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Abstract 26 

Microhabitat suitability models are commonly used to estimate salmonid habitat 27 

abundance and quality with unknown accuracy or reliability. When tested, the metrics 28 

used to evaluate these models are often limited by the methods used to develop them. 29 

More generalized bioverification strategies that transcend methodology are therefore 30 

needed in ecohydraulics. This study further developed and applied such a generalized 31 

bioverification framework to four approximately 1-m-resolution rearing salmonid 32 

microhabitat suitability models. Water depth and velocity habitat suitability criteria 33 

(HSC) functions were developed for two size classes of rearing Oncorhynchus 34 

tshawytscha and O. mykiss using snorkel survey data collected over three years at seven 35 

sites along the lower Yuba River in California, USA. An expert-based cover HSC 36 

function was modified from previous studies. HSC functions were applied to previously 37 

validated, approximately 1-m-resolution two-dimensional hydrodynamic models and 38 

cover maps of the river. Mann-Whitney U tests confirmed that suitability values were 39 

significantly higher at utilized locations compared to randomly-generated, non-utilized 40 

locations for all four models. Bootstrapped forage ratios demonstrated that microhabitat 41 

suitability models accurately predicted both preferred and avoided habitat beyond the 42 

95% confidence level. This generalized bioverification framework is recommended for 43 

evaluating and comparing the accuracy and reliability of ecohydraulic models used in 44 

habitat management worldwide. 45 

Keywords: microhabitat suitability model, aquatic habitat; salmonid habitat; 46 

rearing habitat; two-dimensional hydrodynamic model 47 
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Introduction 49 

Aquatic ecosystems worldwide have experienced a long history of anthropogenic 50 

impacts, including flow regulation, channel simplification, modification of sediment 51 

supply, and water quality alterations (Meybeck 2003). One way resource managers have 52 

analysed and attempted to mitigate these impacts is through the use of ecohydraulic 53 

modelling. These models typically evaluate how changes in discharge, substrate, and/or 54 

channel topography relate to the abundance and quality of available aquatic habitat 55 

(Lamouroux et al. 1998; Waddle 2001; Lamb et al. 2004). Although ecohydraulic 56 

models have largely been used for dam management over the last half-century (Tharme 57 

2003), they have increasingly been used for other applications, such as habitat 58 

restoration (Pasternack et al. 2004; Gard 2006, 2014; Schwindt et al. 2019), land use 59 

and climate change assessment (Guse et al. 2015), and urban river management (Anim 60 

et al. 2018). 61 

A specific method commonly used in ecohydraulic modelling is the microhabitat 62 

suitability model, where spatially explicit point-scale values of physical attributes (e.g., 63 

water depth, velocity, substrate, cover, etc.) are assigned relative indices of habitat 64 

quality (i.e., suitability values), typically ranging from 0 (least suitable) to 1 (most 65 

suitable) (Bovee 1986). One- and two-dimensional (1D and 2D) hydrodynamic models 66 

are commonly used to predict and map the spatial distribution of water depth and 67 

velocity values within a study domain (Gibson and Pasternack 2015), while substrate 68 

and cover features are mapped from field surveys and/or remote sensing (Arif et al. 69 

2017; Lallias-Tacon et al. 2017). Biological models are then used to relate these 70 

physical attributes with suitability values. 71 

A wide variety of biological models have been developed over the years to relate 72 

physical attributes with habitat suitability values for various life stages of valued 73 

salmonid species (Ahmadi-Nedushan et al. 2006; Dunbar et al. 2012). The most 74 



 

 

common approach uses habitat suitability criteria (HSC), typically as species-specific 75 

univariate or multivariate selection functions based on how frequently specific values of 76 

each physical attribute are occupied (Dunbar et al. 2012, Rosenfeld et al. 2016). Other 77 

HSC-based biological models have also been developed using expert-based fuzzy rule 78 

sets (Garbe et al. 2016), bioenergetics (Rosenfeld et al. 2016), and Bayesian statistics 79 

(Favrot et al. 2018). Alternatively, probabilistic-based biological models can be used in 80 

microhabitat suitability modelling to estimate the probability (between 0 and 1) of a 81 

salmonid species and life stage occurring at a specific location given one or more 82 

physical attributes (Guay et al. 2000; Hatten et al. 2016; Tiffan et al. 2016). 83 

Probabilities ≥ 0.5 are typically categorized as microhabitat where the species should be 84 

present, while probabilities < 0.5 are categorized as microhabitat where the species 85 

should be absent (Geist et al. 2000; Tiffan et al. 2002; Tiffan et al. 2006; Al-Chokhachy 86 

and Budy 2007; Tiffan et al. 2016). Alternative presence-absence probability thresholds 87 

can also be used (Hatten et al. 2009; Hatten et al. 2016). 88 

Regardless of which biological model is used (i.e., HSC, probabilistic, etc.), 89 

microhabitat suitability models are often developed at multiple discharges and/or with 90 

multiple restoration design alternatives and used for regulatory and management 91 

decisions (Ahmadi-Nedushan et al. 2006; Dunbar et al. 2012). Because of their 92 

important role in decision making, microhabitat suitability models should be able to 93 

accurately and reliably predict where a species is more or less likely to occur with a 94 

high degree of statistical confidence when tested against independent observations (i.e., 95 

observations not used to develop the biological model). However, the metrics 96 

commonly used to evaluate the accuracy and reliability of these models are often 97 

limited by the methods used to develop them. 98 



 

 

Microhabitat suitability models developed using probabilistic-based biological 99 

models have been tested against independent observations for their ability to predict the 100 

presence and absence of spawning (Geist et al. 2008; Hatten et al. 2009; Hatten et al. 101 

2016) and rearing (Guay et al. 2000; Tiffan et al. 2006; Tiffan et al. 2016; Hellmair et 102 

al. 2018) salmonids. Test metrics include Cohen’s kappa, percentages of microhabitat 103 

correctly classified as presence and absence, and errors of commission and omission. 104 

However, because these test metrics require the microhabitat suitability model to make 105 

a categorical prediction (i.e., presence or absence), they cannot be used to evaluate 106 

HSC-based microhabitat suitability models commonly used in ecohydraulic modelling 107 

worldwide. This is a significant disadvantage that necessitates alternatives. 108 

A more generalized set of tests with strict performance criteria exists that can 109 

use independent observational data to evaluate the accuracy and reliability of any type 110 

of microhabitat suitability model. Two types of tests are recommended that compare 111 

observed data with random analogues to establish statistical significance. The first test 112 

is used to determine if there is a significant difference between suitability (or 113 

probability) values at utilized and non-utilized locations within the study domain. The 114 

second test uses bootstrapped electivity indices calculated for binned suitability values 115 

to determine if the model is able to predict both preferred and avoided microhabitat 116 

conditions (as defined below) with a high degree of statistical confidence. Pasternack et 117 

al. (2014) and Kammel et al. (2016) referred to this set of tests and performance criteria 118 

as “bioverification” while reserving the term “validation” for the requisite assessment of 119 

hydrodynamic model performance. Such bioverification has been performed for 120 

spawning Oncorhynchus tshawytscha (Pasternack et al. 2014) and O. mykiss (Kammel 121 

et al. 2016) microhabitat suitability models, but never for models of rearing salmonids. 122 



 

 

The goal of this study was to further develop and demonstrate how a generalized 123 

yet comprehensive bioverification framework could be used to evaluate the accuracy 124 

and reliability of four rearing salmonid microhabitat suitability models using the lower 125 

Yuba River (LYR) in California, USA as a testbed. Note that this study is not 126 

advocating for these particular models or for HSC-based microhabitat suitability 127 

modelling over other modelling approaches. Rather, the novelty of this study is the 128 

demonstration of a generalized bioverification framework that can be applied to all 129 

microhabitat suitability modelling strategies, regardless of the biological model used. 130 

The authors propose that globally, models that pass this rigorous bioverification 131 

framework ought to be considered accurate and reliable predictors of microhabitat 132 

suitability and appropriate for use in habitat management applications worldwide. 133 

Study site 134 

The Yuba River is a tributary of the Sacramento River in northern California that drains 135 

3480 km2 of the western slopes of the Sierra Nevada (Figure 1). The LYR, defined as 136 

the 37-km segment of the river between Englebright Dam and the Feather River 137 

confluence, is a regulated gravel-cobble bed river with a high width-to-depth ratio and 138 

slight to no entrenchment (Wyrick and Pasternack 2014). The LYR has a long and 139 

complex history of human disturbances, including the deposition of millions of tons of 140 

mining sediment during the mid- to late-nineteenth century, dredger re-working of the 141 

river and its surrounding area, the installation of the 85-m high Englebright Dam in 142 

1941, and flow regulation from a suite of hydroelectric generation facilities located 143 

throughout the catchment (Gilbert 1917; James 2005). Despite these multiplicative 144 

disturbances, the LYR is hydrogeomorphically dynamic and self-sustaining (Wyrick 145 

and Pasternack 2015; Pasternack et al. 2018) and includes critical habitat for Central 146 

Valley O. mykiss and spring-run O. tshawytscha, both listed as threatened under the 147 



 

 

United States Endangered Species Act (US Fish and Wildlife Service 2010; National 148 

Marine Fisheries Service 2014). 149 

Methods 150 

There were several key steps in the development and bioverification of microhabitat 151 

suitability models for rearing salmonids in the LYR. Depth and velocity HSC functions 152 

were developed for two size classes of O. tshawytscha and O. mykiss using a subset of 153 

microhabitat utilization data from the LYR, while a cover HSC function was developed 154 

from previous studies and local fisheries biologists’ expert judgement. HSC functions 155 

were applied to 0.91-m-resolution (3-ft in sponsor-required American customary units) 156 

maps of 2014 hydraulic and cover conditions throughout the entire LYR at multiple 157 

discharges resulting in a set of microhabitat suitability models for all four species and 158 

size classes. Bioverification tests were then performed on each model at a range of 159 

discharges to evaluate their ability to predict preferred and avoided microhabitat 160 

conditions beyond the 95% confidence level. Finally, bioverified models were used to 161 

quantify rearing habitat area throughout the entire LYR at multiple discharges. An 162 

overview of the experimental design is shown in Figure 2. All spatial analyses were 163 

performed using ArcGIS (ESRI 2016). All data in the study were collected or generated 164 

in American customary units consistent with regulatory requirements and then 165 

converted to SI units for this article, hence the appearance of some unusual values in SI 166 

units (e.g., 0.91 m represents a 3-ft raster cell size). Full details of this study can be 167 

found in the technical reports (Moniz and Pasternack 2019a, 2019b). 168 

Microhabitat data collection 169 

Rearing microhabitat utilization data were collected during snorkel surveys conducted 170 

by Pacific States Marine Fisheries Commission in 2012, 2014, and 2015 (Table 1). 171 



 

 

These dates and the dates of topographic data collection for hydrodynamic modelling 172 

(discussed below) are shown in Figure 3 along with hydrographs of the LYR mean daily 173 

discharge recorded at the Smartsville (11418000) and Marysville (11421000) USGS 174 

stream gages over the same period. 175 

Snorkel surveys were conducted during daylight hours at sites along seven 176 

previously designated geomorphic reaches of the LYR (Wyrick and Pasternack 2014). 177 

Each snorkel site was randomly selected from a set of 122-m-long intervals that were 178 

quantitatively representative of the overall composition of morphological units of each 179 

of the seven reaches. For example, if a given geomorphic reach as a whole was 40% 180 

pool, 25% riffle, 5% backwater, etc., then the snorkel site randomly selected to 181 

represent that reach was composed of those same percentages within 10%. 182 

At each snorkel site, four 122-m-long transects were surveyed from upstream to 183 

downstream. Transects were spaced roughly equidistantly across the river and included 184 

any side channels and/or backwaters in a site. The location of each fish observed was 185 

recorded using a Trimble GeoXH GPS handheld unit (differentially corrected horizontal 186 

accuracy of ~ 0.5-1.25 m), along with the species of the fish and its associated length, 187 

estimated within a 20-mm size class (e.g., 10-30 mm, 30-50 mm, etc.). Salmonids > 150 188 

mm were not observed in this study. Associated microhabitat data were also collected at 189 

each observation location, including water column depth and mean water column 190 

velocity. When multiple fish were observed in close proximity (i.e., less than 1 m apart) 191 

utilizing similar microhabitat, snorkelers placed a single marker in the approximate 192 

centre of the group and recorded the number and size class of each fish in the group. 193 

The location and associated microhabitat data for the group were then recorded at the 194 

marker. Non-utilized (i.e., absence) microhabitat data were not recorded during the 195 

surveys. 196 



 

 

Subsetting microhabitat data 197 

A common procedure in model calibration and validation studies involves dividing 198 

available data between the two main phases of work so that the data are independent in 199 

each phase yet representative of the total set. A similar approach was used in this study 200 

(Figure 4). Specifically, observations of rearing O. tshawytscha and O. mykiss were 201 

each subset into two size classes (i.e., “fry” < 50 mm and “juvenile” 50 - 150 mm). 202 

Two-thirds of the observations from the resulting four species and size class subsets 203 

were then used to develop depth and velocity HSC functions, while the remaining 204 

observations were set aside to use for bioverification. To ensure representative data in 205 

both sets, observations for each species and size class were ordered by date observed 206 

and every third observation was set aside for bioverification. 207 

One final amendment was made to the bioverification dataset. The microhabitat 208 

suitability models developed and tested herein were based on physical conditions of the 209 

LYR in 2014. Therefore, the observations used for bioverification had to conform to 210 

those conditions. However, Weber and Pasternack (2017) reported changes in river 211 

topography between 2008 and 2014, with a brief flood of four times bankfull discharge 212 

in December 2012 (Figure 3). In contrast, no significant overbank flooding occurred 213 

during the snorkel survey period between May 2014 and August 2015, which is also the 214 

period in which 2014 physical data were collected. Because of potential differences in 215 

microhabitat conditions between 2012 and 2014, snorkel observations from 2012 were 216 

excluded from the bioverification dataset. 217 

HSC development 218 

Four pairs of depth and velocity HSC functions were developed based on the frequency 219 

in which specific microhabitat conditions were utilized (i.e., how often specific depths 220 

and velocities were utilized). It has been shown that frequency-based HSC functions 221 



 

 

developed using abundance data (i.e., number of individuals) provide more detailed 222 

outcomes than functions using occurrence data (i.e., number of occupied locations) (Lee 223 

and Suen 2013). However, it has also been argued that abundance data may not be the 224 

best indicator of habitat quality if high densities of subdominant fish are displaced into 225 

low-quality habitat by territorial individuals dominating higher-quality habitat (Beecher 226 

et al. 2010). To reduce any potential behaviour-based biases in HSC functions 227 

developed in this study, the number of fish counted per observation was recalculated as 228 

 adjusted fish count = 1 + log (observed fish count). (1) 229 

This approach gave value to each observation while preventing observations with 230 

relatively large schools of potentially subdominant fish from significantly reshaping the 231 

frequency-based HSC functions. The same adjustment was made to observations used 232 

for bioverification (discussed below). The number of observation locations, actual fish 233 

counts, and adjusted fish counts used for HSC development and bioverification for each 234 

species and size class are shown in Table 2. 235 

Frequency distributions of microhabitat utilization data were made for each 236 

species and size class using the adjusted fish counts. These distributions were 237 

discretized using bin size intervals of 0.03 m and m/s for water column depth and mean 238 

channel velocity, respectively. Non-parametric tolerance limits at the 90% confidence 239 

level were then used to develop the final HSC functions (Somerville 1958, Remington 240 

and Schork 1970, Bovee 1986). Integer limits were treated as percentages of the sample 241 

size in order to apply them to the non-integer, log-scaled adjusted counts. Lower limits 242 

were not used for velocity HSC functions because utilization was heavily skewed 243 

towards near-zero velocities. Following the methods outlined in Bovee (1986), final 244 

HSC values were calculated as twice the difference of 1 and the percentage (P) of the 245 

population estimated to use that microhabitat range, or 246 



 

 

 HSC value = 2 · (1-P). (2) 247 

HSC values were then connected by piecewise linear functions, resulting in the final 248 

frequency-based HSC functions. 249 

A single conditional cover HSC function was developed for all four species and 250 

size classes (Table 3). The cover type classifications considered in this study were based 251 

on availability of 0.91-m-resolution maps for the entire river under 2014 conditions. 252 

Data-driven cover HSC functions could not be developed in this study because cover 253 

utilization was not recorded at all fish observations during the snorkel surveys. Instead, 254 

the HSC value assigned to vegetation was based on previous studies conducted on the 255 

river (Yuba County Water Agency 2013), while values for bedrock outcrops, rip-rap, 256 

weirs, and bridge piers were based on local fisheries biologists’ expert judgement. 257 

Because the LYR’s substrate is typically composed of cobble and gravel, with enough 258 

large cobble and cobble clusters to provide widespread local cover (Jackson et al. 2013), 259 

bare substrate was assigned the HSC value used for cobble substrate in previous studies 260 

(Yuba County Water Agency 2013). 261 

Physical model development 262 

Hydrologic data 263 

A mean daily discharge was obtained or calculated for each bioverification observation 264 

using the stream gages associated with that observation (USGS gages 11418000, 265 

11418500, and 11421000). The mean daily discharge for each observation was then 266 

rounded to the nearest 1.42 m3/s (50 ft3/s) so that observations at relatively similar 267 

discharges could be pooled together for bioverification. Thorough sensitivity analysis 268 

indicated that pooling the data by a common rounded discharge had a minimal effect on 269 

the final suitability associated with each bioverification observation. 270 



 

 

Digital elevation model 271 

Airborne LiDAR combining near-infrared and green wavelength instruments captured 272 

the entire terrestrial river corridor topography and approximately 85% of the wetted 273 

channel’s bathymetry. Deeper areas were mapped with multibeam echosounding. 274 

Remaining gaps were mapped with single-beam echosounding and real-time kinematic 275 

GPS ground surveys. Topographic-bathymetric map production from these data 276 

included extensive quality assurance and quality control measures. The final point cloud 277 

had resolutions of 13.17, 5.12, and 3.05 pts/m2 in bare earth, bathymetric, and vegetated 278 

terrain, respectively. Although these point densities supported sub-meter resolution 279 

terrain modelling, other factors also influenced the choice of spatial resolution used in 280 

this study, such as the GPS accuracy of the microhabitat utilization data and 281 

hydrodynamic model structural assumptions (discussed below). After taking these 282 

factors into consideration, a 0.91-m-resolution (3-ft) digital elevation model was 283 

produced from the point cloud. Full procedural details were included in the 284 

supplementary materials of Weber and Pasternack (2017). 285 

2D hydrodynamic model 286 

For each rounded mean daily discharge (hereafter referred to as “discharge”), a 0.91-m 287 

square grid, steady-state, 2D hydrodynamic model was produced of the entire LYR 288 

using ArcGIS and TUFLOW GPU software that solves the 2D depth-averaged Navier-289 

Stokes equations (Huxley and Syme 2016; Pasternack and Hopkins 2017). TUFLOW 290 

GPU outputs water depth and depth-averaged water velocity rasters for each discharge 291 

simulation. 292 

This type of 2D hydrodynamic model is time-averaged, and therefore, does not 293 

resolve subgrid-scale turbulence. Because of this structural assumption, the finer the 294 

resolution of the computational grid, the more likely the model would be to produce 295 



 

 

errors in time-averaged results. Thus, the 0.91-m grid used in this study balanced the 296 

desire to benefit from sub-meter resolution point cloud data (discussed above) with the 297 

risk of violating structural assumptions of the hydrodynamic model. Extensive 298 

hydrodynamic validation substantiated the final resolution decision, as results found that 299 

model performance far exceeded peer-reviewed journal standards. For example, the 300 

median unsigned velocity magnitude error from wading observations was 13%, and the 301 

coefficient of determination (R2) between predicted and observed depth, velocity 302 

magnitude, and velocity direction was 0.90, 0.85, and 0.96, respectively. A detailed 303 

description of model development and validation is beyond the scope of this study but 304 

can be found in Hopkins and Pasternack (2018). 305 

Cover type model 306 

Each cover type polygon was rasterized and buffered out by 0.91 m, a distance 307 

determined to represent a biologically reasonable escape distance for fry- and juvenile-308 

sized salmonids. Buffered rasters were then combined into a single raster where each 309 

cell was classified as the cover type with the highest HSC value present at that location. 310 

For example, a cell with vegetation and rip-rap present was classified as vegetation. 311 

Microhabitat suitability model development 312 

By applying the depth, velocity, and cover HSC functions to the respective hydraulic 313 

and cover rasters, a set of 0.91-m-resolution univariate depth, velocity, and cover 314 

habitat suitability index (HSI) rasters were created at multiple discharges for all four 315 

species and size classes. Depth, velocity, and cover HSI maps were combined cell-by-316 

cell using the geometric mean function, resulting in a combined HSI (CHSI) raster of 317 

the entire river for each discharge in which bioverification observations were made for 318 

each species and size class. The final microhabitat model resolution of 0.91 m balanced 319 



 

 

trade-offs between the GPS accuracy of the microhabitat utilization data, digital 320 

elevation model resolution, and hydrodynamic model structural assumptions. This 321 

approximately 1-m-resolution falls within the range used in other rearing salmonid 322 

microhabitat suitability models (Guay et al. 2000; Tiffan et al. 2002; Harrison et al. 323 

2011; Gard 2014; Benjanker et al. 2015; Tiffan et al. 2016). 324 

Bioverification 325 

Polygon shapefiles were created at all seven snorkel sites to serve as boundaries for 326 

bioverification. At each site, cross-sectional boundaries were manually created 327 

perpendicular to the channel at the most upstream and downstream bioverification 328 

observations. Therefore, each site boundary was approximately 122-m long, as per 329 

snorkel survey protocol. The width of each boundary was the wetted width of the site, 330 

and therefore, varied with channel geometry and discharge. 331 

Mann-Whitney U tests 332 

The Mann-Whitney U test is a non-parametric statistical test used to compare the 333 

distributions of two independent samples using rank sums, specifically by testing 334 

whether one distribution is stochastically greater than the other (Mann and Whitney 335 

1947). In this study, the test was used to determine the statistical difference between 336 

CHSI values at utilized and non-utilized locations within the river for each species and 337 

size class. This simple test has been used to evaluate the performance of other 338 

microhabitat suitability models (Gard 2006, 2009, 2014; US Fish and Wildlife Service 339 

2010, 2013; Pasternack et al. 2014; Benjanker et al. 2016; Kammel et al. 2016). 340 

In this study, a two-tailed Mann-Whitney U test was conducted for each 341 

microhabitat suitability model and evaluated for statistical differences above the 95% 342 

confidence level. A dataset of random points was generated for each species and size 343 



 

 

class to represent non-utilized observations. The same number of non-utilized points 344 

were generated at each site and discharge as in the observed bioverification dataset for 345 

each species and size class. Random points were generated within the site boundaries 346 

described above. Values were extracted from the appropriate CHSI rasters at utilized 347 

and non-utilized point locations, compiled into datasets, and then Mann-Whitney U tests 348 

were performed. A p value < 0.05 indicated that the two datasets were statistically 349 

different with a 95% confidence level. 350 

For a microhabitat suitability model to pass the Mann-Whitney U bioverification 351 

test, two performance criteria had to be met. First, CHSI values at utilized and non-352 

utilized locations had to be statistically different according to the Mann-Whitney U test. 353 

Second, the median CHSI value at utilized locations had to be higher than the median 354 

value at non-utilized locations. These two criteria would be the expected outcome if fish 355 

were utilizing microhabitat modelled as having high suitability values over random 356 

locations within the same domain. If a model met these criteria, it was then subjected to 357 

more rigorous testing, as discussed in detail below. 358 

Forage ratio test 359 

The forage ratio (FR) was originally developed to quantify an organism’s preference or 360 

avoidance for specific types of prey items (Hess and Swartz 1940; Ivlev 1961), but has 361 

also been used more broadly as an index for selection behaviour, including habitat type 362 

and quality selection (Williams and Marshall 1938; Johnson 1980; Yuba County Water 363 

Agency 2013; Pasternack et al. 2014; Kammel et al. 2016). In general, an FR value can 364 

be defined as the ratio of the percent of some resource that is utilized by an organism to 365 

the percent of that resource that is available to the organism. In theory, an FR value = 1 366 

indicates a resource is neither preferred nor avoided and selection behaviour is 367 

indistinguishable from random. In contrast, FR > 1 indicates preference for that 368 



 

 

resource, while FR < 1 indicates avoidance. The further an FR value is from one, the 369 

more that resource is preferred or avoided. Although several other electivity indices 370 

exist with various theoretical trade-offs and could be used in this bioverification 371 

framework with equal efficacy, the FR value represents a simple and easy-to-understand 372 

metric of preference and avoidance and has been found to be highly suitable for 373 

bioverification (Pasternack et al. 2014; Kammel et al. 2016). 374 

In this study, FR values were used to determine if microhabitat suitability 375 

models were able to accurately predict where preferred and avoided habitat conditions 376 

occurred according to CHSI values. To do this, CHSI values were binned into “habitat 377 

quality classes”. Past studies have grouped habitat suitability values together using a 378 

variety of arbitrarily chosen even (Guay et al. 2000; Hatten et al. 2009; Benjanker et al. 379 

2015; Kammel et al. 2016) and uneven (Leclerc et al. 1996; Mäki-Petäys et al. 2002; 380 

Harrison et al. 2011) binning intervals. In this study, CHSI values were binned into even 381 

intervals of 0.25 (i.e., 0.00-0.25, 0.25-0.50, etc.). FR values were then calculated as the 382 

ratio of percent observations to percent available area for each habitat quality class, as 383 

detailed below. 384 

Bioverification observations were separated into groups based on the snorkel 385 

site and discharge at which they were observed. This was done because of the 386 

variability in the percentage of area of each habitat quality class across sites and 387 

discharges. Observations that occurred at the same site and rounded discharge but on 388 

different dates were pooled together. This way, when an observation was made, only the 389 

microhabitat within the area that the snorkelers surveyed was considered available to 390 

the fish or group of fish observed at that site and discharge. This was determined to be 391 

the most accurate representation of the percentages of habitat quality classes that were 392 

actually available to each observed fish at a given site and discharge, as oppose to 393 



 

 

considering the percentages throughout the entire river segment or at sites not surveyed 394 

at specific discharges. In accordance with restrictions made in Kammel et al. (2016), 395 

bioverification observations located in habitat quality classes that were < 1% of the total 396 

available area of a particular site and discharge were excluded from FR analysis. 397 

However, no such observations were made in this study. 398 

Using adjusted fish counts and site-and-discharge-specific microhabitat 399 

availability, an FR value was calculated for each habitat quality class at each site and 400 

discharge for all four species and size class models using the equation 401 

 𝐹𝑅𝑖,𝑗,𝑘 =  
(

𝑈𝑖,𝑗,𝑘

𝑈𝑖,𝑘
)

(
𝐴𝑖,𝑗,𝑘

𝐴𝑖,𝑘
)
 (3) 402 

where i was an index defining the species and size class of interest, j was an index for 403 

each unique habitat quality class, and k was an index for each site and discharge 404 

combination where the species and size class of interest was observed. The numerator 405 

term represented the percentage of fish that utilized a habitat quality class at a specific 406 

site and discharge using the adjusted fish counts. The denominator term represented the 407 

percentage of area of a habitat quality class available at a specific site and discharge. 408 

At this step in the analysis, a series of FR values had been calculated for each 409 

habitat quality class for all four species and size class models. Each series of FR values 410 

was associated with the number of different sites and discharges in which that species 411 

and size class was observed. From these series, a single FR value was calculated across 412 

sites and discharges for each habitat quality class for each species and size class model 413 

using a weighted average. Weights were based on the number of adjusted fish counts at 414 

each site and discharge. This was done by computing the weighted-average FR value 415 

for each habitat quality class as 416 



 

 

 𝐹𝑅𝑖,𝑗 =  ∑ [𝐹𝑅𝑖,𝑗,𝑘 (
𝑈𝑖,𝑘

𝑈𝑖
)]𝑛

𝑘  (4) 417 

where i, j, and k were the same indices as Equation 3. The fractional term in this 418 

equation represented the percent of adjusted fish counts at each site and discharge and 419 

was used as the weighting factor when computing the average FR value for each habitat 420 

quality class. 421 

Statistical bootstrapping 422 

As mentioned above, an FR value = 1 indicates that a habitat quality class is neither 423 

preferred nor avoided and that selection behaviour is indistinguishable from random. 424 

However, the likelihood that an FR value can ever be exactly one is very low. Fewer 425 

observations within a dataset can increase the likelihood of random behaviour appearing 426 

as actual selection behaviour (i.e., having an FR value slightly greater or slightly less 427 

than one). Furthermore, in this study, habitat quality classes with higher suitability 428 

values tended to have a smaller percent availability than classes with lower suitability 429 

values. These smaller percent availabilities further decreased the likelihood that an 430 

average FR value could be exactly one even if the habitat quality classes were being 431 

utilized by random chance alone. Therefore, it was necessary to determine with 95% 432 

statistical confidence the thresholds above or below one that an average FR value had to 433 

be for that habitat quality class to be considered preferred or avoided habitat rather than 434 

randomly selected. 435 

Thresholds were calculated using statistical bootstrapping, a resampling method 436 

that assigns a measure of accuracy to a sample estimate (Efron and Tibshirani 1993). 437 

Bootstrapping can be used to determine the confidence intervals of ecological indices 438 

(Dixon 2001), including FR values (Kammel et al. 2016). To do this, 20 datasets of 439 

randomly generated points were created for each species and size class with the same 440 



 

 

number of random observations per site and discharge as the observed bioverification 441 

dataset. Because observations were scaled logarithmically when computing average FR 442 

values, the randomly generated points were randomly assigned the same log-scaled 443 

adjusted counts as the observed datasets. For example, if there were five actual 444 

observations at a given site and discharge, each with a log-scaled adjusted fish count, 445 

the five randomly generated observations at that site and discharge would be randomly 446 

assigned one of those five observed adjusted counts, without replacement. This method 447 

ensured that the randomly generated observations would produce an average 448 

bootstrapped FR value with the same number of terms and the same weighting per site 449 

and discharge as the average FR value calculated using the observed data. Therefore, 450 

the only difference between the average FR values using the randomly generated points 451 

and the actual observations was the spatial randomness. 452 

From the 20 sets of FR values calculated using the randomly generated points, it 453 

was possible to calculate a 95% confidence interval for each habitat quality class for 454 

each species and size class model using a standard deviation, or σ. An upper confidence 455 

threshold, or “preference threshold”, was calculated for each habitat quality class as 1 + 456 

2σ, where 1 was the theoretical threshold between preferred and avoided habitat and σ 457 

was the standard deviation for that habitat quality class calculated from the 20 458 

bootstrapped FR values. Likewise, the lower confidence threshold, or “avoidance 459 

threshold”, was calculated for each class as 1 - 2σ. 460 

Using the preference and avoidance threshold values from the bootstrapping 461 

analysis, the amount by which each observed FR value was above or below the 462 

threshold for each habitat quality class was calculated. This final metric will hereafter 463 

be referred to as the “FR residual” (i.e., the non-random signal above random chance 464 

alone). Habitat quality classes with an observed FR value between the preference and 465 



 

 

avoidance thresholds (i.e., habitat that was indistinguishable from random selection 466 

behaviour) were assigned an FR residual of 0. If the observed FR value was above the 467 

preference threshold for that habitat quality class, then the FR residual was calculated as 468 

the difference between the observed FR value and the preference threshold. Similarly, if 469 

the observed FR value was below the avoidance threshold for that habitat quality class, 470 

then the FR residual was calculated as the difference between the observed FR value 471 

and the avoidance threshold. The result of these computations were FR residuals centred 472 

at 0, where positive values indicated preference and negative values indicated 473 

avoidance. Using the FR residual as a final metric for analysing bioverification results 474 

removes the statistical uncertainty that may arise from relatively small datasets, habitat 475 

quality classes with small percent availability, and potentially other ecological factors 476 

not explicitly considered in the microhabitat suitability models themselves. 477 

For the four microhabitat models to pass the forage ratio test and be considered 478 

bioverified, two performance criteria had to be met. First, one or more habitat quality 479 

classes had to be considered preferred and one or more had to be avoided, as indicated 480 

by FR residuals. Second, FR residuals had to monotonically increase with increasing 481 

CHSI values across habitat quality classes. These criteria insured that bioverified 482 

models were able to predict both preferred and avoided habitat and that FR residuals 483 

followed a logical order. Models that met these criteria were considered bioverified and 484 

successful predictors of microhabitat suitability in the LYR. 485 

Habitat area-discharge relationship 486 

Bioverified microhabitat suitability models were used to quantify the percentage of area 487 

of each habitat quality class throughout the entire LYR at multiple discharges. 488 

Percentages were calculated at each discharge in which bioverification observations 489 

were made for each species and size class. To normalize the percentages across 490 



 

 

discharges, the area of each habitat quality class was divided by the area of the wetted 491 

channel at the highest discharge in which a bioverification observation was made for 492 

that species and size class. The percentage of unwetted area was also calculated for each 493 

discharge relative to the area of the wetted channel at the highest discharge. For 494 

example, the area for each O. tshawytscha fry habitat quality class was calculated 495 

throughout the entire river at 14.16 m3/s and then divided by the area of the wetted 496 

channel at 32.56 m3/s. The percentage of unwetted area was also calculated at 14.16 497 

m3/s as the difference between the area of wetted channel at 32.56 and 14.16 m3/s 498 

divided by the area of wetted channel at 32.56 m3/s. By using this method, percentages 499 

of area for each habitat quality class were relative to the same area for each species and 500 

size class and could therefore be compared across discharges. 501 

Results 502 

HSC development 503 

O. tshawytscha and O. mykiss juveniles utilized deeper and faster microhabitat 504 

compared to the fry size class of both species (Table 4). Depth and velocity HSC 505 

functions reflected these tendencies with peak suitability values extending towards 506 

slightly deeper and faster water for juveniles compared to fry (Figure 5). As expected, 507 

ranges of peak suitability encompassed the mean, median, and mode depth and velocity 508 

values utilized by all four species and size classes. Depth and velocity HSC functions 509 

exhibited similar shapes across species and size classes except for O. mykiss fry, which 510 

were not observed in depths greater than 0.93 m in the HSC or bioverification datasets. 511 

Mann-Whitney U test results 512 

Mann-Whitney U test results showed statistically significant differences between CHSI 513 

values at randomly generated, non-utilized locations and locations utilized by all four 514 



 

 

species and size classes (Table 5; Figure 6). Although all four microhabitat suitability 515 

models met performance criteria necessary to pass the Mann-Whitney U bioverification 516 

test, there were noticeable differences in distributions of utilized and non-utilized CHSI 517 

values between species and size classes. For example, the interquartile range of utilized 518 

and non-utilized CHSI values for both O. tshawytscha size classes overlapped, while 519 

there was no overlap for either O. mykiss size class (Figure 6). For O. mykiss fry, 520 

relatively narrow depth and velocity HSC functions (Figure 5) caused a significant 521 

proportion of the modelled channel to have a suitability value of zero. Most of the  522 

non-utilized locations were then randomly generated where microhabitat suitability was 523 

zero, resulting in an interquartile range of zero. The lack of overlap in utilized and non-524 

utilized values for O. mykiss juveniles is less straightforward and may be the result of 525 

lower intraspecific competition for highly suitable microhabitat compared to the more 526 

abundant O. tshawytscha size classes (Table 2). 527 

Forage ratio and bootstrapping results 528 

Statistical bootstrapping showed variability in preference and avoidance thresholds 529 

across habitat quality classes and the four species and size classes (Table 6). In general, 530 

the standard deviations and resulting threshold ranges increased with increasing habitat 531 

quality for all species and size class models. This increase was likely because habitat 532 

quality classes with higher CHSI values made up smaller percentages of the total area 533 

within the channel across sites and discharges compared to classes with lower values. 534 

With smaller areas, there were lower probabilities of randomly generated points falling 535 

within those classes, causing lower than average FR values. However, because the areas 536 

were smaller, when randomly generated points did fall within those habitat quality 537 

classes, FR values were above average. A combination of high and low FR values when 538 

randomly generated points did and did not fall within classes with relatively smaller 539 



 

 

areas resulted in larger standard deviations and resulting thresholds for those classes. 540 

Larger standard deviations were also due in part to smaller datasets. Datasets for both 541 

O. tshawytscha size classes generally had more observations and smaller standard 542 

deviations than the O. mykiss size classes. 543 

There was a similar monotonic increase in FR residuals with increasing habitat 544 

quality classes across all species and size class models (Table 6, Figure 7). All four 545 

species and size classes avoided the lowest class and preferred the highest. However, all 546 

four species and size classes did not share the same preference and avoidance for the 547 

0.25-0.50 and 0.50-0.75 classes. For example, O. mykiss fry strongly preferred CHSI 548 

values in the 0.50-0.75 class, while O. mykiss juveniles neither preferred nor avoided 549 

them. Overall, all four microhabitat suitability models met the two performance criteria 550 

necessary to pass the FR bioverification test and were therefore considered bioverified 551 

and successful models of microhabitat suitability in the LYR. 552 

Four example sites were chosen to illustrate the performance of each species and 553 

size class microhabitat suitability model (Figure 8). At each example site, a majority of 554 

observations were located along the banks and in the 0.75-1.00 habitat quality class, 555 

while no observations were made midchannel or in the 0.00-0.25 class. These examples 556 

highlight the ability of all four models to make relatively accurate and detailed 557 

predictions of microhabitat preference and avoidance. 558 

Habitat area-discharge relationship 559 

The percentage of area of each habitat quality class varied across species, size class, and 560 

discharge (Figure 9). The 0.75-1.00 class made up the smallest percentage of area for 561 

each species, size class, and discharge and only decreased slightly with increasing 562 

discharge. For fry size classes of both species, the percentage of area for the 0.50-0.75 563 

and 0.25-0.50 classes decreased with increasing discharge, while only the 0.50-0.75 564 



 

 

classes decreased with increasing discharge for juveniles. The 0.00-0.25 class increased 565 

with increasing discharge for all four species and size classes, but at a slightly higher 566 

rate for fry than for juveniles. 567 

Discussion 568 

What constitutes bioverification? 569 

While not considered bioverification as defined in this article, biological models used to 570 

estimate salmonid habitat quality have been evaluated and compared many different 571 

ways since the 1970s (Ahmadi-Nedushan et al. 2006; Dunbar et al. 2012). Regression 572 

analysis has been used to evaluate the correlation between suitability values estimated 573 

by HSC functions and salmonid biomass or density (Wesche et al. 1987; Beard and 574 

Carline 1991; Beecher et al. 2002), while chi-squared tests have been used to validate 575 

the transferability of HSC functions between rivers (Thomas and Bovee 1993, Mäki-576 

Petäys et al. 2002; Guay et al. 2003). For probabilistic-based biological models, 577 

Akaike’s information criterion, pseudo-R2 values, and the Hosmer-Lemeshow statistic 578 

have been used to evaluate and compare the goodness-of-fit of different models, while 579 

metrics of selectivity, sensitivity, and errors of omission and commission are commonly 580 

used to test classification accuracy (Tiffan et al. 2006; Hatten et al. 2009; Hatten et al. 581 

2016; Tiffan et al. 2016; Hellmair et al. 2018). 582 

Compared to the large number of biological models developed and evaluated for 583 

salmonids and other aquatic organisms, there have been relatively few studies that have 584 

tested the ability of microhabitat suitability models to accurately and reliably predict 585 

where these species are more or less likely to occur using independent observational 586 

data. Although probabilistic-based microhabitat suitability models have been tested 587 

against independent observations of spawning (Geist et al. 2008; Hatten et al. 2009; 588 



 

 

Hatten et al. 2016) and rearing (Guay et al. 2000; Tiffan et al. 2006; Tiffan et al. 2016; 589 

Hellmair et al. 2018) salmonids, the metrics used in these tests require a categorical 590 

prediction of habitat suitability (i.e., presence or absence). These metrics are therefore 591 

unable to evaluate the wide variety non-probabilistic predictive models commonly used 592 

in ecohydraulic modelling worldwide. 593 

Although microhabitat suitability models have become a relatively common tool 594 

used in ecohydraulics, there remains no consensus regarding which tests should be used 595 

and what degree of performance should be required for a model to be accepted for basic 596 

science and societal applications. Building on previous studies and preceding work by 597 

Kammel et al. (2016), this study proposes a generalized yet comprehensive and 598 

transparent framework for evaluating predictions made by any type of microhabitat 599 

suitability model with a high degree of statistical confidence and clear performance 600 

criteria. Two types of tests are recommended that compare observed data with random 601 

analogues to establish statistical significance. This testing framework is on par with 602 

hydrodynamic model validation and constitutes ecohydraulic model bioverification as 603 

defined in this article. By meeting the performance criteria of these tests, the models 604 

developed herein showed statistically significant differences between suitability values 605 

at utilized and non-utilized locations in the LYR and predicted both preferred and 606 

avoided microhabitat conditions with statistical confidence. 607 

Habitat quality class binning 608 

A key analytical step in this study was binning CHSI values into habitat quality classes 609 

for forage ratio and bootstrapping analyses. Although binning suitability values is a 610 

traditional and straightforward strategy used in ecohydraulic modelling (Leclerc et al. 611 

1996; Guay et al. 2000; Mäki-Petäys et al. 2002; Hatten et al. 2009; Harrison et al. 612 

2011; Benjanker et al. 2015; Kammel et al. 2016), it is typically done using arbitrarily 613 



 

 

chosen binning intervals. With the bioverification framework used in this study, 614 

however, it is possible to substantiate the veracity of binning schemes by evaluating 615 

which bins are avoided, randomly selected, and preferred. Further, although outside the 616 

scope of this study, forage ratio and bootstrapping analyses allow simple three-class 617 

binning schemes with optimal bin ranges for avoided, randomly selected, and preferred 618 

habitat quality classes. Specifically, a computer program could be developed that 619 

optimizes all three classes by incrementally shifting the bin ranges of each class and 620 

then calculating the associated FR residuals until a specific optimized outcome was 621 

reached. 622 

Another important consideration of habitat quality class binning is the value of a 623 

bioverified two-class scheme with preferred habitat as one class and avoided and 624 

randomly selected habitat as the other class. With this binning scheme, the actual area 625 

of preferred habitat can be analysed across discharges and/or with alternative restoration 626 

designs rather than the commonly used but highly criticized weighted usable area 627 

(WUA) habitat index (Railsback 2016). For these reasons, the forage ratio and 628 

bootstrapping approach presented herein are a significant analytical development with 629 

the potential to enhance ecohydraulic modelling and habitat analyses in diverse 630 

applications. 631 

 Assessing study assumptions 632 

An assumption made in this study was that depth and velocity suitability values for 633 

rearing salmonids remain constant as discharge changes. For example, for each species 634 

and size class, the same set of frequency-based HSC functions were applied to depth 635 

and velocity raster outputs hydrodynamically modelled from 14.16 to 42.48 m3/s. 636 

Additionally, weighted average FR values were calculated across this same range of 637 

discharges. In support of this assumption, several studies have observed no statistically 638 



 

 

significant difference between the depths and velocities utilized by rearing salmonids at 639 

varying discharges (Heggens 1988; Shirvell 1994; Beecher et al. 1995; Robertson et al. 640 

2004). These observations suggest that rearing salmonids change locations within the 641 

channel to remain at suitable depths and velocities as discharge changes. In other 642 

studies, however, adult (Pert and Erman 1994) and rearing (Vehanen et al. 2000, Holm 643 

et al. 2001) salmonids were observed utilizing deeper and faster (i.e., less suitable) 644 

microhabitat conditions as discharge rapidly changed. These conflicting results suggest 645 

that other factors may be responsible for the observed changes in utilized depths and 646 

velocities as discharge changes. For example, availability of suitable depths and 647 

velocity conditions may decrease more rapidly at some study sites compared to others 648 

as discharge increases, functionally forcing fish to utilize deeper and faster water. Yet 649 

this pattern was not observed in the LYR during this study. Rather, suitable depth and 650 

velocity conditions were abundant across all sites and discharges according to validated 651 

2D hydrodynamic model outputs. 652 

There are also other factors not considered in the microhabitat suitability models 653 

evaluated in this study. For example, water temperature can affect salmonid mortality 654 

(Richter and Kolmes, 2005), growth (Marine and Cech 2004), movement (Baker et al. 655 

1995), and diel activity (Fraser et al. 1995). Although water temperatures in the LYR 656 

are unlikely to reach levels high enough to cause mortality to rearing salmonids, 657 

temperatures that maximize growth and swimming ability are likely a major component 658 

of temporal microhabitat selection (Hillman et al. 1987; Taylor 1988; Allen 2000). 659 

Similarly, food availability (Dill et al. 1981), competition for preferred habitat between 660 

and among fish species (Everest and Chapman 1972; Grant et al. 1990), and predation 661 

(Bugert and Bjornn 1991; Tiffan et al. 2016) can also affect microhabitat quality and 662 

availability for rearing salmonids. Despite these considerations, the microhabitat 663 



 

 

suitability models evaluated in this study passed several steps of a rigorous 664 

bioverification framework and demonstrated an ability to accurately and reliably predict 665 

preferred and avoided rearing salmonid habitat in the LYR. 666 

Conclusions 667 

In this study, four sets of frequency-based, data-driven depth and velocity HSC 668 

functions were developed for rearing salmonids in the LYR. These sets of HSC 669 

functions, along with an expert-based cover HSC function were applied to spatially 670 

explicit, 0.91-m-resolution maps of physical habitat conditions throughout the 37-km 671 

long river, resulting in four microhabitat suitability models. The models were then 672 

bioverified using a general yet comprehensive framework with transparent uncertainty 673 

analysis and performance criteria. The rearing salmonid microhabitat models developed 674 

herein were not only able to show statistically significant differences between suitability 675 

values at utilized and non-utilized locations for all four species and size classes, but 676 

were also able to predict both preferred and avoided microhabitat conditions with 677 

statistical confidence through forage ratio and bootstrapping analyses. Bioverified 2D 678 

microhabitat suitability models allow for a more detailed and spatially explicit 679 

representation of discharge-dependent habitat conditions than traditional transect-based 680 

and 1D microhabitat models (e.g., PHABSIM). As a result, they can provide more 681 

accurate and spatially interpretable predictions of preferred habitat area for regulatory 682 

and management decisions, including instream flow assessments and habitat restoration 683 

efforts. Although demonstrated as a method for evaluating salmonid microhabitat 684 

suitability models, this bioverification framework can be applied to any spatially 685 

explicit habitat suitability model, regardless of species, life stage, or habitat type. 686 
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Tables 949 

Table 1. Dates of snorkel surveys in which O. tshawytscha or O. mykiss observations 950 

were made. 951 

2012 2014 2015 

January 3, 4, 5 May 19, 21, 27, 28 January 12, 13, 15, 20 

February 8, 9 June 12, 16 March 16, 17, 18 

March 7, 8, 9 July 16, 17, 22 April 13, 14, 15 

June 13, 14 August 19, 20, 21 May 4, 6, 7 

September 5, 6, 7  June 22, 24 

  July 8, 9 

  August 10 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 



 

 

Table 2. Fish counts used for HSC development and bioverification. 966 

  
O. tshawytscha 

fry 

O. tshawytscha 

juvenile 

O. mykiss 

fry 

O. mykiss 

juvenile 

HSC 

development 
Observations 212 102 61 43 

 Total fish count 5588 1943 925 209 

 Adjusted fish count 406.56 185.18 96.75 57.91 

Bioverification Observations 46 37 29 19 

 Total fish count 999 500 222 76 

 Adjusted fish count 94.16 66.73 43.83 25.88 

 967 

 968 

 969 

 970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

 978 

 979 

 980 

 981 

 982 

 983 

 984 

 985 



 

 

Table 3. HSC values used for each cover type. 986 

Cover type HSC value 

Vegetation 1.00 

Bedrock outcrops 0.75 

Rip-rap 0.75 

Weirs 0.75 

Bridge piers 0.75 

Bare substrate 0.50 

 987 

 988 

 989 

 990 

 991 

 992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 

 1002 

 1003 

 1004 

 1005 



 

 

Table 4. Descriptive statistics of microhabitat utilization at HSC observations. Depth 1006 

and velocity values are in units of meters and meters per second, respectively. 1007 

Statistic 
O. tshawytscha 

fry 

O. tshawytscha 

juvenile 

O. mykiss 

fry 

O. mykiss 

juvenile 

Depth mode 0.26 0.58 0.22 0.50 

Depth median 0.36 0.55 0.34 0.50 

Depth mean 0.45 0.59 0.38 0.58 

Depth SD 0.33 0.32 0.20 0.33 

Depth range (0.04-2.10) (0.06-2.40) (0.03-0.89) (0.20-2.00) 

Velocity mode 0.00 0.00 0.02 0.02 

Velocity median 0.04 0.09 0.04 0.11 

Velocity mean 0.09 0.15 0.08 0.18 

Velocity SD 0.13 0.17 0.10 0.19 

Velocity range (0.00-0.64) (0.00-0.79) (0.00-0.60) (0.00-0.77) 

 1008 

 1009 

 1010 

 1011 

 1012 

 1013 

 1014 

 1015 

 1016 

 1017 

 1018 

 1019 

 1020 

 1021 

 1022 

 1023 



 

 

Table 5. Mann-Whitney U test results comparing CHSI values at utilized and non-1024 

utilized locations. 1025 

 O. tshawytscha fry O. tshawytscha juvenile O. mykiss fry O. mykiss juvenile 

Median utilized value 0.55 0.66 0.58 0.79 

Median non-utilized value 0.36 0.4 0.00 0.15 

Difference of medians 0.19 0.26 0.58 0.64 

U value 575.5 327 76.5 18 

p value 0.0002 0.0001 <0.00001 <0.00001 

 1026 

 1027 

 1028 

 1029 

 1030 

 1031 

 1032 

 1033 

 1034 

 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 



 

 

Table 6. Bootstrapping statistics from 20 randomly generated datasets, resulting 95% 1045 

confidence thresholds, and FR residuals. 1046 

Species and  

size class 

Habitat 

quality class 

Standard 

deviation 

Preference 

threshold 

Avoidance 

threshold 

FR 

value 

FR 

residual 

O. tshawytscha fry 0.00-0.25 0.18 1.36 0.64 0.08 -0.55 

 0.25-0.50 0.21 1.42 0.58 1.19 0.00 

 0.50-0.75 0.34 1.68 0.32 2.52 0.83 

 0.75-1.00 0.84 2.67 -0.67 7.91 5.24 

O. tshawytscha juvenile 0.00-0.25 0.27 1.54 0.46 0.14 -0.31 

 0.25-0.50 0.22 1.44 0.56 0.26 -0.30 

 0.50-0.75 0.35 1.69 0.31 2.47 0.78 

 0.75-1.00 0.64 2.28 -0.28 7.49 5.20 

O. mykiss fry 0.00-0.25 0.10 1.20 0.80 0.12 -0.68 

 0.25-0.50 0.46 1.92 0.08 2.57 0.65 

 0.50-0.75 0.73 2.46 -0.46 5.50 3.04 

 0.75-1.00 0.74 2.49 -0.49 8.67 6.18 

O. mykiss juvenile 0.00-0.25 0.33 1.66 0.34 0.00 -0.34 

 0.25-0.50 0.33 1.65 0.35 0.32 -0.03 

 0.50-0.75 0.68 2.36 -0.36 1.68 0.00 

 0.75-1.00 0.83 2.65 -0.65 7.94 5.29 

 1047 

 1048 

 1049 

 1050 

 1051 

 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 



 

 

Figures 1059 

 1060 

Figure 1. Map of the study location in the lower Yuba River. 1061 
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 1078 

Figure 2. Experimental design for microhabitat suitability model development and 1079 

bioverification with developed HSC functions. 1080 

 1081 

 1082 
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 1084 

Figure 3. Dates of snorkel and topographic surveys and hydrographs of the LYR 1085 

recorded at the Marysville and Smartsville stream gages throughout the survey period. 1086 

 1087 

 1088 

 1089 

 1090 

 1091 

 1092 

 1093 

 1094 

 1095 

 1096 

 1097 

 1098 

 1099 

 1100 



 

 

1101 

Figure 4. Procedure used to subset snorkel data into independent datasets for developing 1102 

HSC functions and bioverification for four species and size classes. 1103 
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 1119 

Figure 5. Frequency-based depth and velocity HSC functions for O. tshawytscha (A) fry 1120 

and (B) juvenile and O. mykiss (C) fry and (D) juvenile. 1121 
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 1124 
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 1126 

 1127 

 1128 

 1129 



 

 

 1130 

Figure 6. Boxplot of Mann–Whitney U test results comparing CHSI values at utilized 1131 

and non-utilized locations. For O. mykiss fry, there is no visible box for non-utilized 1132 

conditions because the interquartile range was zero. 1133 
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 1147 

Figure 7. Forage ratio residuals for all four species and size classes. 1148 
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 1164 

Figure 8. Maps of habitat quality classes for O. tshawytscha (A) fry and (B) juvenile 1165 

and O. mykiss (C) fry and (D) juvenile 1166 
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 1175 

Figure 9. Percentages of area of each habitat quality class at each discharge in which 1176 

bioverification observations were made for O. tshawytscha (A) fry and (B) juvenile and 1177 

O. mykiss (C) fry and (D) juvenile. 1178 




