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Objectives: Among viridans group streptococcal infective endocarditis (IE), the Streptococcus mitis group is the
most common aetiological organism. Treatment of IE caused by the S. mitis group is challenging due to the high
frequency of b-lactam resistance, drug allergy and intolerability of mainstay antimicrobial agents such as vanco-
mycin or gentamicin. Daptomycin has been suggested as an alternative therapeutic option in these scenarios
based on its excellent susceptibility profile against S. mitis group strains. However, the propensity of many S. mitis
group strains to rapidly evolve stable, high-level daptomycin resistance potentially limits this approach.

Methods: We evaluated the activity of 6 mg/kg/day daptomycin alone or in combination with gentamicin, cef-
triaxone or ceftaroline against two daptomycin-susceptible S. mitis group strains over 96 h in a pharmacokinetic/
pharmacodynamic model of simulated endocardial vegetations.

Results: Daptomycin alone was not bactericidal and high-level daptomycin resistance evolved at 96 h in both or-
ganisms. Combinations of daptomycin! ceftriaxone and daptomycin! ceftaroline demonstrated enhanced kill-
ing activity compared with each antibiotic alone and prevented emergence of daptomycin resistance at 96 h.
Use of gentamicin as an adjunctive agent neither improved the efficacy of daptomycin nor prevented the devel-
opment of daptomycin resistance.

Conclusions: Addition of ceftriaxone or ceftaroline to daptomycin improves the bactericidal activity against
S. mitis group strains and prevents daptomycin resistance emergence. Further investigation with combinations
of daptomycin and b-lactams in a large number of strains is warranted to fully elucidate the clinical implications
of such combinations for treatment of S. mitis group IE.

Introduction

The Streptococcus mitis group belongs to the viridans group strep-
tococci (VGS) and comprises oral commensal microorganisms. The
S. mitis group is the most common cause of infective endocarditis
(IE) among the VGS, as well as a leading cause of severe septic syn-
dromes in neutropenic hosts (e.g. the ‘toxic strep syndrome’).1

Management of S. mitis group infections is challenging due to the
relative frequency of resistance to b-lactam antibiotics, including
penicillins and multiple cephalosporins, which are the first-line

antibiotics.2–4 Penicillin resistance has been reported to be as high
as 56% of 352 VGS bloodstream isolates from US medical institu-
tions.3–6 Although most S. mitis group strains are susceptible
in vitro to vancomycin, this organism frequently exhibits tolerance
to the killing caused by this agent.7,8 In addition, patient character-
istics such as drug allergy or intolerance of mainstay antimicrobials
make treatment of S. mitis group IE more challenging, even in IE
caused by penicillin-susceptible strains. Prevalence of penicillin al-
lergy is not minimal, limiting use of penicillin in 8%–12% of
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patients.9 The prolonged use of current alternative agents such as
vancomycin and gentamicin is often associated with nephrotox-
icity.10 All these clinical challenges have raised the need for a novel
therapeutic approach based on better-tolerated agents.11,12

Daptomycin is a cyclic lipopeptide antibiotic that has been exten-
sively evaluated for treatment of Gram-positive infections, including
Staphylococcus aureus and both vancomycin-susceptible entero-
cocci and vancomycin-resistant enterococci (VRE). Although limited
clinical data are available, daptomycin’s potent in vitro activity dem-
onstrates therapeutic potential for treatment of endocarditis caused
by S. mitis group strains resistant to front-line antibiotics or in those
who are intolerant to first-line antimicrobial agents.13,14 However,
several studies have confirmed the propensity of more than 25% of
such daptomycin-susceptible strains to rapidly develop high-level
and durable daptomycin resistance during in vitro passage or follow-
ing daptomycin therapy in experimental IE models.6 We hypothe-
sized that use of an adjunctive antibiotic may not only potentiate
the bactericidal activity of daptomycin, but could also prevent emer-
gence of daptomycin resistance in treatment of S. mitis group IE.

Ceftaroline fosamil is a novel cephalosporin with excellent ac-
tivity against S. aureus (including MRSA) and VGS.15 For example, in
a recent surveillance study using clinical VGS isolates from the
USA, ceftaroline demonstrated S. mitis group MIC50/90 of �0.015
and �0.06 mg/L.16 It should be noted that the in vitro synergistic
activity of daptomycin plus ceftaroline has been documented
against S. aureus, Enterococcus faecalis and Enterococcus fae-
cium,17–20 but not against the S. mitis group. Ceftriaxone and
gentamicin have served as the backbone of antibiotic regimens
for treatment of VGS IE in combination with penicillin G or vanco-
mycin.7 Although daptomycin plus ceftriaxone and daptomycin
plus gentamicin are usually synergistic against S. aureus strains
and many enterococci,17,21–25 the activities of these combinations
against S. mitis group strains are unknown. The aim of this study
was to evaluate the efficacy of daptomycin alone and in combin-
ation with cephalosporins, either ceftriaxone or ceftaroline, or gen-
tamicin, using a pharmacokinetic (PK)/pharmacodynamic (PD)
model of simulated endocardial vegetations (SEVs) both in terms
of killing of two daptomycin-susceptible S. mitis group strains and
preventing the emergence of daptomycin resistance.

Materials and methods

Bacterial isolates and growth conditions

Two daptomycin-susceptible S. mitis group clinical isolates (penicillin-resist-
ant S. mitis/oralis 351 and penicillin-susceptible S. mitis SF100) were eval-
uated in the experiment. S. mitis/oralis 351 was identified as an S. mitis
strain, based on standard biotyping and 16S RNA sequencing.6 Recently, we
have obtained genome-sequenced results and discovered that this strain is
more likely to be a member of the closely related species S. oralis, based on
average nucleotide identity analysis of the whole genome sequence. The
strain has therefore been renamed S. mitis/oralis 351 and is listed thus in
GenBank. These isolates were clinically derived and were previously shown
to cause experimental IE.6,26 Daptomycin, ceftriaxone and gentamicin
were purchased commercially (Merck, Kenilworth, NJ, USA; Sandoz,
Princeton, NJ, USA; and Sigma–Aldrich, St Louis, MO, USA), while ceftaroline
was provided by its manufacturer (Allergan, Parsippany, NJ, USA). For
in vitro susceptibility testing, cation-adjusted Mueller–Hinton broth supple-
mented with 5% lysed horse blood was used. Brain heart infusion broth
(Difco, Detroit, MI, USA) was used for PK/PD models of SEVs. For all experi-
ments including daptomycin, calcium chloride supplementation was

performed to provide 50 mg/L. Tryptic soy agar supplemented with 5%
sheep’s blood (Difco) was used for colony growth and enumeration upon
subculture from the SEV models.

In vitro susceptibility testing
The MICs of daptomycin, ceftriaxone, ceftaroline and gentamicin were
determined by broth microdilution in duplicate. Following determination of
the MIC values for each isolate, daptomycin MICs were determined again in
the presence of ceftriaxone, ceftaroline or gentamicin at 0.5% the MIC, to
determine the potential for synergy, evidenced by the ‘daptomycin MIC
lowering effect’ of the cephalosporins and gentamicin.17

PK/PD SEV model
Both S. mitis/oralis 351 and S. mitis SF100 were evaluated in a PK/PD model
of SEVs over 96 h as previously described.19,22 In brief, SEVs were prepared
by combining human cryoprecipitate antihaemolytic factor (American Red
Cross, Detroit, MI, USA), aprotinin (Sigma–Aldrich), human platelet suspen-
sions (American Red Cross) and a suspension of either strain with the
mixture, then solidified by addition of bovine thrombin (Pfizer, New York
City, NY, USA). SEVs consisting of approximately 3–3.5 g/dL albumin and
6.8–7.4 g/dL total protein27 were suspended in the 250 mL in vitro glass
model by monofilaments (16 SEVs per chamber). Antimicrobials were ad-
ministered as a bolus at a predefined frequency. Fresh medium was con-
tinuously infused and then removed along with the drug via a peristaltic
pump (Masterflex, Cole-Parmer Instrument Company, Chicago, IL, USA) at
a rate that simulates the human-equivalent half-life (t1=2) of each agent.
In the case of daptomycin combinations with ceftaroline and gentamicin
the models were supplemented with daptomycin to compensate for exces-
sive drug loss when simulating the more rapid t1=2 of the two other agents
as previously described.28

The models were placed in a warm water bath at 37�C. All experiments
were performed in duplicate to ensure reproducibility. The following antibi-
otic regimens were simulated using total drug concentrations: (i) 6 mg/kg
daptomycin every 24 h (Cmax 93.9 mg/L, t1=2 8 h)29; (ii) 2 g ceftriaxone every
24 h (Cmax 257 mg/L, t1=2 8 h)30; (iii) 600 mg ceftaroline every 8 h (Cmax

21 mg/L, t1=2 2.66 h)31; (iv) 3 mg/kg gentamicin every 24 h (Cmax 8.53 mg/L,
t1=2 2.5 h)32,33; (v) daptomycin! ceftriaxone; (vi) daptomycin! ceftaroline;
(vii) daptomycin!gentamicin; and (viii) drug-free growth controls.

For PD evaluations, two SEVs were aseptically removed from each
model at 0, 4, 8, 24, 32, 48, 72 and 96 h timepoints. After weighing, each
SEV was homogenized with trypsin, serially diluted with normal saline and
quantitatively cultured. To minimize antibiotic carryover, those SEV samples
where it was anticipated that the drug concentration was within 1 tube di-
lution of the MIC were diluted appropriately before plating. Plates were
incubated in an anaerobic chamber for 18–24 h at 37�C before performing
colony counts. Bacterial counts (cfu/g) remaining in the SEVs were plotted
against time over 96 h to evaluate the bactericidal activity of the single and
combination drug regimens. Bactericidal and bacteriostatic activity were
defined as a �3 and ,3 log10 cfu/g decrease in colony counts from the ini-
tial inoculum, respectively. The effects of daptomycin combinations were
interpreted as enhanced if a combination reduced bacterial counts by
�2 log10 cfu/g as compared with the most effective single agent in the
combination. Outcomes featuring reductions in bacterial counts by
1–2 log10 cfu/g compared with the most active single agent were deemed
‘indifferent’. Changes in cfu/g at 24, 48, 72 and 96 h were compared by
one-way analysis of variance with Tukey’s post-hoc test. A P value of�0.05
was considered significant. All statistical analyses were performed on SPSS
statistical software (version 23; SPSS, Inc., Chicago, IL, USA).

For PK analysis, chamber medium samples were obtained through
the injection port at 0, 2, 4, 8 and 24 h to verify the attainment of target
antibiotic concentrations. All samples were stored at #80�C until ready
for PK assay. Daptomycin concentrations were measured using a
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validated HPLC assay.22 Gentamicin and ceftriaxone concentrations
were determined by bioassay using Escherichia coli ATCC 25922 as refer-
ence organism and ceftaroline concentration by bioassay using Kocuria
rhizophila ATCC 9341 as reference organism.19,22,34 In brief, holes were
aseptically punched or sterile blank 0.25 inch paper discs were placed
on the agar (Antibiotic Medium 1 for ceftriaxone, Antibiotic Medium 11
for ceftaroline and gentamicin; Difco, Detroit, MI) that were pre-
swabbed with 0.5 McFarland bacterial suspension of reference strains.
Each hole or blank paper was filled with either a sample or a standard
concentration at a fixed volume. Plates were incubated for 18–24 h at
37�C, before the diameter of each inhibition zone was measured using
an automatic colony counter (Scan 1200, Interscience Woburn, MA). A
standard curve was created using inhibition zone size versus known con-
centrations, and the inhibition zone size at each sample timepoint was
plotted against this curve to obtain sample concentrations. These con-
centrations allowed calculation of PK parameters such as the half-life
and peak concentrations of each antibiotic agent by the trapezoidal
method using PK Analyst Software (version 1.10; MicroMath Scientific
Software, Salt Lake City, UT, USA).

Emergence of daptomycin resistance over 96 h daptomycin exposures
within the SEV model was evaluated by determining daptomycin MICs of
isolates recovered from SEVs plated on daptomycin drug plates at 3% the
MIC at 96 h.

Results

In vitro susceptibility testing

The MIC values for each antimicrobial agent alone, as well as the
daptomycin MIC in the presence of an adjunctive antimicrobial
agent at 0.5%MIC, are summarized in Table 1. It should be noted
that the daptomycin MICs were reduced by .8-fold in both
S. mitis/oralis 351 and S. mitis SF100 strains in the presence of cef-
taroline at 0.5% its MIC. Similarly, ceftriaxone decreased daptomy-
cin MICs by 2-fold in both S. mitis/oralis 351 and S. mitis SF100.
In contrast, gentamicin reduced the daptomycin MIC in strain
S. mitis/oralis strain 351 by 2-fold, but failed to impact the dapto-
mycin MIC of S. mitis SF100.

In vitro PK/PD models

The average Cmax for daptomycin was 98.79+0.10 mg/L (target
Cmax, 93.9 mg/L), the area under the concentration–time curve
over 24 h (AUC0–24) was 1139+14.13 mg�h/L and the average t1=2

was 8.62+0.14 h (target t1=2, 8 h). For ceftaroline, the average Cmax

observed was 19.74+0.12 mg/L (target Cmax, 21 mg/L) and the
average t1=2 was 3.32+0.04 h (target t1=2, 2.66 h). For ceftriaxone,

the average Cmax of 263.33+9.22 mg/L (target Cmax, 257 mg/L)
and the average t1=2 of 8.46+0.58 h (target t1=2, 8 h) were achieved.
For gentamicin, the observed Cmax and Cmin were 8.39+1.37 mg/L
and 0.001+0.0004 mg/L (target Cmax, 8.53 mg/L) and the average
t1=2 was 1.9+0.1 h (target t1=2, 2.5 h)

Relevant PD responses to simulated human-equivalent anti-
microbial regimens are depicted in Figure 1. In SEVs infected with
S. mitis/oralis 351, daptomycin alone was not bactericidal
(#D2.03 log10 cfu/g between 0 and 96 h exposure). It is noteworthy
that daptomycin resistance emerged at 96 h (MIC increased from
0.5 to 64 mg/L) and was stable to 5 days of passage on antibiotic-
free medium. Ceftaroline alone was bactericidal at 96 h
(#D4.26 log10 cfu/g) and was significantly superior to daptomycin
alone (P , 0.001). The combination of daptomycin! ceftaroline
was highly bactericidal at 96 h (#D6.79 log10 cfu/g). This combin-
ation was also statistically superior to daptomycin alone by 24 h
(P , 0.001) and to ceftaroline alone at 48, 72 and 96 h (P , 0.001).
Daptomycin! ceftaroline also prevented the emergence of dapto-
mycin resistance at 96 h. Ceftriaxone alone was bactericidal as
soon as 24 h (#D3.7 log10 cfu/g) and statistically superior to any
other single agent at 96 h (#D5.86 log10 cfu/g; P , 0.001). The com-
bination of ceftriaxone with daptomycin demonstrated enhanced
bactericidal activity at 8 and 24 h, achieving bacterial killing to the
detection limit within the first 8 h (#D5.87 log10 cfu/g) and pre-
vented daptomycin resistance emergence at 96 h. Gentamicin
alone demonstrated little activity against S. mitis/oralis 351 at 96 h
(#D0.49 log10 cfu/g) and the addition of gentamicin to daptomycin
neither improved bactericidal activity compared with daptomycin
alone nor prevented evolution of daptomycin resistance.

As was seen with S. mitis/oralis 351, daptomycin alone was not
bactericidal at 96 h in SEVs (#D0.07 log10 cfu/g) against S. mitis
SF100, and the strain developed daptomycin resistance at 96 h
(MIC increased from 0.5 to 16 mg/L) and was stable to 5 days of
passage on antibiotic-free medium. Ceftriaxone and ceftaroline
alone were statistically superior to any other single antibiotic
against SF100 at 96 h (P , 0.001). Ceftaroline alone and the dapto-
mycin! ceftaroline combination were bactericidal at 96 h
(#D5.57 and #D5.65 log10 cfu/g; P , 0.001 for both regimens ver-
sus daptomycin alone). Ceftaroline alone was bactericidal at 8 h,
while the combination of daptomycin! ceftaroline was bacteri-
cidal at 4 h. Both ceftaroline and daptomycin! ceftaroline
reduced SEV SF100 bacterial load to the detection limits by 24 h
and by 4 h. Daptomycin! ceftaroline also prevented daptomycin
resistance emergence. Ceftriaxone alone was bactericidal at 24 h

Table 1. MIC data for selected strains

Strain
CPT

MIC (mg/L)
PEN

MIC (mg/L)
CRO

MIC (mg/L)
GEN

MIC (mg/L)
DAP

MIC (mg/L)

DAP
MIC (mg/L) in
the presence

of CPT
(DAP MIC

reduction)

DAP
MIC (mg/L) in
the presence

of CRO
(DAP MIC

reduction)

DAP
MIC (mg/L) in
the presence

of GEN
(DAP MIC

reduction)

351 0.5 8 8 8 0.5 ,0.063 (.8-fold) 0.25 (2-fold) 0.25 (2-fold)

SF100 ,0.063 0.125 0.125 4 0.5 ,0.063 (.8-fold) 0.25 (2-fold) 0.5 (no change)

CPT, ceftaroline; CRO, ceftriaxone; DAP, daptomycin; GEN, gentamicin; PEN, penicillin.
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(#D3.34 log10 cfu/g) and maintained its bactericidal activity for
96 h. Ceftriaxone!daptomycin demonstrated enhanced bacterial
killing compared with ceftriaxone alone at 8 and 24 h (P , 0.001)
and maintained bacterial colony count at the detection limit from
32 to 96 h (#D6.43 log10 cfu/g). Addition of ceftriaxone also pre-
vented daptomycin resistance emergence at 96 h. Gentamicin

alone failed to reduce SEV bacterial counts compared with un-
treated controls. Daptomycin!gentamicin neither substantially
improved killing compared with daptomycin alone nor prevented
emergence of daptomycin resistance. No resistance to ceftriaxone,
ceftaroline or gentamicin was detected during monotherapy or
combination therapy over the 96 h experiments.
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(a)
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DAP 6 mg/kg
DAP MIC = 64 mg/L

S. mitis/oralis 351
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Figure 1. PD of simulated antibiotic regimens against two S. mitis group strains in a PK/PD model of SEVs. Broken line with black circles, growth con-
trol; broken line with black squares, 6 mg/kg/day daptomycin; broken line with black upward triangles, 600 mg of ceftaroline every 8 h; broken line
with black diamonds, 3 mg/kg/day gentamicin; broken line with white circles, 2 g of ceftriaxone every 24 h; continuous line with white upward tri-
angles, daptomycin! ceftaroline; continuous line with white diamonds, daptomycin!gentamicin; broken line with black downward triangles, dapto-
mycin! ceftriaxone. DAP, daptomycin; GEN, gentamicin.
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Discussion

Since its FDA approval in 2003, daptomycin has found major clinical
usage, especially against resistant Gram-positive bacteria such as
MRSA and VRE. This agent represents a viable treatment option for
VGS infections including the S. mitis group, based on its in vitro sus-
ceptibility profile against such strains.6,35,36 However, clinical experi-
ence with daptomycin against VGS infections is limited to date.
Importantly, two factors have promoted daptomycin as a viable al-
ternative treatment agent for invasive VGS infections, especially in
the S. mitis group: (i) the relatively high frequency of b-lactam resist-
ance (to both penicillins and cephalosporins); and (ii) the inconsistent
clinical outcomes with vancomycin, linked to vancomycin ‘toler-
ance’.37 In the case of drug allergy or intolerance associated with b-
lactam antibiotics and vancomycin, daptomycin has been con-
sidered as a reasonable alternative. However, the recent recognition
that more than 25% of S. mitis group strains develop rapid, high-level
and durable daptomycin resistance during both in vitro and in vivo
exposures to daptomycin make therapy with daptomycin alone
problematic.6 In addition, the potential for the development of cross-
resistance as demonstrated with S. aureus increases the need to
evaluate potential therapeutic options against these pathogens.38

The current study was designed to investigate the temporal
evolution of daptomycin resistance in an in vitro model of SEV
caused by two prototypic S. mitis group strains in the presence of
standard-dose daptomycin exposures, either alone or in combin-
ation with two cephalosporins, ceftriaxone and ceftaroline, or
gentamicin and to evaluate the therapeutic potential of these
combinations in the treatment of S. mitis group IE. The in vitro
model of SEV has been validated against rabbit IE models and im-
plemented for decades for assessment of antibiotic potential.39

As previously demonstrated by Garc�ıa-de-la-M�aria et al.,6 6 mg/kg/
day daptomycin was not sufficient for bactericidal activity against
either strain in our study and resulted in daptomycin resistance at
96 h. Interestingly, in their experiments with aortic valve IE with S.
mitis/oralis 351 in rabbits, adding 1 mg/kg gentamicin every 8 h to
6 mg/kg/day daptomycin not only significantly increased the num-
ber of vegetations sterilized (10 out of 11 endocardial vegetations)
after 48 h of treatment, as compared with daptomycin alone (1
out of 11 endocardial vegetations), but it also decreased the num-
ber of recovered isolates with daptomycin MIC �256 mg/L from 7
out of 11 to 1 out of 11. In contrast, we encountered no such bene-
ficial effect of the addition of gentamicin in our SEV model. It is
possible that the steady-state gentamicin dosing regimen em-
ployed in our in vitro study (3 mg/kg/day), compared with the
1 mg/kg every 8 h regimen used in experimental IE, is the source of
this difference. However, previous in vitro data have proven incon-
clusive with regard to the role of gentamicin synergy dosing, as
some studies have demonstrated equivalence between the two
dosing strategies, while others have shown superiority of thrice-
daily dosing.33,40–42 Regardless, the data available on the efficacy
of gentamicin in combination with daptomycin against S. mitis
group strains are conflicting and further study is warranted.

In contrast, both ceftriaxone and ceftaroline improved the ac-
tivity of daptomycin against both S. mitis group strains and pre-
vented daptomycin resistance emergence. Synergy between
these agents has been extensively documented against other
Gram-positive bacteria; however, our study is the first to show this
positive effect against S. mitis group strains. Previous studies in

S. aureus and enterococci have demonstrated that the addition of
a b-lactam antibiotic may enhance daptomycin binding to the
bacterial membrane by altering surface charge.20,43 It is possible
that a similar synergistic mechanism exists within S. mitis group
strains, although our efforts did not include daptomycin binding
studies to examine this potential effect.

Our study does have limitations. We evaluated only two strains
of the S. mitis group, which may constrain the generalizability of our
findings. Regimens were evaluated for 96 h which is obviously
much shorter than the duration of therapy employed for IE in the
clinical setting. The initial starting inoculum varied slightly for some
of the experiments which may have affected the overall compari-
sons. In addition, the achieved half-life (3.32 h) for ceftaroline was
slightly higher than targeted (2.66 h) which may have impacted
the activity of ceftaroline. Regarding daptomycin, it is possible that
a much higher dosage of daptomycin (i.e. 8–12 mg/kg/day), al-
though not tested here, may have suppressed the emergence of re-
sistance, although our prior in vitro passage data and our current ex
vivo passage data would suggest that this is not the case.44 That
being said, the extent of bactericidal activity and resistance sup-
pression observed with the daptomycin! ceftriaxone and dapto-
mycin! ceftaroline combinations would suggest that these
combinations are likely to be effective beyond this period. Also, it is
worth noting that ceftriaxone and ceftaroline alone were bacteri-
cidal, perhaps suggesting that single-drug efficacy will occur with-
out the presence of daptomycin. Although it is unknown what the
clinical impact of the more rapid and sustained bactericidal activity
observed against both strains with the combinations of
ceftriaxone!daptomycin or ceftaroline!daptomycin would be, it
was clear that these combinations were able to suppress the emer-
gence of resistance to daptomycin which would be an advantage
over daptomycin monotherapy. In this regard, additional studies
that include more S. mitis group strains will be of value.

In summary, our data demonstrate that addition of ceftriax-
one or ceftaroline to daptomycin improves the activity against
S. mitis group strains in vitro and prevents the emergence of dap-
tomycin resistance. Most importantly, these combinations pre-
vented daptomycin resistance in two strains that have
demonstrated a high propensity to develop daptomycin resist-
ance on standard daptomycin therapy in vitro. The improved ac-
tivities between daptomycin and these two cephalosporins were
superior to any effects observed when daptomycin was combined
with gentamicin, an agent used traditionally for combination
therapy against VGS IE. Based on the data obtained from this in-
vestigation, along with previous reports of daptomycin! b-
lactam efficacy against other resistant Gram-positive pathogens,
it appears that ceftriaxone!daptomycin and ceftaroline!dap-
tomycin may represent useful combination therapies for endo-
vascular infections due to S. mitis group strains.
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