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RESEARCH ARTICLE Open Access

Limited role of DWI with apparent diffusion
coefficient mapping in breast lesions
presenting as non-mass enhancement on
dynamic contrast-enhanced MRI
Daly Avendano1,2†, Maria Adele Marino1,3†, Doris Leithner1,4, Sunitha Thakur5, Blanca Bernard-Davila1,
Danny F. Martinez1, Thomas H. Helbich6, Elizabeth A. Morris1, Maxine S. Jochelson1, Pascal A. T. Baltzer6,
Paola Clauser6, Panagiotis Kapetas6 and Katja Pinker1,6*

Abstract

Background: Available data proving the value of DWI for breast cancer diagnosis is mainly for enhancing masses;
DWI may be less sensitive and specific in non-mass enhancement (NME) lesions. The objective of this study was to
assess the diagnostic accuracy of DWI using different ROI measurement approaches and ADC metrics in breast
lesions presenting as NME lesions on dynamic contrast-enhanced (DCE) MRI.

Methods: In this retrospective study, 95 patients who underwent multiparametric MRI with DCE and DWI from
September 2007 to July 2013 and who were diagnosed with a suspicious NME (BI-RADS 4/5) were included.
Twenty-nine patients were excluded for lesion non-visibility on DWI (n = 24: 12 benign and 12 malignant) and poor
DWI quality (n = 5: 1 benign and 4 malignant). Two readers independently assessed DWI and DCE-MRI findings in
two separate randomized readings using different ADC metrics and ROI approaches. NME lesions were classified as
either benign (> 1.3 × 10−3 mm2/s) or malignant (≤ 1.3 × 10−3 mm2/s). Histopathology was the standard of reference.
ROC curves were plotted, and AUCs were determined. Concordance correlation coefficient (CCC) was measured.

Results: There were 39 malignant (59%) and 27 benign (41%) lesions in 66 (65 women, 1 man) patients (mean age,
51.8 years). The mean ADC value of the darkest part of the tumor (Dptu) achieved the highest diagnostic accuracy,
with AUCs of up to 0.71. Inter-reader agreement was highest with Dptu ADC max (CCC 0.42) and lowest with the
point tumor (Ptu) ADC min (CCC = − 0.01). Intra-reader agreement was highest with Wtu ADC mean (CCC = 0.44 for
reader 1, 0.41 for reader 2), but this was not associated with the highest diagnostic accuracy.

Conclusions: Diagnostic accuracy of DWI with ADC mapping is limited in NME lesions. Thirty-one percent of
lesions presenting as NME on DCE-MRI could not be evaluated with DWI, and therefore, DCE-MRI remains
indispensable. Best results were achieved using Dptu 2D ROI measurement and ADC mean.
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Background
Although dynamic contrast-enhanced magnetic reson-
ance imaging (DCE-MRI) of the breast is the most sensi-
tive method for the detection of breast cancer, it is
limited in assessing the likelihood of malignancy for
non-mass enhancement (NME) breast lesions [1–5],
resulting in unnecessary breast biopsies [6–9]. With ad-
vances in imaging techniques and hardware, such as bet-
ter gradient systems and multichannel coils, DWI with
ADC mapping has emerged as the most robust and reli-
able adjunct to DCE-MR with reported sensitivities of
up to 96% and specificities of up to 100% for their com-
bination [4, 10–13]. In addition, with recent concerns
about the safety of gadolinium-containing contrast
agents [14], DWI with ADC mapping has been sug-
gested as an alternative unenhanced technique for breast
cancer screening and diagnosis [15–19]. However, the
majority of the available data for DWI is for enhancing
masses, and concerns remain that DWI may be less sen-
sitive and specific in the assessment of NME lesions
[20]. Additionally, while it has been shown that a 2D re-
gion of interest (ROI) ADC measurement approach in
the enhancing tumor with the visually assessed lowest
ADC is the most practical and diagnostically accurate
measurement in mass lesions [21–23], the best and most
reliable measurement in NME lesions remains unclear.
To close these gaps in knowledge, the aim of this study
was to assess the diagnostic accuracy of DWI using dif-
ferent ROI measurement approaches and ADC metrics
in breast lesions presenting as NME lesions on DCE-
MRI and to assess inter-reader agreement and repeat-
ability of ADC measurements.

Methods
The local institutional review board approved this pro-
spective single-institution study (EK 510/2009) and
retrospective data analysis. The research was performed
in accordance with relevant guidelines/regulations, and
informed consent was obtained from all patients prior to
multiparametric MRI of the breast.

Patients
A prospectively and consecutively populated research
database was searched for patients who underwent mul-
tiparametric MRI of the breast with DCE and DWI be-
tween September 2007 and July 2013 and who fulfilled
the following inclusion criteria: 18 years or older; not
pregnant; not breastfeeding; no previous breast cancer
treatment; presence of NME (BI-RADS 4–5) on DCE-
MRI suspicious according to BI-RADS lexicon, i.e., uni-
lateral with segmental, focal, or linear distribution; and
no contraindications for MRI or MRI contrast agents.
Patients underwent breast MRI to evaluate the following
conditions: (a) equivocal findings on conventional

imaging (BIRADS 0), (b) suspicious lesions or lesions
highly suggestive of malignancy on conventional imaging
(BIRADS 4 and 5), and (c) preoperative staging of
biopsy-proven breast cancer (BI-RADS 6).
We identified 95 patients who fulfilled these criteria.

Of these, 29 patients were excluded for the following
reasons: (a) lesion not visible on DWI and ADC map
(n = 24: 12 benign and 12 malignant) and (b) poor DWI
quality (n = 5: 1 benign and 4 malignant). Among the le-
sions that were not visible on DWI, there were 8/12
ductal carcinomas in situ (DCIS), 3/12 invasive lobular
carcinomas (ILC), and 1/12 invasive ductal carcinomas
(IDC). Among the lesions with poor DWI quality, there
were 2/4 DCIS and 2/4 IDC.
Therefore, 66 patients were included for analysis. Pa-

tient selection is detailed in Fig. 1. Electronic medical re-
cords were reviewed to record patient age as well as
histopathology results which included tumor grade, sub-
type, and receptor status for malignant lesions.
A number of patients included in this study have been

analyzed and reported before in a different context [6].
In the prior study, the authors developed a BI-RADS®-
adapted reading for multiparametric MRI of the breast
using DCE-MRI and DWI that adapted ADC thresholds
to the assigned BI-RADS® classification and assessed the
diagnostic value of this BI-RADS®-adapted reading by an
objective comparison with previously published assess-
ment methods in patients with both mass (n = 255) and
NME (n = 36) breast lesions.
The current study includes a larger patient number

and focuses solely on the diagnostic value of DWI in
NME lesions, including the 36 NME breast lesions that
have been reported before.

Magnetic resonance imaging technique
All patients underwent 3 T MRI (Tim Trio, Siemens, Er-
langen, Germany) in the prone position using a 4-channel
breast coil (In Vivo, Orlando, FL, USA). In premenopausal
women, MRI was performed in the second week of the
menstrual cycle. Details on the MRI protocol have been
previously published [24]. The DWI protocol included
axial three-acquisition trace diffusion-weighted, double-
refocused, single-shot echo-planar imaging with inversion
recovery fat suppression (TR/TE/TI 13,700/83/220ms;
FOV 340 × 117mm; 40 slices at 3.5 mm; matrix 192 × 64
(50% oversampling); two b values of 50 and 850 s/mm2;
bandwidth 1446Hz/pixel; 3:19min).

Data analysis
Two breast radiologists (DA, MAM), each with more
than 3 years of experience in interpretation of breast
MRI, independently evaluated the DW images and cor-
responding ADC maps. Both readers were aware that
patients had a breast lesion, but they were not provided
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with previous imaging or histopathological results. Each
reader performed all the readings twice, with a washout
period of at least 3 weeks.
All Digital Imaging and Communications in Medicine

(DICOM) images were loaded onto the open-source
image processing tool OSIRIX (OsiriX Foundation, Geneva,
Switzerland). The readers evaluated the lesions on both
DW images and ADC maps and then recorded mean
ADC values on ADC maps using three measurement ap-
proaches: (a) whole tumor (Wtu) ROI, (b) darkest part
(Dptu) tumor 10mm ROI, and (c) point tumor (Ptu) 3
mm ROI. For Wtu delineation, the readers segmented the
entire 3D volume of the lesion by contouring the borders
for each slice. For Dptu delineation, the readers used a 10-
mm 2D ROI in the visually darkest (i.e., most suspicious)
region of the enhancing tumor [9]. A similar approach
was used for Ptu delineation by placing a 2D ROI point
tool on the darkest part of the lesion (Fig. 2).
The mean, minimum, and maximum ADC values were

recorded for Wtu and Dptu while only one ADC value
was obtained for the Ptu.
A threshold of 1.3 × 10−3 mm2/s for the ADC value

was used as the cutoff for the differentiation between

benign (> 1.3 × 10−3 mm2/s) and malignant (≤ 1.3 × 10−3

mm2/s) lesions [11, 25, 26].

Histopathology
Histopathological diagnosis was established using image-
guided needle biopsy or surgery no later than 1 week after
MRI. In the case of a benign diagnosis at image-guided
needle biopsy, the final diagnosis was benign. In the case
of a high-risk lesion with uncertain potential for malig-
nancy, the final diagnosis was established with surgery.

Statistical analysis
All calculations were performed on a per-lesion basis.
Univariate analysis was performed. Differences in imaging
features between malignant and benign lesions were
assessed using the Wilcoxon signed-rank test. ROC curves
were plotted, and the area under the curve (AUC) was de-
termined. p values of ≤ 0.5 were considered significant.
To assess intra- and inter-reader agreement, concordance

correlation coefficient (CCC) was used on the continuous
measures (ADC values) obtained by the two independent
readers. The CCC provides a measure of both precision and
accuracy in relation to the line of perfect concordance (45°

Fig. 1 The scheme summarizes the data selection criteria of our study inclusion and exclusion criteria. BI-RADS, Breast Imaging Reporting and
Data System; DCIS, ductal carcinoma in situ; DWI, diffusion-weighted imaging; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma;
NME: non-mass enhancement
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line on a scatterplot). The better the agreement between the
two readers for the parameter, the closer the coefficient will
be to 1. The Bland–Altman assessment was used to compare
the absolute difference as a percentage of the average of
reads, including 95% limits of agreement.

Results
Lesions characteristics
There were 66 lesions in 66 patients (65 women, 1
man; mean age 51.8 ± 10.8 years (range 26–76 years),
Table 1). Histopathology revealed 39 malignant (59%)
and 27 benign (41%) lesions. The mean size of all

lesions, as measured on DCE-MRI, was 27.8 ± 18.3
mm (range 5–80 mm).
All lesions were seen on both sequences DW images

and ADC map.
For a detailed description of the histopathological

diagnosis and mean lesion size, see Table 2.

Differentiation of benign and malignant breast tumors
Results show that the diagnostic accuracy of DWI with
ADC mapping is limited in lesions presenting as NME
lesions on DCE-MRI regardless of the ROI measurement
approach and different ADC metrics used. The Dptu

Fig. 2 Invasive ductal carcinoma, grade 2, in a 47-year-old patient undergoing preoperative MRI. Apparent diffusion coefficient (ADC), axial views
(a–c). The images show a hypointense area of restricted diffusion in the central part of the right breast. Examples of the three methods used to
measure the ADC values: a whole tumor delineation, b darkest part of the tumor delineation, and c point tumor delineation. The three regions of
interest show low ADC values < 1.3 × 10−3 mm2/s indicating that the enhancement is highly suspicious of malignancy (Breast Imaging Reporting
and Data System 5)
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ADC mean measurement approach most consistently
showed differences in the ADC values of benign and ma-
lignant with the best AUC of 0.71 (Fig. 3).
Several ROI placement approaches were found to yield

lower ADC values for malignant NME breast lesions than
for benign NME breast lesions for at least one reader in one
reading: Wtu ADC max (reading 1, reader 1, p= 0.01), Dptu
ADC max (reading 2, reader 1, p= 0.08), Wtu ADC mean
(reading 2, reader 2, p= 0.02), Wtu ADC min (reading 2,
reader 2, p= 0.03), Dptu ADC min (reading 2, reader 2, p=
0.02), and Ptu ADC mean (reading 2, reader 2, p= 0.001).
ADC values for all lesions and p values for the three

different ROI placement approaches, stratified by benign
and malignant histopathological diagnosis, are shown in
Table 3. The AUC derived from both readers for the dif-
ferentiation between benign and malignant NME breast
lesions and readings for all measurement approaches are
summarized in Table 4. ROC curves are provided in
Additional file 1: Figure S1, Additional file 2: Figure S2,
and Additional file 3: Figure S3).

Inter- and intra-reader agreement
Inter- and intra-reader agreement in assessing ADC
values was generally fair to moderate (Table 5 and
Table 6). Inter-reader agreement was highest for Dptu
ADC max (CCC = 0.420) and lowest for Ptu ADC min
(CCC = − 0.014). Although both readers achieved the
best intra-reader agreement with the Wtu measurement
approach (CCC = 0.435 for reader 1, 0.412 for reader 2),
this was not the most diagnostic accurate ADC measure-
ment approach.
The Bland–Atman plots for measured parameters are

provided in Additional file 4: Figure S4, Additional file 5:
Figure S5, and Additional file 6: Figure S6, showing the
percent differences of the measurements between the
two readers versus the average of the two readers’
measurements.

Discussion
The results of the current study show that the diagnostic
accuracy of DWI with ADC mapping is limited in

Table 1 Baseline characteristics of study population

N (%) Mean age (years) Standard deviation (SD) Range (years)

Total of the study population 66 (100) 51.8 ± 10.8 years 26–76

Women 65 (98.5) 51 ± 11.1 years 26–76

Men 1 (1.5) 67 – –

Premenopausal women 32 (49) 42 ± 6 years 26–49

Postmenopausal women 33 (51) 60 ± 7.5 years 50–76

Table 2 Detailed histopathological diagnosis of all malignant and benign non-mass enhancement lesions

Histopathology N (%) Mean size
(mm)

Standard deviation
(mm)

Range
(mm)

Non-mass enhancement lesions 66 (100) 40 25 5–98

Malignant 39/66
(59)

48.4 26 5–98

Ductal carcinoma in situ 4 (10) 33.5 33 7–89

Invasive ductal carcinoma 24 (62) 48 27 5–98

Invasive lobular carcinoma 9 (23) 56.5 20 25–85

IDC + DCIS 1 (2.5) 30 – –

IDC + LCIS 1 (2.5) 60 – –

Benign 27/66
(41)

28 18 5–80

FA/FAH 5 (19) 21.5 11 10–38

Adenosis, sclerosing adenosis, focal fibrosis, apocrine metaplasia, breast parenchyma,
fibrocystic changes

12 (44) 23 16 5–50

Papilloma 1 (4) 45 – –

High-risk (CCC with atypia, papilloma with atypia) 2 (7) 42 3 40–44

Other (chronic abscess, gynecomastia, fat necrosis, scar tissue) 7 (26) 33.5 24 6–80

IDC invasive ductal carcinoma, ILC invasive lobular carcinoma, DCIS ductal carcinoma in situ, LCIS lobular carcinoma in situ, FA fibroadenoma, FAH fibro-
adenomatoid hyperplasia, CCC columnar cell changes
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lesions presenting as NME lesions on DCE-MRI regard-
less of the ROI measurement approach and different
ADC metrics used. Up to a third of NMEs cannot be
evaluated with DWI, and therefore, DCE-MRI is still in-
dispensable for detection and characterization of NME
lesions.
Previous studies investigated DWI with ADC mapping

for the assessment of breast lesions, mainly masses, and
only few NME with reported sensitivities of up to 96%
and specificities of up to 100% [10–13, 22, 27, 28]. To
the best of our knowledge, this is the largest cohort of
NME lesions with DCE and DWI reported so far and
our results confirm the suspicion that DWI with ADC

mapping performs less well for the differentiation of be-
nign and malignant breast lesions in NME lesions than
in mass lesions. Across ROI measurement approaches
and different ADC metrics used in this study, the diag-
nostic accuracy of DWI in NME lesion is moderate at
best with AUCs ranging between 0.467 and 0.736. The
Dptu ADC mean measurement approach seems to be
the diagnostically yielding consistently AUCs of 0.71. In
addition, it has to be noted that in our study, 31% (29/
95) of lesions presenting as NME lesions on DCE-MRI
could not be evaluated on DWI due to either non-
visibility (n = 24: 12 benign and 12 malignant) or poor
DWI quality (n = 5: 1 benign and 4 malignant). These

Fig. 3 Invasive lobular cancer in a 49-year-old, with biopsy-proven invasive lobular cancer, grade 2. a Dynamic contrast-enhancement MRI
maximum intensity projection of the left breast shows in the upper-outer quadrant, a 63-mm segmental area of non-mass enhancement, with
heterogeneous internal enhancement pattern. b Diffusion-weighted sequence at b 850 and c apparent diffusion coefficient (ADC) map. d Among
the three segmentation tools, the darkest part of the tumor (Dptu) 2D region of interest (ROI) proved to yield the highest diagnostic accuracy,
showing the lowest ADC values (Dptu ADC mean, 1.021 × 10−3 mm2/s; whole tumor ROI, 1.568 × 10−3 mm2/s; point tumor delineation
ROI, 1.029 × 10−3 mm2/s)

Table 3 ADC values for all lesions and p values for the three different ROI placement approaches

ADC metric (× 10−3 mm2/s) Benign (n = 27) Malignant (n = 39) Reading 1
(p values)

Benign (n = 27) Malignant (n = 39) Reading 2 (p
values)

Wtu ADC max (reader 1) 2.126 (0.254–2.988) 2.523 (198–4095) 0.01* 2.318 (1.930–3085) 2.311 (1.466–2.968) 0.66

Wtu ADC max (reader 2) 2.395 (1.881–3.568) 2.563 (1.620–4.095) 0.12 2.302 (1.552–3.069) 2.323 (1.649–2.974) 0.86

Wtu ADC mean (reader 1) 1.273 (0.118–1.898) 1.372 (0.129–2.668) 0.50 1.392 (1.004–1980) 1.281 (0.726–1.794) 0.19

Wtu ADC mean (reader 2) 1.377 (0.935–2028) 1.356 (0.846–2020) 0.68 1.462 (1.005–2.141) 1.273 (0.870–1.630) 0.02

Wtu ADC min (reader 1) 0.225 (0–1.671) 0.195 (0–1.071) 1 0.180 (0–0.731) 0.187 (0–1.188) 0.90

Wtu ADC min (reader 2) 0.137 (0–1.194) 0.099 (0–0.970) 0.11 0.356 (0–1.353) 0.140 (0–1.146) 0.03*

Dptu ADC max (reader 1) 1.654 (0.254–2.438) 1.607 (0.139–2.814) 0.60 1.711 (1.143–2.617) 1.469 (0–2.763) 0.08*

Dptu ADC max (reader 2) 1.702 (0.438–2.379) 1.494 (0.053–2.825) 0.02 1.721 (1.103–2.686) 1.501 (0.687–2.370) 0.03

Dptu ADC mean (reader 1) 1.249 (0.252–2.176) 1.201 (0.012–1.942) 0.85 1.306 (0.970–2.463) 1.122 (0.619–1.761) 0.048*

Dptu ADC mean (reader 2) 1.996 (0.303–2.009) 1.154 (0.044–2.363) 0.06* 1.442 (0.780–2.280) 1.183 (0.601–1.744) 0.004*

Dptu ADC min (reader 1) 0.824 (0–1.904) 0.913 (0–2.048) 0.17 0.916 (0–2.249) 0.818 (0–1.670) 0.35

Dptu ADC min (reader 2) 0.871 (0–2.059) 0.839 (0–1.994) 0.75 1.402 (0.120–9.191) 0.848 (0–1.476) 0.02

Ptu ADC mean (reader 1) 1.127 (0–1.946) 1.324 (0.200–6.876) 0.56 1.238 (0.470–1.963) 1.144 (0.540–2.174) 0.19

Ptu ADC mean (reader 2) 1.512 (0.281–10.005) 1.018 (0.284–1.942) 0.206 1.661 (0.808 10.003) 1.057 (0.496–1.571) 0.001*

ADC apparent diffusion coefficient, Wtu, whole tumor, Dptu darkest part of the tumor, Ptu point tumor
*Denotes a statistical significance
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non-visible lesions and lesions with poor DWI quality
comprised not only benign entities but also 6 invasive
breast cancers and 10 DCIS, highlighting that DWI
alone misses breast cancer and that DCE-MRI is still in-
dispensable for detection and characterization of NME
lesions. Our findings expand on prior data in smaller
NME series. Kul et al. [29] found that the effectiveness
of DWI using ADC mean was lower for NME lesions as
compared with masses and that the difference between
the ADCs of benign and malignant lesions was smaller
for NME lesions. Partridge et al. [30] reported that al-
though DWI using a Wtu measurement approach and
ADC mean is a promising tool for differential diagno-
sis for both masses and NME lesions, ADC measure-
ments may be more useful for discriminating benign
from malignant in masses than for discriminating le-
sions with NME enhancement. Recently, studies have
investigated intravoxel incoherent motion and quanti-
tative non-gaussian diffusion MRI [31–33]. It was
demonstrated that higher b values may be a way to
improve tumor-to-tissue contrast, lesion visibility, and
image quality of DWI for the detection and
characterization of breast tumors. However, to date,
none of these studies have specifically focused on the
diagnostically challenging NME lesions and the full
potential of use of higher b values for improving
diagnostic accuracy in NME lesions needs to be in-
vestigated in future studies.

We also aimed to answer the question of whether
ADC measurements and ROI approaches other than
those employed in prior studies may improve diagnostic
accuracy of DWI in NME lesions. We found that the
diagnostic accuracy of ADC measurements in NME le-
sions was significantly impacted by ROI choice and
placement. Dptu ADC mean most consistently showed
significant differences in ADC values of benign and ma-
lignant lesions, yielding the highest diagnostic accuracy.
However, other ROI measurement approaches as well as
different ADC metrics showed either less consistency
and/or diagnostic accuracy, indicating less practicality
for their clinical use. Our results are in agreement with
Bickel et al. [34], who studied the influence of ROI
placement and different ADC parameters on ADC
values, diagnostic performance, inter-reader agreement,
and measurement time in breast tumors, and who also
found that ADC in NME had a lower accuracy com-
pared with that achieved in mass lesions (AUC = 0.64–
0.73 vs. 0.96–0.97).
To the best of our knowledge, the inter- and intra-

reader agreement of different ADC measurement ap-
proaches and metrics for NME lesions have not been
reported. Our study shows that ADC measurements be-
tween and within readers were only slight to moderate
in agreement, which is not entirely unexpected in NME
lesions. The measurement approach that yielded the
highest diagnostic accuracy, i.e., Dptu, achieved only

Table 4 Area under the curve for both readers, both readings, all measurement approaches, and ADC metrics

Parameters Reading 1 Reading 2

R1 R2 R1 R2

Wtu ADC max 0.699 (p = 0.002)* 0.613 (p = 1.00) 0.467 (p = 0.65) 0.486 (p = 0.85)

Wtu ADC mean 0.549 (p = 0.51) 0.530 (p = 0.67) 0.596 (p = 0.17) 0.669 (p = 0.01)*

Wtu ADCmin 0.500 (p = 0.99) 0.599 (p = 0.67) 0.508 (p = 0.90) 0.646 (p = 0.02)*

Dptu ADC max 0.538 (p = 0.60) 0.667 (p = 0.02)* 0.628 (p = 0.07) 0.657 (p = 0.02)*

Dptu ADC mean 0.512 (p = 0.84) 0.638 (p = 0.05)* 0.644 (p = 0.03)* 0.709 (p = 0.001)*

Dptu ADC min 0.599 (p = 0.17) 0.523 (p = 0.75) 0.567 (p = 0.36) 0.669 (p = 0.01)

Ptu ADC mean 0.542 (p = 0.56) 0.592 (0.21) 0.595 (p = 0.19) 0.736 (p = 0.0002)*

ADC apparent diffusion coefficient, Wtu whole tumor, Dptu darkest part of the tumor, Ptu point tumor

Table 5 Inter-reader agreement and concordance correlation coefficient for ADC measurements in reading 1 and reading 2

ADC metric Reading 1 Reading 2

CCC (95% confidence interval) Strength of agreement CCC (95% confidence interval) Strength of agreement

Wtu ADC max 0.35 (0.15, 0.55) Fair 0.04 (− 0.01, 0.09) Slight

Wtu ADC mean 0.34 (0.15, 0.54) Fair 0.04 (0.32, 0.69) Slight

Wtu ADC min 0.30 (0.10, 0.49) Slight 0.09 (0.15, 0.32) Slight

Dptu ADC max 0.141 (0.09, 0.38) Slight 0.42 (0.23, 0.62) Moderate

Dptu ADC mean 0.11 (− 0.11, 0.37) Slight 0.32 (0.11, 0.53) Fair

Dptu ADC min 0.13 (0.03, 0.19) Slight 0.03 (− 0.13, 0.19) Slight

Ptu ADC mean − 0.01 (− 0.24, 0.22) Slight 0.04 (− 0.09, 0.18) Slight

Wtu whole tumor, Dptu darkest part of the tumor, Ptu point tumor, max maximum, min minimum

Avendano et al. Breast Cancer Research          (2019) 21:136 Page 7 of 10



slight to fair inter- and intra-reader agreement, which is
likely due to the placement of the ROIs after subjective
radiologist’s review; therefore, not necessarily the same
ROI location is chosen by each reader and for each read-
ing. Moderate intra-reader agreement was achieved with
both Wtu ADC mean measurement and Ptu ADC mean,
but these were not the approaches with the highest diag-
nostic accuracy. The moderate agreement for Wtu ADC
mean was most likely because NME lesions are often dif-
ficult to delineate, and therefore, the size and shape of
ROI is more prone to variation even within readers. For
Ptu, not necessarily the same point is chosen in each
reading, leading to different ADC values. As for the
intra-reader agreement, Dptu ADC max reached moder-
ate intra-reader agreement. While the inter-reader agree-
ment for Wtu ADC mean was more consistent between
readers, it was not associated with the best diagnostic
accuracy. Additionally, for the purpose of breast cancer
diagnosis, a 2D ROI ADC mean measurement approach
seems most practical.
Whereas this study focused solely on NME lesions,

other studies have reported inter- and intra-reader
agreement for DWI with ADC in lesions that included
mostly masses. Bickel et al. [34] found that minimum
ADC showed the best diagnostic performance (AUC
0.93–0.96), followed by mean ADC obtained from 2D
ROIs (0.93–0.94), and both achieved high intra- (ICC
0.85–0.94) and inter-reader reproducibility (ICC 0.74–
0.94). Median measurement time was significantly
shorter for the 2D ROIs (p < 0.001). It should be noted
that there were only 29 NME lesions in this patient
population. Furthermore, when considering only NME
lesions, the ADC achieved in their cohort was less accur-
ate than in ours (AUC = 0.64–0.73). Spick et al. [27] led
an intra-individual prospective clinical study of 40 con-
secutive patients with suspicious findings, including only
8 NME lesions. Reproducibility and repeatability showed
high agreement for repeated examinations, readers, and
measurements (all ICCs > 0.9, coefficient of variations
3.2–8%), indicating little variation. The Bland–Altman
plots demonstrated no systematic differences, and

diagnostic accuracy was not significantly different in the
two repeated examinations (all ROC curves > 0.91, p >
0.05). There is consensus that reproducibility, repeatabil-
ity, and diagnostic accuracy of DWI is necessary for its
use as a potential quantitative imaging characteristic to
enable improved breast lesion detection,
characterization, and assessment of treatment response.
Newitt et al. [35] evaluated the repeatability and repro-
ducibility of breast tumor ADC in a multi-institution
clinical trial setting, using standardized DWI protocols
and quality assurance procedures. ADC repeatability was
excellent in 80% (71/89) of cases. However, the authors
did not report the number of NME lesions in their co-
hort. In contrast to other studies that reported inter-
and intra-agreement for DWI with ADC mapping results
for masses, our study demonstrated poorer reproducibil-
ity (fair to moderate). However, considering that our co-
hort consisted exclusively on NME lesions, this was
expected.
Our study has some limitations. The sample size of

our cohort is relatively small, but to the best of our
knowledge, this is the largest cohort of NME lesions
with DCE (n = 95) and DWI (n = 66, 24 not visible in
DWI and 5 DWI quality insufficient) reported so far.
This study was also conducted at a single tertiary center
institution, and the interpretations were performed by
experienced breast fellowship-trained radiologists, po-
tentially making it difficult to extrapolate to community
practice. Therefore, the overall rate of malignancy is
high and the results might not be applicable to every
radiologist, but it has to be noted that international
guidelines [26] recommend that clinical breast MRI is
reported by breast specialists. Another limitation is the
retrospective nature of this study; therefore, the acquired
different ADC measurements were not used in clinical
decision-making. However, such retrospective studies
are necessary to gather relevant information to allow fu-
ture standardization and facilitate optimal clinical appli-
cation implementation. Further, only BI-RADS 4 and 5
NMEs were included in the study and this could have
caused a selection bias, leading to potential issues with

Table 6 Intra-reader agreement and 95% confidence intervals for reader 1 and reader 2 for all measured MRI parameters

ADC metric Reader 1 Reader 2

Rho-c (95% confidence Interval) Strength of agreement Rho-c (95% confidence interval) Strength of agreement

Wtu max ADC 0.37 (0.41, 0.74) Fair 0.24 (0.07, 0.41) Slight

Wtu mean ADC 0.44 (0.26, 0.61) Moderate 0.41 (0.21, 0.62) Moderate

Wtu min ADC 0.21 (− 0.02, 0.44) Slight 0.29 (0.09, 0.48) Slight

Dptu max ADC 0.18 (− 0.06, 0.41) Slight 0.33 (0.11, 0.54) Fair

Dptu mean ADC 0.39 (0.20, 0.59) Fair 0.05 (− 0.01, 0.12) Slight

Dptu min ADC 0.37 (0.41, 0.74) Fair 0.24 (0.07, 0.41) Slight

Ptu mean ADC 0.44 (0.26, 0.61) Moderate 0.41 (0.21, 0.62) Moderate

ADC apparent diffusion coefficient, Wtu, whole tumor, Dptu darkest part of the tumor, Ptu point tumor, max maximum, min minimum
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statistical power, precision, and validity. Additional stud-
ies with larger cohorts are required to confirm our
findings.

Conclusions
In conclusion, the accuracy of DWI with ADC mapping
is limited in breast tumors presenting as NME lesions,
with best results being achieved using ADC mean and a
2D ROI measurement approach. Up to a third of NMEs
cannot be evaluated with DWI, and therefore, DCE-MRI
remains indispensable.
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