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Abstract

We describe a method and a way of thinking which is ideally suited for the study of systems
represented by canonical integrators. Starting with the continuous description provided by the
Hamiltonian, we replace it by a succession of preferably canonical maps. The power series represen-
tation of these maps can be extracted with a computer implementation of the tools of Non-Standard
Analysis and analyzed by the same tools. For a nearly integrable system, we can define a Floquet ring
in a way consistent with our needs. Using the finite time maps, the Floquet ring is defined only at the
locations s; where one perturbs or observes the phase space. At most the total number of locations
is equal to the total number of steps of our integrator. We can also produce pseudo-Hamiltonians
which describe the motion induced by these maps.

Presented at the XVII*® International Colloquium on Group Theoritical Methods in Physics in
the section on nonlinear dynamics held at Ste-Adele, Quebec,Canada.
gy ) :



1. Introduction: The equation of motion

The work presented here is motivated by the study of single particle motion in a complex circular
storage ring. If we denote by s(0 < s < 1), the position around this ring, we can defined a map
G(s; s + 1) which describes completely our system. The map G(s; s + 1) propagates any function of
phase space f belonging to the set V of analytic functions into its new form after one iteration (or
one turn). It is well known that the map G preserves the Poisson bracket. It is a symplectic map:

fev L Gf e vV;G € EndV) (1.1a)
xe RN Lifx) e R (1.1b)
x = (q1,P1,---, 4N, PN) (1.1c)

where q are the positions and p the momenta. We choose canonical variables which obey the famous
Poisson bracket condition

(g5, 23] = &j - (1.1d)

As we just said, the Poisson bracket is preserved by G:

(f9) e v Ylirg e v, (1.2a)

Glf,q] = [6f.Gg]. (1.28)

Furthermore, we assume that our starting point is a Hamiltonian H(t) describing the motion
between ¢t and ¢ + dt:

T ey = [HEO, SN hemt - (13)

We can derive a differential equation for the map G(s;s +t) in terms of the Lie operator : —H(t) :
associated with H()[1,2k

%g(a;a+t) = G(s;8+1) : —=H(t):, (1.4a)
G(s;8)'= £; £ = Identity, (148
:f:9 = [f,9]; : f: € End(V). (143

The fundamental“problem of particle optics in a periodic system is the understanding of the
effect of repeated iteration of G. In other words, we would like to understand the map G(s; s+n} =
G(s; 5 +1)™ as the integer n gets larger and larger.
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The goal of this paper is to present a new powerful set of techniques:which allow us to perform:
some standard normalization: transformations o the map: G(s; s +1) without compromising on the
actual complexity of the original Hamiltonian H(t). To put this in perspective, we will first- describe
the usual. way these studies are- done by accelerator physicists.

e Ry Sy S R N ST Sy e ey



2. Conventional Approach for the Study of G(s;s+ 1)

A) Ray Tracing.

The simplest way to include all the information contain in H () is to integrate Eq.(1.3) for the
2N projection functions II; defined as follows:

R¥Y IR oI, € v, (2.1a)

II.-(x) =Z. (2.15)

Of course, only a finite set of initial conditions can be traced and therefore it is hard to extract a
lot of information from ray tracing. In this brute force approach, the simulation can be done with a
Hamiltonian H(t) which can have all the pieces simulating field errors, position errors or any other
messy effects. Traditionally and accidentally, accelerator physicists have used low order explicit
symplectic (or canonical) integrators to simulate their complex machines. ‘

What if analytical results are needed? How do they proceed? The answer is simple: they go
back to the Hamiltonian H(t). We briefly describe this approach is the next paragraph.

B) Normalization of H(t).

During a normal form process, one attempts to transform the Hamiltonian H(t) into a ”simpler”
Hamiltonian K (t) by a periodic canonical transformation .A(t). This process requires the knowledge
of A(t) for all ¢’s. For example, let us suppose that we have the following relations:

z = A(t)"'x = exp(: —w(x;t) :)x, (2.2a)

z = new variables. (2.2b)

Then the new Hamiltonian is given by a relation first derived by Cary (1978)(3]:

K(t) = A(t)( H(t) + iexp(: —w(t) :) %t—:l) ; (2.3a)
iexp(A) = M)‘)__l) . (2.35)

Corresponding to K (t), a map N(t) can be derived and it obeys Eq.(1.4). In fact, using the definition
of A and remembering that our maps transform functions of phase space, we get:

N(s;s+1) = A(s) G(s;s+ 1) A(s)™L. (2.4}

If the system under study is of sufficient complexity, the direct computation of K(t) and A(
is not feasible without approximating H(t). Hence a Birkhoff (or Deprit) type normalization of the
" map described by H(t) is rarely done in a way consistent with the results of the integrator used im
tracing rays in phase space.



C) Conclusiom on: Old Methods.

Perturbation theory on the Hamiltonian is not feasible on complex systems. In addition; since-
we are interested in the behavior of G(s; s+ 1) at a finite number of locations s, the complete solution
required by Eq.(2.7) contains a lot of useless information even when obtained.

What can be done to maintain the generality of the integrator and at the same time perform
normalization algorithms on the very model used by the integrator without further approximations?
This we will answer in the next sections.




3. A. New Approach for the Study of G(s; s +1)

What we have done and will now describe is to adapt old methods and develop new ones in
order to match exactly the hard and easy aspects of the systems we intend to study. The tools that
will be invoked in this section are not necessarily more complicated than the old tools, but they are
more suited to the study of complex periodic systems.

We list the important concepts in our approach in the chronological order in which they appear

in a calculation.

i)

An explicit integrator must be written to described the system. Whenever possible, we prefer
to use an explicit canonical integrator. Integrators of this type have been derived for Lie
groups for up to fourth order in the time step. Without further approximations, rays can
now be traced.

The following is true for any symplectic map and in particular for the one turn map G, given
any function f € V:

(G(s;8+ 1)f)(x) = f(z) (3.1a)
z(8) = (21(8), ..., z22n(8)) = ((G(8; 8 + DI )(x), ..., (G(8; s + 1) )(x)) - (3.18)

we need only to compute the 2N functions z;(x) to know the action of the full map G on
any function belonging to V. Property (3.1) can be viewed as a consequence of Hamilton‘s
equations Eq.(1.3) or a consequence of the differential character of Lie operators (they obey
Leibnitz rule: : f: (gh)=(: f:g)h+g(: f: h) ).

Furthermore, since our goal is to perform a perturbative calculation ordered by the degrees
in the power series expansion of H around a periodic orbit z%(s) (z%(s + 1) = 2%(s)), we will
need to obtain the power series of the 2N functions z; to a predetermined order N, around
the periodic orbit.

This particular calculation can be done with the new software implementation of the powerful
tools of Differential Algebra which itself is an application of Non-Standard Analysis. Essen-
tially, we create a new field R which is an extension of IR. An analytic function over the
field IR. is known completely if it is known for one single point of the field R (super-Cauchy
theorem!). Hence our integrator is instructed to compute the projection functions II; by fol-
lowing the periodic orbit z°(s) in that super-field. In practice (and in FORTRAN![5]), one

has augmented the integrator introduced in item i) with a map extraction algorithm which

will provide a power series expansion of the functions z;(s) around any orbit and in particular
around a periodic orbit. These tools are limited in the order N, and in the number of degrees
of freedom 2N by the power of our computers only. The coefficients of the resulting power
series are exactly computed for (and by) our integrator and are therefore very accurate as
compared to those obtained by numerical differentiation. In fact the only source of inaces-
racies in the computation of these coefficients is in the cumulative truncation error produced
by a large number of operationsa.



To sum up-rwe have cheated the gigantic size of our task twice: firstly we noticed that the
action of the infinite dimensional Lie group of Classical Dynamics can be studied by its
action on the projection functions II; and secondly we constructed a super-field in which
these functions need to be evaluated on one element only. '

In addition, once a particular ordering of the Lie operators[4Jhas been chosen to represent a
symplectic map then the following statements are true:

Ideally two different elements of the super-field R representing symplectic maps will lead
to different symplectic maps. In practice two sets of symplectic functions II; lead to the
same Lie representation if their power series are identical to the highest order considered
(i.e.N,). Hence the functions II; belong to an equivalence class which is independent of the
reconstruction process. For a non-canonical integrator, this is not true. For each process
there exists a infinite number of non-symplectic functions leading to the same Lie operators.
Hopefully the process is chosen so as to introduce an error which is not greater than the

violation of the symplectic condition in the integrator.

i11i) The production of the map and the analysis of the one period map are now independent
procedures. The analysis and normalization of this map are best achieved by computing from
the functions z;(s) the Lie generators of the original map G(s; s + 1). This is not surprising
since the process leading from H(t) to K(¢) was perform on these Hamiltonians which are
just the infinitesimal generators of G and A as indicated by Eq.(1.4). This process can also
be handled by the software tools in the Differential Algebra package.

iv) Finally, if G(s; s+ 1) represents a quasi-integrable system, which we want to perturb at a few
selected locations by a very nonlinear force, we can set up a Hamiltonian-Free context for
that study. More precisely, we can derive a infinite number of pseudo-Hamiltonians which
describe the quasi-integrable system between the locations of the additional nonlinear force.

In sections 4,5,6 and 7 we will describe in a moderate amount of details the four items on this
list which allow us to integrate complex systems and properly analyse them.



4. Canonical Integration in the Symplectic Group

A) Explicit Integration in a Lie Group

We will now describe a very ideal situation which occurs most of the time in the study of
medium to large periodic systems. In these systems, for reasons outside the range of this paper, the
Hamiltonian H'(¢) and its Lie operators can be broken in two terms which are exactly solvable in
terms of simple functions:

H(t) = Hy(t) + Ha(t). (4.1a)

t=H(@t):=:=Hy(t): +: =Ha(2) : . (4.1b)

In other words, we have an explicit representation for the action of M; on the coordinate projection
functions II;. Of course, M;(t) is a solution of Eq.(1.4a):

.

dtM.'(s;a+t) = Mi(s;s+1t) : —Hi(t) :, (4.2)

How to combine the two solvable maps M; over a time step At and approximate the full map
G(s; s+ At) is the fundamental question behind "two-map” explicit symplectic integrators. Needless
to say that the problem stated here can be generalized to any Lie group by simply stating that the
three operators : —H :, : —H : and : —H}3 : belong to the Lie Algebra of the group under study.

First, it is often possible to get rid of the t-dependence by a temporary extension of phase space:

t=h:=:—Hi@)—pr:+:—Ha(t)—pe : +:p¢ 1, (4.3a)

=:i=hy:+:=hg:+:pe:. (4.3b)
The new ”time-like” variable 7 is related to ¢t by the relation:

L
ﬁ_a—n——l,hence:» r=t. (4.4)

Using the r-indepence of : —h :, we can immediately write an exact formal solution for the
maps G(s;s + At) and M;(s; s+ Atk

G(s;s + At) :=exp(—At:h:). (4.54%

M;(s; s+ At) :=exp(—=At : h; ). (4.5b)

D

‘We use the symibol := to indicate that the maps are not really equal since the original one acts
on functions of only 2N variables while the new map acts on the extended phase space of 2N+2
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variables. Making. use of the Campbell-Baker-Hausdorff formula and of Eqs.(4.5a) and (4.5b), we
can derive four approximations of G(s; s 4 At):

exp(—At: h:) = exp(—At : hy :) exp(—At : hg :) exp(At: pe :) + ...order(At?),

G(s; s + At) = M, (8; 8 + At)Ma(s + At; s +2A¢) +...order(At?) ; (4.6a)

exp(—At: h:) ..—:exp(—%i i hy )exp(% ipr i)
exp(—At : hy )exp(% 1pe:) exp(-——Az-—t- : hy @) + ...order(At%),

G(s;8+ At) = My (s;8+ %)M:(s; s+ At)My(s + %; s+ At) + ...order(At%) ; (4.6)

A fourth order integrator can also be derived, however due to its lengthy expression, we give only
the time independent result [6]:

G(At) = Mi(s1)Ma(dr)M1(s2)M3(dz)M1(s2) Ma(d1)Mi(s1) + ...order(At°) ; (4.7a)

o= 5(-21_—,3),&, (4.75)
sy 2((1_2‘_%;;:: , (4.7¢)
= 2_1—EA:, (4.7d)
e '2_-—3;3“' (4.7¢)
g=2%. (4.75)

B) Implicit Integration in a Lie Group

For the symplectic group it is possible to write an implicit symplectic integration scheme using
a characteristic function. This works all the time even when the Hamiltonian H(t) precludes the
existence of an explicit solution. For example, we can reproduce the effect of G(s;s + At) on the
projection functions II; to first order in At by tracking using the characteristic functiom:

Fy = q(s) - p(s +At) — At H(q(s), p(s + At); 5). ' (4.8)

In general F} is a solution of the Hamilton-Jacobi equation [

2 +H(q, ﬁ;t) = 0+ ...order( H**1) (4.9)

. ety ) a a. )
ThemnpextmtiontechnﬁmJaaibedintheneitaectionmsﬁnappﬁubletoachm

istic function integrator. First, one computes the central trajectory by solving the implicit set of



equations: prodilc'éd by Fi and then: F} is expanded around this. trajectory- and the resulting power au
seriessis: partially inverted using the the Differential Algebra:tools: of section 5.

C) Conclusion:

We have seen how one produces simple symplectic integrators of the explicit and implicit kind.
Furthermore, if only a map is needed for analysis or tracking, it can be obtained from a non-canonical
integrator. The resulting power series can be "symplectified” by a procedure which extracts a
characteristic function or a Lie operator representation of G. These- computations are all done by
the tools of the next two sections.

e A = = oy oy 1 STy Y Y PR U S £ TR R £ 8 gt



5. Non-Standard Analysis and its Application to Map Extraction

In this section we will discuss a very powerful tool for the advertised study of the production and
analysis of maps in their power series representation. For our practical purposes, it will allow a very
straightforward computation of derivatives and thus Taylor series expansions for very complicated
functions of arbitrarily many variables to arbitrary order on a computer. It is based on a rigorous
treatment of infinitely small quantities, differentials, and will allow the computation of derivatives
from the difference quotient using differential differences.

Contrary to the other exsting methods for rigorous treatment of such differentials (see for
instance references (8, 9]), our method is fully constructive and can be implemented on a computer.

We start by defining a special collection of subsets of the real numbers, the collection of almost-
finite sets F. We call a set almost-finite, if for any real number r there are only finitely many
elements of the set which are smaller than r. From this definition it is clear that all finite subsets
of the real numbers are in F. Furthermore, it is easy to convince oneself that each subset of the
positive numbers is in F. However, the set of all integers is not in F, since there are infinitely many
integers smaller than zero.

It is easy to show that a subset of any set in F is also in F, and that with two sets their union
and their intersection are in F. Furthermore, with two sets M, N € F theset M+ N ={z+y|z €
M,y € N}isin F, and there are only finitely many ways to write an element of M + N as a sum of
two elements of M and N, respectively. Finally we note that each set in F has a smallest element.

We are now ready to define a new, very large set, which will turn out to be a generalization of
the real numbers and also contain ”infinitely small” numbers. We define R to be the set of functions
on the real numbers that are zero everywhere except on a set which is almost-finite, i.e. the set of
non-zeroes of such functions belongs to F.

On R we define an addition by just adding the functions. The resulting sum function is again
in R because the set of non-zeroes of the sum function is contained in the union of the non-zeroes
of the functions to be summed, and is hence in F according to the above reasoning. Hence the set
R is closed under addition.

We also define a multiplication in the following way. For two functions f,g € R let Ny, N,
denote the set of non-zeroes. We define the product function f - g in the following way. In case
z & Ny + Ny, we say (f-g)(z) =0. In case z € Ny + Ny, we define (f - g)(z) in the following way:

(f-9)=)= Y. flzs)-9(z) (5.1)

zytzg=z

There are only finitely many terms in the sum because as stated above, there are only finitely
many ways to write an element of Ny 4+ N, as a sum of an element of N; and an element of N,.
Since Ny + N, € F, we can infer that the product function f - g is again in R.

It can be shown that with this definition of an addition and a multiplication, the set R becomes
a field. Most of the properties of fields can be shown qtiite easily to be fulfilled; the only exception
is probably the existence of multiplicative inverses. For details consult reference[10]. We note that
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the neutral element of addition_is just the function identical to zero, and the neutral element of
multiplication is the function which vanishes everywhere except at z = 0 where it has the value 1.

On this new field we introduce an ordering relation in the following way. As customary for
functions, we say f = g, if the two functions agree for all values of z. In case f # g, we look at the
smallest z where f(z) # g(z) and denote it by z4. It exists since the set of z values where f and g
disagree is contained in Ny U N, and is hence in F and thus has a smallest value. We say now that
f>gif f(zz) > g(zz) and f < g if f(zz) < g(zz).

It follows that for arbitrary f,g we have exactly one of the conditions f =g, f < gor f > g.
Hence the set R is well ordered. Furthermore, one obtains f < g=> f+h<g+h,and f <g,h >
0=>f-h<g-h.

After we have discussed the basic properties of this new set R, we owe the reader a justification
for the introduction and usefulness of this new structure. First we note that the set of real numbers
can be embedded into R by identifying the real number r with the function which is zero everywhere
except at zero where it takes the value r. Denoting this embedding map from the real numbers
into R by m, we can easily verify that #(z + y) = n(z) + 7(y), 7(z - y) = 7(z) - 7(y) and that
z < y=> m(z) < 7(y). So 7 preserves the field operations + and - and the ordering <.

Hence our new structure contains all the real numbers. However, it contains much more than
the real numbers, especially infinitely small and infinitely large quantities as we will show now. First
we denote with d the element of R which vanishes everywhere except at 1 where it has the value
1. By using the definition of the multiplication, we can convince ourselves that its multiplicative
inverse d~! is the function that vanishes everywhere except at —1 where it has the value 1. Using
our ordering relations, we can conclude that for every positive real number r we have the properties
0<d<r, and d~! > r. Hence d lies between zero and any arbitrary positive real number and is
thus ”infinitely small”. On the other hand, d~! is ”infinitely large”. Hence the number d is what
physicists like to think of as a differential.

As we will see, the field R allows us indeed a fully rigorous treatment of infinitely small and
infinitely large quantities and naturally allows the introduction of deltafunctions. But most im-
portantly for our purposes, it is helpful for the computation of derivatives and hence Taylor series
expansions. We shall illustrate this with a little example. Consider the function f(z) = z? + 2.
Then obviously, its derivative at z = 2 is 4. Having infinitely small quantities at our disposal, it is
natural to try to obtain the derivative as the difference quotient

f2+d)- 1tz i

Using the arithmetic on R and in particular the field properties, we obtain

f(2+¢2—f(=)=((2+d):+2)'6___6+“jd’-8=4+d (5.3)

_ Thus we obtained the exact value of the derivative, up to the infinitely small quantity d. If
" all we are interested in is the real derivative, we are done because we simply have to extract the

"real part” from the result. So in a way we have pushed numerical differentiation techniques to the

12



extreme; usually the error in representing the derivative by a difference quotient becomes smaller
and smaller the smaller the value of Az. In our case, Az became infinitely small, and so did the
error.

Using the extended real numbers, one can construct extended complex numbers C in the usual
way by introducing ordered pairs and operations on them. As it turns out, very many functions on the
complex numbers can be generalized to the extended field R in a natural manner. In particular, this
holds for all analytic functions. We shall sketch this and refer to reference[10]for details. Suppose,
f is analytic in a neighborhood of z. Then f can be expressed as a power series around z with
a nonzero radius of convergence. It can be shown that this power series converges even for every
element in C to an element of C once the argument lies within the radius of convergence.

One of the most striking properties of such analytic functions on the extended complex numbers
C shall be illustrated now. As we know from basic Cauchy theory, every analytic function in a simply
connected region in the plane is uniquely determined by its values along a closed curve completely
inside the region, because then the Cauchy formula allows its computation everywhere as an integral.
Hence, because of analyticity, the function needs to be given only on a certain ”one-dimensional
subset” of the region. For extensions of analytic functions into C it turns out that they are uniquely
given by their value at one suitable point, namely zg + d. This is true because of the existence of

the power series:

(
f(zo + d) = f(z0) +d - f'(z0) +d? - f—g"ﬂl+ (5.4)
Evaluating f(zo+d) in C and noting that all the derivatives are complex, we obtain that f(zo+d)
(as an element of C) vanishes everywhere except for positive integer powers of d and the values at

these points are the derivatives (times the factorials).

So for practical purposes, it suffices to compute an analytic function at only one point to obtain
complete information about it and especially all its derivatives. We also note that this procedure
can be extended to power series of several variables, which is of importance for our computation of
map expansions.

In addition to the elementary operations addition and multiplication we introduce a ”left shift”
operation 8 that decreases all the non-zeroes z; by one and multiplies the values at the non-zeroes f;
with the nonzero. It turns out that this operator is a ”derivative” in that 8(f-g) = (8f)-g+ f-(89).
With this derivative, we obtain a Differential Algebra in the sense of reference[11]. Furthermore,
the fis a power series evaluated at the point zq + d, the operation d transforms f into the derivative
of the power series evaluated at z5 + d.

Using this " derivative”, we can compute Poisson brackets and hence can do all the manipulation
of functions of phase space required in our Lie Algebraic treatmest.

Contrary to-the other methods to introduce Non-Standard Analysis ([8, 9]), here it is possible
to implement the arithmetic on the computer. In order to do that every element is characterized
by the values of non-zeroes z; and the corresponding f; up to a certain depth of z;. Then the
" operations addition, multiplication and " derivative” can be implemented following the definitions of

- the operations.



If the objective is to compute only power series of functions of one variable, this is ever quite
straightforward. The situation becomes more difficult, however; in the case of power series of many
variables in which we are interested here. In this case an efficient implementation of the multiplication
requires-a quite elaborate storing and retrieval technique. For details we refer to reference [5].
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6. Normal Form Procedures on a power Series Map-
A) A First Order Calculation on the Lie Representation

As mentioned in Eq.(2.4), the normal form procedures transform the map G(s;s 4+ 1) into a
simpler map A(s; s + 1) (dropping s from now on):

N = AGAL, (6.1a)

A=exp(: Fn:)...exp(: F,))...exp(: Fo:). (6.1b)

This factorization of .4 was first used by Dragt and Finn in a modification of the Deprit normal
form algorithm [12]( see also reference[3]for a good review of these various methods). We will also
assume that A is a product of a linear map R and a nonlinear correction Nq:

N = R ANa. (6.2a)

Nao=exp(: Ty :)...exp(: Tqa :) - (6.2b)

In a perturbative process carried order by order in the canonical variable x, the Lie polynomials T,
and F,, are of degree w+ 2. The highest order §2 will be just Ng + 1 where Nj is the highest degree
of the power series of the projection functions II;. The map R will be a generalized rotation and
has the following Lie operator:

R =exp(: f21), (6.3a)
¥ o N
h=) - T (gk + (e —@)pk) = > f1 (6.3b)
k=1 k=1
ek =1,§ =0 ; for stable motion in k** plane.
(6.3¢)
ex=0,&§ =1 ; for unstable motion in £** plane.

Essentially we assume that the linear part of G can be normalized and the result is hyperbolic
or elliptic motion for all the planes (g;, p;). To give a flavour of the calculations, we now perform a
first order determination of A on a map M of the form:

M=Rexp(:af3), - (649
M € End(V); R € End(V). , (6.4®

Consider a canonical transformation .4 whose purpose is to modify M into a new factorized
representation A defined to first order in a. Using a Lie representation for A, we get for N

N=AMA™T

e At LN



= exp(: aF :)Rexp(: af :) exp(: —aF :)
=Rexp(: aR™IF :)exp(: af :) exp(: —aF :)

= ‘Rexp(: a{=(£ =R~YF + f} + 0(a?) :)
(£ = identity map € End(V)) (6.5)

Denoting by T the operator £ — R~!, it is clear from Eq. (6.5) that one must study the range and
the kernel of T in order to specify what possible linear terms in « can remain in Eq. (6.5). Suppose
f is decomposed as follows:

F=fht+t i fLKerT (6.6)

Then, we can select A or F such that A becomes exp(: af, +O(a?) :). The function F is just given
by:

F=T"f,. (6.7)

From this short discussion one sees the central importance of the map R. The eigenvectors of R
of unit eigenvalue will constitute the kernel Ker T so critical to the inversion of 7. In the case of
Eq.(6.3) the operators : f¥ : form a semi-simple algebra, we purposely neglect the case ; = & = 0.
Its inclusion would complicate the discussion, since it is not true anymore that the vector space of
polynomial functions is a direct sum of the range ImT and the kernel Ker T if the Lie Algebra of
the : f5 : has a nilpotent component. We now find the range and the kernel of 7 by constructing a
suitable eigenbasis for the study of R in the case described by Eq.(6.3).

The evaluation of 7! f, requires a decomposition of f, in eigenvectors of : f; : . These
eigenvectors are easy to obtain, the answer is given by:

: f-f - hf = F(iex + &) pe hf =F Akhf (6.8a)
hf = qr % (i€ + &)pr (6.80)
fE = ‘% hEhy . (6.8¢)

Using this new basis, we can easily find the kernel Ker T. Let us define a new vector as follows:
fm, m) = ()™ (D)™ ... ()™ ()™ (6.9)
Using the differential property of the opeﬁtor : f2 :, we can compute the eigenvalue of |m, )
:fa:|m,n) = (n—m)-Ajm,n). (6.1
j Assuming that the )y are irrational and prime amongst themselves, we conclude that
jm,n) € KerT = n—m = 0. (6.1
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Providing that one can easily change basis to the |m,n), the computation of 7= f, is trivial:

fr=7_ Ama|m,n) (6.12a)
-1 " Am.n
=y |m, n) . (6.120)
m,n l—erp((m—n)"\)

B) Conclusion: To Higher Order with the Differential Algebra Tools

In reality, we have learned that one starts the normal form process on the representation of the
map G(s;s+ 1) on the projection functions II; as given by their power series expansions obtained
around the periodic orbit. Technically we do not have a Lie representation of the map.

However, it should be plausible to the reader that we can perform a normalization procedure
on the map to an arbitrary order if the following statements are true (of course they are!):

1) The Differential Algebra software can take derivatives and integrals of polynomial functions.
Hence it can extract all the Lie operators exp(: fi :) from a map whose power series represen-
tation of the projection functions II; is known to the (k — 1)** degree. Through Differential
Algebra we can also multiply the coefficient of the monomials of a polynomial by an arbitrary
function of the exponents of the monomials, allowing us to compute the effect of 7-! in
Eq.(6.12).

2) The Differential Algebra software can compose functions represented by power series and
therefore can perform the change of basis necessary for the production of A. In the II;

representation, it can compose maps to an arbitrary order avoiding the use of the Campbell-
Baker-Hausdorff or the Zassenhaus formulae.

Going into the details of these operations would too lengthy and the work can be found
elsewhere([13]. These calculations are mathematically equivalent to a normalization process on the
Hamiltonian H(t). However by separating the map extraction process from the normalization algo-
rithm we can perform the perturbative calculations exactly for the symplectic integrator used.

gy
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T. The Floquet Representation and its Hamiltonian-Free Description
A) The Old Way: Normalizing the Hamiltonian

We assume that the Hamiltonian H(t) consists of an quasi-integrable part Hy(t) and a residual
part V(). In the standard approach, one attempts to normalized the Hamiltonian Hy using Eq.(2.3)

Kolt) = A(t) ( Holt) +iexp(: —u(?) : %‘”) . (7.1a)
Ko(t) = Ko(3, 1), (7.15)

I = %(h;"h;’, . hAR), (7.1c)

At +1) = AQt). (7.1d)

The motion produced by the new Hamiltonian Ko(t) will be a simple J-dependent rotation-
expansion. Defining the action @ in the usual manner,

e = (27:)* exp(F(iex + &) ®s) (7.2)

we then get the usual tori for the motion of the resulting map N (s; s + t):

s+t
N(s;s+t) = exp(/ :—=Ko(r) : dr) = exp(: =I'(J;8,5+1):), (7.3a)

B(s+1t) = B(s)+ g—JI‘(s, s+1) = B(s) + AB(s;5+1). (7.3b)

In general the map G(s;s + t) which describes the motion of Hy(t) from s to s + ¢ can be
decomposed into three factors:

G(s;s+1) = A(s)™! M(s;s+1) A(s+1). (7.4)

As indicated by Eq.(7.4), a function is transformed into the Floquet space at location s by A(s)~?,
then it is rotated into position s+t in the Floquet space where it is finally extracted by A(s + ).
The reader will notice that one regains Eq.(2.4) by letting ¢ = 1. If we assume that the action of
A~! on the projection functions II; produces analytic functions (i.e. expandable in power series
which are asymptotic at the very least), then one can show that:

N(s;s+1) = N(s+t,s+t+1), forallt , (7.54)

and that:

=t N(8;8+1) is the same for all choices of A(s) (7.5
The function I'(s, s + 1) associated to the Lie operator of N (s;2+1) is a global invariant of the full
system.
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Finally we can write an expression for the full transformed Hamiltonian K(t):
K(t) = Ko(t)+A()~'V(2). (7.6)

The freedom that we have in selecting A(t) is normally exploited in trying to modify V(¢) as
little as possible in Eq.(7.6).

B) Conclusion on Hamiltonian Normalization

Three things can be said about the procedure outlined in the previous section:

1) The solution of Eq.(7.6) requires solving for w (i.e A(t)) at every location around our complex
system. Usually this is impractical for a complex system as we pointed out already.

2) Extremely nonlinear perturbation such as V() are often localized in the variable t. Therefore
only the maps between these locations are necessary. Hence the steps outlined in section (7.A)
produce unnecessary information. In fact, if canonical integrators are used to represent Ho(t)
as well as V(t), the map is better described by tools which do not assume any differentiability
in the variable ¢.

3) If, for whatever reason, one needs a normalized Hamiltonian which describes correctly the
map from one localized perturbation to the next then there exists an infinite number of these
Hamiltonians. Not surprisingly the exact Hamiltonian Ko(t) is one of them; but it is one of
the most complicated choice.

In the next section, we describe an approach ideal suited for studying a finite number of localized
perturbations. Ultimately, as we pointed out in section 4,_ an integrator is best described as a finite
product of maps .

C) Floquet transformation on the Map

To the extent that a symplectic integrator is a discontinuous set of operations (so is any inte-
grator!), normalization of the Hamiltonian is not very suited to the study of the system produced by
the integrator. In addition, as we just mentioned in section (7.B), this is even more so if a localized
perturbation is added. -

In this last section, we will develop an approach to the study of a full periodic system based om
the maps alone[14,15]. We will therefore assume the existence of a map G(s; s + t) known at few
locations where we intend to perturb our system. For complete generality, we need only to consider
two locations s; and s, as pictured on Fig. 1. First, we assume the existence of the maps .A(s;):

There exists 4; such that N = A7 1G:A;, (7.72)
N = exp(—:T(I):) ; Gi=6G(si,si +1). (7.78)
As we said earlier, the uniqueness of A is guaranteed by the good behaviour of the power series

of (AI;)(x) near the origin. In the perturbation theory of section 5, this is implicitly assumed if
the power series is to have any sense at alt
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To proceed further, we write Gy in terms of Gz and use the integrability relation of Eq.(7.7)
twice:

G(s1,81 +1) = G(s1,52) G(s2,52+ 1) G(51,52)7 ", (7.8a)
G(s1,81 + 1) =G(s1,52) A7' N Az G(s1,52)7", (7.8b)
N = A1G(s1,82)A7" N A2G(s1,52) AT (7.8¢)

Finally, using the Lie representation of N:

N = 3(31, 37) N 8(81, 82)_!' s (796[)
N = exp(—: T'(B(s1,52)J) :), (7.96)
where B(s1, 52) = A1G(s1,52)A7" . (7.9¢)

From Eq.(7.9b) we conclude that B must leave J invariant. Hence it must have the form:
B(s1,52) = exp(— : T'(J; 51, 82) 1) . (7.10)

The function I['(J; sq, s9) is identical to its Hamiltonian counterpart of Eq.(7.3).

Something must be said about the choice of A;: technically the only constraint is that .4; must
be uniquely defined for each position s; in order to insure periodicity. In addition, we often restrict
ourselves to .4;’s which are internally defined; by this we mean that our construction method is
an injection from the set of possible G(s;, s; + 1) (finite set for an integrator) to the infinite set
of possible A;. This insures that the phase advance between two "matched” locations is the same
for all possible injective construction (Matched locations have the same one turn map G). Again
however, the nature of the perturbation added to the map will dictate the choice of A.

Finally, we add two localized perturbations at positions s, and s3, given by their Lie operators
: Vi : and : V; : respectively. The new maps G***%(s;, sy + 1) and N*%*%(sy, 3, + 1) are just:

G**l(sy,81 +1) = exp(—: Vi :) G(81,32) exp(— : V2 1) G(82,31), (7.11a}

Ntotat(s) sy +1) = exp(—: A1V :)exp(— : B(s1,32)A3Va :) V. (7.118)

The various factors of N***8/(s,, 5, + 1) have a simple interpretation. The first two factors represent
the perturbations V; and V3. One notices that each perturbation is modified by two maps: firstly,
as we mentioned, the Lie operator is brought into the Floquet representation by .A; secondly the
operator has its phase & advanced by the appropriate amount by the map B(s;,s3). The third
factor is the unperturbed Floquet map A. One might view the full action of N**(sy,5, +1) on
an arbitrary function f as follows: first f is distorted into a new function by the perturbations and
then it is transformed by the original map AL
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As we said earlier, it is sometimes. useful to produce a Hamiltonian which describes the map
Niotel(g 5 +1) for (i =1,2). Of course, the exact Hamiltonian H(t) does this for all possible a:

H(t) = Ho(t) + Z bp(8 —3)Vi, (7.12a)
i=1,2

- 8,(8) = bp(s+m) ; m =integer. (7.12b)

However, this defeats the purpose of using maps. Indeed we assumed that the map is known only
between s; and s3. Nevertheless it is easy to write a infinite number of Hamiltonians which reproduce
the motion of A% (s;,s; + 1) for (i = 1,2):

Ke(t)=r(3,0)+ Y Sp(s —5:)AVi, (7.13a)

i=1,2

3
where « is such that: /m(J,t) dt =T(J, 51, s2)

n

.l|_+1
and f x(3,1) dt = T(3, 81,8, +1). (7.13b)

3

The Hamiltonians of Eq.(7.13) have the proper phase advance B between the the points s
and s; and the correct A at these locations. The function x5 can be chosen to be very simple (or
extremely complex).
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