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Abstract

Purpose: Megavoltage computed tomography (MVCT) has been implemented on many radiation 

therapy treatment machines as a tomographic imaging modality that allows for three-dimensional 

visualization and localization of patient anatomy. Yet MVCT images exhibit lower contrast 

and greater noise than its kilovoltage CT (kVCT) counterpart. In this work, we sought to 

improve these disadvantages of MVCT images through an image-to-image based machine learning 

transformation of MVCT and kVCT images. We demonstrated that by learning the style of kVCT 

images, MVCT images can be converted into high quality synthetic kVCT (skVCT) images with 

higher contrast and lower noise, when compared to the original MVCT.

Methods: kVCT and MVCT images of 120 head and neck (H&N) cancer patients treated on 

an Accuray TomoHD system were retrospectively analyzed in this study. A cycle-consistent 

generative adversarial network (CycleGAN) machine learning, a variant of the generative 

adversarial network (GAN), was used to learn Hounsfield Unit (HU) transformations from MVCT 
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to kVCT images, creating skVCT images. A formal mathematical proof is given describing the 

interplay between function sensitivity and input noise and how it applies to the error variance 

of a high-capacity function trained with noisy input data. Finally, we show how skVCT shares 

distributional similarity to kVCT for various macro-structures found in the body.

Results: Signal to noise ratio (SNR) and contrast to noise ratio (CNR) were improved in skVCT 

images relative to the original MVCT images and were consistent with kVCT images. Specifically, 

skVCT CNR for muscle - fat, bone - fat and bone - muscle improved to 14.8 ± 0.4, 122.7 ± 22.6, 

and 107.9 ± 22.4 compared with 1.6 ± 0.3, 7.6 ± 1.9, and 6.0 ± 1.7, respectively, in the original 

MVCT images and was more consistent with kVCT CNR values of 15.2 ± 0.8, 124.9 ± 27.0, and 

109.7 ± 26.5, respectively. Noise was significantly reduced in skVCT images with SNR values 

improving by roughly an order of magnitude and consistent with kVCT SNR values. Axial slice 

mean (S-ME) and mean absolute error (S-MAE) agreement between kVCT and MVCT/skVCT 

improved, on average, from -16.0 and 109.1 HU to 8.4 and 76.9 HU, respectively.

Conclusions: A kVCT-like qualitative aid was generated from input MVCT data through a 

CycleGAN instance. This qualitative aid, skVCT, was robust towards embedded metallic material, 

dramatically improves HU alignment from MVCT, and appears perceptually similar to kVCT with 

SNR and CNR values equivalent to that of kVCT images.

Keywords

MVCT/kVCT; generative adversarial learning; contrast improvement

1. INTRODUCTION

Kilovoltage computed tomography (kVCT) is the medical standard for radiation therapy 

treatment planning for most patients. The development of kV on-board imaging on radiation 

therapy treatment machines has allowed for more accurate localization of patients prior to 

radiation delivery, and the capability to monitor anatomical changes and adapt the treatment 

to a patient’s daily anatomy. For on-board imaging, kV cone-beam CT (CBCT) has become 

the most prominent modality with it being widely used in many medical linear accelerator 

and proton therapy systems. While kV on-board imaging systems offer strong soft and bony 

tissue contrast2, these systems may also complicate machines by necessitating additional 

hardware and a separate imaging isocenter (due to an imaging system separate from the 

treatment beam) and tend to be more susceptible to certain artifacts. In the case of a 

patient with metal prosthetics, dental fillings, or other embedded metallic material, kVCT 

can be susceptible to streaking artifacts and increased beam hardening effects3. Previously, 

megavoltage (MV) imaging was developed as an alternative on-board imaging modality 

that may not be as susceptible to some of the disadvantages of kV imaging3. MV imaging 

often relies on the already present high-energy x-ray treatment beams potentially increasing 

the spatial accuracy if the imaging isocenter is the same as the treatment isocenter. In 

addition, megavoltage computed tomography (MVCT) circumvents problems related to 

beam hardening and streaking artifacts through a higher energy spectrum but at the cost of 

noisy image quality with lower signal-to-noise and lower contrast-to-noise ratios4 relative to 

kVCT. With these advantages of MVCT, groups have worked to mitigate these shortcomings 

in contrast and noise. There have been recent attempts to minimize the MVCT noise 
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signature through statistical methods5,6, however even with low noise implementations 

MVCT has lower tissue contrast values when compared to kVCT tissue contrast. Ideally, we 

would acquire MVCT’s robustness to implanted metal devices while maintaining kVCT’s 

high signal-to-noise and contrast-to-noise ratios. Such advantages would potentially allow 

MVCT to hold an advantage to kVCT for on-board imaging.

In order to transform MVCT images into kVCT-like images without introducing any 

deformation, the relationship between the appearance of MVCT and kVCT images needs 

to be learned. Historically, kernel methods and iterative, tolerance methods were the 

common implementations for learnable or modular transformations in medical imaging7,8. 

Kernel methods are attractive due to their easy implementation and theoretical guarantees 

with iterative, tolerance methods being favored when a common-sense or physics-driven 

approach is preferred. When compared to modern neural networks, the former applications 

are described as being more interpretable and driven by first principles. However, both 

kernel methods and iterative methods fall behind modern machine learning implementations 

in the field of image recognition and segmentation9. Another criticism to modern neural 

networks is that they are prone to overfitting and behave unexpectedly to unseen inputs. 

Recent research into neural networks has shown a double descent phenomenon in training 

where, in the large data regime, the neural network can achieve zero training error without 

losing the ability to generalize to unseen inputs10. Accuracy aside, there are compelling 

runtime reasons to choose neural networks over kernel or iterative methods. For kernel 

methods, the runtime complexity of evaluating a new point grows naively on the order 

of N3, where N is the number of total training data points. Approximate kernel methods 

using M inducing points can improve this complexity to N + M log M11. For iterative, 

tolerance-based methods, runtime is dependent on the data distribution and the selected 

error tolerance ϵ. Iterative problems that are convex but not necessarily differentiable can be 

solved via proximal gradient descent algorithms with an accelerated runtime growing on the 

order 1/ ϵ12. Neural network implementations sidestep these issues by offering a vectorized 

solution that runs in constant time at evaluation, regardless of the specific input and size of 

the training data.

Convolutional neural networks (CNN) have achieved success in many radiation oncology 

applications such as anatomical segmentation, dose calculation, and deformable image 

registration13–18. However, conventional CNNs rely on static loss functions that promote 

overly smooth predictions. Generative adversarial networks (GAN) solve this problem by 

training a CNN discriminator to enforce prediction realism19,20. However, GANs utilize L1 

loss which requires paired images between target and source domains. Patients often have 

different postures between target and source imaging domains so L1 loss is sub-optimal even 

if deformable image registration is used. Cycle-consistent generative adversarial networks 

(CycleGAN) overcome this limitation by using pure adversarial loss which enables them to 

learn from unpaired images21. Unsupervised CycleGANs have been used in CT predictive 

imagery22,23 showing promising results in transforming cone-beam CT images to kVCT 

images. In this study, CycleGAN used to generate anatomically accurate kVCT images 

from MVCT input images. Zhu et al’s CycleGAN24 architecture was used as it is robust 

towards deformations25 and works well for unaligned anatomy, which is the case for our 
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inter-modality imaging data. To recapitulate, the work describes a CycleGAN architecture 

that improves the contrast and signal of MVCT by learning a transformation that maps local 

MVCT information to a local kVCT-like counterpart.

2. MATERIALS AND METHODS

2.A. Data

The kVCT and MVCT images of 120 head and neck (H&N) cancer patients treated on an 

Accuray TomoHD system were retrospectively analyzed in this IRB-approved study. One 

hundred patient scans were used for training and validation while 20 patient scans were 

used for testing. Each patient received a kVCT simulation scan approximately two weeks 

prior to treatment. Following treatment planning, each patient was imaged daily by MVCT 

on a TomoHD machine immediately prior to treatment. For each patient, the kVCT was 

co-registered to the space of their respective MVCT scan in MIM (MIM Software Inc, v 

6.8.3 Cleveland, OH) using the automated rigid registration algorithm to produce a match 

across the entire scan volume then resampled and saved while maintaining the 512×512 

16-bit matrix. In this process, the kVCT field of view (FOV) was, in general, reduced to 

match the MVCT scan FOV. During the training process, both kVCT and MVCT datasets 

image intensities were renormalized to [−1, 1] for better training stability. Both datasets 

were later unnormalized for the final comparisons and calculations of error metrics.

2.B. MVCT and kVCT Cyclic Learning

CycleGAN24, a GAN variant, was used to learn the Hounsfield Unit (HU) transformation 

from MVCT to kVCT images. CycleGAN implements a pair of parallel opposed GANs to 

simultaneously learn forward (MVCT to kVCT) and backward (kVCT to MVCT) image 

transformations. Each GAN focuses on optimizing its specified transformation through an 

adversarial game of generating and identifying fake images. The learning of both GANs are 

coupled with a cyclic loss which penalizes the degree to which the composed forward and 

backward transformation varied from the identity function. Figure 1 provides a view of the 

CycleGAN loss architecture for one of the GAN pairs.

Adopting the notation from Zhu et al24, if G:X → Y is the generator producing kVCT 

images from MVCT images and F:Y → X is the generator producing MVCT images from 

kVCT images then the cyclic loss can be written as

Lcyc = 1
N ∑i = 1

N F G xi − xi 1 + G F yi − yi 1 (1)

where ‖⋅‖1 is the L1 norm of a vector, xi is an MVCT training example, and xi is a kVCT 

training example. Early in the training cycle, the cyclic loss is most active in penalizing 

deformations brought upon by each image transformation. Later in the training, however, the 

cyclic loss may become less effective in minimizing deformations as the generators learn to 

“game” the discriminators by encoding missing information across the image26. In the case 

of MVCT to kVCT training this behavior can prove to our benefit as the high noise ratio 

in MCVT scans becomes perceived as a structural difference that can be optimized away in 

the forward MVCT to kVCT transformation. This denoising claim is supported by previous 
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literature22 where CycleGAN was shown to be adept in minimizing the noise and imaging 

artifacts found in CBCT scans. The benefits to using CycleGAN then become twofold, first 

a backward transformation (kVCT to MVCT) is gained in conjunction to the desired forward 

transformation and second the forward transformation becomes equipped with a machine 

learned denoising measure for MVCT images.

2.C. Validation and Model Specifications

Prior to final training, network and hyperparameter validation was performed on an 85–15 

split of the total training data. All image data during the validation phase was downsampled 

by a factor of 2 to lessen computational burden and accelerate the search for good 

hyperparameters. Hyperparameters that contributed to the stability and longevity of the 

training were considered good or strong hyperparameters. During validation, emphasis 

was placed on running the adversarial learning process long enough for the generator 

to be expressive enough to realistically simulate kVCT patient scans. Output realism 

was determined both qualitatively by eye and quantitatively through a degree deviation 

calculation between real and synthetic kVCT. Examples of this degree deviation calculation 

are shown on Figure 3, where they are applied to MV vs kV and skV vs kV heatmaps.

Final network architecture used for the generators was a U-Net architecture with a 2×2 

bottleneck for 512×512 sized images and for the discriminators the final architecture was 

a four-layer PatchGAN27 with an effective receptive field of 142×142. Both networks are 

readily available in the source code provided by Zhu et al24 and can be modified via 

command line arguments at the start of trainingc). The CycleGAN loss was optimized for 

210 epochs with the Adam optimizer and a learning rate of 2.5 × 10−4, a β1 of 0.5, a 

β2 of 0.999, and an ϵ of 1.0 × 10−8. During validation, we found that going past 210 

epochs negligibly improved generator expressivity at the cost of added adversarial noise. 

The hyperparameters listed above align closely with another CycleGAN implementation 

used for CT to on-board treatment machine CT translation22. A visualization of the final 

U-Net architecture used has been provided in Figure 2.

2.D. Calculations

Tissue segmentation was utilized to compare skVCT HU accuracy at different core areas 

of interest: bony tissue, soft tissue, fat, and muscle. Tissue segmentation was preformed 

using standard HU thresholds29 together with the Python library Scikit-Image30 to clean and 

partition the tissue regions of the 20 test case axial CT slices. A total of five tissue masks 

were created from kVCT/skVCT data: a body mask, a bony tissue mask, a soft tissue mask, 

a fat mask, and a muscle mask. The body mask was created by truncating all HU values 

less than -400 and then segmenting the different connected regions using Scikit-Image. The 

largest of these connected regions was defined to be the body region. The body region 

was refined to a mask through a binary fill operation which preserves the nasal and oral 

cavities as well as the lungs of the body. All voxels inside the body mask with HU value 

greater than 150 HU are considered to be part of the bony tissue mask. The set subtraction 

between body mask and bony tissue mask produced the soft tissue mask. Likewise, the fat 

c)Data pipeline to clean and transform patient DICOM files into PyTorch tensors can be made available by request to the authors.
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and muscle masks are subsets of the soft tissue mask respecting the HU bounds found in 

Lev and Gonazalez29, which are [−70, −30] and [20, 40], respectively. Masks for MVCT 

and skVCT images were made using skVCT HU data. In order to minimize mask alignment 

issues between MVCT and kVCT or skVCT and kVCT, the mask intersection between the 

skVCT mask and kVCT mask was used when calculating error metrics between different 

image domains. Specific regions of interest (ROI) contours for the head and neck normal 

organ structures were manually contoured using MIM Software (MIM Software Inc, v 6.8.3 

Cleveland, OH). These contours were then filled and used as masks to calculate metrics on 

the specific ROIs.

In this manuscript we considered primary metrics calculated directly on the source data and 

results and secondary metrics derived from the regression and interpolation of the target 

outputs. Primary metrics can be subdivided into two categories, those calculated at the voxel 

level and those calculated at the slice level. All primary metrics below are shown in mean 

value form. Let N denote the total number of voxels shared in common between source X 
and target Y and Xi, Yi denote the intensity values of the ith voxel of the respective source 

and target then voxel mean error (V-ME) and voxel mean absolute error (V-MAE) can be 

expressed as

V‐ME = 1
N ∑i = 1

N Y i − Xi (2)

V‐MAE = 1
N ∑i = 1

N Y i − Xi (3)

All twenty test patients are included in the sums of (2) and (3) and only voxels within the 

body were included. Mean error and mean absolute error were also considered at the slice 

level, analogously named S-ME and S-MAE. Suppose a total of K slices were used and Nk 

is the number of voxels in common shared between source and target at the Kth slice then the 

slice error metrics become

S‐ME = 1
K ∑k = 1

K 1
Nk

∑i = 1
Nk Y i

k − Xi
k , (4)

S‐MAE = 1
K ∑k = 1

K 1
Nk

∑i = 1
Nk Y i

k − Xi
k , (5)

Three additional slice-level metrics considered were peak signal-to-noise-ratio (PSNR), 

signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR). Let μX
k  be the mean of source 

X at slice k and μY
k  be the mirror case for another source Y. We denote the noise present 

on slice k by the variable σ(k). We approximate the noise at slice k through calculating the 

standard deviation of the muscle mask values at that slice. With this notation, the equations 

for the additional slice-level metrics can be expressed as
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SNR = 1
K ∑k = 1

K μX
k

σ k , (6)

CNR = 1
K ∑k = 1

K μY
k − μX

k

σ k , (7)

PSNR = 1
K ∑k = 1

K 20 log10
Imax

MSE k , where

MSE k = 1
Nk

∑i = 1
Nk Y i

k − Xi
k 2 and Imax = 212 − 1.

(8)

In addition, two secondary metrics were considered. The first secondary metric was an 

absolute difference metric calculated between the estimated probability distributions of X 
and Y while the other secondary metric was an angle deviation calculation between an 

optimal reference and a fitted slope. For the first secondary metric, suppose fX, fY are linear 

interpolants of the bin heights of the normalized histograms of X and Y. If Λ is the union of 

the supports of fX and ffX then the integral absolute difference (IAD) can be expressed as

IAD = ∫
Λ

fY x − fX x dx . (9)

Bin and range values were hand-selected for the histogram of each contour. For the second 

secondary metric, a straightforward dot product, arccosine calculation was done between 

the optimal reference and fitted slope, ω. The slope, ω, was calculated from a total least 

squares (orthogonal regression) fit between the source and target data. Simplifying, the 

result becomes

ω = a
b + b2 + a2

, where a = ∑i = 1
N XiY i and b = 1

2 ∑i = 1
N Xi

2 − Y i
2 . (10)

Alternatively, one could calculate the angular deviation between the reference line and the 

best linear predictor of the data (OLS). However, for a geometric calculation like angular 

deviation it is better to compare the reference line to the best linear geometric (orthogonal) 

fit to the two-dimensional data.

2.E. Model Error Analysis

The following analysis is provided as an aid to later discussion of the results reported 

in Sections 3.A. and 3.B. The analysis presented focuses on the relation of a function’s 

Jacobian J and input variance σX
2 , to the model’s total error variance. Let f:Ω ℝd be 

our machine learned function mapping d dimensional MVCT axial slice images X to d 

dimensional kVCT axial slice images Y . We work with the assumption that the value of X
has been truncated sometime during the instrumentation process and as such claim, without 

loss of generality, that Ω can be described as a compact domain. To see this note, Ω can 
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be defined tightly about X such that all values of Ω that are not realizations of X must be 

boundary points of Ω and as such have probability zero of occurring. This gives an almost 

everywhere equivalence between compact Ω and the domain of truncated X.

For a proof of concept, we assume that f has learned the MVCT to kVCT HU transition 

such that EY [Y ] = f(EX[X]). Further we assume that the noise in X is independent to 

the noise in Y  and that the noise between components of X are uncorrelated and have 

equal variance. Lastly we define a tight bound δ > 0 on the mean error such that for all 

i ∈ {1, …, d}, |EY , X[Y i − fi(X)] | ≤ δ. Under these assumptions and definition, a lower bound 

on the total variance of the error can be established (proof can be found in the Appendix, 

Section A.2.) such that:

tr CovXY Y − f(X), Y − f(X) ≥ ρσX
2 ∑i = 1

d V arX κi2
1/2 ∑i = 1

d Kurt Xi − 1
1/2

+ σX
2 EX JX F

2 − dδ2

.

(11)

Defining the notation above, JX is the average almost-everywhere equivalent to J between 

instance X and mean EX[X], kurt[Xi] is the kurtosis of component Xi, κi2 is the squared 

singular value of JX, and ρ is a value between -1 and 1. The only lower bound estimate used 

in (11) was EY , X[Y i − fi(X)] 2
2 ≤ dδ2, so for tight or small δ lower bound (11) becomes an 

accurate estimate of the total variance of the error.

The value EX[‖JX‖F
2 ] shares similarities to the function sensitivity, EX[‖J‖F], and can be 

viewed as an average, squared function sensitivity between the instance X and mean E[X]
since,

min
z ∈ LX

J|z ≤ JX ≤ max
z ∈ LX

J|z,
(12)

min
z ∈ LX

‖J|z‖F ≤ ‖JX‖F ≤ max
z ∈ LX

‖J|z‖F ,
(13)

where LX = {sX + (1 − s)E[X] s ∈ [0,1]} and the inequality in (12) is respected elementwise. 

Additionally, the squared Frobenius norm of a matrix A is equivalent to the sum of the 

square singular values of A, so the term V arX(κi2] can be viewed as the variation of the 

squared, average function sensitivity EX[‖JX‖F
2 ]. On a final note the kurtosis is lower 

bounded by one plus the squared skewness of a random variable31 so (11) is always a 

real-valued estimate.
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3. Results

3.A. Alignment Results and In-Voxel Variation

Two-dimensional HU heatmaps for MVCT vs kVCT values and skVCT vs kVCT values 

were plotted in Figure 3. The heatmaps are colored with a log-scale coloring and include a 

gray dotted reference line across the diagonal. The diagonal reference denotes a perfect HU 

alignment result when both the source and target distribution are equal in value everywhere. 

Equation (10) was applied to voxels in the intersection of the bony tissue masks of the 

source and target slices. The fitted slope, shown as a solid red line in Figure 3, was used to 

calculate the angular deviation between bony tissue values and the 45° reference line. The 

MV, kV heatmap (Figure 3 (a)) had a bony tissue slope of 0.488 and an angular deviation 

19.01°. The skV, kV heatmap (Figure 3 (b)) had a bony tissue slope of 1.002 and an angular 

deviation of 0.05°.

We highlight two key areas of interest in plots (a) and (b) of Figure 3. The first is a soft 

tissue region plotted as a yellow color around the kV HU interval [−100, 100] and the 

second is a bony tissue “tail” extending from 150 kV HU to 1500 kV HU. Qualitatively an 

improvement in alignment, with respect to the reference line, can be seen in both regions 

when comparing Figure 3 (a) to Figure 3 (b). Due to log scaling, the yellow colored region 

in Figures 3 (a) and 3 (b) play a dominant role in the soft tissue kVCT HU alignment. 

A suitable proxy to HU alignment in this case would be to compare the soft tissue mean 

error differences between MVCT and skVCT. Tables I and II display both average V-ME 

and S-ME for MVCT and skVCT showing an improvement from 26.7 to 9.0 HU for V-ME 

and 26.6 to 8.8 HU for S-ME. An important caveat to the previously mentioned results 

is that, for a fixed kVCT HU value, the spread of skVCT HU values will not be visibly 

nor numerically more concentrated than the spread of MVCT HU values. This can be 

verified visibly in Figure 3 by the similar spread of values around both red fitted slopes 

and numerically in Table I by the large standard deviations for the voxel-wise results V-ME 

and V-MAE. Contrasting the standard deviations in the error measurements of Table I from 

Table II, exposes that the root of the problem is the large variation between HU predictions 

at the voxel level. Table III offers additional information to the voxel prediction problem 

showing that skVCT does not have generalization issues for common tissues such as muscle 

and fat. Two-tailed paired t-tests between MV and skV errors were performed to confirm 

this observed error phenomenon was not an artifact of the underlying MVCT and kVCT 

data. Tables I to III record computed t-statistics and p-values for tissue-specific errors, while 

Table VII records equivalent statistical parameters for structure-specific errors. All p-values 

less than floating point machine precision have been listed as “p < 10−16”.

Analyzing the results from Tables I to III one can arrive at the tentative explanation that 

for organs/tissue types that were less commonly observed in our training datasets, skVCT 

is not prepared to interpret and extrapolate the noisy MVCT region without introducing an 

unavoidable uncertainty. To substantiate this point, we refer to Section 2.E. which relates 

the total error variance to the average, squared function sensitivity EX[‖JX‖F
2 ] and the 

input variance σX
2 . Previous literature has shown that a function’s sensitivity at a point is 

correlated with how well the function’s behavior generalizes at that point32,33. Restricting 
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the analysis in (11) to masked images, we expect masked images with predominantly 

uncommon tissues to have worse test generalization and higher function sensitivities. For 

large input variances σX
2 , even small changes to the function sensitivity can have dramatic 

changes to the total test error variance. That being said, one should be careful in minimizing 

the total error variance solely through the function sensitivity as it can risk introducing 

too much bias to the predicted result (no longer the case that EY , X[Y − f(X)] ≈ 0). 

Another approach could be to minimize the input variance through better instrumentation or 

denoising measures. The first option is costly and the second, depending on methodology, 

may contaminate or smooth the data, which again would induce a bias in our function. A 

worthwhile follow-up study could explore the quantitative tradeoff between predictive power 

and error variance for different smoothing techniques on CycleGAN-style CT prediction.

3.B. Denoising and Structure Specific Results

In Section 3.A., it was discussed that skVCT prediction varied across the whole patient 

for all HU ranges. To further analyze where skVCT images perform well we restricted 

our analysis in Section 3.B. to tissues/organs that more commonly appeared in our training 

datasets. This would be the soft tissues that fall under the yellow colored region of the 

log-scaled plot in Figure 3. Structures such as fat and muscle, overall, both show great 

improvements in both mean value and standard deviation, even at the voxel level as shown 

in Table III. Further emphasizing this improvement, the calculated SNR and CNR values in 

Tables IV and V highlight the similarity between the macro-behaviors of kVCT and skVCT. 

SNR and CNR are calculated slice-wise and use the standard deviation of the muscle mask 

values as an estimate of the noise. Muscle, fat, and bone SNR values for skVCT show 

a large improvement going from low 20 SNR to 190 SNR for muscle and fat and about 

300 SNR for bone. Likewise, muscle-fat CNR improve from ~1 CNR to ~15 CNR and the 

bone CNR improve from ~6 CNR to ~100 CNR. All of these values are within uncertainty 

of the SNR and CNR values for regular kVCT, showing a perceptual similarity between 

skVCT and kVCT images. Figure 4 provides a visual example to accompany these results 

for example axial images of the head and neck.

Four slices from the test set are shown in Figure 4. Row 3 is an example where a kVCT 

slice has significant anatomical differences from MVCT/skVCT. The oral cavity alignment 

error shown in Row 3 contributes to the general soft tissue error as both oral cavities 

would be included in the soft tissue mask intersection. In general, however, Figure 4 shows 

improvements in contrast with bony tissue regions being brighter and fatty regions being 

darker when comparing between skVCT and MVCT. The images in the MVCT column 

of Figure 4 also feature a visible noise signature which is not reproduced in the skVCT 

column. The last two columns show the general improvements in mean error for soft tissue 

and bone. Muscle and fat had the most noticeable decrease in variation with both regions 

adopting a deeper, more homogenous color blue in the fifth column. Numerically, we see an 

improvement in muscle V-ME from 42.7 ± 57.8 to 1.8 ± 15.3 HU and V-MAE from 58.1 ± 

42.3 to 12.5 ± 9.0 HU. Likewise, for fat, the V-ME improved from 25.8 ± 42.4 to 0.3 ± 7.3 

HU and V-MAE error improved from 39.9 ± 29.6 to 5.9 ± 4.3 HU. High HU bony tissue 

and air cavities are two areas where skVCT has problems generalizing. Columns 4 and 5 
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of Figure 4 show that while the absolute error is smaller in magnitude and more sparse in 

column 5 as it is in column 4, there is still room for improvement to reach errors similar in 

magnitude to that in muscle and fat.

Figure 5 highlights potential non-anatomic artifacts and deformations found in the first 

and fourth row between the MVCT and skVCT images in Figure 4. All deformations and 

inconsistencies are highlighted in Figure 5 through a red bordered ellipse. In Figure 5 (b), 

the first skVCT slice shows the shrinkage of small air pockets and contrast inconsistencies 

while the second skVCT slice Figure 5 (d) shows the addition of what appears to be fiducial 

markers from the original MVCT slice. As MVCT scans lacked fiducial markers, it appears 

that the training learned this aspect of kVCT images and attempted to place them at likely 

positions in the skVCT images. Quantifying the degree of deformation, we run SSIM with 

parameters equal to Wang et al34 on the skVCT and kVCT images and find an average 

SSIM of 0.927 ± 0.028 on the test set. SSIM was calculated on the tight bounding rectangle 

containing each head or neck slice. This SSIM does not take in consideration the alignment 

issues already present between the MVCT and kVCT data as the data were only rigidly 

registered to each other. It is possible to minimize the deformations shown in Figure 5 by 

training skVCT for fewer epochs or by increasing the weighting of the cyclic loss equation 

(1). Discriminator losses are shown in Figure 6. Both losses followed a rough negative 

exponential trend until they reached a Nash equilibrium, where the discriminators are no 

longer able to differentiate between real and fake images20. An early stopping criterion was 

used which suspended training at 210 epochs but it is important to note that it might be 

possible to train skVCT for 20 to 40 fewer epochs and still maintain a good degree of 

perceptual similarity between this skVCT and the fully trained epoch 210 skVCT. Although 

both the kV and MV discriminator are not shown to have fully converged in the log loss plot 

displayed in Figure 6, there was only a slight change in CNR and SNR between epoch 170 

and epoch 210 for skVCT. Longer training times could benefit from a converged loss but this 

could come at the cost of added adversarial noise to the generated images.

Another interesting quality of the CycleGAN training that is not captured by the metrics 

calculated in Tables I to V is the structure-specific distributional learning done when 

converting from MVCT to kVCT. Figure 7 provides examples of pre- and post-training 

distributions for selected normal organ contours. These plots show the nonlinear nature 

of the learned function and how skVCT is more than a conditional mean shift of values. 

Specifically, Figure 7 shows how skVCT attempts to match the various peaks and troughs 

in distribution of various macro-structures in the target distribution. A metric that highlights 

this improved distributional overlap is the integral absolute difference (IAD). Table VI 

provides the results for IAD and other metrics for the selected structures in Figure 7. To 

allow for fair comparison, each titled column of histograms shown in Figure 7 are calculated 

with the same number of bins and range of values. Similar to Tables I to III, two-tailed 

paired t-tests were computed between the different structure-specific MV and skV slice 

errors. Associated t-statistics and p-values were recorded in Table VII.

Most structures with large changes in IAD saw significant improvements in average S-ME 

and S-MAE, the exception of the case being the oral cavity, a non-anatomically based 

contour. The predicted voxels in the oral cavity are distributionally correct, as shown by 
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Figure 7, but are not correct at the voxel level when skVCT oral cavity voxels are compared 

to kVCT oral cavity voxels. This result may be reasonable as the exact position of the jaw, 

teeth, and tongue may deviate between the two scans such that the overall distribution of 

HU values will be conserved but individual voxels may not perfectly match between the 

scans, as shown in row 3 of Figure 4. The two structures with the smallest change in IAD, 

larynx and pharynx, did not display any improvements in S-ME and S-MAE outside of 

uncertainty. One metric that seemed to improve regardless of change in IAD was SNR. The 

SNR of all ten skVCT structures matched the SNR of the corresponding kVCT structures 

within uncertainty. The PSNR of bony tissue dominated contours closely matched the bony 

tissue mean PSNR value found in the last column of Table II. Soft tissue contours with large 

air pockets (oral cavity, larynx, and pharynx) all had a lower PSNR than soft tissue mean 

PSNR in Table II. Other soft tissue contours that did not have large air pockets displayed a 

significant improvement in PSNR, ranging from 34 to 38 dB compared to the 31 dB PSNR 

recorded for soft tissues in Table II.

4. Discussion

In this manuscript, we have shown how CycleGAN’s style transfer can be applied to 

different energy CT scans with minimal loss to structural integrity. When applied to kVCT 

and MVCT scans, CycleGAN has shown it is capable of learning nonlinear, nonlocal 

transformations to maximize the distributional overlap between the two different domains. 

The trained skVCT images have an accurate average behavior and generalize well for 

common tissues such as fat and muscle. At the same time, we have highlighted where 

skVCT falls short, suffering from errors of large variation in organs/tissues less commonly 

observed during training. In Section 3.A., we address this issue by noting that the variation 

in error observed in less common tissues may be an interplay of poor generalization and 

high input noise. It is suggested that smoothing to the input distribution may temper large 

variations in HU prediction. Further, it was noted that this approach could come at the cost 

of expressibility, but it could be worthwhile to explore this exact tradeoff by optimizing 

for some specified smoothness hyperparameter. In Section 3.B., we showcased the strengths 

of skVCT by focusing on metrics that relied on predicted mean behavior and predicted 

variability on common tissues.

Lastly in Figure 8, we provide 13 examples from the test patient set where skVCT mitigates 

metal dental streaking artifacts that would otherwise be present in regular kVCT.

Our skVCT results display competitive HU alignment, PSNR, and SSIM values when 

compared to other medically applied CycleGAN work22,23. Liang et al22 reported S-MAE 

value of 29.85 ± 4.94 HU for CycleGAN predicted CBCT to kVCT values which were 

significantly lower than our skVCT S-MAE value of 76.9 ± 26.1 HU. This discrepancy 

could be explained by the input noise and function sensitivity interplay as described in 

Section 3.A., but it is difficult to accurately compare results as slice metrics for specific 

tissues were not reported by their group. For specific tissues like fat and muscle, our 

skVCT results again exhibit high degrees of agreement to kVCT with both low V-ME 1.8 

± 15.3 HU and 0.3 ± 7.3 HU and low V-MAE 12.5 ± 9.0 HU and 5.9 ± 4.3 HU for 

fat and muscle, respectively. Similar to our Figure 3, Liang et al22 reported a regression 
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slope of 0.99 between the CycleGAN predicted kVCT values and true kVCT values. 

Comparably, the fit found in Figure 3b had a regression slope of 1.002 but this value is 

not directly comparable to the value reported by Liang et al22 due to three differences in 

methodology. First, the regression completed in their work was a best predictive linear fit 

(OLS) while the regression determined in this manuscript was the best geometric linear fit 

for two-dimensional data (TLS). A small aside motivating this decision can be found in the 

last paragraph of Section 2.D. Secondly,22 their fit was to the entire kVCT distribution going 

from -1000 HU to 4000 HU, while our manuscript focused on the HU interval [150, 212 – 

1] containing all the bony tissue data. As our soft tissue alignment was dominated by the 

mean behavior of tissues in the [−100, 100] kVCT HU interval of Figure 3, our fit was done 

to specifically examine and emphasize bony tissue differences. Third,22 they allow both the 

intercept and slope to vary in their regression fit while this manuscript fixes the regression 

intercept at 150 HU. Additionally, their reported PSNR and SSIM values are comparable to 

those found in our skVCT, which were 29.7 ± 2.7 and 0.927 ± 0.028 for PSNR and SSIM, 

respectively, compared with 30.65 ± 1.36 and 0.85 ± 0.03 for PSNR and SSIM, respectively, 

as found by Liang et al22. SNR and CNR values are not reported in the other works but this 

is also a category that our skVCT results appear to mimic kVCT data well.

Many groups have worked on methods to reduce noise in MVCT images. A proposed direct 

solution to the MVCT noise problem has been to increase the signal through increased 

radiation dose as in the work of Westerly et al35. In their work, they were able to improve 

CNR in muscle/soft tissue like synthetic phantom tissues from 1.90 ± 0.15 to 3.43 ± 0.16 

for standard and high-dose modes, respectively. As expected by theory, their improved 

SNR came at the expense of an increase of the square of radiation dose to the patient. 

As we increased the SNR in this study by roughly an order of magnitude, similar SNR 

improvements by their method would necessitate a 100 fold increase in radiation dose. 

Block-matching and framelet algorithms5,6,36,37 are strong choices for denoising MVCT 

at nominal radiation doses but are limited in improving contrast due to MVCT having 

limited true contrast differences between different soft tissues. Liu et al5 utilized a block-

matching algorithm equipped with a discriminatory feature dictionary to improve H&N 

MVCT contrast from 1.45 ± 1.51 to 2.09 ± 1.68. In comparison since skVCT mimics the 

contrast of kVCT images, skVCT is able to improve fat to muscle contrast for H&N from 

1.6 ± 0.3 to 14.8 ± 0.4. In both prior works, CNR and SNR improvements were within a 

factor of 2 as opposed to our work which was about to improve CNR nearly an order of 

magnitude. Another benefit to skVCT is that each image can be calculated with one forward, 

vectorized pass through while the algorithms mentioned above rely on iterative solvers to 

find approximate solutions to different convex, non-differentiable optimization problems.

While an error free, numerically precise skVCT may be some time away, having skVCT 

function as a qualitative aid to enhance contrast and denoise MVCT may be possible through 

machine learning. Figure 4 displays two current hurdles to skVCT working as a qualitative 

aid. First are small non-anatomic artifacts and additions that appear in the synthesized 

kVCT and second is that skVCT sometimes suffers from inconsistent contrasting. The 

first issue may be minor depending on the manner which the aide is being used, but the 

second may need to be addressed if skVCT is to be reliably used as a qualitative aid. One 

possible solution to this problem could be to introduce an attention-gating mechanism38 to 
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maintain consistent contrast throughout the skVCT image. This attention-gating mechanism 

has already been applied to the CycleGAN model in both medical21 and non-medical39 

fields with great success.

As MVCT scans are, to date, only acquired on radiation therapy treatment machines, the 

clinical implementation of this work might be best suited as a way to improve contrast 

and noise during the patient localization process of radiation therapy. In these situations, 

MVCT imaging may be limiting in human visualization of soft tissue cancers due to the 

lowered CNR of soft tissues by MVCT. With the increased contrast and lowered noise of 

our skVCT images, it may be possible to more accurately visualize soft tissues targets for 

localization and even possibly on treatment adaptation. In the work of Reitz et al40, they 

found, using Rose’s model41, that a CNR change from 2 to 5 reduces human detection error 

of an object from 10% to 0%, respectively. In this work, we were able to increase CNR for 

soft tissues and bony tissues by roughly an order of magnitude to CNR values well over 5. 

This increased contrast should allow a human viewer to have near zero error in ability to 

detect objects, an important goal when localizing soft tissue or bone for radiation therapy 

treatment.

5. Conclusions

In this work, we explored the efficacy of CycleGAN in producing kVCT-like images from 

MVCT inputs. We have shown it is possible to learn the high-contrast and low-noise features 

that are normally associated with kVCT scans. Various metrics were given quantifying the 

results of the resulting skVCT images and a novel mathematical proof was provided to 

explain the predictive variability observed in organs/tissues less commonly observed during 

training. Finally, we have also shown how skVCT is perceptually similar to kVCT via mean 

value voxel and slice-wise metrics implying that skVCT images may be useful in clinical 

settings as a qualitative aid to the current clinically obtained lower-contrast, higher-noise 

MVCT scans.
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Appendix

A.1. Mean Value Theorem Analog for Vector-Valued Functions

Theorem 4.2 of Lang’s Real and Functional Analysis42 shows for a C1 vector-valued 

function f:ℝd ℝd, f(x + ℎ) can be expressed as

f(x + ℎ) = f(x) + ∫
0

1
J|x + tℎℎ dt . (14)

A function trained through stochastic gradient descent is not guaranteed to be C1. 

Modern machine learning architectures are implemented such that each nonlinearity and 
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compositional block has a gradient defined everywhere. With this in mind, we prove result 

(14) for a relaxation where f:Ω ℝd has compact domain Ω ⊂ ℝd and first-order partial 

derivative defined everywhere. In order to prove this, we first show that each component fi, 

when restricted to a line segment, is absolutely continuous.

Lemma 1:

Let Lx,h = x + th then fi ∘ Lx, ℎ: [0,1] ℝ is absolutely continuous for i ∈ {1,…,d}.

Given an interval I, function g(t):I ℝ is absolutely continuous if for every positive ϵ >0 

there exists some γ > 0 such that for pairwise disjoint {(sk, tk)}k with (sk, tk)⊂I we have

∑k (tk − sk) < γ ∑k |g(tk) − g(sk)| < ϵ . (15)

For now we fix δ arbitrarily and solve for the right hand side,

∑k |(fi ∘ Lx, ℎ)(tk) − (fi ∘ Lx, ℎ)(sk)| = ∑k
|(fi ∘ Lx, ℎ)(tk) − (fi ∘ Lx, ℎ)(sk)|

|tk − sk|
| tk − sk|

≤ ∑k |tk − sk | sup
x ∈ [sk, tk]

d
dt(fi ∘ Lx, ℎ)(x)

≤ ∑k |tk − sk | sup
x ∈ [sk, tk]

∑j = 1
d dfi

dxj
(x + tℎ) ℎj .

(16)

Since Ω is compact and the partial derivatives of f are defined everywhere, we have 
dfi
dxj

(x) ≤ Mij < M for some Mij, M ∈ ℝ for all i, j. This allows the following upper bound 

on the total variation of fi ∘ Lx, ℎ,

∑k |(fi ∘ Lx, ℎ)(tk) − (fi ∘ Lx, ℎ)(sk)| ≤ ∑k |tk − sk |Md diam(Ω) ≤ γMd diam
(Ω) .

(17)

So, for every ϵ > 0 we can satisfy absolute continuity for fi ∘ Lx, ℎ with a γ = ϵ
Md diam(Ω) . □

By Lemma 1 we can use the fundamental theorem of Lebesgue integral calculus43 on 

fi ∘ Lx, ℎ to produce

(fi ∘ Lx, ℎ)(1) = (fi ∘ Lx, ℎ)(0) + ∫
0

1
r(t) dt, (18)

where r(t) is equal to d
dt (fi ∘ Lx, ℎ) almost everywhere on [0, 1]. Simplifying (17) gives
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fi(x + ℎ) = fi(x) + ∫
0

1
∑j = 1

d dfi
dxj

(x + tℎ)ℎj dt . (19)

Packaging each i component of (19) yields expression (14).

A.2. A Lower Bound on Total Variance of the Error

Refer to Section 3.A. right above equation (11) for the full list of assumptions. By Section 

A.1. we re-express the evaluation f(X) as the sum

f(X) = f( μ ) + ∫
0

1
J|sX + (1 − s) μ (X − μ ) = f( μ ) + JX(X − μ ), (20)

where μ = E[X], J is equivalent almost everywhere to the Jacobian of f, and JX is the 

integral of J evaluated at vector sX + (1 − s) μ  for s ∈[0,1]. Through the mean value theorem 

for integrals it is possible to interpret JX as the average jacobian over the line segment 

{sX + (1 − s) μ |s ∈ [0,1]). Using EY [Y ] = f( μ ) and the independence between Y  and X,

EY , X[Y − f(X)] = EY , X[Y − f( μ )] + EY , X[JX(X − μ )] = 0 + EX
[JX(X − μ )],

(21)

Applying (21) and the δ bound to the total variance of the error,

tr CovXY Y − f(X), Y − f(X) = EY , X tr Y − f(X) Y − f(X)
T

− EY , X Y − f(X)
2
2

≤ tr JX X − μ JX X − μ
T

− dδ2 = E

tr JX
TJX X − μ X − μ

T
− dδ2

.

(22)

De-meaning the expectation in (22)

E tr JX
TJX X − μ X − μ

T
= E tr

JX
TJX − E JX

TJX X − μ X − μ
T

− ΣX

+ tr E JX
TJX ΣX .

(23)

where ΣX is the covariance matrix of X. For matrices A, B ∈ ℝd × d with zero mean 

with respect to X, we define the inner product A, B M = EX[tr(ABT )] with norm 

‖A‖M = A, A〉M such that the expectation in (23) becomes,

E tr JX
TJX − E JX

TJX (X − μ )(X − μ )
T

− ΣX

= ρ JX
TJX − E JX

TJX M (X − μ )(X − μ )
T

− ΣX M .
(24)
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For a given evaluated inner product A, B〉M, we set ρ = A, B〉M /(‖A‖M‖B‖M). By the 

Cauchy-Schwarz inequality, ρ is restricted to the interval [−1, 1] for all A,B. Next by the 

uncorrelated and equal variance assumption ΣX = σX
2 Id × d,

X − μ X − μ
T

− ΣX M
= ∑i = 1

d EX Xi − EX Xi
4 − dσX

4 1/2
= σX

2 ∑i = 1
d EX Xi − EX Xi /σX

4 − d
1/2

= σX
2 (∑i = 1

d (Kurt[Xi] − 1))
1/2

,
(25)

where Kurt [Xi] is the kurtosis of distribution Xi. Likewise for the second norm in (24),

JX
TJX − E JX

TJX M = E tr JX
TJX

2 − E tr JX
TJX

2 1/2
= ∑i = 1

d EX κi4 − E κi2
2 1/2

= ∑i = 1
d V arX κi2

1/2

.

(26)

Here V arX(κi2) is the variance of the ith squared singular value of average Jacobian JX. 

Altogether we obtain

ρσX
2 ∑i = 1

d V arX κi2
1/2 ∑i = 1

d Kurt Xi − 1
1/2

+ σXE
2 JX F

2 − dδ2 ≤ tr

Cov Y − f X , Y − f X ,
(27)

with ‖A‖F
2 = tr(AAT ) representing the squared Frobenius norm of a matrix A.
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Figure 1. 
Loss architecture for an X data-type generator and discriminator. Type X cyclic loss 

minimization is accounted for when calculating the error backpropagation for Generator 

Y. Loss architecture for the Y type generator and discriminator is the mirror image with all 

mentions of types X and Y switched in the mirror image.
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Figure 2. 
U-Net 256 generator architecture. This figure shows the image transformation pipeline from 

MVCT to skVCT image. Visualization made with PlotNeuralNet28 Github source code.
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Figure 3. 
A two-dimensional heatmap comparison of HU values at each voxel of the CT scan data. 

MVCT HU vs kVCT HU is plotted on (a) and skVCT vs kVCT is plotted on (b). Plots 

feature log-scale coloring and a gray dotted line representing a 45° reference line. The solid 

red line is the result of a total least squares fit on the aligned two-dimensional bony tissue 

data

Vinas et al. Page 22

Med Phys. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Four example axial slices of MVCT, skVCT, and kVCT scans. Absolute HU error plots for 

MV, kV and skV, kV are shown in the fourth and fifth columns. The fifth column features a 

deeper blue color and smooths out noise in the soft tissue region.
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Figure 5. 
Two examples where non-anatomic artifacts or inconsistencies have arisen translating from 

MVCT to skVCT. Red bordered ellipses highlight areas with inconsistent contrast or small 

deformations.
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Figure 6. 
MV and kV discriminator loss plot with number of epochs on the x-axis and loss log-scaled 

on the y-axis. Losses are plotted according to a 30-term running average. Both discriminator 

losses are semi-linear with a negative slope, making each loss roughly a negative exponential 

in the untransformed domain.
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Figure 7. 
HU distributions of five contour regions. The first and third rows of images show kVCT 

(black) and MVCT (red) HU distributions. The second and fourth rows of images show 

trained skVCT distribution (red) plotted against the same kVCT (black) distribution.
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Figure 8. 
Of the 20 test set patients, 13 where shown to have metal dental artifacts. One slice from 

each of the affected test set patients are included. MVCT slices are included as an input 

reference.
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Table I.

Mean error and mean absolute error at voxel level for skVCT, kVCT, and MVCT on soft tissue and bone. 

Two-tailed paired t-test between MV errors and skV errors at the voxel level.

Tissue skV V-ME 
[HU]

MV V-ME 
[HU]

skV V-
MAE [HU]

MV V-
MAE [HU]

Voxel Err. t-
stat.

Voxel Err. 
p-value

Voxel Abs. 
Err. t-stat.

Voxel Abs. 
Err. p-value

Soft and 
Bony 
Tissue

8.6 ± 147.7 −17.3 ± 
189.5

76.3 ± 126.7 109.5 ± 
155.6

−8.42e+02 p < 10−16 1.38e+03 p < 10−16

Soft Tissue 9.0 ± 120.6 26.7 ± 126.6 58.9 ± 105.6 77.3 ± 103.7 9.77e+02 p < 10−16 1.17e+03 p < 10−16

Bony 
Tissue

5.9 ± 257.6 −288.0 ± 
270.3

183.1 ± 
181.6

307.6 ± 
247.7

−2.56e+03 p < 10−16 9.39e+02 p < 10−16
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Table II.

Slice-level mean error, mean absolute error, peak signal-to-noise ratio for skVCT, kVCT, and MVCT on soft 

tissue and bone. Two-tailed paired t-test between MV errors and skV errors at the slice level.

Tissue skV S-
ME [HU]

MV S-ME 
[HU]

skV S-
MAE 
[HU]

MV S-
MAE 
[HU]

PSNR 
[dB]

Slice Err. t-
stat.

Slice Err. 
p-value

Slice Abs. 
Err. t-stat.

Slice Abs. 
Err. p-
value

Soft and 
Bony 
Tissue

8.4 ± 13.9 −16.0 ± 
31.7

76.9 ± 
26.1

109.1 ± 
26.2

29.7 ± 2.7 −2.18e+01 p < 10−16 7.03e+01 p < 10−16

Soft 
Tissue

8.8 ± 12.3 26.6 ± 15.5 60.2 ± 
22.2

77.9 ± 
17.1

31.6 ± 3.1 3.78e+01 p < 10−16 5.49e+01 p < 10−16

Bony 
Tissue

10.2 ± 
50.7

−272.7 ± 
66.4

180.5 ± 
44.2

292.2 ± 
69.4

24.8 ± 2.3 −1.22e+02 p < 10−16 5.14e+01 p < 10−16
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Table III.

Mean error and mean absolute error at voxel level for skVCT, kVCT, and MVCT on common fat and muscle. 

Two-tailed paired t-test between MV errors and skV errors at the voxel level.

Tissue skV V-ME 
[HU]

MV V-ME 
[HU]

skV V-MAE 
[HU]

MV V-MAE 
[HU]

Voxel Err. t-
stat.

Voxel Err. p-
value

Voxel Abs. 
Err. t-stat.

Voxel Abs. 
Err. p-value

Fat 1.8 ± 15.3 42.7 ± 57.8 12.5 ± 9.0 58.1 ± 42.3 5.85e+02 p < 10−16 8.64e+02 p < 10−16

Muscle 0.3 ± 7.3 25.8 ± 42.4 5.9 ± 4.3 39.9 ± 29.6 7.02e+02 p < 10−16 1.32e+03 p < 10−16
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Table IV.

Average signal-to-noise ratios for skVCT, kVCT, and MVCT on muscle, fat, and bone.

Tissue SNR skV SNR kV SNR MV

Muscle 195.8 ± 3.7 199.2 ± 9.4 21.9 ± 3.1

Fat 181.0 ± 3.4 184.0 ± 8.6 20.3 ± 2.8

Bone 303.7 ± 24.4 308.9 ± 33.4 27.9 ± 4.0
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Table V.

Average contrast-to-noise ratios for skVCT, kVCT, and MVCT muscle, fat, and bone.

Tissue Comparison CNR skV CNR kV CNR MV

Muscle - Fat 14.8 ± 0.4 15.2 ± 0.8 1.6 ± 0.3

Bone - Fat 122.7 ± 22.6 124.9 ± 27.0 7.6 ± 1.9

Bone - Muscle 107.9 ± 22.4 109.7 ± 26.5 6.0 ± 1.7
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Table VI.

Mean error, mean absolute error, peak and average signal-to-noise ratio, and integral absolute differences for 

skVCT, kVCT, and MVCT at different ROIs.

ROIs skV S-
ME [HU]

MV S-ME 
[HU]

skV S-
MAE 
[HU]

MV S-
MAE 
[HU]

PSNR 
[dB]

SNR skV SNR kV SNR 
MV

IAD 
skV

IAD 
MV

Brain 12.1 ± 
14.0

22.2 ± 13.7 31.4 ± 
14.6

49.1 ± 
11.8

37.8 ± 4.4 202.5 ± 
4.0

204.9 ± 
7.5

21.8 ± 
1.3

0.40 1.03

Eye 4.23 ± 
25.9

18.8 ± 25.4 44.9 ± 
34.2

57.5 ± 
30.5

38.1 ± 6.3 195.8 ± 
9.2

204.7 ± 
11.0

20.6 ± 
1.7

0.40 0.87

Skull −14.3 ± 
30.3

−227.7 ± 
55.0

179.2 ± 
36.3

265.6 ± 
51.7

24.2 ± 1.8 289.5 ± 
21.0

299.6 ± 
22.6

26.6 ± 
1.9

0.12 0.54

Spinal 
Cord

15.8 ± 
16.2

−7.03 ± 
36.5

55.5 ± 
28.1

72.9 ± 
29.8

34.1 ± 5.1 210.7 ± 
13.2

211.4 ± 
13.5

22.1 ± 
1.4

0.20 0.74

Vertebral 
Body

3.7 ± 17.0 −148.1 ± 
35.6

137.9 ± 
22.7

178.2 ± 
29.5

26.9 ± 1.4 260.4 ± 
13.8

263.7 ± 
11.2

24.9 ± 
1.7

0.18 1.01

Larynx −8.54 ± 
68.5

8.45 ± 63.0 157.4 ± 
43.9

157.4 ± 
43.6

24.6 ± 2.1 155.1 ± 
10.5

153.3 ± 
14.2

16.0 ± 
1.8

0.34 0.62

Mandible −15.8 ± 
47.0

−267.7 ± 
69.9

233.6 ± 
61.6

314.7 ± 
64.0

22.5 ± 2.2 308.1 ± 
26.9

318.1 ± 
30.0

28.1 ± 
2.4

0.09 0.65

Oral Cavity 26.0 ± 
55.5

5.5 ± 65.7 144.0 ± 
70.6

150.7 ± 
59.7

25.1 ± 5.0 183.5 ± 
10.2

183.6 ± 
14.4

19.4 ± 
1.8

0.18 0.51

Parotid 
Gland

8.6 ± 11.4 50.4 ± 14.4 34.4 ± 
10.7

62.9 ± 8.6 38.0 ± 3.2 189.0 ± 
5.3

191.2 ± 
10.0

21.2 ± 
1.3

0.24 0.99

Pharynx −58.7 ± 
55.2

−38.5 ± 
48.8

136.7 ± 
55.1

136.0 ± 
50.0

26.1 ± 4.7 165.8 ± 
23.5

176.2 ± 
15.1

17.7 ± 
3.7

0.30 0.54
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Table VII.

Statistical t-test and p values for MV vs kV structure-specific slice errors.

Statistical 
Values

Brain Eye Skull Spinal 
Cord

Vertebral 
Body

Larynx Mandible Oral 
Cavity

Parotid 
Gland

Pharynx

Slice Err. 
t-stat.

3.53e+00 3.13e+00 −1.76e+01 −3.72e+00 −1.51e+01 1.82e+00 −1.64e+01 −2.90e+00 1.61e+01 3.74e+00

Slice Err. 
p-value

2.22e−03 6.48e−03 2.29e−12 7.02e−04 4.49e−10 1.18e−01 2.96e−12 9.58e−03 p < 10−16 6.48e−02

Slice Abs. 
Err. t-stat.

9.53e+00 5.77e+00 1.10e+01 1.17e+01 1.05e+01 4.87e−05 7.98e+00 1.79e+00 1.80e+01 −1.20e−01

Slice Abs. 
Err. p-
value

1.13e−08 2.89e−05 4.03e−09 1.93e−13 5.06e−08 9.99e−01 2.52e−07 9.06e−02 p < 10−16 9.16e−01
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