor 4E-binding protein 2 (5p 4E-BP2),
based on the NMR structure (PDB ID 2MX4) (Bah et al.
2015). 4E-BP2 is largely disordered but has a conditionally
folded �40-residue domain upon phosphorylation (Bah et al.
2015, Dawson et al. 2020), leading to an N-IDR length of 18
residues and a C-IDR length of 59 residues (including 3 phos-
phorylation sites) surrounding the folded domain (containing
2 phosphorylation sites). The all-atom coordinates generated
for 5p 4E-BP2 include the five phosphate groups. For the sin-
gle L-IDR case (Fig. 1B), we have modeled the STAS (sulfate
transporter anti-sigma) domain of SLC26A9 (solute carrier
family 26 member 9) including 86 residues not found in the
electron density of the X-ray structure (PDB ID 7CH1) (Chi
et al. 2020).

Figure 1C presents the transmembrane a2A adrenergic re-
ceptor predicted by AlphaFold (entry P08913), which has ex-
tensive regions with low confidence residues (pLDDT < 70)
(Jumper et al. 2021, Varadi et al. 2022). We removed coordi-
nates for these low confidence residues using a simple script
that is easily modified to apply to other predicted structures
(see Supplementary Information), leading to a 40-residue N-
IDR, two L-IDRs of 18 residues and 125 residues, and a 9-res-
idue C-IDR to be modeled by LDRS. Initially, the lipid bilayer
was added using OPM (Orientations of Proteins in
Membranes) (Lomize et al. 2012) and the CHARMM-GUI
(Jo et al. 2008). The atomic coordinates of the lipid bilayer
are then accounted for in LDRS for steric clash checking pur-
poses. While only backbones were modeled for the IDRs, all
atomic coordinates of the lipids are present in each of the
LDRS models of the a2A adrenergic receptor.

Figure 1D shows an ensemble model of the dynamic interac-
tion between the eukaryotic translation initiation factor 4E
(eIF4E) and nonphosphorylated 4E-BP2 (Lukhele et al. 2013),
with 4E-BP2 represented as having two fixed binding sites to
eIF4E highlighted in dark grey. The backbone atoms for the N-
IDR (54 residues), L-IDR (20 residues), and C-IDR (40 residues)
of nonphosphorylated 4E-BP2 and for the N-IDR (35 residues)
and L-IDR (9 residues) of eIF4E have been modeled using
LDRS. The template for the complex is derived from an X-ray
crystal structure of 4E-BP1 bound to eIF4E (PDB ID 4UED)
(Peter et al. 2015), removing residues of 4E-BP2 that are ex-
tremely broadened in NMR spectra of the complex (Lukhele
et al. 2013). Lastly, we have modeled the cellular tumor antigen
p53 (p53) with all-atom conformations using the full-length pre-
dicted structure from AlphaFold (entry P04637) but removing
low confidence regions (Supplementary Fig. S2). Note that the
a2A adrenergic receptor transmembrane protein and the 4E-BP2:
eIF4E complex backbone ensembles can have all-atom conform-
ers by adding a sidechain packing step akin to the other pre-
sented systems, as IDPConformerGenerator LDRS can
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Figure 1. Diverse full-length all-atom and backbone-only ensembles generated using LDRS. Models are drawn as ribbons; disordered regions have

additional ball-and-stick models. Pre-existing solved or predicted structure is shown in grey, N-IDRs in green, L-IDRs in purple, and C-IDRs in magenta.

Hydrogen atoms are white in the ball-and-stick models. (A) Five-fold phosphorylated 4E-BP2 (5p 4E-BP2, PED ID PED00436): (Ai) NMR structure (20

poses from PDB ID 2MX4) with ball-and-stick representations of the terminal residues, N-terminal proline in green and C-terminal arginine in magenta.

Phosphorylated residues within the folded domain (Thr35, Thr46) are shown in yellow. (Aii) A single full-length all-atom conformer with ball-and-stick

representations of the IDRs including phosphate residues (Ser65, Thr70, Ser83, in yellow) modeled using LDRS together with MC-SCE. (Aiii) Ensemble of

100 (of 1828 calculated) all-atom conformers of 5p 4E-BP2 calculated with LDRS. (B) SLC26A9 STAS domain (PED ID PED00437): (Bi) X-ray structure

(PDB ID 7CH1) with ball-and-stick representations of the residues immediately surrounding the missing loop colored for placement of the missing L-IDR.

(Bii) A single all-atom model of the full-length domain with ball-and-stick representation of the LDRS-generated L-IDR missing in panel Bi. (Biii) Ensemble

of 100 (of 692 calculated) all-atom conformers. (C) a2A adrenergic receptor (PED ID PED00435): (Ci) Structure predicted by AlphaFold (entry P08913),

colored according to AlphaFold confidence, with lower confidence regions (pLDDT < 70) in orange and yellow (Jumper et al. 2021, Varadi et al. 2022). (Cii)

Ensemble of 100 backbone structures (of 2000 calculated) with AlphaFold lower confidence regions (pLDDT < 70) modeled by LDRS in the context of a

bilayer (in light grey). (D) 4E-BP2: eIF4E complex (PED ID PED00434): (Di) Homology model based on the 4E-BP1: eIF4E X-ray structure (PDB ID 4UED)

with 4E-BP2 elements to be modeled as fixed in dark grey and eIF4E in light grey (see Supplementary Information for more details). Ball-and-stick

representations of the terminal residues of IDRs to be modeled for eIF4E in light colors and for 4E-BP2 in dark. (Dii) Ensemble of 100 (of 2000 calculated)

full-length backbone conformers of the 4E-BP2: eIF4E complex with IDRs modeled by LDRS. eIF4E N-IDRs shown in light green and L-IDRs in light

purple. 4E-BP2 N-IDRs shown in dark green, L-IDRs in dark purple, and C-IDRs in magenta.
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automatically detect lipid bilayer boundaries and build on tem-
plates with multiple folded chains.

The fraction secondary structure and Ramachandran plots for
the calculated models of these proteins showcase the extent of
sampling (Supplementary Figs S3–S5). A strength of LDRS is its
ability to sample transient helical secondary structure at the
boundary of fragment attachment, based on the sequence-based
torsion angle builder of IDPConformerGenerator. For example,
we observe fractional a-helix secondary structures extending
from the existing chains of 5p 4E-BP2 and the SLC26A9 STAS
domain (Fig. 1Aii and Bii). This extension of helical secondary
structure is captured by DSSP (Kabsch and Sander 1983) as seen
in Supplementary Fig. S3. Relative speeds of conformer genera-
tion for each system demonstrate the efficiency of the modeling,
but are dependent on IDR length and the restrictions from the
folded domain and lipid bilayer (Supplementary Table S1).

For ensemble models of IDRs of AlphaFold-predicted struc-
tures (Jumper et al. 2021, Varadi et al. 2022), we find that the
conformers exhibit a range of secondary structures
(Supplementary Figs S3.1 and S3.2), as expected based on
IDPConformerGenerator’s sampling of PDB-derived torsion
angles, compared to the primarily coil or loop structures of the
initial AlphaFold model (Supplementary Fig. S3.3). In addition,
Ca-Ca distances between modeled IDRs and the folded template
sample a much broader range than the initial AlphaFold model,
including in some cases instances with closer contacts reflective
of potential interactions sampled by IDPConformerGenerator
(Supplementary Figs S6.1 and S6.2).

A graphical summary of the LDRS method is shown in
Supplementary Figs S7.1 and S7.2. The core of the LDRS ap-
proach is based on the Kabsch algorithm (Kabsch 1976), a
mathematical protocol that ensures the alignment and connectiv-
ity of protein backbone fragments. First, LDRS identifies missing
residues by comparing the given input PDB structure and full-
length sequence. LDRS then builds the missing residues as iso-
lated single chains using the IDPConformerGenerator (Teixeira
et al. 2022) builder. Single chains are oriented to the sites of N-
IDR, L-IDR, and C-IDR cases using the Kabsch algorithm, and
a flexible van der Waals radii (Tsai et al. 1999) clash check is
employed to remove chains that clash with the input structure.
Although sidechains can be built during the initial modeling
step, we recommend modeling the backbones first before the
downstream sidechain and post-translational modification
modeling with MC-SCE (Bhowmick and Head-Gordon 2015)
to eliminate sidechain clashes. Phosphorylated Ser and Thr side-
chains are added after sampling torsion angles related to
unmodified Ser and Thr residues, as well as pSer and pThr resi-
dues, from the RCSB PDB (Berman et al. 2000, Burley et al.
2022), due to the lack of data for backbone specific torsion
angles of phosphorylated residues.

To model IDRs between folded elements (L-IDR case), we
have developed the next seeker algorithm in LDRS (see
Supplementary Fig. S7.1). After generating ensembles of full-
length fragments of these IDRs representing missing residues
from both sides of the gap, next seeker identifies fragment
pairs that can close the chain. This is done by verifying that
the Ca(i)-C(i)-N(iþ 1) bond angle, x backbone torsion angle,
and bond lengths (dC-N, dC-Ca) of residues i and iþ 1 from
each of the respective pairs comply with average values ob-
served in the IDPConformerGenerator database. This data-
base was generated from nonredundant PDB IDs of X-ray
crystal structures with resolutions better than or equal to
1.8 Å. After a match has been found, next seeker can remodel

the carbonyl oxygen and the amino hydrogen at the point of
closure.

As LDRS appends a new library of functions into the
IDPConformerGenerator API, this generalized tool can be used
to model intricate protein systems limited only by the imagina-
tion of the user. For example, using the scripts provided in the
Supplementary Material archive as a starting point, LDRS could
be used to model ensembles of transmembrane protein interac-
tions comprising several different protein chains.

We envision that the LDRS module within IDPConformer
Generator will be a useful tool to generate ensemble representa-
tions of highly flexible loops and tails that are poorly represented
by data or prediction methods. The agreement of ab initio
IDPConformerGenerator ensembles with experimental data
(Teixeira et al. 2022) suggests that the IDRs built with LDRS
should be representative. If experimental data on torsion angle
preferences (i.e., NMR chemical shifts and J-coupling data) are
available for the IDRs, the LDRS module in conjunction with the
CSSS (custom secondary structure sampling) module (Teixeira
et al. 2022) within IDPConformerGenerator can build IDRs with
these preferences. Furthermore, all-atom conformer ensembles
generated with LDRS can be input into sub-setting or reweighting
protocols using experimental data, including nuclear magnetic
resonance (NMR) spectroscopy, small-angle X-ray scattering
(SAXS), and fluorescence resonance energy transfer (FRET)
(Bottaro et al. 2020, Gomes et al. 2020, Lincoff et al. 2020, Liu
et al. 2023, Tsangaris et al. 2023) to generate more realistic en-
semble representations that agree with these data. Future develop-
ment of the LDRS toolkit within the IDPConformerGenerator
platform will include streamlining generation of dynamic com-
plexes involving IDPs and IDRs, improving the efficiency of side-
chain packing by MC-SCE (Bhowmick and Head-Gordon 2015)
and enhancing its capabilities to represent additional post-
translational modification types. The expanding toolkit of
IDPConformerGenerator will facilitate structural modeling of the
many IDRs present in human and other proteomes, providing
valuable insights into structure-dynamics-disorder-function
relationships.
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