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ABSTRACT: Olfaction is important for identifying and
avoiding toxic substances in living systems. Many efforts
have been made to realize artificial olfaction systems that
reflect the capacity of biological systems. A sophisticated
example of an artificial olfaction device is the odor compass
which uses chemical sensor data to identify odor source
direction. Successful odor compass designs often rely on
plume-based detection and mobile robots, where active,
mechanical motion of the sensor platform is employed.
Passive, diffusion-based odor compasses remain elusive as
detection of low analyte concentrations and quantification of small concentration gradients from within the sensor platform are
necessary. Further, simultaneously identifying multiple odor sources using an odor compass remains an ongoing challenge,
especially for similar analytes. Here, we show that surface-enhanced Raman scattering (SERS) sensors overcome these
challenges, and we present the first SERS odor compass. Using a grid array of SERS sensors, machine learning analysis enables
reliable identification of multiple odor sources arising from diffusion of analytes from one or two localized sources. Specifically,
convolutional neural network and support vector machine classifier models achieve over 90% accuracy for a multiple odor
source problem. This system is then used to identify the location of an Escherichia coli biofilm via its complex signature of
volatile organic compounds. Thus, the fabricated SERS chemical sensors have the needed limit of detection and quantification
for diffusion-based odor compasses. Solving the multiple odor source problem with a passive platform opens a path toward an
Internet of things approach to monitor toxic gases and indoor pathogens.

KEYWORDS: surface-enhanced Raman scattering spectroscopy, odor compass, chemical sensing, machine learning,
convolutional neural networks, statistical spectral analysis, self-assembly

From October 2015 through February 2016, 100 000 tons
of methane and 2.5 tons of benzene were leaked from the

Aliso Canyon natural gas storage facility, making it the second
worst natural gas leak in US history.1 Rapid and early detection
and identification of hazardous gas leaks are essential to reduce
the damage of these disasters, dangerous industrial gas leaks,
and contamination of virulent bacteria. Yet, most gas sensors
merely alert of the presence of gases and give no indication of
the gas source direction. Often, leaks are identified using a
mobile odor detector and gas distribution mapping, an
incredibly time-consuming process.
To improve upon existing methods, the odor compass was

developed in 1991.2 The canonical odor compass is composed
of two semiconductor gas sensors mounted to a rotating stage
with a fan mounted to draw analyte containing air toward the
gas sensors.3,4 Heuristics are used to identify odor source
direction by comparing the relative signal from the gas sensors
at various rotation angles.5,6 These odor compasses are
mounted onto mobile robots so that they can travel through
the gas concentration gradient and eventually find the odor

source, a process called chemotaxis in the biological context.
Often, simple algorithms inspired by Braitenberg vehicles7 are
used, but sophisticated methods for odor source localization
have been developed using genetic algorithms,8,9 fuzzy
logic,10,11 and infotaxis.12 Mobile odor compasses have now
been used on land, air,13,14 and sea.15,16

While most odor compasses rely on semiconductor gas
sensors,17,18 other gas sensors have been used, such as
conductive polymers,19,20 quartz crystal microbalance gas
sensors,21,22 and even silkworm antennae.23 Yet (aside from
silkworm antennae), these detectors cannot effectively differ-
entiate different types of gases, limiting their usefulness in
many applications. More sophisticated sensors are thus
necessary for odor identification. Classification of odors during
odor localization was first achieved with an electronic nose,24,25

composed of an array of semiconductor gas sensors with
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differing composition. Electronic noses have been shown to be
very effective at identifying odors in a range of applications,
particularly food26 and health applications.27 Nevertheless,
electronic noses suffer from two limitations: (1) the number of
unique sensors is often as little as four,24 making classification
of similar odors challenging and (2) a limit of detection
(LOD) of analytes in the parts per million range is typical for
electronic noses that are used as an odor compass.28,29 In
comparison, many biological systems have detection limits
reaching the parts per trillion range.30 The achievable LODs of
typical artificial odor compasses have limited their applications
to plume detection. This necessitates the use of fans to draw in
odor plumes, mechanical rotation31 of the odor compass
apparatus, and a robotic system to travel through large areas in
order to identify the true odorant direction, greatly slowing the
odor localization process.5,6

We present the use of surface-enhanced Raman scattering
(SERS) sensors to obviate many of the challenges associated
with odor source direction identification. SERS brings two
main benefits: (1) the use of vibrational spectroscopy enables
superior differentiation of even extremely similar analytes32

and (2) SERS has extremely low LODs of molecules, with
typical operation in the parts per billion, and can reach LODs
as low as 1 ppt with the use of statistical analysis and
appropriate nanoarchitectures that can achieve single molecule
SERS.33 In this work, we demonstrate that a passive (i.e.,
without fans or motors) SERS sensor array can identify and
differentiate the direction of multiple odor sources with similar
vibrational spectra relying only on diffusion of analytes to reach
the array. We use a machine learning approach to analyze the
SERS spectra, which has been shown to be useful in this
context.34−37 Raman spectra are first analyzed with non-
negative matrix factorization (NMF) to differentiate the
analytes, benzenethiol (BZT) and 3-methoxybenzenethiol
(MBZT), via characteristics in vibrational spectra. Then,
various machine learning classifiers are compared in terms of

their ability to correctly identify the odor source direction via
evaluation of SERS data from the sensor array. Machine
learning interpretation of signals from sensor arrays realizes a
marked improvement of well over 20% classification accuracy
compared to heuristics typically used for odor compasses. The
best in class models, support vector machine (SVM) classifier
and convolutional neural network (CNN), correctly identify
the direction of one or two odor sources over 90% of the time
versus 4.2% chance. Models are also evaluated with k-fold
cross-validation, and categorical accuracy achieves a cross-
validation standard deviation of less than 0.2%. Transfer
learning is implemented on the single odor source problem.
Specifically, a CNN model and a fully connected artificial
neural network (ANN) model are trained using a BZT dataset,
and the weights of these pretrained models are fine-tuned on
an MBZT dataset. This strategy significantly reduces the
amount of data necessary to achieve good odorant localization,
with one-shot accuracies of 86.1 and 84.5% for the CNN and
ANN models, respectively. Finally, we demonstrate that this
approach can be used to detect the presence of Escherichia coli
biofilms as well as identify its source direction by tracking
volatile organic compounds (VOCs) from the bacteria.

■ RESULTS AND DISCUSSION

SERS Sensor Array Fabrication and Validation. Passive
odor compasses relying on diffusion of analytes to sensor
surfaces require significantly better sensitivity, LOD, and
precision compared to typical plume-based detection because
of both lower gas concentrations and smaller differences in
analyte concentration from point to point. Uniformity of signal
response across a passive sensor is critical to ensure variations
are related to analyte concentration rather than variable sensor
responses. In order to fabricate nanosensors with spatially
uniform response, we use two-dimensional (2D), physically
activated chemical (2PAC) self-assembly to produce SERS
sensors with billion-fold and uniform Raman scattering

Figure 1. (a) SEM image of nanosphere assemblies that comprise the SERS sensors. (b) Schematic of SERS sensor arrays and example of multi-
analyte placement with respect to arrays. This schematic depicts the case where MBZT is exposed to the left of the sensor array and BZT is exposed
to the right of the sensor array. Representative SERS spectra of a BZT, MBZT mixture acquired from the SERS sensor in the (c) bottom left of the
array and (d) bottom right of the array. SERS spectra are acquired with a 785 nm diode laser at 760 μW and 0.3 s exposure time. (e) Schematic of
the resulting input into the model that is constructed from NMF decomposition of the SERS spectra acquired across the sensor array.
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enhancements over large areas.38 2PAC fabrication involves
seeded growth of close-packed gold nanosphere assemblies,
described in detail elsewhere.34,38 Briefly, nanosphere seeds are
driven to deposit on select regions of a copolymer-coated Si
electrode by electrophoresis. After seeding, the interaction
between the electrical double layers of the electrode and the
nanospheres drives electrohydrodynamic flow. This lateral,
attractive flow entrains nearby particles, forming close-packed
nanosphere assemblies with carbodiimide-mediated cross-
linking between carboxylic acid groups on adjacent nano-
particles. 2PAC results in a uniform gap spacing of
approximately 0.9 nm, which leads to reproducible SERS
enhancements and thereby signals. A scanning electron
microscopy (SEM) image of a 2PAC fabricated SERS surface
is depicted in Figure 1a. One may observe discrete, close-
packed nanosphere assemblies. Discrete assemblies have
greater field enhancements than 2D close-packed films, while
still having a relatively dense collection of hotspots for analyte
molecules to reside. The reproducibility of the gap spacings
due to chemical cross-linking and the rotational invariance of
the close-packed oligomers enable the surfaces to be optically
uniform within the laser spot size across large sample
surfaces.39 We have previously used 2PAC fabricated sensors
for the detection of biofilm formation via sensing bacterial
metabolites; the demonstrated LOD is 100 parts per trillion for
pyocyanin, a metabolite of Psuedomonas aeruginosa.34

In this work, we focus on using SERS sensors to not only
detect but also identify the direction of analyte sources. We
show that 2PAC fabricated SERS sensors in the vicinity of
liquid phase analyte sources are sensitive to gradients arising
from diffusion-based gas transport of the vapor. Analytes from
the gas phase will chemisorb onto nanosphere assemblies, and
the spatial concentration gradient measured across sensors is
used to locate the source of the analyte. In order to ensure that
diffusive gas transport of analytes dominates the measured
concentration gradient (as opposed to fan-driven plume
transport typically used in odor compasses), we place SERS
sensors in a 3 × 3 array into a sealed desiccator at a pressure of
0.5 atm. The arrangement of SERS sensors and analyte source
is depicted schematically in Figure 1b. A 5 μL drop of neat

analyte is placed on one side of the array. Analytes used in this
work, BZT and MBZT, are chosen because of the similarity of
their SERS spectra and affinity to chemisorb on Au. It is also
worth noting that BZT is an important molecule in the
agrochemical and pharmaceutical industries.40 Both analytes
are in the liquid phase and have vapor pressures of 0.13 and
1.33 kPa at room temperature for BZT and MBZT,
respectively. Analytes are exposed to SERS sensors for 15
min before characterizing the sensor response ex situ. For
SERS data acquisition, nine Raman maps (one from each
sensor in the array) are acquired in 128 μm × 128 μm regions
across each sensor surface. The point-to-point reproducibility
across a sensor allows for acquisition of a higher quality dataset
than repeated illumination of a single spot. It is known that
repeated, prolonged laser illumination of a diffraction limited
spot on a SERS surface can lead to photodegradation of
nanosphere assemblies because of the high temperature in the
hotspots.41 Also, when using sensors having hotspots with high
signal enhancements, it is essential to sample many regions to
properly train the model to account for small signal variations,
which may arise because of variations in analyte chemisorption
in hotspots.
Characteristic SERS spectra are plotted in Figure 1c,d.

Preprocessing of SERS spectra before machine learning
analysis is essential to aid in distinguishing analyte signals
from other molecular signals that may emerge from the sample
environment and will limit the generalizability of machine
learning models for environmental sensing. The processed
spectra are then divided into training and validation sets in an
80/20 split. Next, the training dataset is used to train NMF
dimensional reduction (when closure, unimodality, and local
rank constraints are used with alternating least squares
optimization, NMF is called multivariate curve resolution,
which is also used in spectroscopy).42,43 The dimension of
spectra is reduced from 1011 wavenumber features to 3 NMF
scores. Finally, a spectrum from each sample in the nine
sample grid are bundled into a 3 × 3 matrix for each NMF
score; the value of each spectra bundle is scaled to a mean of 0
and variance of 1 to improve model convergence.44 These
NMF score matrices are depicted schematically in Figure 1e.

Figure 2. NMF components determined from analyte training datasets. NMF components (a) 1, (c) 2, and (e) 3 most strongly correspond to (b)
neat BZT SERS spectrum, (d) neat MBZT SERS spectrum, and (e) background spectrum, respectively. (f) NMF scores of the BZT and MBZT
components in the sensor array. Upper right inset: schematic of the SERS sensor array and location of odor source for the plotted data. Circles
correspond to the average value of the 819 test spectra acquired in each SERS sensor in the array. The lines represent one standard deviation of
NMF values within a sensor element. Lower left inset: schematic of the trajectory of analyte signal across the sensor array.
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Visualization of Odorant Chemisorption on SERS
Surfaces. An intrinsic advantage of SERS over comparable
methods, such as an electronic nose, is that the signal is
composed of the vibrational spectra of analyte molecules
enabling visual matching of signal contributions from
individual analytes to the observed SERS spectra. In a complex
mixture, SERS signals are additive; thus, NMF is well suited to
isolate molecular signals in these complex spectra. The non-
negativity constraint results in a decomposition of the spectra
into a parts-based representation with contributions from
different analytes primarily emerging as the different parts
(components).45 Figure 2a,c,e depicts plots of the three NMF
components extracted from the total training dataset. The
training dataset contains spectra of both odor sources, spectra
of BZT only, and spectra of MBZT only. Comparing raw SERS
spectra from sensors only exposed to BZT or only to MBZT,
plotted in Figure 2b,d, respectively, one can easily identify
NMF component 1 as mainly corresponding to the signal
caused by BZT and NMF component 2 mainly corresponding
to the signal caused by MBZT. NMF component 3 is
associated with background signals emerging from the sensor
surface chemistry (ligands on the gold nanospheres, polymer
template, etc.) and molecules in the ambient environment
because of the ultralow detection capacity of the sensor.
Figure 2f depicts the values of NMF scores extracted from

sensor elements in the array exposed to MBZT and BZT
sources emerging from opposite directions. The average values
of NMF scores acquired from a sensor element in the same
column in the grid, which are expected to have similar scores
because of the symmetry of the deposition, are within 10% of
one another. In order to evaluate the uniformity of the sensor
surface, an overnight soak in 0.1 mMol BZT is performed. This
results in a self-assembled monolayer of analytes on gold
nanoparticles across a sensor surface. The data in Figure S1
show that the spectra have an 11.1% relative standard deviation
(RSD) in their 1572 cm−1 vibrational mode, nearly half of the
20% RSD reported for state-of-the-art top-down fabricated
SERS substrates.46 More variance is observed within a sensor
element’s Raman map in the two-source odor compass
configuration, with the largest RSD approaching 20% for
BZT, depicted in Figure 2f. We attribute this variance to two
effects: (1) chemisorption of analytes on gold nanosphere
assemblies is submonolayer and will vary with proximity to
source and (2) leakage of the NMF components into one
another. Leakage may be observed by comparison of neat
analyte spectra with their associated NMF components.
From Figure 2f, one observes that a clear trajectory across

the SERS sensors in the array emerges in the NMF scores,
clearly reflecting the location of analytes. The NMF score
increases for sensor elements in the array closer to their
corresponding analyte. Although promising for the general
multiple source problem, the variance in NMF score
complicates source direction assignment and will be further
complicated when the odor sources are separated by just 90°.
Thus, instead of simply comparing average sensor element
contributions from a row or column on the sensor array to
different NMF components, a more holistic, supervised
machine learning method must be used to achieve high
prediction accuracy for analyte location.
Model Performance on Multisource Task. While

supervised machine learning methods have been applied to
the problem of tracking an odor source using a mobile odor
compass, comparatively little effort has been put into

supervised methods of identifying odor source direction from
a stationary measurement. We evaluate four machine learning
models and one heuristic to identify the model best fit for this
task, a 2D CNN, a fully connected ANN, a SVM classifier, and
a k-nearest neighbors (KNN) classifier. The label generation
for odor location in our supervised approach is depicted in
Scheme 1. Specifically, we consider the one or two odor source

problem with distinct odors and a location without multiple
sources of the same odor and a resolution of 90°, resulting in
24 possibilities. The CNN model uses the full 3 × 3 pixel
spatial relationships of the input data, while the inputs are
flattened for the other classifiers. The architectures of neural
networks are described in the Methods section. This results in
a multiclass, multilabel problem as one or two labels may be
true; thus, both neural networks are trained with a binary
cross-entropy loss function. We simplify the problem for the
SVM and KNN models, evaluating them with labels trans-
formed from a binary representation of the four possible
directions per odor to 24 labels total, one for each possible
outcome. The heuristic first evaluates the variance of each
input matrix to determine whether or not an odor exists based
on a user-defined threshold, and then the average value from
the rows or columns is compared with its opposite and the
largest difference is used to identify the odorant direction for
each matrix. Each model performance and the heuristic are

Scheme 1. (a) Schematic of the Deposition Conditions Used
in This Work and (b) Their Corresponding Labels; (c)
Schematic of the Data Augmentation Used in This Work,
Where Small Random Numbers Are Also Added to the
NMF Scores of the Training Data; and (d) Schematic of 24
Labels Possible in This Work
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evaluated using the categorical accuracy and plotted in Figure
3a.

The prediction accuracy can be greatly improved by
simultaneously considering multiple input data matrices.
Averaging sensor inputs has been an important method for
improving sensor precision and is ubiquitous in natural
olfaction in the form of sniffing, where it greatly improves
the accuracy of predictions made by mammals47 and spike
timing-dependent plasticity models of a moth olfactory bulb.48

We implement an averaging procedure, with each extra input
referred to as a sniff, and plot the categorical accuracy over
sniffs in Figure 3a. Explicitly, each input, or sniff, is an
additional SERS spectral measurement that is NMF-trans-
formed to 3 × 3 BZT and MBZT score matrices. Each
additional sniff comes from the same sensor grid array. Extra
sniffs are added to the inputs as time series in long short-term
memory (LSTM) layers for the CNN model and are added to
lengthen the input vectors for the other models. The inputs are
averaged element-wise for the heuristic.
All models and the heuristic greatly benefit from the

averaging procedure, with the 7+ sniff SVM and 9+ sniff CNN
achieving >90% categorical accuracy. The CNN model
receives a disproportionate boost in model performance from
the extra sniffs, especially the 2−4 sniff models because of the
integration into a LSTM as a time series, whereas the KNN
model actually declines in accuracy beyond 4 sniffs because of
the increased sparsity of the input space. Although the sniffing
procedure increases the acquisition time, acquiring one SERS
matrix only consumes 0.9 s of exposure time, so even a 10 sniff
input requires only 9 s of exposure time, which is significantly
less than is necessary for many plume-based odor compasses;6

for the latter, the typical measurement time for one of several
iterations needed for odor location is on the order of 20 s, for
example, in Ishida et al.4 These results demonstrate that the
passive, SERS-based approach to odor source direction
identification significantly reduces the identification time
compared to fan-driven approaches typically used. Highly
confident predictions can be made in less than half the time
using the SERS-based approach.

For this two odor source problem, we have used two
molecules which chemisorb onto gold nanoparticles on the
sensor surface. Chemisorption is beneficial to ensure that
molecular concentration does not change over the time
necessary to acquire the large training dataset, that is, 20 480
3 × 3 NMF score matrices per analyte in total, used. Large
datasets are necessary to train complex neural network models
with large numbers of parameters to avoid overfitting. These
models have a key advantage over traditional, less data-
intensive models, that is, transfer learning. When using transfer
learning, a neural network model is first fully trained with a
large dataset, and then network weights are fine-tuned with a
new, smaller dataset, such that high performance can be
achieved even with few training examples. In order to
demonstrate this ability, a BZT-only dataset (6553 examples
per class) is used to train single odor source (4 label) ANN
and CNN models having an architecture identical to those
used in the above-described two odor source problem. These
CNN and ANN models are applied to a MBZT-only dataset,
and the weights are fine-tuned. This process is described in
more detail in the Methods section. Figure S3 depicts the
accuracy of the transfer-learned MBZT model as a function of
training examples, where 10 sniff examples are used. The one-
shot, 10 sniff learning accuracy achieved via transfer learning is
determined to be 86.1 ± 4.6 and 84.5 ± 3.5% for the transfer-
learned CNN and ANN models, respectively. For reference,
the fully trained CNN and ANN models were 94.6 and 91.5%
for the CNN and ANN models, respectively, similar to the
results observed for 10 sniff accuracy of the full dataset in
Figure 3. Thus, using transfer learning, one is able to
implement trained models to evaluate significantly smaller
datasets, even one-shot datasets. Training models with the
large well-behaved two odor source dataset provides a basis for
models using transfer learning to evaluate SERS-based odor
compass data in more challenging experimental conditions
where noise and confounding factors often contribute to
signals. For example, in large rooms, factors such as lower
analyte concentration (decreased signal to noise) and air
currents (reduced contrast) make analysis more challenging.
Transfer learning would enable better model convergence in
these noisy, reduced contrast environments compared to
standard Xavier weight initialization.49

Biofilm Localization. SERS’s rich spectral information and
low LOD for small molecules have made it an important
technique in the detection and discrimination of bacteria by
sensing the VOCs that they produce.50−52 Here, we use E. coli
as an odor source to test the efficacy of our odor compass with
complex mixtures of VOCs. SERS arrays are exposed to E. coli
VOCs in a desiccator at ambient pressure and for 6 h. The E.
coli source is placed adjacent to the SERS grid array similarly as
illustrated in Figure 1b. After exposure, the sensor elements are
characterized ex situ. The resulting dataset is decomposed into
NMF components which were compared to SERS spectra of E.
coli acquired at 785 nm wavelength excitation.53 The NMF
component in Figure 4a is in good agreement with the
previous work reporting SERS analysis of E. coli.53 While we
will discuss model performance in identifying the location of
the biofilm, it is also important to note here that this NMF
component provides the highest accuracy of predictions for the
location of the E. coli biofilm. Inspection of the E. coli NMF
component shows an important vibrational mode at 1023
cm−1, an energy usually associated with ring breathing modes.
The observation that the SERS spectra of volatile metabolites

Figure 3. Cross-validation accuracy of the models used. Error bars are
obstructed by the markers but are less than 0.45% in all cases. For a
prediction to be considered correct, the direction of both odors must
be correctly identified by the model.
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from E. coli exhibit high signal intensity near this energy region
is unsurprising for a few reasons. First, ring breathing modes
are typically associated with larger Raman scattering cross
sections than other molecular vibrations because of their
delocalized electrons, so they tend to dominate SERS signal in
complex mixtures.54 Second, volatile molecules tend to be
hydrophobic as this drives them to evaporate out of solution,
so hydrophobic phenyl groups and other functional groups
with ring breathing modes will be overrepresented among
volatile metabolites. Third, the E. coli metabolome contains
many metabolites with functional groups that have strong ring
breathing mode vibrations.
We turn now to evaluate the SERS-based odor compass

performance for bacteria localization. With the NMF
component selected as described above, the spectra acquired
for this experiment are then reduced to the score of this
component, resulting in one 3 × 3 NMF score matrix. As the
SVM model had the best model accuracy for the two odor
source problem, we only consider this model here, and we
evaluate the dataset with a 4 class, 1 sniff SVM model. The
classes are chosen to represent the four possible outcomes of
the single odor source problem: bacteria left, right, up, or
down. A categorical accuracy of 82.95% is achieved on the test
dataset versus 25% chance. A confusion matrix of the test
dataset is plotted in Figure 4b, demonstrating well-behaved
predictions that are invariant with rotation. These high
accuracies for bacteria localization demonstrate the advantages
for a SERS-based odor compass. First, the large amount of
spectral information in the “fingerprint region” of the
vibrational spectrum enables us to identify the complex
mixture of molecules associated with the volatile metabolites
of E. coli. Second, it shows that relatively low concentrations of

the various molecules produced by E. coli can be detected,
which are typically in the parts per million and parts per billion
concentration range.53 Third, it shows that localized
populations of E. coli cells can be detected, as these
experiments were performed with E. coli biofilms rather than
cell cultures in suspension. This demonstrates that SERS-based
odor compasses can be used in practical applications such as
locating the presence of a bacterial biofilm.

■ CONCLUSIONS

In this work, we have demonstrated the efficacy of a diffusion-
based odor compass for the multiple odor source problem
using SERS sensors. Specifically, we have implemented a
sensor grid array to identify small spatial variations in analyte
chemisorption and used various machine learning models to
identify multiple analyte source directions. We have shown
that SVM classifier and CNN models can achieve greater than
90% categorical accuracy for this multiple source problem with
90° resolution. Transfer learning was demonstrated to attain
good one-shot learning accuracy for the single odor source
problem, with a BZT pretrained CNN model achieving 86.1%
accuracy on an MBZT dataset. We have further shown that the
sensor grid array can be used to locate complex odor sources
such as E. coli. This work uses SERS as the gas sensor in an
odor compass and paves the way for its use in passive Internet
of things devices and mobile odor compasses. We envision
integrating this strategy with newly emerging waveguide
excitation of SERS sensors for device miniaturization and
continuous monitoring.55,56 This approach will greatly benefit
from the transfer learning methodology introduced in this
work, which enables accurate models to be trained quickly.
These devices promise to make a material impact on people’s
health by identifying and locating toxic gases and VOCs
produced by indoor pathogens.

■ METHODS
Materials. Random copolymer poly(styrene-co-methyl methacry-

late)-α-hydroxyl-ω-tempo moiety (PS-r-PMMA) (Mn = 7400, 59.6%
PS) and diblock copolymer poly(styrene-b-methyl methacrylate) (PS-
b-PMMA) (Mn = 170-b-144 kg mol−1) were purchased from Polymer
Source, Inc. (Dorval, Canada). Forty nanometer diameter gold
nanospheres were purchased from nanoComposix (San Diego, CA,
USA). Si(001) wafers with a resistivity of 0.004 Ω cm were purchased
from Virginia Semiconductor (Fredericksburg, VA, USA). Hydro-
fluoric acid (HF) was purchased from Fisher Scientific (Pittsburgh,
PA, USA). 2-(N-Morpholino)ethanesulfonic acid (MES) 0.1 M
buffer, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochlor-
ide (EDC), and N-hydroxy sulfosuccinimide (s-NHS), dimethyl
sulfoxide (DMSO), ethylenediamine, BZT, toluene, ethanol, iso-
propyl alcohol (IPA), potassium carbonate, and 52-mesh Pt gauze foil
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Nanopure
deionized water (18.2 MΩ cm−1) was obtained from a Milli-Q
Millipore system.

SERS Sensor Fabrication. Sensor fabrication has been described
in depth in previous work.34,38 First, block copolymer templates for
nanoparticle attachment are prepared. Random PS-b-PMMA block
copolymer is spin-coated onto a HF-cleaned (the potential of HF to
cause severe injury mandates extreme caution during usage), 0.004 Ω
cm Si wafer and annealed for 3 days, followed by a toluene rinse and
spin coating of lamella forming a PS-b-PMMA block copolymer and
further 3 days of annealing, as described elsewhere.57−59 Then, the
PMMA regions are selectively functionalized with amine end groups
by immersing the entire substrate in DMSO and then in ethylenedi-
amine/DMSO solution (5% v/v), both for 5 min without rinsing

Figure 4. (a) NMF component acquired from bacterial VOC training
dataset used in bacterial odor source localization. (b) Normalized
confusion matrix produced by a 1 sniff SVM model applied to the
bacterial VOC test dataset.
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between steps. The functionalized template is then washed with IPA
for 1 min, dried under nitrogen, and used immediately.
Au nanosphere assemblies are deposited on the surface as follows: a

Au nanosphere solution (0.1 mg/mL, 3 mL) is added to a 10 mL glass
beaker. Then, s-NHS (20 mM) in a MES (0.1 M) buffer (35 μL) is
added to the beaker and swirled. Afterward, EDC (8 mM) in a MES
(0.1 M) buffer (35 μL) is added to the beaker and swirled. This
beaker is placed on a hot plate and brought to 60 °C. Next, a 1 cm ×
1 cm functionalized template-coated Si substrate is placed into the
solution vertically and held in place with alligator clips. One
millimeter away from the substrate, a 1 cm × 1 cm Pt mesh is
placed into the solution vertically. A dc power supply is used to apply
a voltage of 1.2 V across the Pt mesh and substrate for 10 min. The
substrate, Pt mesh, and beaker are rinsed with IPA for 1 min and dried
under nitrogen. This process is repeated with the same substrate and
fresh nanosphere solution as described above but with 25 μL of EDC
and s-NHS solution.
Analyte Deposition. SERS sensors are exposed to analytes with

nine sensors arranged in a grid. Depositions are performed in a sealed
desiccator with a 10 cm diameter. A 5 μL drop of neat analyte is
placed on a glass slide at the edge of the desiccator; when a second
analyte is used, it is similarly placed on a glass slide at the edge of the
desiccator either 90° offset, 180° offset, or adjacent to the first analyte.
The sensor grid array is organized such that each sensor is placed 3
cm away from other sensors to form a square grid, with an analyte−
sensor spacing of 2 cm for the closest sensor. The desiccator was then
sealed and brought to 0.5 atm for 5 min, followed by 15 min of static
deposition.
Characterization. Au nanoparticle assemblies are imaged with a

Magellan XHR SEM (FEI). All Raman spectroscopy measurements
are conducted using a confocal Renishaw inVia micro Raman system
with a 785 nm diode laser, a laser power of 760 μW, an exposure time
of 0.3 s, and a 50× air objective with a 0.75 NA. Raman maps are
collected with a spacing of 2 μm between points. For the sensor grid
array, one 64 × 64 pixel Raman map is acquired per sensor. As
depicted in Scheme 1, five analyte deposition configurations are
necessary to provide sufficient data for the two odor source problem.
This results in a total of 184 320 spectra acquired for the two odor
source problem and 36 864 spectra for the single bacteria source
problem discussed in Figure 4.
Spectra Preprocessing. Raman spectra preprocessing was

performed using Python 3.3 programming language. Savitzky−Golay
smoothing was implemented with Scikit-learn using an 11 pixel
window and polynomial order 3. Asymmetric least squares back-
ground subtraction was implemented in NumPy with λ = 10 000, p =
0.001. NMF was implemented with Scikit-learn, three components,
and default settings, trained only on the dataset segregated for use in
training the models. This trained NMF transformation was used to
reduce the dimension of all data to 2. NMF-reduced maps from each
point on the sensor grids were then rearranged into a 3 × 3 matrix,
with two NMF scores per map per data point. Each data point was
then scaled to a variance of 1 and mean of 0. This results in 20 480
NMF score matrices for the two odor source problem and 4096 NMF
score matrices for the single bacteria source problem.
Data augmentation was performed by rotating the rank 2 tensors

that compose each data point 90° and similarly rotating the labels. A
Gaussian random number (μ = 0, σ = standard deviation of that
component extracted from each deposition condition × 0.1) is added
to each component for the training data. This process augments the
data to 163 840 NMF score matrices for the two odor source problem
and 32 768 NMF score matrices for the single bacteria source
problem. These data are then stacked along a third dimension, called
“sniffs” producing a rank 4 tensor with shape (sniffs, sensor grid axis 1,
sensor grid axis 2, number of analyte). For the SVM, KNN, and ANN
models, these inputs are flattened into a vector before being fed into
the model. For the heuristic, the components are averaged along the
sniff axis and then flattened, and each analyte is considered separately.
Compass Models. The SVM classifier and KNN classifier were

both implemented in Scikit-learn using default settings. The ANN and
CNN models were implemented in Keras. The ANN model is

composed of an input layer, three fully connected layers with
succeeding dropout layers, and one fully connected output layer with
eight sigmoid nodes. The CNN model is composed of an input layer,
4 time-distributed 2D convolutional layers performed over the sensor
grid axes with succeeding batch normalization layers, and then a time-
distributed 2D maximum pooling layer with a pool size of 2 × 2 and
strides of 1 × 1. The pooling layer is followed by 2 more time-
distributed 2D convolutional layers and a time-distributed flattening
layer. Next, a LSTM layer is used across “sniff” axis. Following that
layer are three fully connected layers with succeeding batch
normalization layers and dropout layers, outputting ultimately to a
fully connected output layer with eight sigmoid nodes. Each output
node on the ANN and CNN models is associated with a direction and
analyte, so binary cross-entropy is used as the loss function. Early
stopping and reduction of learning rate on a performance plateau are
implemented using test loss as the metric. The heuristic identifies
odorant direction in two steps: first identifying the odorant and then
the direction. First, the variance of each input matrix is used to
determine whether or not an odor exists based on a user-defined
threshold. Then, the average value from the rows or columns is
compared with its opposite, and the largest difference is used to
identify the odorant direction for each matrix.

The generalizability of each model is performed using k-fold cross-
validation. First, 20% of the data are removed as the validation
dataset. The remaining 80% of the data are used to train the NMF
transformation, which is also applied to the validation dataset. Then,
k-fold cross validation is implemented on the remaining 80% of the
data using Scikit-learn, with the number of folds equal to 5. Thus, the
training dataset for each fold included 104 857 NMF score matrices,
the test dataset for each fold included 26 214 NMF score matrices,
and the validation dataset included 32 768 NMF score matrices. The
training fold is used to train each model. Each test fold is used to train
the early stopping for the ANN and CNN models but are discarded
for the SVM and KNN models. Finally, each of the trained models is
evaluated on the validation dataset; the average and standard
deviation across the 5 folds are plotted in Figure 3.

The code used in this work will be made available on GitHub.
Transfer Learning. Transfer learning is achieved using the same

ANN and CNN architectures described above in the Compass
Models section. First, the BZT only dataset is split into 80% training
data and 20% testing data, and an NMF transformation is trained
using the training dataset. The spectra are grouped into 3 × 3 matrices
corresponding to the different elements in the sensor grid array and
are reduced to the first NMF component that corresponds to BZT.
Spectra are preprocessed, and data are augmented as described in the
earlier Methods subsections. The models are trained using the 3 × 3
BZT NMF scores set aside for training, and early stopping is
implemented with the remaining testing dataset. The weights of the
neural network models are then saved. Next, the same procedure
(without training models) is repeated for the MBZT-only dataset.
Then, 10 3 × 3 MBZT NMF score matrices per class (4 in this case)
are randomly selected for each example used (which ranges between 1
and 10 in Figure S3). These training examples are then used to train
ANN and CNN models that have their weights set from the already
trained BZT models. The accuracy is evaluated based on the
remaining examples. This process is repeated 10 times per model per
different numbers of examples to identify an average accuracy and the
standard deviation of the accuracies. When only one example is used
to train a model, this is referred to as one-shot learning. These results
are plotted in Figure S3.

Static Biofilm Preparation and Characterization. All materials
for bacterial culture were purchased from VWR International unless
otherwise noted. E. coli MC4100 (E. coli K12 derivative araD Δ(argF-
lac)U169 rpsL relA f lbB deoC ptsF rbsR)60 frozen stock was streaked
onto lysogeny broth (LB) (Lennox) agar (1.5%) plates and grown
overnight at 37 °C. One colony was harvested, inoculated into 2 mL
of liquid LB, and grown overnight at 37 °C on an orbital shaker at 200
rpm. The overnight culture was diluted with 10 g/L tryptone (BD
Bacto Tryptone) to an optical density of 0.02. Two milliliters of the
diluted culture was added to each well of the sterile six-well plate. One
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18 × 18 mm coverslip was submerged in each well and was incubated
at room temperature (22 °C) for 24 h. Three of the coverslips and
their inoculum solution were transferred into a sterile Petri dish that
was placed into a covered 10 cm diameter desiccator. A sensor grid
was then placed in the desiccator as described above, and the system
was kept isolated for 4 h. These sensors were then removed, and
SERS measurements were performed as described above.
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