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Abstract

Summary: SWEEPFINDER is a widely used program that implements a powerful likelihood-based

method for detecting recent positive selection, or selective sweeps. Here, we present SWEEPFINDER2,

an extension of SWEEPFINDER with increased sensitivity and robustness to the confounding effects of

mutation rate variation and background selection. Moreover, SWEEPFINDER2 has increased flexibility

that enables the user to specify test sites, set the distance between test sites and utilize a recombin-

ation map.

Availability and implementation: SWEEPFINDER2 is a freely-available (www.personal.psu.edu/mxd60/

sf2.html) software package that is written in C and can be run from a Unix command line.

Contact: mxd60@psu.edu

1 Introduction

Polymorphism frequency spectra provide sensitive statistics for iden-

tifying signatures of positive selection. SWEEPFINDER (Nielsen et al.,

2005) is a widely used program (Li et al., 2011; Pavlidis et al., 2010;

Svetec et al., 2009; Williamson et al., 2007) that uses an empirical

background frequency spectrum for identifying genomic sites af-

fected by recent positive selection. Specifically, SWEEPFINDER per-

forms a composite likelihood ratio test for positive selection (Kim

and Stephan, 2002), in which the likelihood of the null hypothesis is

calculated from the neutral (or genome-wide) frequency spectrum,

and the likelihood of the alternative hypothesis is calculated from a

model in which the neutral spectrum was altered by a recent select-

ive sweep.

Footprints of positive selection can be confounded by other evo-

lutionary forces. One important confounding factor that is rarely

considered in the studies of positive selection is background selec-

tion, which is a loss of neutral variation due to purging of linked

deleterious alleles by negative selection (Charlesworth, 2012;

Charlesworth et al., 1993; Hudson and Kaplan, 1995a). Recent

studies have shown that background selection is ubiquitous in

humans (Lohmueller et al., 2011; McVicker et al., 2009; Wilson

Sayres et al., 2014), with estimates of mean reductions in genetic

diversity due to background selection ranging from 19 to 26% and

12 to 40% on autosomes and the X chromosome, respectively

(McVicker et al., 2009). Thus, the influence of background selection

on genetic diversity has important ramifications for making infer-

ences about past adaptive processes from patterns of diversity. In

particular, when a beneficial allele is carried to fixation by positive

selection, there is a substantial decrease in diversity locally in the

genome and a reduction in diversity relative to divergence with other

species, both of which can span megabases in length (Maynard

Smith and Haigh, 1974). Background selection can similarly affect

diversity levels (Akashi et al. 2012; Boyko et al., 2008;

Charlesworth, 2012; Charlesworth et al., 1993 1995; Hudson and

Kaplan, 1995a,b; McVean and Charlesworth, 2000; Nordborg

et al., 1996), particularly in regions of low recombination.
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Because patterns of background selection can mimic those of

positive selection, methods for identifying signatures of positive se-

lection that are based on diversity reduction alone may be con-

founded by background selection. These conflicting signals have

likely contributed to a current debate of the role of recent positive

selection in shaping the landscape of human genetic variation (Akey,

2009; Enard et al., 2014; Granka et al., 2012; Hawks et al., 2007,

Hernandez et al., 2011; Lohmueller et al., 2011; Williamson et al.,

2007), emphasizing the need for methods that can identify sweeps

while accounting for background selection. Further, because the ef-

fects of background selection may be pronounced in regions of low

recombination, it is important that methods jointly account for

background selection and local recombination rate, which is also ex-

pected to affect patterns of a selective sweep.

2 SWEEPFINDER2

SWEEPFINDER2, which is based on the statistical framework of

SWEEPFINDER (Nielsen et al., 2005), jointly accounts for background

selection and local recombination rate by modeling the effect of

background selection on genetic diversity. It does this by modifying

the neutral derived frequency spectrum with respect to B-values and

by including invariant sites (specifically substitutions), as introduced

by Huber et al. (2015). B-values range from 0 to 1 and are propor-

tional to local reductions in genetic diversity or effective population

size due to background selection. McVicker et al. (2009) provide a

method for inferring B-values using comparative data, thereby pro-

viding an opportunity for separating background selection from the

effect of selective sweeps inferred from within-population poly-

morphism data. Because background selection reduces diversity by a

factor B, we multiply each polymorphic frequency class (i.e. allele

counts 1, 2, . . . , n�1 in a sample of n) by B, as shown in Figure 1A

(Huber et al., 2015). Furthermore, because background selection af-

fects diversity relative to divergence with another species, we scale

the fixed difference class (i.e. allele count n), and then renormalize

the frequency spectrum to sum to 1 (Fig. 1A). Note that this effect

depends on the current and ancestral population sizes, as well as on

the divergence time in generations between the pair of species.

Further, our correction is a first-order approximation, as back-

ground selection can alter the frequency spectrum in other ways

(e.g. Charlesworth et al., 1993, 1995; Nicolaisen and Desai, 2013;

Seger et al., 2010). This point is exemplified by empirical results

indicating that diversity reduction in regions with low recombin-

ation rates is less than expected under simple models of background

selection (e.g. Kaiser and Charlesworth, 2009), though our ap-

proach is conservative under this scenario. Figure 1B illustrates how

this procedure modifies the neutral frequency spectrum, such that

diversity decreases and the proportion of fixed differences increases

with increasing effect of background selection (i.e. decreasing

B-value).

Our method detects selective sweeps in regions under back-

ground selection by scaling the neutral frequency spectrum locally in

the genome by estimated B-values (Fig. 1), using the scaled spectrum

in the null hypothesis, and the spectrum under a model of a selective

sweep (accounting for local recombination rate) in the alternative

hypothesis (Huber et al., 2015). Regions with reductions in diversity

and low B-values show little evidence of selective sweeps under this

test because frequency spectra under the null and alternative hypoth-

eses are similar (Fig. 1C). However, regions with reductions in diver-

sity and relatively high B-values may provide evidence of recent

selective sweeps, because frequency spectra under the alternative hy-

pothesis will exhibit lower diversity than those under the null

hypothesis. In addition, recent positively-selected alleles within

regions undergoing background selection can still be detected

(Fig. 1D). Furthermore, changes in B-values across the genome can

be incorporated by modifying frequency spectra to preserve the spa-

tial structure in genetic variation leveraged by SWEEPFINDER. While

B-value maps are currently available only for humans (McVicker

et al., 2009) and Drosophila melanogaster (Comeron, 2014), the

methodology introduced by McVicker et al. can be employed to gen-

erate maps for other species.

SWEEPFINDER2 is the first method that accounts for the effects of

negative selection on diversity when searching for adaptive alleles.

In addition, it incorporates novel features that provide the user with

increased flexibility, such as the ability to specify a set of test sites,

set distances between test sites and employ a recombination map.

Thus, our new composite likelihood ratio test generalizes the one

implemented in SWEEPFINDER (Nielsen et al., 2005), and provides a

substantial improvement in power and flexibility to the popular

SWEEPFINDER software.

Conflict of Interest: none declared.
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