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Abstract

A Second-Generation Energy Decomposition Analysis for Møller-Plesset Perturbation
Theory Using a Global Virtual Space

by

Kevin Kiyoshi Ikeda

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Professor Martin Head-Gordon, Chair

Associate Professor Ali Mesbah, Co-chair

In this thesis, a newly developed second-generation energy decomposition analysis (EDA)
based on second order Møller-Plesset perturbation theory (MP2) is presented. EDA’s have
become widely used to aid in understanding the nature of intermolecular interactions and
are commonly based on density functional theory (DFT) and self-consistent field (SCF)
calculations. However, using correlated post-SCF methods, such as MP2, for EDA is less
common, partly due to the complexity associated with defining suitable approaches. As such,
this thesis focuses on presenting a new approach for EDA’s for post-SCF methods through the
implementation of restricted and unrestricted MP2 EDA calculations. This newly developed
MP2 EDA builds upon the SCF-level second-generation absolutely localized molecular orbital
EDA approach (ALMO-EDA-II) and provides distinct energy contributions for a frozen
interaction energy (containing permanent electrostatics and Pauli repulsions), a polarized
energy (yielding induced electrostatics), a dispersion-corrected energy, and the fully relaxed
energy (which yields charge transfer). Importantly, the theory has been designed such that
there are stable basis set limits for each term, evidenced by basis set stability calculations
on a wide variety of systems as well as the S22 and Ionic43 datasets. Additionally, MP2
ALMO-EDA-II has been applied to four non-covalently bonded classes of complexes; a class
of conventional hydrogen bonded systems, a class of non-conventionally hydrogen bonded
systems, a class of tetrel bonded systems, and a “solvent-resistant” halogen bonded system.
Through these systems, the usefulness of MP2 ALMO-EDA-II is explored, especially through
its treatment of the correlation component of the interaction energy.
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Chapter 1

Introduction

1.1 Intermolecular Interactions

Intermolecular interactions are prominent in a variety of different chemical systems, from
gas-storage materials[120] to drug design[93]. One way to analyze these chemical systems,
including those where intermolecular interactions are relevant, is through the lens of quan-
tum chemistry. Through the use of quantum chemistry, we are able to predict energies and
other properties relevant to intermolecular interactions, such as dipole moments and polar-
izabilities. In quantum chemistry, a molecular wavefunction, Ψ, is able to fully describe the
state of a molecular system. With the wavefunction of a system, various observables related
to molecular properties can be obtained through the use of Hermitian operators, where the
expectation value of an operator, Ô, is

⟨Ψ| Ô |Ψ⟩ =

∫
Ψ∗ÔΨ (1.1)

1.2 The Schrödinger Equation

In the field of quantum chemistry, modeling chemical systems usually centers around solving
the Schrödinger equation

iℏ
∂

∂t
|Ψ⟩ = Ĥ |Ψ⟩ (1.2)

Commonly, modeling the system focuses on stationary states, thus we focus on the time-
independent Schrödinger equation (TISE)

Ĥ |Ψ⟩ = E |Ψ⟩ (1.3)

where Ĥ is the Hamiltonian operator, |Ψ⟩ is the wavefunction that describes a stationary
state of the system, and E is the energy of the system. The Hamiltonian operator for a
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system of N electrons and M nuclei, in atomic units, is

Ĥ =

(
−

N∑
i=1

1

2
∇2

i

)
+

(
−

M∑
A=1

1

2MA

∇2
A

)
+

(
−

N∑
i=1

M∑
A=1

ZA

|RA − ri|

)
+(

N∑
i=1

N∑
j>1

1

|ri − rj|

)
+

(
M∑

A=1

M∑
B>A

ZAZB

|RA −RB|

)
where MA is the reduced mass of nucleus A, ZA is the charge of nucleus A, RA are the
coordinates of nucleus A, and ri are the coordinates of the ith electron.

As the nuclei have a much larger mass than electrons and thus move much more slowly,
it is common to approximate the nuclei as stationary, known as the Born-Oppenheimer
approximation. With this approximation, the electronic Hamiltonian is defined as

Ĥe =

(
−

N∑
i=1

1

2
∇2

i

)
+

(
−

N∑
i=1

A∑
M=1

ZA

|RA − ri|

)
+

(
i∑

i=1

j∑
j>1

1

|ri − rj|

)
and the corresponding electronic TISE is

ĤeΨe = EeΨe (1.4)

For the remainder of this thesis, we will refer to the electronic forms of the equations and
terms.

1.3 Hartree-Fock Theory

A common approximation to the TISE is the Hartree-Fock (HF) approximation. The HF
approximation is a mean-field approximation to the TISE where each electron moves in the
field generated by the other electrons. The variational principle ensures that for a trial
wavefunction, |Φ⟩, that satisfies

⟨Φ|Φ⟩ = 1 (1.5)

it is guaranteed that
E0 = ⟨Φ| Ĥ |Φ⟩ ≥ E0 (1.6)

where E0 is the true ground state energy. A starting guess for the wavefunction would be
the product of functions that each depend only on an individual electron

Ψ(x1,x2, ...,xn) = χ1(x1)χ2(x2)...χn(xn) (1.7)

where χ are orthonormal one-electron spin orbitals which can further be decomposed into a
spatial, ϕ, and either an α or β spin component

χ(x) =


ψ(r)α(ω)

or

ψ(r)β(ω)

(1.8)
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where r and ω describe the spatial and spin coordinates of the electron respectively. However,
due to the fact that electrons are fermions, the wavefunction describing a multi-electron
system must be antisymmetric with respect to particle exchange. The simplest antisymmetric
wavefunction is a determinant, specifically referred to as a Slater determinant

Ψ(x1,x2, ...,xn) = (n!)−
1
2

∣∣∣∣∣∣∣∣∣
χ1(x1) χ1(x2) . . . χ1(xn)
χ2(x1) χ2(x2) . . . χ2(xn)

...
...

...
χn(x1) χn(x2) . . . χn(xn)

∣∣∣∣∣∣∣∣∣
Using Slater-Condon rules[114] the energy of a single determinant, ΨHF, can be written

in chemist notation as

EHF =
〈
ΨHF

∣∣ Ĥ ∣∣ΨHF
〉

=
N∑
r

(r|ĥ|r) +
N∑
r

N∑
s>r

((rr|ss) − (rs|sr)) (1.9)

where

⟨r| ĥ |s⟩ =

∫
χ∗
r(x)(−1

2
∇2

i −
M∑

A=1

ZA

|RA − x|
)χs(x)dx (1.10)

and (rr|ss) and (rs|sr) are two electron integrals defined as

(pr|qs) =

∫ ∫
χ∗
p(x)χr(x)

1

|x− x′|
χ∗
q(x

′)χs(x
′)dxdx′ (1.11)

and the N spin orbitals are chosen as the spin orbitals that minimize the energy with the
constraint that they are orthonormal.

⟨r|s⟩ = δrs (1.12)

Using the minimization method of Lagrange multipliers[114], the equation for the optimal
spin orbitals in canonical form is

f̂ |r⟩ = ϵr |r⟩ (1.13)

where the Fock operator, f̂ is composed of effective one electron operators

f̂(x) = ĥ(x) +
N∑
r

(
Ĵr(x) − K̂r(x)

)
(1.14)

where the coulomb operator, Ĵ , and exchange operator, K̂, are defined as

Ĵr(x)χr(x) =

(∫
|χr(x

′)|2 1

|x− x′|
dx′
)
χr(x)

K̂s(x)χr(x)

(∫
χ∗
r(x

′)
1

|x− x′|
χs(x

′)dx′
)
χs(x)

(1.15)
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We now can define the HF Hamiltonian as

Ĥ0 =
N∑
i=1

f̂(i) (1.16)

and the HF energy as

EHF =
〈
ΨHF

∣∣ Ĥ0

∣∣ΨHF
〉

+
〈
ΨHF

∣∣ V̂ ∣∣ΨHF
〉

(1.17)

where V̂ is the difference between the HF Hamiltonian and the true system Hamiltonian.

V̂ = Ĥ − Ĥ0 =
N∑
i

N∑
j>i

1

|ri − rj|
−

N∑
i

(
Ĵi − K̂i

)
(1.18)

1.4 Perturbation Theory

As HF determines the electronic energy of the system at the mean-field level, it is unable
to account for the effect of electron correlation. A commonly used method to estimate the
correlation energy is through the use of perturbation theory.

1.4.1 Raleigh Schrödinger Perturbation Theory

In general, we can approximate the solution to the exact Hamiltonian eigenvalue equation

Ĥ |Ψ⟩ = E |Ψ⟩ (1.19)

by separating the exact Hamiltonian into a Hamiltonian with a known solution, Ĥ0 and the
remaining difference, V̂ . Assuming we know the solution to

Ĥ0

∣∣Ψ(0)
〉

= E(0)
∣∣Ψ(0)

〉
(1.20)

we can rewrite Eq. 1.19 as
(Ĥ0 + λV̂ ) |Ψ⟩ = E |Ψ⟩ (1.21)

where λ is an ordering parameter which will be set to 1 later. Expanding E and Ψ in a
Taylor series, we obtain

|Ψ⟩ =
∣∣Ψ(0)

〉
+ λ

∣∣Ψ(1)
〉

+ λ2
∣∣Ψ(2)

〉
+ . . . (1.22)

E = E(0) + λE(1) + λ2E(2) + . . . (1.23)

and again rewrite Eq. 1.19 as

(Ĥ0 + λV̂ )(
∣∣Ψ(0)

〉
+ λ

∣∣Ψ(1)
〉

+ λ2
∣∣Ψ(2)

〉
+ . . . )

= (E(0) + λE(1) + λ2E(2) + . . . )(
∣∣Ψ(0)

〉
+ λ

∣∣Ψ(1)
〉

+ λ2
∣∣Ψ(2)

〉
+ . . . )

(1.24)
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As this thesis will focus on the second-order correction to the HF solution, as the zeroth
and first order energies sum to the HF energy[114], we will concentrate on E(2). Focusing
on the λ2 coefficients, we obtain

Ĥ0

∣∣Ψ(2)
〉

+ V̂
∣∣Ψ(1)

〉
= E(0)

∣∣Ψ(2)
〉

+ E(1)
∣∣Ψ(1)

〉
+ E(2)

∣∣Ψ(0)
〉

(1.25)

Through careful choice of normalization and a bit of manipulation, the expression for the
second-order Raleigh Schrödinger perturbation energy can be shown to be

E(2) =
∑
n=1

∣∣∣〈Ψ
(0)
0

∣∣∣ V̂ ∣∣∣Ψ(0)
n

〉∣∣∣2
E

(0)
0 − E

(0)
n

(1.26)

where Ψ
(0)
n and E

(0)
n are the eigenfunctions and eigenvalues of Ĥ0 respectively.

1.4.2 Møller–Plesset Perturbation Theory

Although HF fails to account for correlation, the HF solution can be used as the zeroth
order solution to which we can apply perturbation theory to estimate the correlation energy.
Commonly, this is done with second order Møller–Plesset perturbation theory (MP2). Using
ΨHF and ĤHF as Ψ(0) and Ĥ(0) respectively, we can use Equation 1.26 for the second order
correction to the HF energy. Due to Brillouin’s theorem, single excitations do not mix with
the HF solution while triple and higher excitations do not mix either due to Slater-Condon
rules. Applying Slater-Condon rules, the second-order correction, in the canonical basis,
becomes

E(2) = −1

4

occ∑
ij

virt∑
ab

|(ij||ab)|2

ϵa + ϵb − ϵi − ϵj
(1.27)

where the double bar two electron integral is defined as

(ij||ab) = (ia|jb) − (ib|ja) (1.28)

Alternatively, the MP2 energy can be expressed as

E(2) = −1

4

occ∑
ij

virt∑
ab

tabij (ij||ab) (1.29)

where tabij are the so-called t-amplitudes

tabij =
(ab||ij)

ϵa + ϵb − ϵi − ϵj
(1.30)

An alternate form of the MP2 energy is the Hylleraas functional[45]. If we equate coefficients
of λ1 in Eq. 1.4.1, we get

Ĥ0

∣∣Ψ(1)
〉

+ V̂
∣∣Ψ(0)

〉
= E(0)

∣∣Ψ(1)
〉

+ E(1)
∣∣Ψ(0)

〉
(1.31)
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which can be rewritten as

(Ĥ0 − E(0))
∣∣Ψ(1)

〉
= (E(1) − V̂ )

∣∣Ψ(0)
〉

(1.32)

Multiplying by
〈
Ψ(1)

∣∣ and equating to 0, we get

0 =
〈
Ψ(1)

∣∣ Ĥ0 − E(0)
∣∣Ψ(1)

〉
+
〈
Ψ(1)

∣∣ V̂ − E(1)
∣∣Ψ(0)

〉
(1.33)

We then add the equation for the second-order energy,

E(2) =
〈
Ψ0
∣∣ V̂ − E(1)

∣∣Ψ(1)
〉

(1.34)

which is obtained obtained by multiplying 1.4.1 by
〈
Ψ(0)

∣∣, and add it to Eq. 1.4.2 to get

E(2) =
〈
Ψ(1)

∣∣ Ĥ0 − E(0)
∣∣Ψ(1)

〉
+
〈
Ψ(1)

∣∣ V̂ − E(1)
∣∣Ψ(0)

〉
+
〈
Ψ0
∣∣ V̂ − E(1)

∣∣Ψ(1)
〉

(1.35)

invoking
〈
Ψ(1)

∣∣Ψ(0)
〉

= 0, we obtain the Hylleraas functional expression for the MP2 energy

JH =
〈
Ψ(1)

∣∣ Ĥ0 − E(0)
∣∣Ψ(1)

〉
+
〈
Ψ(1)

∣∣ V̂ ∣∣Ψ(0)
〉

+
〈
Ψ0
∣∣ V̂ ∣∣Ψ(1)

〉
(1.36)

in terms of t-amplitudes, this expression becomes

JH = t†∆t+ t†V + V †t (1.37)

where V is the two electron integral (ij||ab) and ∆ is an eighth-rank tensor which will be
elaborated in more detail in chapter 2. The Hylleraas functional is equal to the MP2 energy
when optimized with respect to t-amplitudes

E(2) = min
t

(JH) (1.38)

This form of the MP2 correlation energy is useful for evaluating an MP2 correlation, as it is
valid even when using t-amplitudes that are not optimized for the functional.

1.5 Energy Decomposition Analysis

In electronic structure, it is common to calculate the interaction energy of two or more frag-
ments, ∆EINT, of a system involving intermolecular interactions by calculating the difference
in energy between the fragments interacting in the supersystem and the fragments isolated
from each other,

∆EINT = E(AB) − E(A) − E(B) (1.39)

However, when most people think about intermolecular interactions, they do not think solely
of the strength of interaction, but also the phenomena, such as electrostatics and dispersion
forces, that contribute to the interaction. While calculating the strength of the interaction
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is useful, this does not give direct insight to the chemical phenomena that determines the
strength of this interaction. An energy decomposition analysis (EDA) aims to decompose the
interaction energy into chemically meaningful components such as permanent electrostatics
and dispersion. Understanding the underlying contributions to the intermolecular interaction
in systems such as gas storage materials is extremely valuable in developing new materials
based on their chemical and physical properties.

The first popular EDA was developed by Kitaura and Morokuma for HF[60] which de-
composed the interaction energy into electrostatics, exchange, polarization, and charge trans-
fer. However, this EDA did not use properly anti-symmetric wave functions which led to
non-physical results at large basis sets[26]. Many other different EDA’s have since been
developed, and each with differing components and definitions of the components of the
interaction energy. Two common approaches to EDA are the variational approach and the
perturbative approach. One example of a variational EDA is an EDA based on localized
molecular orbitals(LMO-EDA) which decomposes the interaction into an electrostatic, ex-
change, repulsion, polarization, and dispersion terms[112].

∆EINT = ∆ELMO
ele + ∆ELMO

ex + ∆ELMO
rep + ∆ELMO

pol + ∆ELMO
disp (1.40)

The electrostatic term, ELMO
ele is obtained using the difference between an approximate energy

expression for a supersystem consisting of the direct product of the monomer wave function,∣∣ΨDP
〉

and the energy of the isolated monomers.

∆ELMO
ele =

〈
ΨDP

∣∣ F̂ ∣∣ΨDP
〉
−

frags∑
M

⟨ΨM| F̂ |ΨM⟩ + ∆VNN (1.41)

Where F̂ is ĥ + 1
2
(Ĵ + K̂) and ∆VNN is the nuclear-nuclear repulsion energy between frag-

ments. The exchange term, ∆ELMO
ex comes from enforcing antisymmetry on the direct prod-

uct wavefunction to form an antisymmetric direct product of the monomers’ wavefunction∣∣ΨAS
〉

∆ELMO
ex =

〈
ΨAS

∣∣ F̂ ∣∣ΨAS
〉
−
〈
ΨDP

∣∣ F̂ ∣∣ΨDP
〉

(1.42)

while the repulsion term, ELMO
rep , reflects the energy penalty to orthonormalize

∣∣ΨAS
〉

to form∣∣ΨASN
〉

and is defined as

∆ELMO
rep =

〈
ΨASN

∣∣ F̂ ∣∣ΨASN
〉
−
〈
ΨAS

∣∣ F̂ ∣∣ΨAS
〉

(1.43)

The remainder of the SCF energy is defined as the polarization energy ∆ELMO
pol . As such,

LMO-EDA does not have a distinction between polarization and charge transfer effects
and instead combines both into the polarization term. Additionally, the dispersion term
in LMO-EDA, ∆ELMO

disp , is calculated as the difference between calculations with post-HF
methods (MP2, coupled cluster) and HF interaction energies. For instance, for MP2 the
LMO dispersion energy would be calculated as

∆ELMO
disp = ∆E

(2)
INT (1.44)
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While dispersion is a purely correlational effect and is not captured in HF, the correlation
interaction includes other effects besides dispersion such as electrostatic effects like the cor-
rection to dipole moments which HF tends to overestimate[40]. Additionally, dispersion is
a purely attractive interaction and previous work has shown that treating the correlation
component as just dispersion can lead to nonsensical results [118].

A popular perturbative approach to EDA is through symmetry-adapted perturbation
theory (SAPT)[50, 115, 92]. SAPT treats intermolecular interaction as a perturbation to
the noninteracting isolated system. The zeroth-order Hamiltonian for an A/B dimer for
SAPT is

Ĥ0 = F̂A + F̂B (1.45)

the full Hamiltonian is written as

Ĥ = F̂A + F̂B + ξŴA + νŴB + ζV̂ (1.46)

where V̂ is the intermolecular perturbation and ŴA is a Møller-Plesset fluction operator for
fragment A. SAPT0 is the simplest form of SAPT and treats the monomers with HF and
incldues dispersion terms from second order perturbation.

ESAPT0
INT = E

(1)
ele + E(1)

ex + E
(2)
pol + E

(2)
disp (1.47)

SAPT decomposes the interaction energy into electrostatics, exchange, induction, ex-
change induction, dispersion, and exchange dispersion. Like LMO-EDA, SAPT does not
separate polarization and charge transfer effects and instead uses an ”induction” term to
capture these effects.

As the decomposition of interaction energy is not unique, it is useful to establish some
ideal properties of an EDA. Firstly, each term in the EDA should have a stable and meaning-
ful basis set limit. As each term is calculated at the same level of theory as the corresponding
interaction energy, we expect that if the total interaction energy is stable with respect to
basis set, each term should also be stable with respect to basis set. Additionally, we expect
that each EDA term have correct asymptotic behavior. Finally, an ideal EDA should not
rely on specific types of basis functions such as atomic orbitals, but instead should also be
calculated using other types of basis sets such as plane waves.

An EDA based on absolutely localized molecular orbitals (ALMO) has been developed
at Berkeley for HF, DFT, and MP2[59][116] and satisfies many of the idea properties prior
stated. ALMO EDA decomposes the interaction energy into a frozen term, which includes
contributions from permanent electrostatics and Pauli repulsion, a polarization term, a dis-
persion term, and a charge transfer term. The first generation ALMO-EDA (ALMO-EDA-I)
has been updated (ALMO-EDA-II) to address the issues with meaningful basis set limits for
the polarization and charge transfer term for HF and DFT. However, the MP2 ALMO-EDA
builds upon ALMO-EDA-I and additionally, basis set stability issues have been discovered
for all four terms. As such, an update to MP2 ALMO-EDA-I is much needed both to update
it to serve as a correction to HF ALMO-EDA-II as well as provide a post-HF EDA with
stable basis set limits and serve as a framework for other post-HF EDA’s. A brief summary
on each term in the MP2 ALMO EDA is as follows.
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1.5.1 Frozen

The frozen term includes contributions from permanent electrostatics and Pauli repulsion.
This is calculated by calculating the interaction in a molecular system where each molecule
does not polarize or relax due to the presence of other fragments. As the molecules are
not allowed to relax, one contribution to this interaction is the effect of the permanent
electrostatics of each molecule interacting with others such as dipole-dipole, charge-dipole,
and dipole-quadrupole interactions. This, however, is only well-defined when there is no
overlap between fragments. As the wave functions of the isolated fragments may overlap,
there is an energy penalty associated with enforcing anti-symmetry of the frozen density,
which is attributed to Pauli repulsion. As this is an energy penalty, Pauli repulsion is
strictly a repulsive interaction. For SCF ALMO-EDA, the frozen energy, ∆EFRZ is defined
as the SCF energy change corresponding to bringing infinitely separated fragments into the
supersystem geometry and corresponding change to form the frozen wavefunction Ψ0 which
is a properly antisymmetrized wavefunction constructed from unrelaxed nonorthogonal MO’s
of fragments

∆ESCF
FRZ = ESCF(Ψ0) −

frag∑
F

ESCF(ΨF ) (1.48)

1.5.2 Polarization

Polarization arises when each molecule’s electron density is allowed to relax in the field of
other molecules. As this is a relaxation term, polarization is strictly attractive. To separate
polarization from charge transfer, it is important to enforce the constraint that electron
density remains on the fragment. This is achieved by relaxing the frozen orbitals using SCF
for molecular interactions (SCF-MI)[29, 108]. ALMO-EDA-I lacks a useful basis set limit for
the charge transfer and polarization at large basis sets. To alleviate this issue, ALMO-EDA-
II introduced polarization subspaces in the form of fragment electric field response functions
(FERFs)[43]. FERFs are created from the response of the isolated fragments to weak electric
fields. To calculate the FERFs, the solution to the coupled perturbed SCF (CPSCF)

E∆∆ · ∆µ = −E∆h · hµ (1.49)

where E∆∆ is the SCF orbital Hessian, ∆µ is is the orbital response of a fragment to the
field component, Fµ, and E∆h · hµ is related to the multipole moment matrix, M , through

E∆h · hµ ≡ ∂2E

∂∆ai∂hλσ
= 2(Mµ)ai (1.50)

The fragment orbital response matrix, ∆µ is used to obtain the subspace of the virtual
orbitals which participate in the SCF-MI using Singular Value Decomposition,

∆µ = LµdµR
T
µ (1.51)

Lµ is a unitary transformation of virtual orbitals which is used to create the virtual subspace
used for SCF-MI.
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1.5.3 Dispersion

Dispersion is a purely correlational effect and is not captured by HF due to this. Dis-
persion is associated with the interaction due to instantaneous multipole moments of each
fragment. The standard way for DFT ALMO-EDA to describe dispersion is reliant on a semi-
empirical dispersion correction and therefore, MP2 ALMO-EDA is the first wavefunction-
based ALMO-EDA to have an ab initio description of dispersion. The MP2 correlation
energy of two fragments,

E
(2)
AB = −1

4

occ∑
ij

virt∑
ab

|(ij||ab)|2

ϵa + ϵb − ϵi − ϵj
(1.52)

can be separated based on the type of two electron integrals, and also noting that,

E
(2)
AB = −1

4

occA∑
iAjA

virtA∑
aAbA

|(iAjA||aAbA)|2

ϵaA + ϵbA − ϵiA − ϵjA
− 1

4

occB∑
iBjB

virtB∑
aBbB

|(iBjB||aBbB)|2

ϵaB + ϵbB − ϵiB − ϵjB
+ E

(2)
INT

= E
(2)
A + E

(2)
B + E

(2)
INT

(1.53)

In the long range, where integrals of type (iAaB|jBbA) = 0, the interaction energy can be
written as

lim
R→∞

E
(2)
INT = −

occA∑
iA

occB∑
jB

virtA∑
aA

virtB∑
bB

|(iAaA|jBbB)|2

ϵaA + ϵbB − ϵiA − ϵjB
(1.54)

Using the multipole expansion, as per Stone [110], and truncating at the leading dipole-
dipole term, we can rewrite Eq. 1.5.3 as

lim
R→∞

E
(2)
INT = −

occA∑
iA

occB∑
jB

virtA∑
aA

virtB∑
bB

|(iAaA|µ̂α
AT

αβµ̂β
B|jBbB)|2

ϵaA + ϵbB − ϵiA − ϵjB

= −(Tαβ)2
occA∑
iA

occB∑
jB

virtA∑
aA

virtB∑
bB

|(iA|µ̂α
A|aA)|2|(jB|µ̂β

B|bB)|2

ϵaA + ϵbB − ϵiA − ϵjB

(1.55)

where α and β denote the Cartesian directions for the dipoles, µ̂ is the dipole operator, and
Tαβ, contains the dipole R−3 dependence on intermolecular distance. Using the identity,

1

A+B
=

2

π

∞∫
0

AB

(A2 + v2)(B2 + v2)
dv (1.56)

and writing the denominator as ϵaA − ϵiA + ϵbB − ϵjB = ℏ(ωA
ai +ωB

bj) we can rewrite Eq. 1.5.3
as

lim
R→∞

E
(2)
INT = −2ℏ

π
(Tαβ)2

∞∫
0

occA∑
iA

virtA∑
aA

ωA
ai|(iA|µ̂α

A|aA)|2

ℏ(ωA
ai + v2)

occB∑
jB

virtB∑
bB

ωB
bj|(jB|µ̂

β
B|bB)|2

ℏ(ωB
bj + v2)

dv (1.57)
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by setting v = iu, we identify that the expression in the integral is equivalent to the product
of the molecular polarizabilities, α, of molecules A and B at the imaginary frequency iu

lim
R→∞

E
(2)
INT = −2ℏ

π
(Tαβ)2

∞∫
0

αA
α (iu)αB

β (iu)du (1.58)

thus, obtain an expression for the long range Van der Waals interactions to second-order
with the leading R−6 term.

1.5.4 Charge Transfer

Lastly, charge transfer is associated with the transfer of electron density between fragments.
This interaction is purely attractive as it is related to the molecules relaxing due to the
donation of electron density with each other. As this relies on the transfer of electron
density between fragments, charge transfer is a short range interaction.

1.6 Outline

This thesis starts with the implementation and theory behind MP2 ALMO-EDA-II in Chap-
ter 2. Additionally, Chapter 2 evaluates the performance and basis set stability of MP2
ALMO-EDA-II compared to the original MP2 ALMO-EDA-I as well as DFT ALMO-EDA-
II. Chapter 3 then investigates four classes of complexes with varying strengths of inter-
molecular interactions. This serves to explore MP2 ALMO-EDA-II’s usefulness in chemical
applications as well as resolving the physical origins of these interactions.

1.6.1 Chapter 2: A second generation energy decomposition
analysis of intermolecular interaction energies from second
order Møller-Plesset theory: An extensible, orthogonal
formulation with useful basis set limits for all terms.

Energy decomposition analysis (EDA) has become widely used to aid in understanding the
nature of intermolecular interactions, based on density functional theory (DFT) and self-
consistent field (SCF) calculations. There has been less development of EDA methods using
correlated post-SCF methods, partly because of the necessarily greater complexity asso-
ciated with defining suitable approaches. This work reports a new approach to EDA for
post-SCF wavefunctions, together with a complete implementation for restricted and un-
restricted second-order Møller-Plesset (MP2) calculations. The new approach is an MP2
generalization of the successful SCF-level second-generation absolutely localized molecular
orbital EDA approach (ALMO-EDA-II). The new MP2 ALMO-EDA-II provides distinct en-
ergy contributions for a frozen interaction energy (containing permanent electrostatics and
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Pauli repulsions), a polarized energy (yielding induced electrostatics), a dispersion-corrected
energy, and the fully relaxed energy (which yields charge transfer). All terms have useful
complete basis set limits due to the design of the theory, and as corroborated by a range of
test calculations on model systems, and the S22 and the Ionic43 datasets of weak and strong
intermolecular interactions, respectively.

1.6.2 Chapter 3: A second generation energy decomposition
analysis of intermolecular interaction energies from second
order Møller-Plesset theory: Chemical examples and
applications.

A newly developed MP2 ALMO-EDA-II has been applied to four non-covalently bonded
classes of complexes; a class of conventional hydrogen bonded systems, a class of non-
conventionally hydrogen bonded systems, a class of tetrel bonded systems, and a “solvent-
resistant” halogen bonded system. Through these systems, the importance of correctly treat-
ing the correlation component of the interaction energy in MP2 ALMO-EDA-II is shown.
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Chapter 2

A second generation energy
decomposition analysis of
intermolecular interaction energies
from second order Møller-Plesset
theory: An extensible, orthogonal
formulation with useful basis set
limits for all terms.

2.1 Introduction

Second-order Møller-Plesset theory (MP2) is the simplest wavefunction approach to cor-
recting the mean field Hartree-Fock (HF) method for the effects of electron correlation.[17]
Despite its simplicity, MP2 itself yields excellent accuracy[25] for many intermolecular in-
teractions, including water clusters,[23, 127, 94] ion-water interactions,[63, 62] and ionic
liquids.[128, 46] Furthermore, from the viewpoint of this work, methods for analyzing inter-
molecular interactions calculated using MP2 are potentially extensible to more exact theories
of electron correlation, particularly coupled cluster methods truncated at the level of single
and double substitutions.[7, 6] Finally, there have been quite successful efforts to improve
the accuracy of MP2 by semi-empirical modifications.[34, 54, 33, 19, 89, 31, 30, 121] One
of the most exciting of those is the recent use of a single regularization parameter[70, 104]
which is both physically motivated, and quite transferable, yielding a several-fold reduction
in root mean square errors for MP2 intermolecular interaction energies of both small[55] and
large[103] molecules. Regularized MP2 itself was inspired by the success of regularization to
improve orbital optimized MP2 (OOMP2).[67, 66]
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Our goal in this work is to report on the development of a new energy decomposition
analysis (EDA) for intermolecular interactions at the MP2 level of theory, as the simplest
representative of post-HF methods. As reviewed for density functional theory (DFT) and
HF methods recently,[75] an EDA aims to separate the contributions of an intermolecular
interaction evaluated via a supermolecule calculation:

∆EINT = EFULL −
∑
F

EF (2.1)

into a set of additive contributions with a clear physical origin. As a result, an EDA can help
to provide some insight for interpretative purposes. In particular, for a post-SCF EDA, we
will aim to define SCF and post-SCF contributions to each of the following contributions:

∆EINT = ∆EGD + ∆EFRZ + ∆EPOL + ∆EDISP + ∆ECT (2.2)

The strategy will be to impose constraints on the correlation amplitudes so that the energy
differences defined in Eq. 3.2 can be obtained by subtraction between each consecutive pair
of the following 6 separate states of the electrons:

1. Separate fragments (EF for each fragment F ) at their optimal geometry.

2. Separate fragments (EF for each fragment F ) at the geometry of the complex.

3. A “frozen complex” (EFRZ) which uses correlation amplitudes (and orbitals) optimized
for the isolated fragments (at the complex geometry).

4. A “polarized complex” (EPOL) in which fragment amplitudes (and orbitals) are re-
optimized in the environment of the complex but are constrained to have fragment
identity.

5. A “dispersion-including complex” (EDISP) in which additional inter-fragment ampli-
tudes are included which describe dispersion, still using the polarized orbitals.

6. The fully relaxed complex (EFULL) in which both orbitals and amplitudes are permitted
to relax.

This strategy gives a variational character to the EDA: each successive energy after EFRZ is
less than or equal to the previous one (even if the final energy itself is not guaranteed to be
variational with respect to the true energy).

At the SCF level, there has been extensive development of EDAs, beginning with the
seminal Kitaura-Morokuma method,[60, 86] and followed by many successors[130, 129, 12,
82, 112, 113] which we cannot adequately review here. However, we should single out the
absolutely localized molecular orbital (ALMO)-EDA,[75] which does follow the variational
approach advocated for above, by using fragment-blocked self-consistent field (SCF) for
molecular interactions (SCF-MI)[108, 29, 88, 58] to treat polarization. The first generation
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ALMO-EDA[59, 57, 44] is largely the same as the alternative block-localized wavefunction
(BLW)-EDA approach[84, 85, 83]. These methods are successful when used as recommended,
but can be criticized for being directly tied to the use of atom-centered atomic orbitals (a
good EDA should be representation-independent), as well as lacking a well-defined complete
basis set limit for all terms (a good EDA should provide such limits).[4, 41, 64] The second
generation ALMO-EDA[43, 77] lifted both of those difficulties,[41] and also introduced a new
approach to separate electrostatics, Pauli repulsion and dispersion within ∆EFRZ.[42] While
development continues,[74, 122] the second generation ALMO-EDA is a useful approach for
analyzing intermolecular interaction energy calculations at the DFT level. The goal of our
work is to develop a suitable post-SCF counterpart and prototype it with MP2 theory.

The simplest possible approach to including electron correlation in a post-SCF EDA is
to treat the correlation effect as simply an additional term that does not exist at the SCF
level.[24, 112] For instance, the only term in Eq. 3.2 that does not exist at the SCF level is
the effect of dispersion or London forces, ∆EDISP. However, it has been demonstrated,[118]
and is perhaps intuitive, that since charge distributions, polarizabilities, and donor-acceptor
interactions all change upon inclusion of electron correlation, all terms of Eq. 3.2 are affected
by electron correlation. Other post-SCF supermolecular EDAs[107, 102, 5, 47, 101, 2, 28]
therefore make efforts to include such contributions. One effort by our group achieves this
goal for all terms, in the sense that it directly generalizes the first generation of the ALMO-
EDA to MP2 theory.[116, 117, 69] However, just as ALMO-EDA-I is specifically tied to AO
basis sets, and lacks well-defined CBS limits for all terms, so too is that first generation
ALMO-EDA for MP2 theory (henceforth denoted as MP2 ALMO-EDA-I. This work aims
to lift those limitations by designing a post-SCF version of the second generation SCF-level
ALMO-EDA, resulting in a method we will denote as MP2 ALMO-EDA-II.

The remainder of the paper is arranged as follows. Section 2.2 (Theory) describes our
strategy for defining each of the constrained MP2 energies of an intermolecular complex
(EFRZ, EPOL, EDISP). Together with the isolated fragment energies and the final fully re-
laxed complex energy, this enables the evaluation of each term of Eq. 3.2. Section 2.3
(Implementation) discusses computationally relevant aspects of MP2 ALMO-EDA-II, in-
cluding its extension to regularized MP2.[70, 104]. It also provides some characterization of
the computational costs associated with each step. A series of model problems and applica-
tions of MP2 ALMO-EDA-II to a broad range of intermolecular interactions ranging from
very weak to very strong are presented in Section 2.4. Finally, we offer some conclusions and
perspectives in Section 2.5.

2.2 Theory

The MP2 ALMO EDA decomposes the correlation part of the interaction energy into four
components, frozen (FRZ), polarization (POL), dispersion (DISP), and charge transfer (CT).
Each of these terms corrects the corresponding term at the SCF level except for the dispersion
term, which is purely a correlated term and does not exist at the mean-field HF level. Like the
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previously published MP2 ALMO EDA (MP2 ALMO-EDA-I), the intermediate energies are
evaluated as MP2 energies using the intermediate orbitals calculated from the SCF ALMO-
EDA allowing the terms to be added as corrections to the corresponding HF component
except for dispersion.[118] Unlike MP2 ALMO-EDA-I which extends SCF ALMO-EDA-I,
the second generation MP2 ALMO-EDA extends the SCF ALMO-EDA-II.

For the remainder of the paper, the energies E(2) refer to MP2 correlation energies eval-
uated for either a fragment (F) or the system (FULL), denoted by the first value in the
parentheses, and using the basis and Fock matrix denoted by the second value in the paren-
theses. The individual EDA terms are denoted by ∆E with the subscript indicating the
specific EDA term and the optional superscript indicating whether it is the correlation com-
ponent (2), Hartree Fock component (SCF), or total MP2 energy denoted by the lack of a
superscript. Occupied orbitals are denoted by the indexes i, j, k... and virtual orbitals are
denoted by the indexes a, b, c...

2.2.1 MP2 Hylleraas functional

The energy components in MP2 ALMO-EDA are evaluated with in various bases which are
non-canonical and non-orthogonal; thus, the standard MP2 energy expression for a spin-
restricted system is given in terms of spin orbitals as:

E(2) = −1

4

∑
ijab

|(ij∥ab)|2

ϵa + ϵb − ϵi − ϵj
(2.3)

which requires a (pseudo) diagonal Fock operator. Therefore, the Hylleraas functional for-
malism is employed, which is a variational formalism to obtain the MP2 energy. The func-
tional JH [45] is defined as follows:

JH =
〈

Ψ(1)
∣∣∣Ĥ0 − E0

∣∣∣Ψ(1)
〉

+
〈

Ψ(1)
∣∣∣V̂ ∣∣∣Ψ(0)

〉
+
〈

Ψ(0)
∣∣∣V̂ ∣∣∣Ψ(1)

〉
(2.4)

where the Fock operator (F̂ ) is commonly used as the zeroth-order Hamiltonian. When
minimized, the Hylleraas functional yields the t amplitudes that provide the optimal MP2
energy in that same basis (i.e. identical to Eq. 2.3. The Hylleraas functional is an expression
for the MP2 energy that is valid for t amplitudes that are not necessarily solved from the
same MP2 energy that they are being used to evaluate (i.e. t amplitudes that yield a higher-
than-optimal MP2 energy).

2.2.2 Strong Orthogonality

As a general requirement, the virtual space needs to be orthogonal to the entire occupied
space. However, this is generally not the case for ALMO orbitals as they are only orthogonal
within a fragment (σFG

kl ̸= 0, fragment F ̸= G; σ defines the MO metric tensor).
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To ensure that each fragment’s virtual space is orthogonal to the occupied space of other
fragments, each fragment’s virtual space is projected into the orthogonal complement of the
entire occupied space to form the projected frozen (pFRZ) basis from the isolated fragment
basis and ALMO (pALMO) basis from the SCF-MI fragment basis.

Vp = (1 − P )V (2.5)

Where V is the original virtual space, P is the projector of the occupied space, and Vp is
the projected virtual space (either pFRZ or pALMO). For the pALMO and pFRZ basis, the
occupied orbitals are symmetrically orthogonalized between fragments for significant gains
in computational simplicity with minimal loss of locality.

Unlike MP2 ALMO-EDA-I, we additionally define the projected isolated (pISO) basis,
which is identical to the pFRZ basis, except we do not orthogonalize the occupied space of the
isolated fragments. The pISO basis is used for the purposes of calculating t amplitudes to use
in the frozen Hylleraas functional and differs from MP2 ALMO-EDA-I which just uses the t
amplitudes in the isolated fragment basis (ISO)[118]. This change is necessary to maintain
a well-defined basis set limit for the frozen and polarization terms in MP2 ALMO-EDA-II.

2.2.3 Global Virtual Basis

A significant change in the orbital representation of the virtual space relative to MP2 ALMO-
EDA-I is the introduction of the orthogonal global virtual (GV) basis. The GV basis is
created as the union of the virtual spaces of each fragment. The resulting set of crude
virtual functions is then orthogonalized, and any linear dependencies are removed to define
the full GV space. This virtual space is spanned by GV’s that are orthonormal, and, as
the name indicates, global in character, and thus shared between all fragments rather than
being fragment assignable. The motivation for defining the GV space in terms of orthonormal
virtuals is two-fold: first, complexities associated with using non-orthogonal functions[39] are
avoided, and second, their nature is independent of the type of underlying basis function (in
contrast to fragment-tagged virtuals that derive specifically from atomic orbitals).

As was evident in Eq. 2.3, the MP2 correction to HF is a linear combination of doubly
excited Slater determinants due to the Slater-Condon rules [106]. With a GV basis, the
virtual space is no longer fragment assignable, but this poses relatively little problem for
generalizing the ALMO-EDA-I definitions of the pair correlation correction to the frozen
and polarized energies (or the Hylleraas functional). These correlation corrections involve
sums over pairs of occupied orbitals that are only on the same fragment, as schematically
illustrated in the first row of Figure 3.1.

Sums over virtual orbitals are over pairs of GV orbitals, which means that the resulting
fragment contributions to the frozen and polarized correlation energy now include excitations
of the type shown in the third row of Figure 3.1. These additional excitations are best viewed
as the correlation part of the basis set superposition error (BSSE) term, where the electrons
of one fragment attain some small energy lowering due to using basis functions derived from
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Figure 2.1: The four types of double excitations used to define constraints for each EDA term.
Occupied orbitals are fragment-tagged, and this diagram should be read as though the virtuals are
also fragment-tagged. The true correlation energy associated with a fragment at either the frozen
or polarized level is then represented by the first row of the figure (Type I). The third line (Type
III), represent basis set superposition effects, that can be removed by counterpoise correction.The
second and fourth line (Type II/IV) are associated with dispersion interactions.

other fragments. Using the standard Boys-Bernardi counterpoise correction CP scheme[13],
we see that the correlation part of the CP correction should be applied at the frozen energy
level.

As there are many intermediate bases and allowed excitations for each intermediate en-
ergy, it is useful to summarize the basis and excitation constraints used for each intermediate
level.

2.2.4 Frozen Energy

The first term in the MP2 ALMO-EDA-II is the so-called frozen part of the correlation
energy. This is the intra-fragment correlation evaluated with correlation amplitudes obtained
from isolated fragment calculations. We thereby associate the ∆E

(2)
FRZ contribution with

correlation-derived changes in Pauli repulsion and permanent electrostatics. Specifically:

∆E
(2)
FRZ =

frag∑
F

E
(2)
FRZ(ξISO, ξISOp,GV, ξ

FRZ
p,GV) −

frag∑
F

E
(2)
F (ξISO) (2.6)

We calculate E
(2)
FRZ using the Hylleraas functional and an additional term involving the

relaxed second-order density matrix, Pia to include first-order orbital response effects for the
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Symbol Basis
System Orthogonal
Occupied Space?

Projected Virtual Space? Excitation Types

ξISO ISO N N I

ξISOp,GV pISO Y N I, III

ξFRZ
p,GV pFRZ Y Y I, III

ξALMO
p,GV pALMO Y Y I, III

ΞCCC
p,GV pALMO Y Y I, II, III, IV

ΞFULL FULL N/A N/A I, II, III, IV

Table 2.1: Overview of the different intermediate basis used through out the scheme; ξ is defined
for each fragment, Ξ is defined for the system

frozen term[37]:

E
(2)
FRZ = JH [t(ξISOp,GV),M(ξFRZ

p,GV)] − 2
∑
ia

Pia(ξ
ISO)Fia(ξ

FRZ
p,GV)

=
1

2

∑
ijab

tabij (ij||ab) +
∑
ij

PijFij +
∑
ab

PabFab − 2
∑
ia

PiaFia

(2.7)

where M refers to any matrix that is not explicitly a function of t and

Pij = −
∑
abk

tabik t
ab
jk (2.8a)

Pab =
∑
ijc

tacij t
bc
ij (2.8b)

The second term (i.e. involving the relaxed MP2 density contributions, Pia) is required
because the frozen orbitals do not make the SCF energy stationary with respect to orbital
rotations (i.e. Fia(ξ

FRZ
p,GV) ̸= 0). The fragment t amplitudes in equations 2.7-2.8 are calculated

in the pISO basis, while the two electron integral and Fock matrix are calculated in the pFRZ
basis. The ov block of the second-order density matrix, Pia is related to the Z-vector[37] by

Pia = −Zia. (2.9)

The Z-vector is defined using the inverse of the HF electronic hessian, Eθθ, and the MP2
orbital gradient, L:

z† = L
(
Eθθ
)−1

(2.10)
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Lia =
∂E(2)

∂θia
(2.11)

The specific expressions for L and Eθθ can be found in the previous work[116]. This equation
for a given fragment, F , involves the orbitals that are specific to F for the SCF procedure. As
this expression is derived from the coupled-perturbed SCF (CPSCF) equation which involves
the HF electronic hessian, which is defined in the unmodified basis of the isolated fragments
(ISO), we express Lia in this same basis for a given fragment, F

Lia =
∂E

(2)
F (ξISO)

∂θia(ξISO)
(2.12)

2.2.4.1 Frozen Core Approximation

The frozen core approximation is often used in combination with post-SCF methods, to
enable increased compute efficiency as well as basis sets that include only valence correlation.
When applied to MP2 ALMO-EDA, the frozen energy requires special attention due to the
Hylleraas functional. The frozen energy expression becomes

E
(2)
FRZ =

1

2

∑
ijab

tabij (ij||ab) +
∑
i′′j′′

Pi′′j′′Fi′′j′′ +
∑
ab

PabFab − 2
∑
i′′a

Pi′′aFi′′a (2.13)

Unprimed indexes are active, and the double primes indicate that the index runs over both
frozen and active orbitals. The values of the MP2 response density matrix for when the
indices are active orbitals do not change. When one or both indices are frozen, the values of
the MP2 response density matrix are given by,

Pi′j′ = 0 (2.14a)

Pij′ = Pj′i =
(L2)ij′

ϵi − ϵj′
(2.14b)

where

(L2)ip′′ =
1

2

∑
jbc

tbcji(jp
′′||bc). (2.15)

Here the singly prime indexes are core (inactive) orbitals. The ov block is again related to
the Z-vector

Pi′′a = −Zi′′a (2.16)

which can be calculated using Eq. 2.10 with the MP2 orbital gradient L now being defined
by Eq. 2.17

Li′′a = (L1)i′′a + (L2)i′′a + (L3)i′′a (2.17)

where L2 was defined in Eq. 2.15 and the other two contributions are

(L1)ap′′ =
1

2

∑
ijc

tcaij (ij′′||p′′c). (2.18)
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(L3)p′′q′′ =
∑
i′′j′′

Pi′′j′′(p
′′i′′||q′′j′′) +

∑
a′′b′′

Pa′′b′′(p
′′a′′||q′′b′′) (2.19)

These equations mirror those of MP2 gradient theory with frozen orbitals.[38]

2.2.5 Polarization energy and the ALMO Basis

Next, we move to the ALMO orbital basis used for the polarization and dispersion energy.
The GV projected ALMO (pALMO) basis differs from the original modified MP2 pALMO
basis (projected virtual space and symmetrically orthogonalized occupied space) by both hav-
ing a global virtual basis and also using the polarized ALMO’s from the second generation
SCF ALMO EDA (SCF ALMO-EDA-II) which utilizes fragment electric field response func-
tions (FERFs) to construct a basis for the ALMO-constrained SCF-MI[41]. This separates
the virtual space into a fragment assignable virtual space made from dipolar, quadrupolar,
octupolar responses (DQO-FERFs) and the orthogonal complement to the DQO-FERFs.
During the SCF-MI, only DQ-FERFs participate by default, as with SCF ALMO-EDA-II.
As with the pFRZ basis, the virtual orbitals are projected into the orthogonal complement of
the occupied orbitals and the occupied orbitals are symmetrically orthogonalized. Unlike the
frozen basis, we symmetrically orthogonalize the virtual space shell by shell, orthogonalizing
the dipolar response virtual space first, then quadrupolar, and so on. We do this to preserve
as much fragment locality possible while still keeping the virtual space orthogonal.

The polarization contribution to the MP2 interaction energy is defined as

∆E
(2)
POL =

frag∑
F

E
(2)
POL(ξALMO

p,GV ) −
frag∑
F

E
(2)
FRZ(ξISO, ξISOp,GV, ξ

FRZ
p,GV) (2.20)

As with E
(2)
FRZ, E

(2)
POL is calculated by permitting only double excitations from occupied or-

bitals on the same fragment to the global virtual space. Unlike the frozen constraint, we
no longer need to use t-amplitudes defined in a separate basis, and therefore we can obtain
E

(2)
POL through the standard MP2 energy expression (Eq. 2.3) in the pALMO basis for each

fragment.

2.2.6 Dispersion Energy

With MP2 ALMO-EDA-I, the charge conserving correlations (CCC) constraint is defined
to separate out charge transfer-like correlations to define a CT-free correlation energy for
MP2 ALMO-EDA-II. For MP2 ALMO-EDA-II, excitations included in the polarization en-
ergy (Figure 3.1, Type I/Type III) are included as well as simultaneous excitations to the
fragment assignable virtual space (Figure 3.1, Type II). However, it is not straightforward
to define the fragments’ virtual space in the GV basis. Although the FERF virtuals are
fragment assignable, they are not necessarily orthogonal between fragments. As such, the
FERFs must be orthogonalized between fragments to maintain a completely orthogonal vir-
tual space. As is shown later in the results section, including only type II excitations leads
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to underestimating the dispersion energy. Therefore, in order to maintain a fully orthogonal
virtual space, type IV excitations must also be included in the CCC term. The dispersion
contribution to the interaction energy is defined as

∆E
(2)
DISP = E

(2)
CCC(ΞCCC

p,GV) −
∑
F

E
(2)
POL(ξALMO

p,GV ) (2.21)

As CCC includes all excitation types, E
(2)
CCC is calculated using the standard MP2 expression

(Eq. 2.3) in the pALMO basis for the whole system.

2.2.7 Charge Transfer

As we have defined the CCC constraint before, it is straightforward to define the contribution
to the MP2 interaction energy from charge transfer as

∆E
(2)
CT = E

(2)
FULL(ΞFULL) − E

(2)
CCC(ΞCCC

p,GV) (2.22)

In MP2 ALMO-EDA-I, the BSSE correction term is subtracted from ∆E
(2)
CT. However, as

we have introduced the basis functions and virtual orbitals of other fragments in the frozen
energy, we assign only the SCF component of the BSSE correction to ∆ESCF

CT and assign the

correlation component of the BSSE correction to ∆E
(2)
FRZ and do not need to correct ∆E

(2)
CT.

2.2.8 MP2 ALMO-EDA-II EDA Summary

Similarly to MP2 ALMO-EDA-I, the required intermediate energies for MP2 ALMO-EDA-II
are E

(2)
CCC as well as E

(2)
POL and E

(2)
FRZ. Unlike MP2 ALMO-EDA-I, the correlation component

of the BSSE correction is assigned to ∆E
(2)
FRZ instead of ∆E

(2)
CT.

2.3 Implementation

We have implemented MP2 ALMO-EDA-II in a development version of the Q-Chem elec-
tronic structure program[21]. Both restricted and unrestricted orbitals are supported in the
code.

2.3.1 Regularized MP2 EDA

Additionally, MP2 ALMO-EDA-II has the option to use kappa regularized MP2 (κMP2).[104]
The implementation of κ-MP2 is fairly standard for the isolated, ALMO, and full system
calculations as we can use the standard κMP2 equation[67]

E
(2)
κMP2 = −1

4

∑
ijab

|(ij∥ab)|2

∆ab
ij

(
1 − e−κ(∆ab

ij )
)2

(2.23)
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for the respective correlation energies. As the frozen term does not involve a basis that can
be pseudo-canonicalized, we instead have to modify the two-electron integrals used to solve
for the t amplitudes using Eq. 2.24

(i′j′∥a′b′) =
∑
ijab

(ij∥ab)
(

1 − e
−κ

(
∆aba′b′

iji′j′

))
(2.24)

where ∆ is an 8th rank tensor defined as

∆aba′b′

iji′j′ = −fii′δaa′δjj′δbb′ + δii′faa′δjj′δbb′ − δii′δaa′fjj′δbb′ + δii′δaa′δjj′fbb′ (2.25)

where frr′ refers to the MO Fock matrix[39].

2.3.2 Computational Demands

MP2 ALMO-EDA-II maintains the same O(n5) scaling with molecular size and O(n3) scaling
with basis set size. However, as the GV basis requires basis functions from all fragments, even
during fragment calculations (with the exception of isolated fragment energy calculations),
the prefactor is significantly larger. This most significantly increases wall time during the
CPSCF step in the frozen energy calculation and increases the memory requirements during
the CCC energy calculation step. Additionally, as MP2 ALMO-EDA-II uses SCF ALMO-
EDA-II, it inherits the large cost to calculate the FERFs at the SCF level. However, recent
work has shown that the use of uncoupled FERFs (uFERFs) have reasonable accuracy with
greatly reduced cost compared to regular FERF formation. The greatly reduced cost to
compute uFERFs comes from the simplification in the CPSCF step used to calculate the
FERFs[41]:

E∆∆ · ∆µ = −2(Mµ) (2.26)

where E∆∆ is the HF orbital Hessian, ∆µ is the orbital response to the field component
Fµ, and M is the multipole moment matrix. The uFERF approximation uses the diagonal
approximation

E∆∆
aibj ≈

1

ϵa − ϵi
δabδij (2.27)

such that ∆µ can be directly solved for.

2.4 Assessment

MP2 ALMO-EDA-II (henceforth sometimes shortened to MP2-EDA-II) is first assessed
against similar systems as were used to validate aspects of MP2 ALMO-EDA-I (or, MP2-
EDA-I, for short) paper. These are single fragment systems and systems that evaluate the
asymptotic behavior of each term[116]. We then assess the extent to which the design goals
of achieving useful basis set limits for all terms in MP2-EDA-II have been achieved. This is
the aspect in which MP2-EDA-I was least satisfactory. This assessment is performed across
the Ionic 43 (I43) [65] and S22 data sets[55].
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2.4.1 Single Fragment Cases

For single-fragment cases, MP2-EDA-II is identical to MP2-EDA-I and therefore the results
for single-fragment systems will be identical to the ones in the originally published paper[116].
To ensure the correct separation of ∆EMP2

FRZ and ∆EMP2
POL while not being trivially identical to

MP2 ALMO-EDA-I, we investigate a single fragment in the presence of an external electric
field with the addition of a weakly interacting fragment far away. This should ensure that
MP2 ALMO-EDA-II frozen term matches the correct behavior of MP2 ALMO-EDA-I.

To illustrate this, we investigate a hydrogen fluoride molecule with a helium atom 20
Åaway in a uniform external electric field along the axis of the hydrogen fluoride. As with
the MP2 ALMO-EDA-I, the slope corresponding with how the MP2 frozen correlation energy
varies with respect to electric field strength should match the MP2 correction to the dipole
moment of the system. As seen in Figure 2.2, the frozen energy for the MP2 ALMO-EDA-II
closely matches MP2 ALMO-EDA-I frozen energy, which both match the expected dipole
moment correction of 0.0468 au Thus, like MP2 ALMO-EDA-I, it is crucial to include the
relaxed density in the frozen term.

Figure 2.2: ∆E
(2)
FRZ of hydrogen fluoride with a helium atom 20 Å away with an electric field

along the hydrogen fluoride bond axis at varying strengths.

2.4.2 Asymptotics

As the overlap between fragment virtual spaces decreases as fragments separate, MP2-EDA-
II becomes identical to MP2-EDA-I in the long range. We will therefore concentrate on
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focusing on the dispersion contribtution.
For the dispersion term, there are multiple choices for defining the fragment assignable

virtual space. A natural choice for a fragment assignable virtual space is the FERFs which are
fragment assignable. However, as FERFs are not orthogonal between fragments, they must
be orthogonalized to maintain an orthogonal virtual space. This introduces an energy penalty
as each fragments’ FERF space encompasses less Hilbert space after the orthogonalization.
A consequence of this energy penalty is the overestimation of charge transfer as the CCC
term underestimates dispersion with the orthogonalization. Figure 2.3 shows that this energy
penalty is large enough that it predicts a significant amount of CT for the methane dimer near
equilibrium, even when using DQO-FERFs. Therefore, in order to fully capture dispersion
while keeping an orthogonal virtual space, the entire GV space must be used.

Figure 2.3: Comparison of different fragment virtual spaces for asymptotic behavior of ∆ECT of
methane dimer at aug-cc-pVQZ.

2.4.3 Strong interactions: The I43 dataset

As MP2 ALMO-EDA-I builds upon the first-generation SCF-level ALMO EDA (henceforth
sometimes shortened to SCF-EDA-I), it inherits the known issue of ill-defined charge transfer
from SCF-EDA-I[4]. MP2-EDA-II, as described in the previous sections, builds upon SCF-
EDA-II which addresses the ill-defined charge transfer issue by utilizing FERFs to construct
the polarization subspace[41]. To evaluate the basis set convergence for EDA, we will evaluate
the difference between aug-cc-pVTZ and aug-cc-pVQZ basis sets for each EDA term. Because
MP2 is known to converge to the basis set limit more slowly than HF, we should evaluate
the convergence of each term alongside the convergence of the MP2 interaction energy, as
we would like each EDA term to converge similarly to the overall MP2 interaction energy.

The first systems we investigate are those in the I43 data set[63] which contains 3 subsets.
The first includes 21 hydrogen-bonded anion-neutral dimers (AHB21), another that contains
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3 cation-water and 3 cation-benzene complexes (CHB6), and the last contains 16 anion-cation
systems commonly encountered in ionic liquids (IL16). The systems contained in this data set
have relatively large binding energies compared to interactions between uncharged molecules,
and as we shall see, MP2-EDA-I has significant problems, which makes this a good starting
point for our analysis. We have omitted 3 proton-bridged systems from AHB21, as they
do not have well-defined fragments for EDA. The graphs in Figure 2.4 show the maximum
difference of each term calculated between the aug-cc-pVTZ and aug-cc-pVQZ basis sets for
AHB21 and IL16, and def2-TZVPPD and def2-QZVPPD for CHB6.

As the basis set difference for each EDA term sums up to the basis set difference for the
interaction energy, it is useful to focus on the largest positive basis set difference term for each
system. It is clear that MP2-EDA-II exhibits significant improvement in basis convergence
compared to MP2-EDA-I. Specifically, MP2 ALMO-EDA-I fails to show stable results for
the polarization and frozen terms of IL16 and AHB21. For instance, ∆∆EPOL for MP2-
EDA-I changes by almost 20 kJ/mol for two systems while the interaction energy changes
by roughly 4 kJ/mol. The polarization term can partially be attributed to the ill-defined
polarization term in SCF-EDA-I, however the frozen term is the same at the SCF level and
the MP2 EDAs only differ for the correlation part.

One reason for this poor behavior of MP2-EDA-I is due to the strong orthogonality
requirement for MP2 in the frozen energy. For systems with diffuse electron density for a
fragment, such as the anionic fragments in IL16 and AHB21, there is a larger overlap of the
anionic fragment occupied orbitals with the virtual orbitals of the other fragment. Thus,
enforcing the strong orthogonality constraint for the pFRZ basis while using the ISO basis
t amplitudes in MP2-EDA-I leads to poor basis set stability. However, as MP2-EDA-II uses
a pISO basis for the t amplitudes in the frozen energy, MP2 ALMO-EDA-II’s frozen and
polarization term has a much improved basis set stability.
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(a) (b)

(c) (d)

(e)

Figure 2.4: Basis set differences of frozen (a), polarization (b), dispersion (c), and charge transfer
(d) energy for MP2 ALMO-EDA-II and MP2 ALMO-EDA-I. The maximum difference of each term
(e) is plotted as well. Basis set difference was calculated by subtracting the EDA term energy at
def2-TZVPPD from def2-QZVPPD for CHB6 and aug-cc-pVTZ from aug-cc-pVQZ for IL16 and
AHB21. Shared proton systems omitted. Basis set difference of interaction energy plotted for
reference.

Figure 2.5 shows basis set convergence for each term of the F– · · ·HOH complex from
AHB21, one of the two worst-behaved examples for MP2-EDA-I in Figure 2.4. It is evident
from Figure 2.5 that the MP2-EDA-I frozen interaction energy lacks a useful basis set limit.
By contrast, ∆EFRZ for MP2-EDA-II exhibits excellent basis set stability, and is nearly con-
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verged at aug-cc-pVTZ. As the two MP2 EDA’s share the identical SCF frozen energy, this
difference illustrates the dramatic improvement of MP2-EDA-II over MP2-EDA-I’s frozen
term through the introduction of the GV basis.

The polarization interaction energy, ∆EPOL differs between MP2-EDA-I and MP2-EDA-
II at both the SCF and the correlated level. ∆EPOL of SCF-EDA-I behaves poorly by
becoming more attractive (by capturing some CT) as the basis set is improved towards
completeness[4, 41]. Additionally, the correlation component of ∆EPOL for MP2-EDA-I also
does not have a well-defined basis set limit as shown in Figure 2.6b. In comparison, the
polarization energy for the MP2-EDA-II seems to be sufficiently converged at aug-cc-pVTZ.
Thus, both the addition of SCF-EDA-II and the GV basis to the correlation components of
MP2-EDA-II greatly improve the basis set stability for both ∆EFRZ and ∆EPOL relative to
MP2-EDA-I.

Looking at the charge transfer term, ∆ECT, in Figure 2.5d, there is also a significant
difference between MP2-EDA-I amnd MP2-EDA-II. For MP2-EDA-I, ∆ECT trends towards
zero as the basis set in increased, a trivial basis set limit, as can be anticipated based on
previous studies[41]. By contrast, MP2-EDA-II has a stable, non-trivial basis set limit for
the charge transfer term.

In terms of electron correlation, the poor behavior of MP2-EDA-I for ∆ECT is arising
from its treatment of the dispersion term. Figure 2.5c illustrates that ∆EDisp in MP2-EDA-I
also lacks a useful basis set limit, as corroborated by the fact that it is not fully converged
even at aug-cc-pV6Z. This is a result of the dependence on atomic-tagging used in MP2-
EDA-I, where functions on one fragment can nearly represent functions on the other fragment
as the basis set limit is approached.

On the other hand, MP2-EDA-II dispersion seems to be converged as early as aug-cc-
pVTZ. This is a direct result of using the FERF-DQO space to describe dispersive correla-
tions in MP2-EDA-II; another of the significant design changes introduced here. This is fully
consistent with the known fact that correlation effects associated with long-range dispersion
converge much more rapidly with basis set size than short-range correlations.[32, 71]
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(a) (b)

(c) (d)

Figure 2.5: Basis set convergence of the frozen (a), polarization, (c) dispersion, and charge transfer
(d) energies of the AHB21 fluoride water system for both MP2 EDA’s.
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(a) (b)

Figure 2.6: Basis set convergence of the (a) SCF component (∆ESCF
POL) and (b) correlation com-

ponent (∆E
(2)
POL) of the polarization energy for the AHB21 fluoride water system for both MP2

EDA’s.

2.4.4 Weaker interactions: The S22 data set

We next move to S22, a popular data set containing 22 hydrogen bonded and dispersion
bonded systems[55]. As seen in Figure 2.7, the S22 results are similar to the results from
I43, although the difference between MP2 EDA’s are much smaller for most systems. One
explanation may be that the interactions for the systems in S22 are in general much weaker
than the systems in I43.
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(a) (b)

(c) (d)

(e)

Figure 2.7: Basis set difference of (a) frozen, (b) polarization, (c) dispersion, and (d) charge
transfer energies for MP2 ALMO-EDA-II and published MP2 EDA. Basis set difference was calcu-
lated by subtracting the EDA term energy at aug-cc-pVTZ from aug-cc-pVQZ. Adenine Thymine
omitted due to size. Basis set difference of interaction energy plotted for reference.

It is important to point out that MP2 ALMO-EDA-II performs similarly to MP2 ALMO-
EDA-I for the water dimer case when looking at the basis set difference between aug-cc-pVTZ
and aug-cc-pVQZ where both have a slightly larger max EDA term basis set difference
compared to the interaction energy basis set difference. The largest basis difference term
for the water dimer comes from the CT term for MP2 ALMO-EDA-II and from the POL
term for MP2 ALMO-EDA-I. To investigate this behavior, the results are expanded to larger
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basis sets, shown in Figure 2.8. The CT and POL terms both seem to be relatively stable
for MP2 ALMO-EDA-II at higher basis sets, while MP2 ALMO-EDA-I does not seem to
converge to a stable basis set limit even at aug-cc-pV6Z. It is also worth noting that the
improvement in basis set limit convergence is not only due to the improvements at the SCF
level due to SCF ALMO-EDA-II. Similarly to the fluoride water case, Figure 2.9 shows that
both the correlation and SCF components of CT and Pol for the MP2 ALMO-EDA-II has a
more well defined basis set limit compared to MP2 ALMO-EDA-I’s.

Although the systems in S22 are overall generally more well-behaved compared to I43 for
MP2 ALMO-EDA-I, we still see a significant improvement to the basis set convergence for
many of the S22 systems using the MP2 ALMO-EDA-II at the aug-cc-pVTZ to aug-cc-pVQZ
basis sets. In addition, when looking at larger basis sets, the MP2 ALMO-EDA-II have a
stable basis set limit unlike MP2 ALMO-EDA-I.

(a) (b)

Figure 2.8: Basis set convergence of the (a) polarization and (b) charge transfer energies of the
S22 water dimer system for both MP2 EDA’s. The first panel, (a), shows that the MP2 ALMO-
EDA-II polarization energies converge to a well-defined basis set limit while MP2 ALMO-EDA-I
polarization continues to increase in strength even at large basis sets. Similarly, the second panel,
(b), shows that the charge transfer energies have a well-defined basis set limit for the MP2 ALMO-
EDA-II at higher basis sets while MP2 ALMO-EDA-I shows that at higher basis sets, the charge
transfer term does not have a non-trivial basis set limit like SCF ALMO-EDA-I. [41]
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(a) (b)

Figure 2.9: Basis set convergence of the correlation component of (a) polarization and (b) charge
transfer energies of the S22 water dimer system for both MP2 EDA’s. Both graphs show that the
lack of a non-trivial basis set limit for MP2 ALMO-EDA-I exists not just at the SCF level, but the
correlation level as well.

2.4.5 Extent of compatibility with DFT-EDA-II

The DFT-based SCF-EDA-II is well-established[43, 77, 75] and becoming quite widely used.
It is therefore useful to examine the behavior of the terms identified in MP2-EDA-II relative
to those separated in DFT-EDA-II for some representative cases where the total interaction
energy is similar when evaluated by both methods. Here we fix the AO basis set at aug-cc-
pVQZ and examine the distance dependence of each term via MP2-EDA-II, and by ωB97M-
V/aug-cc-pVQZ[78, 53] for three systems, the water dimer, the complex between fluoride
anion and water, and the methane dimer. The results are shown in Figure 2.10. As expected,
the long range behavior of each term (e.g. for separations R > 3.5Å for water dimer and
fluoride-water) is almost identical. Near equilibrium however, the behavior of each EDA
differs slightly and will be discussed separately below.
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Figure 2.10: Distance-dependence of the (cumulative) EDA contributions for (left) MP2 ALMO-
EDA-II vs. (right) ωB97M-V ALMO-EDA-II for (a) methane dimer, (b) water dimer, (c) fluoride
water, (d) BF3 NH3 calculated at aug-cc-pVQZ level of theory.

For the methane dimer, the binding largely reflects competition between Pauli repulsion
and dispersion. Good qualitative agreement is evident between MP2-EDA-II and DFT-
EDA-II using ωB97M-V.

The water dimer interaction is far stronger than the methane dimer, and has driving
forces for binding from permanent and induced electrostatics and CT.[56, 72, 76] For the
water dimer at equilibrium (2.87 Å), MP2 EDA predicts the (dispersion-free) frozen term
to be slightly repulsive while the ωB97M-V EDA calculates the dispersion-free frozen term
to be very slightly attractive. The corresponding equilibrium geometries, which reflect the
tradeoff between Pauli repulsion and attractive permanent electrostatics, are encouragingly
similar. The contribution due to polarization is also quite similar, as is the final interaction
energy.
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The fluoride-water interaction is roughly 6 times stronger than the water dimer interac-
tion, and is dominated by permanent and induced electrostatics and charge-transfer contri-
butions. There is pleasing qualitative consistency between MP2-EDA-II and DFT-EDA-II
for this system. We conclude that the partition of these 3 dominant contributions is quite
compatible between the two approaches for this system.

BF3 NH3 is a strongly interacting system, comparable to some covalently bonded systems,
dominated by charge transfer. The contribution to electrostatics and Pauli repulsion as well
as polarization are similar between MP2-EDA-II and DFT-EDA-II. The slightly larger con-
tribution of the dispersion term in MP2-EDA-II relative to DFT-EDA-II is visually evident
in Figure 2.10(d). We reiterate that the EDA “dispersion” term reflects that contribution
from electron correlation which becomes pure dispersion in the non-overlapping limit. It may
better be referred to as “dispersion-like” correlation in the shorter range, and we should not
necessarily expect very close agreement between two quite independent approaches. Even
so, dispersion is the least significant contributor to binding, and therefore both EDAs report
the same physical origins of strong binding.

2.5 Conclusions

We have developed a second generation energy decomposition analysis (EDA) based on ab-
solutely localized molecular orbitals (ALMOs) for calculations of intermolecular interactions
based on MP2 theory. Like its predecessor,[116, 117, 69] MP2 ALMO-EDA-I, the new MP2
ALMO-EDA-II yields correlation corrections to each of the three contributions to an inter-
action energy at the mean-field level: the frozen interaction, the polarization interaction,
and the charge-transfer (or electron delocalization) interaction. In addition, one extra term
describing dispersive effects (the correlation contributions that become dispersion in the
non-overlapping regime) is separated out. The approach of correcting each mean-field EDA
contribution is essential for a viable correlated EDA: simply adding the correlation bind-
ing energy as a distinct term[112] is known to not be physically correct.[118] We also view
separation of polarization[41] and charge-transfer[76] effects as essential in a useful EDA.

MP2 ALMO-EDA-II improves upon its predecessor, MP2 ALMO-EDA-I, by design choices
that achieve the following properties:

• Greatly improved basis set convergence. Each EDA term has a stable basis set limit for
both its SCF contribution (as a result of using SCF ALMO-EDA-II), and its correlation
correction (as a consequence of design improvements introduced here). MP2-ALMO-
EDA-I does not have satisfactory basis set convergence, by comparison.

• No reliance upon atom orbitals as the choice of representation. Every term in MP2
ALMO-EDA-II can be evaluated without assuming that the single particle space is
represented via atomic orbitals. This permits implementations that use different basis
representations. By contrast, MP2 ALMO-EDA-I relied upon an AO representation.
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• No use of non-orthogonal orbitals to represent either the occupied or virtual space in
any intermediate energy. This design choice should be useful when extending MP2
ALMO-EDA-II to other post-SCF methods such as OOMP2 EDA or a coupled clus-
ter EDA. By contrast MP2 ALMO-EDA-I relied upon nonorthogonal virtual orbitals,
which introduces greater algebraic complexity.

Alongside these improvements, MP2 ALMO-EDA-II maintains the correct asymptotic
behavior of MP2 ALMO-EDA-I. Additionally, MP2-ALMO-EDA-II includes the option to
use κ regularized MP2 which has shown improvement over the standard MP2 in calculating
a wide variety of noncovalent interactions[70, 104]. Additionally, we hope that this approach
will be extended to the development of other recently developed methods based on MP2 such
as a regularized OOMP2[67, 66, 95] EDA or an EDA based on double hybrid functionals[79].
It also seems possible to extend MP2 ALMO-EDA-II to coupled cluster methods, directly
at the singles + doubles (CCSD) level, and with further exploration, perhaps the CCSD(T)
level.
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Chapter 3

A second generation energy
decomposition analysis of
intermolecular interaction energies
from second order Møller-Plesset
theory: Chemical examples and
applications.

3.1 Introduction

As numerical experiments, quantum chemical calculations of intermolecular interaction en-
ergies are highly successful[96]. Wavefunction-based methods based on high-level coupled
cluster theory[7] achieve an accuracy that is often significantly better than 1 kJ/mol, pro-
vided that an adequately large basis set[49] is employed to approach the complete basis
set (CBS) limit. Thus methods such as CCSD(T)/CBS have become de facto benchmarks
for intermolecular interaction energies.[96] More approximate methods including suitable
modifications[103, 11] of MP3, and even adaptations[34, 54, 33, 19, 31, 30, 104] of MP2
are also very useful for such calculations at reduced computational cost. MP2 itself also
performs very well for some intermolecular interactions such as hydrogen-bonding[23, 127],
ion-water complexes and ionic liquid interactions[128, 46], and remains widely used, despite
well-recognized deficiencies for cases such as collective dispersion interactions.[90]

To give chemical insight beyond simply a numerical experiment, it is desirable to disentan-
gle the contribution of individual physical driving forces, both stabilizing and destabilizing,
that collectively account for a total intermolecular interaction energy. This is the objective
of energy decomposition analysis (EDA).[75] A successful EDA for noncovalent interactions
should identify the energetic contributions from as many as possible of the following well-
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recognized terms: (i) permanent electrostatics, (ii) Pauli repulsion, (iii) dispersion, (iv)
polarization, (v) charge-transfer or dative interactions. While all these terms have text-
book definitions[110] (or are zero) in the limit of non-overlapping fragments, it is crucial to
connect them smoothly to the chemically relevant overlapping regime. Towards that goal,
the objective of this paper is to report on the development of a new EDA framework for
wavefunction-based methods, and its concrete realization as a method for MP2, and the
recently proposed improvement; regularized MP2.[104]

There are two general approaches to EDA. This work follows the supermolecule approach,
where the interaction energy of a collection of fragments (typically molecules) is defined as
the difference between the supermolecule and its individual fragments:

∆E = E −
∑
F

EF (3.1)

∆E should include the counterpoise correction[13] for basis set superposition error (BSSE)
if atom-centered basis sets are used that are not close to the complete basis set limit. A
well-posed EDA (suitable criteria have been specified[75]) begins from the energy of iso-
lated fragments, and employs a sequence of intermediate states with progressively weaker
constraints that isolate the different physical contributions to ∆E until the unconstrained
energy is obtained. An advantage is that any model energy can be employed (in principle).
A disadvantage is that the design of the constraints is critical to obtaining physically valid
results, and these may have to be method-dependent (as well shall discuss later). Further-
more interactions such as dispersion, polarization, and permanent electrostatics that have
textbook definitions in the long-range non-overlapping limit are necessarily ambiguous in
the chemically relevant overlapping regime.

Differences between energies of intermediate states reveal the supermolecular EDA con-
tributions to ∆E, such as:

∆EINT = ∆EGD + ∆EFRZ + ∆EPOL + ∆EDISP + ∆ECT (3.2)

Here ∆EGD is the “geometric distortion” energy needed to deform the optimal fragment
geometries (used to evaluate EF ) to their geometries in the complex. The first physi-
cal contribution, ∆EFRZ is associated with electronic degrees of freedom such as orbitals
frozen at their fragment geometries, and physically includes permanent electrostatics and
Pauli repulsions (since it omits dispersion in Eq. 3.2, it also sometimes referred to being
“dispersion-free”; FRZ-DF). The second physical contribution, ∆EPOL is the energy lowering
due to on-fragment relaxation (or polarization) of the electronic degrees of freedom, whilst
prohibiting charge flow. This is followed by the energy lowering associated with dispersion,
∆EDISP and finally the energy lowering associated with charge transfer or dative interactions,
between fragments, ∆ECT.

The principal alternative to the supermolecule approach is to directly correct the fragment
energies for the interactions using valid quantum mechanical approaches such as perturbation
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theory. Symmetry-adapted perturbation theory (SAPT)[50, 115, 92] is the paradigmatic ex-
ample of this approach to compute the interaction energy and get its components simultane-
ously. With great improvements in accuracy vs cost with the development of SAPT-DFT,[48]
perhaps the main remaining limitation is that some physical concepts do not emerge natu-
rally in SAPT (e.g. polarization and charge transfer are naturally combined as “induction”,
but are not (yet) naturally separated[109, 81, 76]).

Space limits preclude detailed discussion of the considerable effort that has been devoted
to DFT-based EDA development for intermolecular interactions, apart from a brief historical
perspective and summary of present status. Modern EDA development began with the
seminal Kitaura-Morokuma method,[60, 86] which has inspired many successors[130, 129,
12, 84, 85, 59, 57, 83, 82, 112, 44, 113]. Another noteworthy approach to understanding inter
(and intra) molecular interactions is the Natural Bond Orbital (NBO) framework.[124] While
NBO is very widely used to aid in analysis of quantum chemistry calculations, it is important
to note that it substantially overestimates charge-transfer effects in an unphysical way,[56,
111] Therefore the CT energies from NBO should at most be used as descriptors. Separate
from EDA, many other useful descriptors of non-covalent interactions have been developed,
including the electron localization function (ELF),[99] the σ and π hole models,[16] the
non-covalent interactions (NCI) index,[52], etc.

At the self-consistent field (SCF) level of density functional theory (DFT) or mean-field
Hartree-Fock (HF) theory, one well-developed and (apparently) satisfactory supermolecu-
lar EDA is the second generation absolutely localized MO (ALMO)-EDA[43, 77, 75]. The
SCF ALMO-EDA-II (henceforth denoted as SCF-EDA-II) provides useful complete basis set
limits for polarization and charge-transfer,[41], and is not tied to any specific basis represen-
tation. While development continues,[74, 122] the second generation ALMO-EDA is a useful
approach for analyzing intermolecular interaction energy calculations at the DFT level. It
is therefore natural to ask whether or not this can be adequately generalized from the SCF
level to treat post-SCF methods such as MP2 in the first instance, and then perhaps double
hybrid DFT and higher order MP and CC methods. That will be the purpose of the research
described here.

There are already a number of notable efforts to develop supermolecular post-SCF EDAs.
In the pair interaction energy decomposition analysis (PIEDA)[24] and the localized MO
(LMO)-EDA framework,[112] the entire correlation binding energy is assigned as a dispersion

contribution to binding (i.e. ∆ELMO-EDA
DISP = E(corr) −

∑
F E

(corr)
F ). This assumption is not

formally correct;[118] in principle all physical contributions to an intermolecular interaction
are affected by electron correlations. Other post-SCF supermolecular EDAs[107, 102, 5,
47, 101, 2, 28] therefore make efforts to include such contributions. Most relevant to this
work is the development of an EDA at the MP2 level which generalizes the first-generation
ALMO-EDA by providing correlation corrections to each term.[116, 117, 69] Unfortunately,
this MP2-EDA-I does not provide useful basis set limits for each term. While it can be useful
for chemical applications if applied carefully, an improved approach is clearly desirable.

Very recently, new theory and an associated implementation have been reported to de-
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fine a second generation MP2-based EDA, MP2 ALMO-EDA-II (henceforth referred to as
MP2-EDA-II). This theory, which is reviewed in Section 3.2 was designed with the goal of
achieving useful basis set limits for each contribution in Eq. 3.2. The purpose of this work is
to apply MP2-EDA-II to four classes of complexes with varying strengths of intermolecular
interactions to explore its usefulness for chemistry, as well as helping to resolve the phys-
ical origin of those interactions. First, we will investigate a water-xylose system involving
hydrogen bonding, one of the most familiar intermolecular interactions. We next will look
at a class of systems that participate in unconventional hydrogen bonding involving metal-
hydrides as electron acceptors. We will also investigate a group of complexes involving tetrel
bonding, which have recently garnered a lot of attention in biology, chemistry, and catalysis
[126, 10, 9, 27]. Finally, we will investigate a “solvent-resistant halogen bond”[97] in which
a halogen bonded complex showed remarkable stability with respect to solvent type.

3.2 Theory

The MP2 ALMO-EDA-II decomposes both the SCF interaction energy, ∆ESCF
INT , and the

correlation component of the MP2 interaction energy, ∆E
(2)
INT, into separate components.

The SCF interaction energy is separated into a frozen interaction, ∆ESCF
FRZ, which includes

electrostatic effects and Pauli repulsion, a polarization interaction, ∆ESCF
POL, and a charge

transfer interaction ∆ESCF
CT . The SCF component of MP2 ALMO-EDA-II is identical to

SCF ALMO-EDA-II and therefore we will focus on the decomposition of the correlation
component of the interaction energy. Like ∆ESCF

INT , ∆E
(2)
INT contains a frozen, polarization,

and charge transfer component, however, there is an additional dispersion term, ∆E
(2)
DISP as

dispersion is a purely correlational effect. MP2 ALMO-EDA-II treats each decomposed term
of ∆E

(2)
INT as a correction to the equivalent SCF ALMO-EDA-II term (including ∆E

(2)
DISP as

a correction to the lack of a dispersion term in SCF ALMO-EDA-II).
SCF ALMO-EDA-II computes intermediate energies of the complex with different con-

straints on the electron density, fragment isolated densities, PF a frozen density, PFRZ, a
relaxed/polarized density, PALMO, and the fully relaxed system density, PSYS. Each SCF
ALMO-EDA-II term is computed as the difference between these intermediate energies,

∆ESCF
FRZ = ESCF(PFRZ) −

frag∑
F

ESCF
F (PF) (3.3a)

∆ESCF
POL = ESCF(PALMO) − ESCF(PFRZ) (3.3b)

∆ESCF
CT = ESCF(PSYS) − ESCF(PALMO) (3.3c)

Each of the MP2 intermediate energies are calculated with the equivalent density, with the
addition of ∆E

(2)
DISP. With MP2, the correction to the HF energy is a function of doubly

excited Slater determinants. As such, the MP2 intermediate energies are also evaluated with
different constraints on the doubly excited Slater determinants. The different types of double
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Figure 3.1: The four types of double excitations used to define constraints for each EDA term.
Occupied orbitals are fragment-tagged, and this diagram should be read as though the virtuals are
also fragment-tagged. The true correlation energy associated with a fragment at either the frozen
or polarized level is then represented by the first row of the figure (Type I). The third line (Type
III), represent basis set superposition effects, that can be removed by counterpoise correction. The
second and fourth line (Type II/IV) are associated with dispersion interactions.

excitations can be categorized into four types, which are summarized in Figure 3.1 and the
summary of MP2 ALMO-EDA-II terms is summarized in Table 3.1. With the inclusion of
the dispersion term, ∆E

(2)
DISP, the corresponding intermediate energy, E

(2)
CCC(PALMO) contains

both type II and IV excitations. It is important to note that type III excitations are consid-
ered a type of basis set superposition error (BSSE) for the purposes of MP2 ALMO-EDA-II
and therefore the standard counterpoise correction for the correlation component of BSSE
is applied to ∆E

(2)
FRZ as this is the first term that contains type III excitations.

Intermediate Term Corresponding EDA Component Excitation Types Included

E
(2)
F (PF) Type I

E
(2)
FRZ(PFRZ) ∆E

(2)
FRZ = E

(2)
FRZ(PFRZ) −

frag∑
F

E
(2)
F (PF) Type I, III

E
(2)
ALMO(PALMO) ∆E

(2)
POL = E

(2)
ALMO(PALMO) − E

(2)
FRZ(PFRZ) Type I, III

E
(2)
CCC(PALMO) ∆E

(2)
DISP = E

(2)
CCC(PALMO) − E

(2)
ALMO(PALMO) Type I, II, III, IV

E
(2)
SYS(PSYS) ∆E

(2)
CT = E

(2)
SYS(PSYS) − E

(2)
CCC(PALMO) Type I, II, III, IV

Table 3.1: Summary of Correlation Intermediate Terms Used in MP2 ALMO-EDA-II
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3.3 Chemical applications

3.3.1 Hydrogen bonding in model xylose-water complexes

Hydrogen bonding (H-bonding) is a non-covalent interaction of the form −X−H · · ·Y be-
tween a proton donor on one molecule and an electronegative proton acceptor site on another
molecule. More precisely, according to IUPAC:[3] The hydrogen bond is an attractive in-
teraction between a hydrogen atom from a molecule or a molecular fragment X–H in which
X is more electronegative than H, and an atom or a group of atoms in the same or a dif-
ferent molecule, in which there is evidence of bond formation. H-bonds involving water
are important to a wide variety of inorganic and biological systems, from water itself, to
protein solvation to DNA water interactions.[51, 91] Debate on the driving forces behind the
water-water hydrogen bond has been on-going until even recently, with extremes of opinion
ranging from an entirely resonance-based picture[123, 125, 124] to an entirely electrostatic
picture.[87] Use of reliable EDA methods has tended to provide a more nuanced interme-
diate picture,[56, 76] where a majority of the binding energy is associated with permanent
and induced electrostatics (i.e. dipole-dipole and dipole-induced dipole, etc), but there is a
non-trivial contribution from dative effects corresponding to n(O) → σ∗(H−O) interactions.

A classic case of conventional H-bonding is the solvation of carbohydrates in water; since
H-bonds between carbohydrates and water are dominated by their hydroxyl groups, they
are of comparable strength to water-water H-bonds. This accounts for their often high
solubility in water, as well as the significant impact of carbohydrate solutes on the struc-
ture and dynamics of water.[20, 68] At the level of hydration of carbohydrates by individ-
ual water molecules, there have been a range of experimental studies with complementary
computational characterizations of the H-bonded structures with small numbers of water
molecules.[105, 80, 14] From the perspective of characterizing such H-bonds via EDA, Koli
et al. studied the interactions of four xylose-water complexes[61] using the LMO-EDA[112].
The structures were optimized at the RIMP2/aug-cc-pVDZ level of theory and are shown in
Figure 3.2.
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(a) (b)

(c) (d)

Figure 3.2: Optimized geometries for (a) α-Xylofuranose, (b) β-Xylofuranose, (c) α-Xylopyranose,
(d) β-Xylopyranose interacting with a water molecule calculated with RIMP2 at aug-cc-pVDZ level
of theory

The MP2 ALMO-EDA-II contributions for the four xylose-water complexes are displayed
in Figure 3.3a. The interaction strengths range between 33 kJ/mol and 49 kJ/mol relative to
the H-bond strength of roughly 20 kJ in the water dimer. For every complex, the interactions
were stabilized primarily through charge-transfer and polarization interactions, with minor
contributions from dispersion. Overall, the contributions of electrostatics and Pauli repulsion
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is repulsive, however, this is not true at the SCF level for ALMO-EDA-II shown in Figure
3.3b. This can partially be attributed to the tendency of Hartree Fock to overestimate dipole
moments and underestimate polarizability[40, 36, 35] and therefore overestimate electrostatic
attraction as seen in similar H-bonded systems[118]. The β-xylofuranose-water complex is
the most stable structure of the four. Of the four conformations, only β-xylofuranose-water
has two H-bonds involving the water molecule with two hydroxyl groups on the xylose. The
other three systems have an H-bond to one hydroxyl group on the xylose and one H-bond with
the ether group on the xylose. This is supported by the shorter water-xylose distance for β-
xylofuranose-water and is accompanied by the slight increase in charge transfer, polarization,
and dispersion, as well as an increase in a repulsive frozen term due to the increased overlap
and therefore increased Pauli repulsion compared to the other three complexes.
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(a)

(b)

Figure 3.3: (a)MP2 ALMO-EDA-II and (b) SCF ALMO-EDA-II results for xylose-water systems
calculated at aug-cc-pVDZ level of theory

Compared to the LMO-EDA results shown in Figure 3.4, SCF ALMO-EDA-II shows
similar results. LMO-EDA computes the the effects of electrostatics (∆ELMO

Es ), exchange
(∆ELMO

Ex ), and Pauli repulsion (∆ELMO
Rep ) separately[112] instead of a single frozen term as

in ALMO-EDA, although it can be further decomposed into permanent electrostatics, dis-
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persion, and Pauli repulsion contributions[42, 73]. However, LMO-EDA does not separate
the charge transfer and polarization effects, but instead combines them into a single ∆ELMO

POL

term[112]. In order to reduce confusion with MP2 EDA II’s polarization term, this paper
will refer to this LMO-EDA term as ∆ELMO

ORB (following e.g. the ETS-NOCV EDA[12, 82]).
Additionally, LMO-EDA does not decompose the MP2 correlation component of the inter-
action energy and instead uses ∆ELMO

DISP to describe the entire correlation component of the
interaction. Therefore, LMO-EDA fails to account for the MP2 correction to the electro-
statics and polarizability and therefore underestimates the increased repulsion in the frozen
term.

Figure 3.4: LMO-EDA results for xylose-water systems calculated at aug-cc-pVDZ level of the-
ory[61]

3.3.2 M-H. . .Y H-bonds

As exemplified in the mode carbohydrate-water cases discussed above, the conventional H-
bond involves a hydrogen atom attached to a more electronegative atom interacting with
an electronegative electron donor. However, there have been multiple examples of systems
that do not follow the conventional H-bond definition in organometallic chemistry, where
metal hydride hydrogens are sometimes capable of being proton donors, despite their formal
negative charge.[1, 22] Sahoo et al. investigated the nature of some less conventional H-
bonded systems involving M−H· · ·Y (M = Mn, Fe, Co; Y = O, S, Se) H-bonds[98]. Sahoo
studied the interaction between three metal carbonyl hydrides (Mn(CO)5H, Fe(CO)4H2,
and Co(CO)4H)) interacting with either dimethyl ether (DME), dimethylsulfide (DMS), or
dimethylselenide (DMSe). They observed that the M−H· · ·Y H-bond was similar in strength
to conventional H-bonds, and suggested that it was “dispersive” in origin.
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Comparing the results from MP2-EDA-II in Figure 3.6, and LMO-EDA in Figure 3.8,
there is a large discrepancy in the dispersion term and frozen term. As the correlation
component of the interaction is represented entirely by ∆LMO

DISP, any effect of correlation on
the frozen term is omitted. For these systems, the differences in electrostatics between SCF
and MP2 are significant. Table 3.2 shows the dipole moments along the M-H axis for the
metal center fragments calculated with MP2 and SCF at aug-cc-pVDZ in their M-Y...DME
geometries. As shown in Figure 3.5, using Mn-H...DME as an example, the dipole moment of
the metal carbonyl hydrides is aligned to be repulsive with the dipole moment of the H-bond
acceptors (DME, DMS, DMSe) when calculated using HF, while the MP2 dipole moment is
aligned to be attractive. This result supports MP2 ALMO-EDA-II as the correlation reduces
the repulsive SCF frozen term. Therefore, it is vital to include the effect of correlation in the
frozen term, and it is disingenuous to attribute the correlation energy to dispersion alone.

Species
HF Dipole

moment(a.u)
MP2 Dipole
moment(a.u)

HF Dipole-Dipole
angle (deg)

MP2 Dipole-Dipole
angle (deg.)

Mn(CO)5H -0.5953 0.4677 91.32 -95.4
Co(CO)4H -0.7487 0.4049 107.6 -76.1
Fe(CO)4H2 -0.7446 0.5365 46.6 -134.3

Table 3.2: Dipole moments for metal carbonyl hydrides along M-H (M = Mn, Co, Fe) bond axis
in a.u. calculated with HF and MP2 at aug-cc-pVDZ. Angle is for the angle between the dipole
moment vectors of the fragments

(a) (b)

Figure 3.5: Dipole moment orientation for isolated fragments of Mn-H...DME complex calculated
with (a) HF and (B) MP2 at aug-cc-pVDZ
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(a) (b)

(c)

Figure 3.6: MP2 ALMO-EDA-II results for (a) DME (Y = O), (b) DMS (Y = S), and (c) DMSe
(Y = Se) interacting with Mn(CO)5H, Fe(CO)4H2, and Co(CO)4H calculated at aug-cc-pVDZ level
of theory
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(a) (b)

(c)

Figure 3.7: MP2 ALMO-EDA-II correlation results for (a) DME (Y = O), (b) DMS (Y = S),
and (c) DMSe (Y = Se) interacting with Mn(CO)5H, Fe(CO)4H2, and Co(CO)4H calculated at
aug-cc-pVDZ level of theory
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(a) (b)

(c)

Figure 3.8: LMO-EDA results for (a) dimethyl ether, (b) dimethylsulfide, and (c) dimethylse-
lenide interacting with Mn(CO)5H, Fe(CO)4H2, and Co(CO)4H calculated at aug-cc-pVDZ level of
theory[98]

3.3.3 Tetrel Bonding

Tetrel bonding (Tt-bond) is another type of attractive non-covalent interaction, similar to H-
bonding, with a group 14 atom (C, Si, Ge, etc) on one fragment as an electron acceptor and
an electron donor on another fragment[9]. Tetrel bonding has attracted significant attention
recently due to its promising applications in catalysis and other fields.[10, 27] Similar to
the more well known H-bonding and halogen bonding, Tt-bonding has been categorized as
a σ-hole type interaction. [8] However, previous work on halogen bonding[117], has shown
that the σ-hole picture may not be sufficient in fully characterizing halogen bonds, which
motivates a closer inspection of the origins of Tt-bonding as well. Recently, Wu et al.
investigated Tt-bonding involving TA-TtX3 (Tt = C, Si; X = H, F) interacting with CNM
(M = Na, Li)[126]. Figure 3.9 displays the eight complexes studied. Figure 3.10 shows the
results of MP2 ALMO-EDA-II for each of the Tt-bonded systems along with the interaction
energy with the geometry distortion term included as it is significant for the TA-SiX3 systems.
For the TA-CH3 systems, the interaction is primarily electrostatically driven. However, there
is a significant contribution from polarization and dispersion as well. Comparatively, TA-
CF3 systems however show smaller frozen terms and lower overall interactions. This is likely
due to the increased distance between the fragments for the TA-CF3 systems compared to
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the TA-CH3 systems, due to the increased Pauli repulsion associated with CF3 compared to
CH3.



CHAPTER 3. ALMO MP2-EDA-II APPLICATIONS 52

(a) TA-CH3 . . . NCLi (b) TA-CH3 . . . NCNa

(c) TA-CF3 . . . NCLi (d) TA-CF3 . . . NCNa

(e) TA-SiH3 . . . NCLi (f) TA-SiH3 . . . NCNa

(g) TA-SiF3 . . . NCLi (h) TA-SiF3 . . . NCNa

Figure 3.9: Optimized structures of N-TX3...NCM (T = C, Si; X = H, F; M = Li, Na) tetrel
bonded complexes with T-N distance (Å) and N-T-X angle (deg).[126]
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For the TA-SiH3 and TA-SiF3 systems, Figure 3.10b, there is a similar trend in frozen
energy, although the frozen interaction is strongly repulsive due to the shorter distance
between fragments compared to the TA-CX3 systems as well as larger atomic radius of Si
compared to C. The shorter distance is likely due to the large attractive charge transfer and
polarization terms for these systems. This shorter distance however is coupled with a larger
geometry distortion term as the fluoride and hydrogen atoms on the silicon on the TA-SiX3

fragment “open up” as indicated by the lower N-Si-X angles in Figure 3.9. The ability for the
TA-SiX3 complexes to “open up” is due to greater ability for silicon to hybridize compared
to carbon, and therefore is subjected to a relatively lower repulsive geometric distortion
penalty[100].

Looking at the correlation components of the MP2 ALMO-EDA-II terms in Figure 3.11,
although there is a very small correction to the interaction energy, there is a large correlation
correction to the frozen term for the TA-SiF3 systems. Therefore, as with the previous
examples, it is important to consider the effect of correlation on each individual term.
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(a)

(b)

Figure 3.10: MP2 ALMO-EDA-II results for (a) TA-CX3...CNM and (b) TA-SiX3...CNM (X =
H, F; M = Li, Na) calculated at aug-cc-pVTZ level of theory. ∆EINT∗ includes contributions due
to geometry distortion
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(a)

(b)

Figure 3.11: Correlation components for MP2 ALMO-EDA-II for (a) TA-CX3...CNM and (b) TA-

SiX3...CNM (X = H, F; M = Li, Na) calculated at aug-cc-pVTZ level of theory∆E
(2)
INT∗ includes

contributions due to geometry distortion

3.3.4 Halogen Bonding

Conventionally, halogen bonding (X-bond) is described as the interaction between an elec-
trophilic region of a halogen atom on one fragment and a nucleophilic region on another
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fragment.[119, 18, 97] Halogen bonding is a strong intermolecular interaction (relative to H-
bonding) and is found in many applications such as crystal engineering, organocatalysis, and
drug design[15]. Robertson et al. discovered an X-bonded complex, tetramethylthiourea-
iodine, whose stability is insensitive to the nature of the solvent[97]. Robertson’s results
suggested that charge transfer is a major contribution to the stability of this complex. To
investigate these claims, MP2 ALMO-EDA-II calculations were performed and the results
for the interaction of iodine with tetramethylthiourea (R=S...I2) versus tetramethylurea
(R=O...I2), R = (Me2N)2C are shown in Figure 3.12. The geometries of the complexes are
shown in Figure 3.13 If the interaction was electrostatically driven, one would expect that
the R=O. . . I2 complex would have a stronger interaction due to the more electronegative
oxygen. However, the R=S. . . I2 has a stronger interaction energy that is dominated by
charge transfer and dispersion. As R=S...I2 is stabilized through both dispersion and charge
transfer dispersive interactions, this supports the findings of Robertson et al. of the stability
of this complex with respect to solvent.

Figure 3.12: MP2 ALMO-EDA-II results for R=S...I2 and R=O...I2 (R = (Me2N)2C) complexes
calculated at def2-TZVPPD level of theory[61]
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(a) (b)

Figure 3.13: Optimized structures of (a) tetramethylthiourea-iodine and (b) tetramethylurea-
iodine optimized with MP2 at def2-SVPD level of theory, marked with S. . .I / O. . .I distances (Å)
and C=S. . .I / C=O. . .I angles (deg)

3.4 Conclusions

In this paper, we have investigated a variety of intermolecular interactions, including hy-
drogen bonding, tetrel bonding, and halogen bonding, using the newly developed MP2
ALMO-EDA-II. These systems have shown the usefulness of MP2 ALMO-EDA-II and the
importance of an accurate treatment of the correlation component of the interaction energy.
Future work includes the extension of MP2 ALMO-EDA-II to other post-HF ALMO EDA’s
such as an EDA based on orbital optimized MP2, double hybrid DFT, or coupled cluster
theory.
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[32] Jérôme F Gonthier and Martin Head-Gordon. “Compressed representation of disper-
sion interactions and long-range electronic correlations”. In: J. Chem. Phys. 147.14
(2017), p. 144110.

[33] S. Grimme. “Accurate Calculation of the Heats of Formation for Large Main Group
Compounds with Spin-Component Scaled MP2 Methods”. In: J. Phys. Chem. A 109
(2005), p. 3067. doi: 10.1021/jp050036j.

[34] Stefan Grimme. “Improved second-order Møller–Plesset perturbation theory by sep-
arate scaling of parallel-and antiparallel-spin pair correlation energies”. In: J. Chem.
Phys. 118.20 (2003), pp. 9095–9102.

https://doi.org/10.1063/1.456408
https://doi.org/10.1063/1.456408
https://doi.org/10.1063/1.456408
https://doi.org/10.1021/acs.jpca.7b06052
https://doi.org/10.1002/(SICI)1097-461X(1996)60:1<157::AID-QUA17>3.0.CO;2-C
https://doi.org/10.1002/(SICI)1097-461X(1996)60:1<157::AID-QUA17>3.0.CO;2-C
https://doi.org/10.1039/c3cp51826d
https://doi.org/10.1021/jz301694b
https://doi.org/10.1021/jp050036j


BIBLIOGRAPHY 61

[35] D. Hait and M. Head-Gordon. “How accurate are static polarizability predictions from
density functional theory? An assessment over 132 species at equilibrium geometry”.
In: Phys. Chem. Chem. Phys. 20 (2018), pp. 19800–19810. doi: 10.1039/c8cp03569e.

[36] D. Hait and M. Head-Gordon. “How accurate is density functional theory at predicting
dipole moments? An assessment using a new database of 200 benchmark values”. In:
J. Chem. Theory Comput. 14 (2018), pp. 1969–1981. doi: 10.1021/acs.jctc.

7b01252.

[37] Nicholas C. Handy and Henry F. Schaefer. “On the evaluation of analytic energy
derivatives for correlated wave functions”. In: J. Chem. Phys. 81.11 (1984), pp. 5031–
5033. issn: 00219606. doi: 10.1063/1.447489.

[38] M. Head-Gordon. In: Mol. Phys. 96 (1999), p. 673. doi: 10.1080/00268979909483003.

[39] Martin Head-Gordon, Paul E Maslen, and Christopher A White. “A tensor formula-
tion of many-electron theory in a nonorthogonal single-particle basis”. In: The Journal
of chemical physics 108.2 (1998), pp. 616–625.

[40] A Leif Hickey and Christopher N Rowley. “Benchmarking quantum chemical methods
for the calculation of molecular dipole moments and polarizabilities”. In: J. Phys.
Chem. A 118.20 (2014), pp. 3678–3687.

[41] P. R. Horn and M. Head-Gordon. “Polarization contributions to intermolecular inter-
actions revisited with fragment electric-field response functions”. In: J. Chem. Phys.
143 (2015), p. 114111. doi: 10.1063/1.4930534.

[42] P. R. Horn, Y. Mao, and M. Head-Gordon. “Defining the contributions of permanent
electrostatics, Pauli repulsion, and dispersion in density functional theory calculations
of intermolecular interaction energies”. In: J. Chem. Phys. 144 (2016), p. 114107. doi:
10.1063/1.4942921.

[43] P. R. Horn, Y. Mao, and M. Head-Gordon. “Probing non-covalent interactions with a
second generation energy decomposition analysis using absolutely localized molecular
orbitals”. In: Phys. Chem. Chem. Phys. 18 (2016), pp. 23067–23079. doi: 10.1039/
C6CP03784D.

[44] P. R. Horn et al. “Unrestricted absolutely localized molecular orbitals for energy de-
composition analysis: theory and applications to intermolecular interactions involving
radicals”. In: J. Chem. Phys. 138 (2013), p. 134119. doi: 10.1063/1.4798224.
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