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Angular distributions in the decay B ! K�lþl�
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We use a sample of 384� 106 B �B events collected with the BABAR detector at the PEP-II eþe�

collider to study angular distributions in the rare decays B ! K�‘þ‘�, where ‘þ‘� is either eþe� or

�þ��. For low dilepton invariant masses, m‘‘ < 2:5 GeV=c2, we measure a lepton forward-backward

asymmetry AFB ¼ 0:24þ0:18
�0:23 � 0:05 and K� longitudinal polarization FL ¼ 0:35� 0:16� 0:04. For

m‘‘ > 3:2 GeV=c2, we measure AFB ¼ 0:76þ0:52
�0:32 � 0:07 and FL ¼ 0:71þ0:20

�0:22 � 0:04.
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The decaysB ! K�‘þ‘�, whereK� ! K� and ‘þ‘� is
either an eþe� or �þ�� pair, arise from flavor-changing
neutral currents (FCNC), which are forbidden at tree level
in the standard model (SM). The lowest-order SM pro-
cesses contributing to these decays are the photon or Z
penguin and theWþW� box diagrams shown in Fig. 1. The
amplitudes can be expressed in terms of effective Wilson
coefficients for the electromagnetic penguin, Ceff

7 , and the
vector and axial-vector electroweak contributions, Ceff

9 and

Ceff
10 , respectively, arising from the interference of the Z

penguin and WþW� box diagrams [1]. The angular dis-
tributions in these decays as a function of dilepton mass
squared q2 ¼ m2

‘þ‘� are sensitive to many possible new

physics contributions [2].
We describe measurements of the distribution of the

angle �K between the K and the B directions in the K�
rest frame. A fit to cos�K of the form [3]

3
2FLcos

2�K þ 3
4ð1� FLÞð1� cos2�KÞ (1)

determines FL, the K� longitudinal polarization fraction.
We also describe measurements of the distribution of the
angle �‘ between the ‘þð‘�Þ and the Bð �BÞ direction in the
‘þ‘� rest frame. A fit to cos�‘ of the form [3]

3
4FLð1� cos2�‘Þ þ 3

8ð1� FLÞð1þ cos2�‘Þ þAFB cos�‘

(2)

determines AFB, the lepton forward-backward asymme-
try. These measurements are done in a low q2 region 0:1<
q2 < 6:25 GeV2=c4, and in a high q2 region above
10:24 GeV2=c4. We remove the J=c and c ð2SÞ reso-
nances by vetoing events in the regions q2 ¼
6:25–10:24 GeV2=c4 and q2 ¼ 12:96–14:06 GeV2=c4

respectively.
The SM predicts a distinctive variation of AFB arising

from the interference between the different amplitudes.
The expected SM dependence of AFB and FL on q2 along
with variations due to opposite-signWilson coefficients are
shown in Fig. 3. At low q2, where Ceff

7 dominates, AFB is
expected to be small with a zero-crossing point at q2 �
4 GeV2=c4 [4–6]. There is an experimental constraint on
the magnitude of Ceff

7 coming from the branching fraction
for b ! s� [6,7], which corresponds to the limit q2 ! 0.
However, a reversal of the sign of Ceff

7 is allowed. At high

q2, the product of Ceff
9 and Ceff

10 is expected to give a large

positive asymmetry. Right-handed weak currents have an
opposite-signCeff

9 Ceff
10 which would give a negativeAFB at

high q2. Contributions from non-SM processes can change
the magnitudes and relative signs of Ceff

7 , Ceff
9 and Ceff

10 , and

may introduce complex phases between them [3,8]. An
experimental determination of FL is required to obtain a
model-independent AFB result, and thus avoid drawing
possibly incorrect inferences about new physics from our
observations.
We reconstruct signal events in six separate flavor-

specific final states containing an eþe� or �þ�� pair,
and a K�ð892Þ candidate reconstructed as Kþ��, Kþ�0 or
K0

S�
þ (or their charge conjugates). To understand combi-

natorial backgrounds we also reconstruct samples contain-
ing the same hadronic final states and e��� pairs, where
no signal is expected because of lepton-flavor conserva-
tion. To understand backgrounds from hadrons (h) mis-
identified as muons, we similarly reconstruct samples
containing h��� pairs with no particle identification re-
quirement for the h�.
We use a data set of 384� 106 B �B pairs collected at the

�ð4SÞ resonance with the BABAR detector [9] at the PEP-II
asymmetric-energy eþe� collider. Tracking is provided by
a five-layer silicon vertex tracker and a 40-layer drift
chamber in a 1.5 T magnetic field. We identify electrons
with a CsI(Tl) electromagnetic calorimeter, muons with an
instrumented magnetic flux return, andKþ using a detector
of internally reflected Cherenkov light as well as ionization
energy loss information. Charged tracks other than identi-
fied e, � and K candidates are treated as pions. Electrons
(muons) are required to have momenta p >
0:3ð0:7Þ GeV=c in the laboratory frame. We add photons
to electrons when they are consistent with bremsstrahlung,
and do not use electrons that arise from photon conversions
to low-mass eþe� pairs. Neutral K0

S ! �þ�� candidates

are required to have an invariant mass consistent with the
nominal K0 mass [10], and a flight distance from the eþe�
interaction point which is more than 3 times its uncertainty.
Neutral pion candidates are formed from two photons with
E� > 50 MeV, and an invariant mass between 115 and

155 MeV=c2. We require K�ð892Þ candidates to have an
invariant mass 0:82<MðK�Þ< 0:97 GeV=c2.
B ! K�‘þ‘� decays are characterized by the kinematic

variables mES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s=4� p�2
B

q

and �E ¼ E�
B � ffiffiffi

s
p

=2,

where p�
B and E�

B are the reconstructed B momentum and
energy in the center-of-mass (CM) frame, and

ffiffiffi

s
p

is the
total CM energy. We define a fit regionmES > 5:2 GeV=c2,
with �0:07<�E< 0:04ð�0:04< �E< 0:04Þ GeV for
eþe� (�þ��) final states in the low q2 region, and
�0:08<�E< 0:05ð�0:05< �E< 0:05Þ GeV for high
q2. We use the wider (narrower) �E windows to select
the e��� (h���) background samples.
The most significant background arises from random

combinations of leptons from semileptonic B and D de-

q q

b st,c,u

W −

γ , Z

l +

l −

q q

b st,c,u

W +W − ν

l − l +

FIG. 1. Lowest-order Feynman diagrams for b ! s‘þ‘�.
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cays. In B �B events the leptons are kinematically correlated

if they come from B ! Dð�Þ‘�, D ! Kð�Þ‘�. Uncorrelated
backgrounds combine leptons from separate B decays or
from continuum eþe� ! c �c events. We suppress these
types of combinatorial background through the use of
neural networks (NN). For each final state we use four
separate NN designed to suppress either continuum or B �B
backgrounds in either the low or high q2 regions, and
different selections of NN inputs are used depending on
q2 bin (low, high), the identity of the leptons in the final
state (e, �), and the type of background (B �B, continuum).
Inputs include:

(i) event thrust;
(ii) ratio of second-to-zeroth Fox-Wolfram moments

[11];
(iii) mES and �E of the rest of the event (ROE), compris-

ing all charged tracks and neutral energy deposits not
used to reconstruct the signal candidate;

(iv) the magnitude of the total event transverse momen-
tum, which is correlated with missing energy due to
unreconstructed neutrinos in background semilep-
tonic decays;

(v) dilepton system’s distance of closest approach along
the beam axis, and separately in the plane perpen-
dicular to the beam axis, to the primary interaction
point;

(vi) vertex probability of the signal candidate and, sepa-
rately, of the dilepton system;

(vii) the cosines in the CM frame of the angle between the
B candidate’s momentum and the beam axis, the
angle between the event thrust axis and the beam
axis (�thrust), the angle between the ROE thrust axis
and the beam axis (�ROEthrust), and the angle between

�ROEthrust and �thrust.
There is also a background contribution in the signal

region from B ! DðK��Þ� decays, where both pions are
misidentified. The misidentification rates for muons and
electrons are �2% and �0:1%, respectively, so this back-
ground is only significant in the �þ�� final states. These
events are vetoed if the invariant mass of theK�� system is
in the range 1:84–1:90 GeV=c2.

We optimize the NN and �E selections for each final
state in each q2 bin to give the best combined statistical
signal significance in the mES signal region mES >
5:27 GeV=c2 for the sum of all six final states. After all
these selections have been applied, the final reconstruction
efficiencies and expected yields for signal events (calcu-
lated using world average branching fractions [7]), as well
as expected yields for background events in the signal
region, are shown in Table I.

For each q2 region, we combine events from all six final
states and perform three successive unbinned maximum
likelihood fits. Because of the relatively small number of
signal candidates in each q2 region, a simultaneous fit over
mES, cos�K, and cos�‘ is unlikely to converge and a

sequential fitting procedure is required. We initially fit
the mES distribution using events with mES >
5:2 GeV=c2 to obtain the signal and background yields,
NS and NB, respectively. We use an ARGUS shape [12]
with a free shape parameter to describe the combinatorial
background in this fit. For the signal, we use a Gaussian
shape with a mean mES ¼ 5:2791� 0:0001 GeV=c2 and
� ¼ 2:60� 0:03 MeV=c2, which are determined from a
fit to the vetoed charmonium samples. In this and subse-
quent fits we account for a small contribution from mis-
identified hadrons by subtracting the K�h��� events,
weighted by the probability for the h� to be misidentified
as a muon. We also account in all fits for charmonium
events that escape the veto, and for misreconstructed signal
events. We estimate contributions from nonresonant K�
decays by fitting events outside the K� mass window in the
range 0:7–1:1 GeV=c2. We find no signal-like events that
are not accounted for by the tails of the resonant mass
distribution, and thus do not expect any significant contri-
bution from nonresonant events within the mass window.
The second fit is to the cosine of the helicity angle of the

K� decay, cos�K, for events with mES > 5:27 GeV=c2. In
this fit, the only free parameter is FL, with the normal-
izations for signal and combinatorial background events
taken from the initial mES fit. The background normaliza-
tion is obtained by integrating, for mES > 5:27 GeV=c2,
the ARGUS shape resulting from themES fit. We model the
cos�K shape of the combinatorial background using eþe�
and�þ�� events, as well as lepton-flavor violating eþ��
and �þe� events, in the 5:20<mES < 5:27 GeV=c2 side-
band. The signal distribution given in Eq. (1) is folded with
the detector acceptance as a function of cos�K, which is
obtained from simulated signal events.
The final fit is to the cosine of the lepton helicity angle,

cos�‘, for events with mES > 5:27 GeV=c2. The only free
parameter in this fit is AFB, with the signal distribution
given in Eq. (2) folded with the detector acceptance as a
function of cos�‘. In this fit, the value of FL is fixed from
the result of the second fit, and normalizations for signal
and combinatorial background events are identical to those
used in the second fit. We constrain the cos�‘ shape of the

TABLE I. Signal efficiencies (%), and expected signal and
background yields for mES > 5:27 GeV=c2, for low and high
q2 regions.

Signal Eff. Signal Yield Bkgd. Yield

Mode low high low high low high

Kþ�0�þ�� 1.6 3.1 1.0 1.8 0.7 3.8

K0
S�

þ�þ�� 3.6 5.5 3.0 4.5 0.3 1.4

Kþ���þ�� 4.5 8.1 5.5 9.6 0.0 3.1

Kþ�0eþe� 4.6 5.3 2.8 3.1 1.7 2.4

K0
S�

þeþe� 7.0 5.4 5.9 4.4 0.3 1.4

Kþ��eþe� 8.6 10.3 10.5 12.2 1.7 2.4

Total Yield 28.6 35.8 4.8 14.5
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combinatorial background using the same sideband
samples as for the cos�K fit. The correlated leptons from

B ! Dð�Þ‘�, D ! Kð�Þ‘� give rise to an mES-dependent
peak in the combinatorial background at cos�‘ > 0:7, and
we consider this correlation in our study of systematic
errors. No such correlation is observed for cos�K.

We test our fits using the large sample of vetoed char-
monium events. The branching fractions (BF) and K�
polarization for B ! J=cK� are well known [10,13], and
AFB is expected to be zero. The results of the fits to the six
final states are all consistent with expected values (see
Table II). We further test our methodology by performing
the mES and cos�‘ fits on a sample of Bþ ! Kþ‘þ‘�
decays. The results are given in Table III and are consistent
with negligible forward-backward asymmetry, as expected
in the SM and most new physics models [14].

We validate the fit model by performing ensembles of
fits to datasets with events drawn from simulated signal and
background event samples. The input SM values of FL and
AFB are reproduced with the expected statistical errors. A
few percent of the fits do not converge due to small signal
yields. We have also performed fits using signal events
generated with widely varying values of Ceff

7 , Ceff
9 , and Ceff

10

covering the physically allowed regions of FL and AFB,
and find minimal bias in our fits.

The systematic errors on the fitted values of FL andAFB

are summarized in Table IV. The uncertainties in the fitted
signal yields NS, due to variations in the ARGUS shape in
themES fits, are propagated into the angular fits. The errors
on the fitted FL values are propagated into the AFB fits.
We vary the combinatorial background shapes by dividing

the sideband sample into two disjoint regions in mES. We
vary the signal model using simulated events generated
with different form factors [5,15], and with a range of
values of Ceff

7 , Ceff
9 , and Ceff

10 , to determine an average fit

bias. Finally, the modeling of misreconstructed signal
events is constrained by the fits to the charmonium samples
(Table II), where it is the largest systematic uncertainty.
The final fits to theK�‘þ‘� samples are shown in Fig. 2.

The results for FL and AFB are given in Table III and are
shown in Fig. 3. In the low q2 region, where we expect

TABLE II. Results for the B ! J=cK� control samples. �BF
are the differences between the measured branching fractions
and the world average value [10]. The previously measured
FL ¼ 0:56� 0:01 [13], and the expected AFB ¼ 0.

Mode �BF (10�3) FL AFB

Kþ�0�þ�� þ0:09� 0:12 0:54� 0:03 �0:04� 0:05
K0

S�
þ�þ�� þ0:02� 0:11 0:55� 0:02 þ0:00� 0:05

Kþ���þ�� �0:03� 0:07 0:56� 0:02 �0:02� 0:02
Kþ�0eþe� þ0:16� 0:10 0:54� 0:03 þ0:02� 0:03
K0

S�
þeþe� þ0:07� 0:10 0:55� 0:02 �0:02� 0:04

Kþ��eþe� þ0:02� 0:07 0:56� 0:02 þ0:01� 0:02

TABLE III. Results for the fits to the K‘þ‘� and K�‘þ‘�
samples. NS is the number of signal events in the mES fit. The
quoted errors are statistical only.

Decay q2 NS FL AFB

K‘þ‘� low 26:0� 5:7 þ0:04þ0:16
�0:24

high 26:5� 6:7 þ0:20þ0:14
�0:22

K�‘þ‘� low 27:2� 6:3 0:35� 0:16 þ0:24þ0:18
�0:23

high 36:6� 9:6 0:71þ0:20
�0:22 þ0:76þ0:52

�0:32

TABLE IV. Systematic errors on the measurements of FL and
AFB in the K�‘þ‘� samples.

Source of error FL AFB

low q2 high q2 low q2 high q2

mES fit yields 0.001 0.016 0.003 0.002

FL fit error 0.025 0.022

Background shape 0.011 0.008 0.017 0.021

Signal model 0.036 0.034 0.030 0.038

Fit bias 0.012 0.020 0.023 0.052

Misreconstructed signal 0.010 0.010 0.020 0.020

Total 0.041 0.044 0.052 0.074
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FIG. 2 (color online). K�‘þ‘� fits: (a) low q2 mES, (b) high q
2

mES, (c) low q2 cos�K, (d) high q2 cos�K, (e) low q2 cos�‘,
(f) high q2 cos�‘; with combinatorial (dotted line) and peaking
(long dashed line) background, signal (short dashed line) and
total (solid line) fit distributions superimposed on the data points.
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AFB ��0:03 and FL � 0:63 from the SM, we measure
AFB ¼ 0:24þ0:18

�0:23 � 0:05 and FL ¼ 0:35� 0:16� 0:04,
where the first error is statistical and the second is system-
atic. In the high q2 region, the SM expectation is AFB �
0:38 and FL � 0:40, and we measure AFB ¼ 0:76þ0:52

�0:32 �

0:07 and FL ¼ 0:71þ0:20
�0:22 � 0:04, with a signal yield of

36:6� 9:6 events. Theoretical uncertainties on the ex-
pected SM FL and AFB values are generally difficult to
characterize in the high q2 region, and although under
better control for 1< q2 < 6 GeV2=c4, the extension of
our low q2 region below 1 GeV2=c4 makes estimates of
uncertainties there difficult also. The quoted values are
obtained using our implementation of the physics models
described in [4,15], corresponding to the SM curves in
Fig. 3.
The expected SM value of Ceff

10 at next-to-next-to-

leading logarithmic (NNLL) order is Ceff
10 ¼ �4:43 [16].

A more recent NNLL calculation which evaluates contri-
butions from the full set of seven form factors gives Ceff

10 ¼
�4:13 [17]. The magnitude of possible contributions from
new physics to C10 can be constrained if AFB > 0 at high
q2. By combining such a constraint onAFB with inclusive
b ! s‘þ‘� branching fraction results, an upper bound of
jCNP

10 j & 7 can be obtained, improving on an upper bound

derived solely from branching fraction results of jCNP
10 j &

10 [18]. Our results are consistent with measurements by
Belle [19], and replace the earlier BABAR results in which
only a lower limit on AFB was set in the low q2 region
[20].
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