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Systems-biology analysis of rheumatoid
arthritis fibroblast-like synoviocytes
implicates cell line-specific transcription
factor function

Richard I. Ainsworth1,2, Deepa Hammaker3, Gyrid Nygaard3,5, Cecilia Ansalone3,
CamillaMachado 3, Kai Zhang1, Lina Zheng 4, Lucy Carrillo3, AndreWildberg1,
Amanda Kuhs3, Mattias N. D. Svensson3,6, David L. Boyle3,
Gary S. Firestein 3 & Wei Wang 1,2,4

Rheumatoid arthritis (RA) is an immune-mediated disease affecting diarthro-
dial joints that remains an unmetmedical needdespite improved therapy. This
limitation likely reflects the diversity of pathogenic pathways in RA, with
individual patients demonstrating variable responses to targeted therapies.
Better understanding of RA pathogenesis would be aided by a more complete
characterization of the disease. To tackle this challenge, we develop and apply
a systems biology approach to identify important transcription factors (TFs) in
individual RA fibroblast-like synoviocyte (FLS) cell lines by integrating tran-
scriptomic and epigenomic information. Based on the relative importance of
the identified TFs, we stratify the RA FLS cell lines into two subtypes with
distinct phenotypes and predicted active pathways. We biologically validate
these predictions for the top subtype-specific TF RARα and demonstrate dif-
ferential regulation of TGFβ signaling in the two subtypes. This study char-
acterizes clusters of RA cell lines with distinctive TF biology by integrating
transcriptomic and epigenomic data, which could pave the way towards a
greater understanding of disease heterogeneity.

Rheumatoid arthritis (RA) is a systemic inflammatory disease that
causes joint inflammation and destruction1. A variety of targeted
therapies, such as TNF blockers, have improved outcomes for RA
patients, but a significant percentage have persistent inflammation.
Treatment typically follows a trial and error method until a drug that
decreases disease activity is identified2. Variable responses to therapy
from patient to patient indicates diverse mechanisms of the disease,
despite similar clinical phenotypes in RA.

There is considerable evidence of synovial tissue heterogeneity in
RA3. A variety of approaches have used diverse technologies to predict
therapeutic response, including histology4, immunostaining for cyto-
kines like TNF, and composite scoring systems5. None of these, to date,
have been successfully translated to clinical practice, although a recent
biopsy study suggests possible correlations between the tran-
scriptome and response to a targeted therapy6. Wide variability in
synovial histology and infiltration by various innate and adaptive cell
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lineages in the joint further suggests that the important individual cell
types can vary from patient to patient.

Fibroblast-like synoviocytes (FLS) form the synovial lining and
have a major function in joint destruction in RA. Cultured FLS derived
from rheumatoid synovium are epigenetically imprinted in RA and
exhibit an aggressive phenotype with aberrant signaling7 that con-
tributes to disease pathogenesis. Mesenchymal cell precursors in the
peripheral blood of patients with RAhave been associatedwith disease
flares. We recently mapped the epigenomic landscape of cultured
primary RA FLS, which demonstrated inter-patient heterogeneity but a
stable repertoire of imprinted marks that distinguish RA from
controls8. These differentially modified epigenetic regions identify
diverse pathogenic pathways and potential therapeutic targets
involved in immunity as well as unexpected processes such as the
Huntington Disease Pathway.

We now report the application of the systems biology method
Taiji9 to perform individual analysis on primary human cells. Our
central hypothesis was that this algorithm could be applied to
individual samples and that individual TFs can have different
functions in primary cells derived from RA patients. This algorithm
unexpectedly enabled clustering of FLS lines derived from indivi-
dual RA patients into at least two groups that predicted context-
specific TF function. Each cluster has distinct TFs that are predicted
to have opposite effects on FLS function. Biologic validation
experiments confirmed this hypothesis for the highly ranked reti-
noic acid receptor alpha (RARα) and demonstrated that it regulates
distinct functions of the TGFß pathway in the two clusters. This
dichotomy could explain the diverse effects of retinoids in RA
animal models and why this has limited their development as a
target for RA10–13. Our method provides a possible mechanistic
explanation for the diversity of clinical responses to targeted
agents in diseases like RA.

Results
Computational and experimental overview
To identify key driver TFs in rheumatoid arthritis we have applied
Taiji to integrate genomic information from individual RA FLS lines
into transcriptional regulatory networks. TFs were then ranked on
their regulatory influence and cell lines clustered according to
driver TF profiles. Computational assessment of the differences
between these cell line clusters was conducted to identify impor-
tant signaling pathways and define phenotypes. To validate these
predictions, the following experiments were performed for the top
ranked differential TF: ChIP-qPCR was conducted on cell lines from
each cluster to assess predicted differential binding followed by
siRNA knockdown of the top TF and RT-qPCR to assess downstream
effects on gene expression, Western blot to assess downstream
effects on protein, and MTT proliferation and Matrigel invasion
assays to assess functional effects (Supplementary Fig. 1 and Sup-
plementary Table 1).

Global transcriptional gene regulation networks in rheumatoid
arthritis
We constructed genetic networks in FLS from RA patients using the
Taiji pipeline (Fig. 1a, “Methods” and Supplementary Fig. 2). Taiji first
identified active regulatory elements using ATAC-seq peaks and then
scanned the known 745 TF motifs documented in the CIS-BP database
in these regions, to predict putative TF binding sites. The TFs whose
binding sites were found in a gene’s promoter were linked to that gene
(a topological “edge” between two “nodes”) else they were labeled as
an enhancer site and linked to a gene using EpiTensor predictions.
These regulatory interactions were assembled into a genetic network.
TFs were subsequently ranked based on their global regulatory influ-
ence in the genetic network using the Personalized PageRank (PPR)
algorithm. Each node was weighted according to its expression. The

weight of each edge was determined based on the expression level of
the parent node TF and strength of the TF-gene association as indi-
cated by the ATAC-seq peak intensity and themotif strength. Using the
node and edge weights, the Personalized PageRank algorithm itera-
tively determined the global importance of each node in the network.
TF nodes that form a relatively large number of edges as parents to
highly important child TF/gene nodes (associated with the expression
of the child nodes) received higher ranks. Note that these TFs are not
necessarily highly expressed themselves. In our previous studies, the
Taiji pipeline identified key TFs that were validated using simulated
data and experiments9,14,15.

Stratifying RA cell lines using the TF PageRank scores
A unique feature of Taiji is that it can be applied to individual primary
cell lines derived from RA patients. We built the genetic network in
each RA cell line, based on which the PageRank score for each TF in
each cell line was calculated. Using the top 350 TFs ranked by variance
that were expressed in at least one cell line, the 11 cell lines from RA
patients clustered into two groups using hierarchical clustering with
the Euclidean distance measure and the complete agglomeration
method, named cluster 1 (CL1, 7 cell lines) and cluster 2 (CL2, 4 cell
lines) (Fig. 1b). For comparison, we analyzed similar data from 11
osteoarthritis (OA) cell lines through the Taiji pipeline. When indivi-
dual OA FLS lines were clustered with the same method we again
observed two clusters of OA cell lines. Distinct differential TFs were
noted, as compared to RA, with a very small overlap (55 unique to OA
and only 7 in common with RA) (Supplementary Fig. 3). This was not
surprising because RA and OA have distinct disease mechanisms with
functional enrichment analysis of the OA cluster-specific TFs resulting
in many developmental pathways including “Activation of HoX genes
during differentiation” (p-value = 2.47 × 10−10 from a hypergeometric
test for over-representation).

We next identified the cluster-specific TFs for RA FLS clusters. TFs
were ranked based on the absolute difference between the mean TF
PageRank z-scores from CL1 and CL2. Among the top 200 TFs, we
selected the top 100TFs whose “regulatees” (child nodes) also showed
significantly different PageRank z-scores between the two clusters
(p-value < 5.0 × 10−2 using Hotelling T-Squared test, see “Methods”).
From this list, we obtained 28 TFs (Top 20 shown in Fig. 1c) with a
q-value < 5.0 × 10−2 (Supplementary Data 1). These cluster-specific TFs,
such as the CL1-specific RARα, ETV7, BCL6, BACH1, NFE2L1, THRA, and
NR0B1, and the CL2-specific TCF7, E2F7, E2F1, FOSL1, and FOXC2,
collectively regulate the differential functions of the two groups of RA
cell lines.

Transcriptional network validation
Using the network topologies predicted by Taiji, the ratio of gene
expression between all pairs of topologies (response) was predicted
based on the ratio of expression levels of their specific parent TFs
(features). We then validated the network by confirming the predicted
gene expression differences. A Pearson correlation of 0.72 on the test
sets using a 10-fold cross validation (Fig. 2a) was significantly higher
than a value of −0.01 for randomly shuffled network topologies, which
indicates that the predicted network topology captured important
regulatory interactions.

We then confirmed the computationally predicted differential
binding of the top CL1-specific TF, RARα, at chr11:68,043,640–68,
043,657 (GRCh38/hg38) in the promoter of TCIRG1, a gene that has a
function in bone remodeling and cancer metastasis16. Taiji predicted a
regulatory interaction between RARα and TCIRG1 in CL1 but not in CL2
(Fig. 2b). ChIP-qPCR on FLS lines was performed with the highest
ranked (CL1) and lowest ranked (CL2) cell lines by RARα PPR score. CL1
lines exhibited a 4.11 mean fold change in yield (%input) compared to
control (p-value < 0.05 by paired two-tailed Student’s t-test) whereas
CL2 lines exhibited no change (Fig. 2c).
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The top ranked cluster-specific TFs regulate cell cycle and
proliferation pathways
We investigated the patterns of pathways and regulatory function of
top cluster-specific TFs, RARα, a cell cycle inhibitor, and E2F1, a cell
cycle activator. We collated each regulatee for each cell line and then
compared them across all RA FLS networks to define patterns of reg-
ulatees for each TF. Strikingly, the top CL1-specific RARα and CL2-
specific E2F1 together regulate 74% (434/589) of the >2-fold DEGs,
showing their importance in differentiating the two clusters. In parti-
cular, they regulate cell cycle pathways including cell cycle check-
points, homology directed repair, G0/G1 andmitotic phases. Cell cycle
activators are broadly overexpressed inCL2 and repressed in CL1, such
as the CL2 overexpressed cyclin-dependent kinase CDK1 that drives
cells through mitosis (Fig. 3a). RARα-specific pathways include
“Negative regulation of mitotic cell cycle” (p-value = 1.53 × 10−7 from a
hypergeometric test for over-representation) highlighting this. Nota-
bly, E2F1 regulates the tumor suppressor and inhibitor of cell cycle,
CDKN1C (3.7-fold CL1, p-value = 2.7 × 10−3 by two-sided Student t-test)17.

These functions of the top cluster-specific TFs’ regulatees are
consistent with those of all the 589 DEGs (expression change >2-fold

and p-value < 5.0 × 10−2 by two-sided Student t-test) (Supplementary
Data 2) between the two clusters. The most significantly enriched
pathways include “Cell Cycle”, “Chromosome Maintenance”, “Cell
Cycle Checkpoints” and “Signaling by Rho GTPases” (Supplementary
Data 3). Taken together, these CL1 vs CL2 features point to differences
in RA FLS cell cycle progression, adhesion and Rho GTPase signaling
and cell cycle checkpoint initiation (Fig. 3a).

TF-TF subnetworks predict differential regulatory functions of
TGFβ in the two clusters
TF-TF subnetworks hold crucial transcriptional information. There-
fore, we focused on the regulatees that are also TFs of the top ranked
cluster-specific TFs (CL1-specific RARα, ETV7, and BCL6, and CL2-
specific TCF7, E2F7, and E2F1, Fig. 3b). We identified the cluster-
specific edges determined by the cluster-specific open chromatin
pattern. We only considered the cluster-specific edges that were
shared in >75% of the networks in the cluster that also had a higher
edge weight (>1.5-fold) compared to the other cluster. We found that
the CL1-specific TFs are enriched with the pathway “Diseases of signal
transduction by growth factor receptors and second messengers”

Fig. 1 | Individual transcriptional gene regulation networks for Rheumatoid
Arthritis Fibroblast-like Synoviocytes allow for cell line stratification based on
global TF regulatory differences. a Construction of cell line specific global tran-
scriptional gene regulation networks using the Taiji Integrative Pipeline with RNA-
seq and ATAC-seq data. Ranking of TFs using Personalized PageRank (PPR). b Cell

line stratification into two clusters (CL1 and CL2) based on PPR. Hierarchical clus-
tering using z-score(PPR) of top 100 TFs. c Top ranked TFs from a statistical power
analysis of their regulatees and absolute change in PPR between CL1 and CL2. CL1-
and CL2-specific TF “playlists”. Barplots of z-score(PPR) for top ranked cluster-
specific TFs. Source data are provided as a Source Data file.
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(p-value = 7.19 × 10−5 from a hypergeometric test for over-representa-
tion). In contrast, the CL2 TFs are involved in “SMAD2/SMAD3:SMAD4
heterotrimer regulates transcription” (p-value = 4.82 × 10−6 from a
hypergeometric test for over-representation).

Analysis of transcriptomic signatures of repressors, such as
SMAD7 and SMURF1,2 which are more highly expressed in CL2, sup-
ported the notion that the TGFβ SMAD-dependent signaling might
be repressed but not eliminated in CL2 (Fig. 3b). Consistent with that
concept, the angiogenic factors hypoxia-inducible factor 1-alpha
(HIF1A) and vascular endothelial growth factor (VEGFA) are higher in
CL2 with the latter being an AP1 target along with MMP1 and TGFβ1
(1.9-fold CL2, p-value = 1.6 × 10−2 by two-sided Student t-test). Non-
canonical pathways such as the MKK7-JNK-AP1 axis represent
TGFβ activated MAPK signaling casades18 that mediate RA FLS
invasiveness19.

To explore other features that distinguish the two clusters of
individual FLS lines, we examined histone modification differences
using the integrative analysis pipeline EpiSig8 that identifies
genomic regions with similar epigenomic profiles across 6 histone
marks (H3K4me1/3, H3K27ac/me3, H3K36me3, H3K9me3). Ten
clusters displayed high inter-patient variance in H3K4me1
signal and were enriched in the “SMAD binding” pathway
(p-value = 1.79 × 10−8 from a hypergeometric test for over-repre-
sentation) (Supplementary Fig. 4). This orthogonal analysis sup-
ported the Taiji result that integrated gene expression and open
chromatin information.

RARα differentially modulates downstream transcriptional
responses in CL1 and CL2
To validate the differential regulatory functions of TFs in the two
clusters, we focused on a top CL1-specific TF, RARα, and investigated
its differential effects on TGFB and its regulatees that were predicted

based on the Taiji analysis. We therefore explored the possibility that
the downstream TGFβ pathway has differential responses in CL1 and
CL2 (Fig. 3b) by sequentially studying multiple steps down the TGFß
pathway, anticipating a cluster-specific regulatory influence of RARα.
We depleted RARα using siRNA, in the cell lines with the highest and
lowest RARα PPR scores, followed by IL-1 stimulation. RT-qPCR
showed that RARα mRNA levels were decreased by 67 and 68% in
CL1 (p-value = 0.041 by paired two-tailed Student’s t-test) and CL2
(p-value = 0.015 by paired two-tailed Student’s t-test), respectively.
This was confirmed at the protein level by Western Blot showing a
decrease of at least 53 to 58% (p-value = 0.004 by paired two-tailed
Student’s t-test) (Supplementary Fig. 5a). RARα deficiency had differ-
ential effects on TGFß1 expression in CL1 vs CL2 (18% decreasing trend
in CL1 and a significant 25% increase in CL2 (p-value = 3.8 × 10−3 by
paired two-tailed Student’s t-test)) (CL1 vs CL2 p <0.05 by two-tailed
Student’s t-test) (Fig. 4a).

We then confirmed that the pathway and genes downstream in
the TGFβ1 canonical signaling pathway, which initiates a series of
SMAD-mediated steps, were differentially regulated in CL1 and CL2.
The propagation of the upstream divergent effects were consistent
through the pathway for CL1 and CL2. For example, we observed a
significant 21% decrease in CDKN2B for CL1 (p-value = 9.21 × 10−4 by
paired two-tailed Student’s t-test) compared with a significant 13%
increase in RARα deficient CL2 cells (p-value = 2.43 × 10−4 by paired
two-tailed Student’s t-test) (CL1 vs CL2 p <0.05 by two-tailed Student’s
t-test).

We also evaluated whether protein levels correlated with mRNA
expression. These studies began with immunoassays of TGFß protein,
recognizing that these measurements can be difficult to interpret
because the growth factor binds avidly to matrix proteins20 and the
functional effects require activation from the latent to the active form.
We noted that latent TGFß1 protein levels were similar between CL1

Fig. 2 | Computational and experimental verification of personalized tran-
scriptional gene regulation networks for Rheumatoid Arthritis Fibroblast-like
Synoviocytes. a Computational validation of predicted regulatory interactions
using a 10-fold cross validated Random Forest regression model. b Selected dif-
ferential edge formed by rank 1 cluster-specific TF, RARα→TCIRG1. ATAC-seq track
from top 3 (CL1) and bottom 3 (CL2) patients as ranked by RARα PPR, showing
TCIRG1 gene and location of ATAC-seq peak centered on RARα motif at

chr11:68,043,640-68,043,657 (GRCh38/hg38) in the promoter of TCIRG1.
c Experimental validation of cluster-specific predicted regulatory interaction using
ChIP-qPCR showing CL1-specific RARα DNA-binding. p-value calculated by paired
two-tailed Student’s t-test. Center line is mean and error bars +/− 0.5 standard
deviation. CL1 n = 3 and CL2 n = 3 biologically independent cell lines. Source data
are provided as a Source Data file.
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and CL2 (Supplementary Fig. 5b). Because of issues with TGFß protein
assays, we then evaluated a more tractable analyte by moving down-
stream to an intracellular TGFß regulatee, CDKN2B, which had similar
differential mRNA expression in CL1 and CL2 (Fig. 4a). Using Western
blot analysis, we confirmed that RARα deficiency had the predicted
differential effect in CL1 and CL2 with a CL1 decrease in CDKN2B
protein (p-value = 4.80 × 10−2 by paired two-tailed Student’s t-test) and
no significant change for CL2 (CL1 vs CL2 p <0.05 by two-tailed Stu-
dent’s t-test) (Fig. 4a and Supplementary Fig. 5c). To evaluate if
CDKN2B expression levels were due to aberrant SMAD signaling
instead of decreased functional TGFß, we stimulated CL1 and CL2 FLS
lineswith TGFß andmeasured P-SMAD (Supplementary Fig. 5d). SMAD
activation was similar in the two clusters, suggesting that differential
CDKN2B expression is likely due to decreased TGFß in the
microenvironment.

Differential TGFβ signaling and biologic effects
SMAD-independent TGFβ signaling mechanisms can also initiate non-
canonical effects, including activation of the cell cycle. In light of the
known non-canonical TGFβ-mediated activation of RhoA signaling21,
we analyzed the effects of RARα siRNA on the non-canonical RHO-
ROCK-MAPK1-CCND1 axis (Fig. 4a). We observed a small decrease of
median ROCK1 expression in CL1 but an increase in CL2 after RARα
knockdown (CL1 vs CL2 p < 0.05 byWilcoxonRank SumTest) (Fig. 4c).

Following the signal further, we only saw a trend of a change of CCND1
transcription in CL2 (1% increase CL1 vs 38% increase in CL2), which
correlated with the change in ROCK1 transcription (Pearson R =0.94).
To confirm that these observations had functional relevance and pre-
dicted differential responses to RARα ligation, we stimulated cells with
RARα ligand all-trans retinoic acid and observed cluster-specific
effects on cell growth (Supplementary Fig. 6).

Cluster growth rate differences
Based on the previous findings that key cluster-specific TF functions
regulate genes in the cell cycle (Fig. 4b), we predicted and then con-
firmed that CL2 FLS have a higher growth rate than CL1 FLS (p-
value = 4.2 × 10−2 by two-tailed Student’s t-test). Furthermore, after
confirming RARα’s differential regulation of TGFβ regulatees, we
evaluated proliferation of the same cell lines after RARα knockdown.
Figure 4c shows that RARα deficiency increased growth of CL2 cells
but resulted in minimal change for CL1 cells. As shown in Fig. 4a,
knockdown increased expression of individual genes that inhibit
(CDKN2B) or stimulate (CCND1) proliferation. Therefore, the mechan-
ism cannot be ascribed to a single gene but rather the integration of
RARA regulatees leading to a net increase in proliferation after RARα
knockdown in CL2 (Fig. 4a). This effect of RARα deficiency on growth
contrasts with RARα activation, where the RARα agonist ATRA
increased proliferation of CL1 but not CL2 cells (Supplementary Fig. 6).

Fig. 3 | Network analysis for top cluster-specific TFs shows differential reg-
ulation of cell proliferation mechanisms and an imprinted TGFβ-driven EMT
signature in CL2. a Union of RARα and E2F1 regulatees across all RA patient
transcriptional networks intersected with CL1 vs CL2 2-fold (p < 0.05 by two-
sided Student t-test) differentially expressed genes (DEGs). Functional enrich-
ment analysis of high edge weight TF-specific DEG regulatees and RARα/E2F1
union DEG regulatees. Heatmap of gene expression (z-score(TPM)) for genes
from selected pathway “Mitotic G1 phase and G1/S transition”.b Representation
of CL1 andCL2 TF-TF subnetworks each using TF regulatees of the top 3 cluster-

specific TFs with a significantly higher (p < 0.05 by two-sided Student t-test)
edge weight in the given cluster. Edges between all network nodes shown and
node size set to be proportional to out-degree. Nodes colored according to
parent TF node identity (see legend). Functional enrichment analysis for all TFs
in each network. Heatmap of gene expression (z-score(TPM)) for genes with
significant differential expression (p < 0.05 by two-sided Student t-test)
between clusters, related to Epithelial-to-Mesenchymal Transition (EMT),
canonical SMAD-dependent TGFβ signaling and non-canonical MAPK signaling
targets.
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Transcriptional validation of predicted RARα CL1 and CL2 dif-
ferences regulating matrix proteins
Alteration of the ECM (Supplementary Fig. 4) contributes to cell
invasion. Analysis of the EpiSig clusters with significant CL1 vs CL2
differences identified two regions that are differentially marked by
active enhancer marks H3K4me1 and H3K27ac as well as a strong
H3K36me3 signal generally associated with transcription (Supple-
mentary Fig. 7). Variable levels of these 3 marks in active enhancers
may fine tune the expression levels of associated genes22. Of interest,
these regions have significantly higher signal strengths for H3K4me1
(p-value = 8.22 × 10−2 by two-tailed Student’s t-test) and H3K36me3
(p-value = 6.59 × 10−3 by two-tailed Student’s t-test) in CL1. The rela-
ted enriched pathways include “Degradation of extracellular matrix”
(p-value = 1.65 × 10−3 from a hypergeometric test for over-repre-
sentation), including fibronectin (FN1), and “Integrin cell surface
interactions” (p-value = 6.29 × 10−3 from a hypergeometric test for
over-representation). To assess a functional correlate of these
observations, we evaluated the regulation matrix genes FN1 and
vimentin (VIM) in CL1 and CL223. FN1 is transcriptionally regulated by
TGFβ and RARα directly via DR5 RARE in the FN1 promoter. RARα
depletion in CL1 leads to a divergent trend toward inhibition of FN1
compared to a 27% increase of FN1 in CL2 (CL1 vs CL2 p < 0.05 by
Wilcoxon Rank Sum Test) (Fig. 5a) in agreement with the predicted
cluster-specific behavior of the DR5 motif architecture and down-
stream effects of TGFβ. After RARα depletion, VIM expression is
decreased by 20% vs siRNA control in CL1 (p-value = 1.89 × 10−2 by
paired two-tailed Student’s t-test) and increased by 40% vs siRNA
control in CL2 (p-value = 4.10 × 10−3 by paired two-tailed Student’s
t-test) (CL1 vs CL2 p < 0.05 by two-tailed Student’s t-test) (Fig. 5a).

Functional validation of predicted effects of RARα on CL1 and
CL2 invasion
Because the patterns of gene regulation were predicted to affect cell
movement, we studied the effect of RARα on invasion through an

artificial matrix. TGFß-stimulated FLS invasion after knockdown with
siRARA was increased 77% compared to siRNA control in CL2 lines
(p-value = 7.73 × 10−3 by paired two-tailed Student’s t-test) but there
was no statistically significant change in CL1 lines (Fig. 5b).

Discussion
RA treatment currently requires sequential use of therapeutic agents
with distinct mechanisms until an effective combination is found24.
The diversity of responses to these targeted drugs, such as cytokine
blockers, T cell co-stimulation inhibition or B cell depletion, suggest
that RA has a common clinical phenotype but multiple pathogenic
pathways. There is currently limited understanding of these path-
ways and no way to translate them into therapeutic targets. Pre-
dictive biomarkers, such as synovial TNF expression or synovial
histology assessments are not sufficiently predictive to be useful in
clinical practice and do not provide information on disease
mechanisms4,25. The present report suggests that context-specific TF
function within gene and TF networks is unique for individual cell
lines and could have implications for distinct pathogenic pathways in
patients.

Fibroblast-like synoviocytes have a major function in joint
destruction and inflammation in RA and assume an aggressive phe-
notype in the disease26. Increased numbers of mesenchymal elements
known as PRIME cells presage disease flares in RA, supporting the
concept that fibroblasts are important in this process27. Synovial
fibroblasts candisplay a variety of phenotypes28, and cultured FLS have
served as a useful tool to study disease pathogenesis. For example, an
imprinted methylation pattern occurs in these cells29 and a compre-
hensive global characterization of the epigenomic landscape in RA
FLS8 identified epigenomic dysregulation and pathogenic pathways.
We now show that integration of epigenomic and transcriptomic data
identifies marked cell line to cell line differences in pathogenesis and
TF function in RA using a Taiji method that can be applied to any cell
lineage or disease.

Fig. 4 | RARα divergently regulates TGFβ signaling and proliferation in a
cluster-specificmanner: transcriptional and functional validation. a siRARαRT-
qPCR on CL1 and CL2 RA FLS. Boxplots of change in mRNA levels under RARα
depletion (CL1: p =0.041, CL2: p =0.015) for TGFβ1 (CL2: p =0.004) and canonical
CDKN2B (CL1:p =0.0009, CL2: p =0.0002)/non-canonical signaling axis genes that
undergo transcriptional regulation. Arrows (↑) illustrate activating andblunt ended
lines (T) inhibiting/repressive effects. Cyan infill depicts the primary CL1 regulation
logic, dark blue representing the primary CL2 regulation logic and black arrows
representing both CL1 and CL2 logic. Boxplot of change in CDKN2B protein levels
under RARα depletion (CL1: p =0.048). p-values calculated by paired two-tailed

Student’s t-test for siRARA vs CTL *p <0.05. CL1 n = 3 and CL2 n = 3 biologically
independent cell lines. b Heatmap of gene expression (z-score(TPM)) for genes
with significant differential expression (p <0.05 by two-tailed Student’s t-test)
between clusters, related to cellular proliferation. Growth rate boxplot for CL1 and
CL2 FLS. CL1 n = 5 and CL2 n = 4 biologically independent cell lines. c MTT pro-
liferation assay boxplot for siRARα and siCtrl at 1 and 5 days after plating. CL1 n = 6
and CL2 n = 3 biologically independent cell lines. For all box plots, red center line
for median, whiskers represent maximum and minimum values, box width from
quartile 1 to quartile 3. Source data are provided as a Source Data file.
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We developed an integrative systems biology method Taiji that
integrates TF expression, binding and the expressionofgene targets to
construct gene-regulation networks for each cell line. The method
further ranks TFs based on their relative importance in the network
using the Personalized PageRank (PPR) algorithm. Taiji provides bio-
logical insights into mouse embryonic development30 and CD8+T cell
differentiation14. We applied the algorithm to construct individual
transcriptional gene-regulation networks for FLS fromRApatients and
study inter cell line heterogeneity. RA cell lines segregated into at least
two groups with predicted distinct cell line-specific TF biology exhi-
biting divergent PPR scores between the groups.

Two groups, or clusters, were identified by Taiji, namely CL1 and
CL2, that are characterized by the differential expression of cell cycle
genes, cell proliferation, and EMT markers. Even with the relatively
small number of patients in this study, the power of Taiji is its ability to
leverage small differences between hundreds of genes (expression or
open chromatin), subsequently integrating and quantifying them
using complex transcriptional networks to identify themaster TFs that
regulate them.Hundreds ofweakpredictors are combined intodozens
of strong predictors with the goal of identifying TFs with opposing
regulatory functions via Taiji. Genes that encode TFs such as RARA,
ETV7, E2F7 and E2F1 regulate cluster-specific differences in the core
transcriptional machinery enriched in growth factor signaling (CL1)
and SMAD-dependent TGFβ signaling TFs (CL2) highlighting differ-
ences in TGFβ growth factor signaling associated with a CL2 activated
signature. Strikingly, we were able to identify TFs that were predicted
to have a differential functional effects in CL1 and CL2.

We then biologically validated the predictions by highlighting the
use-case TF RARA, a cluster-specific TF, whose regulatees show func-
tional enrichment in growth factor signaling, mitotic cell cycle, cell
cycle checkpoint, DNA repair, and also include EMT markers31. RARα,
in conjunction with the heterodimeric partner RXRα, has ligand-
specific transcriptional effects, and can act as a transcriptional acti-
vator or repressor dependent on the cellular context32. RARα knock-
down in CL1 andCL2 cell lines confirmed the TFs predicted differential

regulatory function with a decrease in TGFβ mRNA expression in CL1
and an increase in CL2. These effects were transcriptionally propa-
gated downstream through SMAD-dependent signaling in both clus-
ters and via SMAD-independent mechanisms in CL2. Functional assays
showed that RARα depletion increases the proliferation and invasion
of CL2 FLS but has little to no effect in CL1 FLS.

The biologic validation studies do not identify individual genes
that are solely responsible for the differential effects of RARA. TF
knockdownandactivation engage the entirenetwork and integrate the
functions of many genes that can increase or decrease cell growth.
Taken together, thedata indicate that pro-proliferative effects of RARA
deficiency in CL2 outweigh any anti-proliferative effects. It is the
combination of all RARA regulatees, including CKDN2B (anti-pro-
liferative) and cyclin D (pro-proliferative), that result in the internally
consistent findings shown in Fig. 4c and Supplementary Fig. 6.

Dysregulation of the balance between FLS proliferative and
apoptotic processes is critical to synovial lining hyperplasia and
inflammation in RA. Subsets of RA patients exhibit increased synovial
tissue inflammation and FLS from these tissues display gene profiles
characteristic of myofibroblasts28. The use of Taiji builds of this con-
cept of distinct pathogenic mechanisms, identifying a variety of TFs
with differential functions like RARA, which interacts with TGFβ
pathways that control proliferation and invasion.

Although the number of cell lines is relatively limited in the pre-
sent analysis, the Taiji integrated systems approach compensates by
increasing the statistical power through simultaneous assessments of
hundreds of TFs and regulatees. One potential limitation is the focus
on cultured RA FLS cell lines which are homogenous but do not
necessarily reflect the diversity of fibroblast phenotypes in situ
described by others33. However, cultured FLS and their pathogenic
behavior are stable, can readily distinguish RA from non-RA, and have
provided insights into disease mechanisms34. We were unable to ana-
lyze individual fibroblast phenotypes observed in situ using single cell
technology but this methodology is rapidly advancing and could be
feasible in follow on studies35. Furthermore, it would be important in

Fig. 5 | RARα regulates TGFβ signaling and Epithelial-to-Mesenchymal Transi-
tion (EMT) effectors in a cluster-specific fashion with subsequent transcrip-
tional and functional validation. a siRARα RT-qPCR on CL1 and CL2 RA FLS.
Arrows (↑) illustrate activating and blunt ended lines (T) inhibiting/repressive
effects. Cyan infill depicts the primary CL1 regulation logic, dark blue representing
the primary CL2 regulation logic and black arrows representing both CL1 and CL2
logic. Boxplots of change in mRNA levels under siRARα depletion for the EMT
markers FN1 and VIM (CL1: p =0.0189, CL2: p =0.0041) (transcriptionally regulated
downstream of TGFβ1). CL1 n = 3 and CL2 n = 3 biologically independent cell lines.

p-values calculated by paired two-tailed Student’s t-test for siRARA vs CTL *p <0.05
**p <0.001. b TGFβ-stimulated Matrigel Invasion Assay boxplot for CL1 and CL2
(p =0.0077) and barplot of mean and median values (error bars represent 1 stan-
dard deviation). p-values calculated by paired two-tailed Student’s t-test for siRARA
vs CTL **p <0.001. CL1 n = 3 and CL2 n = 3 biologically independent cell lines.
Representative 4×magnification imagesofmigratedRAFLS in siRARα and siCtrl for
two exemplar patient cell lines RA6 (CL1) and RA9 (CL2). For all box plots, red
center line for median, whiskers represent maximum and minimum values, box
width from quartile 1 to quartile 3. Source data are provided as a Source Data file.
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future studies, to replicate these findings in a different cohort
of RA FLS.

In conclusion, we present a method to stratify cell lines from
individual patients with RA based on a global ranking of regulators in
the genetic network constructed for each cell line. Hundreds of weak
predictors are combined into dozens of strong predictors that can
effectively characterize the distinct TF-patterns of individual cell lines
and further provide a general tool for studying rheumatoid arthritis.
The use-case of one TF, namely RARα, provides a foundation for the
divergent response to retinoids in RA animal models which is highly
variable including model-specific disease improvement or
exacerbation.

Methods
Human FLS, RNA-seq and ATAC-seq
This study was approved by the Institutional Review Board of Uni-
versity of California, San Diego, and informed consent was obtained
from all participants (protocol 14 - 0175). Synovial tissue was pre-
viously obtained from female patients (11 with RA and 11 with OA) at
the time of total joint replacement or synovectomy with a prior two
week discontinuation of any biologics, methotrexate, and leflunomide
as previously described34,36. Cells were therefore not exposed to drugs
for over 2 months prior to analysis. FLS were stained with Human
TruStain FcX (Biolegend: cat#: 422302, lot: B290761) at 5μL/million
cells, then live cells were selected with ZombieRed diluted at 1 µL/
million cells (Biolegend: cat#: 77475, lot: B308306) and detected with
antibodies against CD34 (Biolegend: Alexa Fluor 647 anti-human
CD14 - clone:63D3, cat#: 343610, lot: B301240), CD90 (Biolegend: PE-
anti-human CD90 (Thy1) – clone: 5E10, cat#: 328110, lot: B301003),
CD14 (Biolegend: Alexa Fluor 647 anti-humanCD14 – clone:63D3, cat#:
367128, lot: B303259), Podoplanin (Biolegend: APC/Cyanine 7 anti-
human Podoplanin – clone: NC-08, cat#: 337030, lot: B304084) and
FAPa (R&D Systems: Alexa Fluor 647 anti-human FAP – clone: 427819,
cat#: FAB3715R, lot: AFEM0319121), all at a concentration of 5 µL/mil-
lion cells, on a ZE5Cell Analyzer (BioRad). Analysiswas performedwith
FlowJo, V10 (BD Biosciences) (Supplementary Table 2). Primary FLS
lines were used due to the current limitations expanding recently
identified synovial fibroblasts phenotypes that appear to display dis-
tinct functions and the current state of simultaneous determinations
of chromatin accessibility and the transcriptome in single cells33. In the
previous study8 cells were cultured in DMEM supplemented with 10%
fetal calf serum and passaged 1:3 every one to two weeks. They were
harvested for the epigenetic studies at the 5th passage when ~70%
confluent. Genomic DNA from fibroblast-like synoviocytes (FLS) were
isolated and total RNA was extracted with raw read quality evaluated
using FastQC. Adapter and low quality bases were trimmed from the
raw RNA-seq reads and further trimmed with reads less than 30 bp
being discarded as previously described8. In this study, the reads from
these data were aligned, assembled, and quantified by RSEM. ATAC-
seq sample preparation followed the protocol found in Buenrostro
et al.37 Peaks were called for each replicate experiment using the Irre-
producibility Discovery Rate (IDR) framework to identify reproducible
peaks. Peaks from individual replicates aswell as pooled data from two
replicates were called with MACS2 and a relaxed threshold (p-value =
1.0 × 10−2). The 3 sets of peaks were input for IDR analysis with a
threshold of p-value = 5.0 × 10−2 for high confidence peaks as per Yu
et al.14.

Taiji pipeline 1: Network construction
Active regulatory elements were first identified via the overlap of high
confidence peaks from ATAC-seq with known gene promoter regions
(5 Kbp upstream and 1 kbp downstream of the transcription start
sites), (Fig. 1a and Supplementary Fig. 2). The distal ATAC-seq peaks
not assigned to promoters were then labeled as enhancer regions and
linked with promoters using chromatin interactions predicted by

EpiTensor. Putative TF binding motifs were curated from the CIS-BP
database38. Using FIMO’s algorithm39, 745 TFswere identified as having
binding sites within 150 bp regions centered around ATAC-seq peak
summits. 11 unique network topologies were thus constructed by
formingdirected edges betweenTF and their regulatees, if theTFhad a
predicted binding site in the child gene’s promoter or linked enhancer.

Taiji pipeline 2: Personalized PageRank (PPR)
The Personalized PageRank (PPR) algorithm was run to measure the
global influence of each node (Fig. 1a and Supplementary Fig. 2). PPR is
a link analysis algorithm that assigns a numerical weighting to each
node in a network.Mathematically, PPR is the stationary distributionof
a randomwalk. To initialize the networks, node weights were assigned
according to the relative gene expression normalized across all
11 samples calculated as ezi , where zi is the z-score of the expression of
the gene i in each cell line (expression quantified by RNA-seq). Edge
weights were determined according to the expression level of the
parent node TF and the pooled ATAC-seq peak intensity (strength of
the TF-gene association) as outlined in Zhang et al.9. The normalized
node weights were then used as the seed vector for the PPR calcula-
tion. Thus, if s is the vector containing node weights andW is the edge
weight matrix then the PPR score vector v is calculated by solving a
system of linear equations (Eq. 1)

v= 1� dð Þs +dWv ð1Þ

where d is the damping factor (d =0.85 by default). Solving iteratively
(Eq. 2) we have:

vt + 1 = 1� dð Þs +dWvt ð2Þ

Network validation 1: Computational
Network topologies were validated according to the following proto-
col. The 56,269 transcripts, for which expression data were available,
were ranked according to expression in eachpatient. For eachof the 55
unique patient pair combinations of 11 patients, the unique union of
the top 500 most highly expressed genes in each patient were
obtained. For each gene, if an edge existed between the gene and a
given TF for both patients in the given pair, the log2 of the fold change
in expression values (transcripts per kilobase million (TPM)) was cal-
culated (setting any 0 expression values to 1 × 10−2). If the TF to gene
edgewas not present for a given patient topology the expression value
was set to 1 × 10−2 before taking the ratio and performing the log2
operation. Subsequently for each patient pair, each gene contained
745 features (for each pair of TFs), thus generating a 28,645 × 745
feature matrix. The response variable was calculated as the log2 of the
fold change in expression for the gene (setting any 0 expression values
to 1 × 10−2 as before). Using the featurematrix and response variablewe
performed 10-fold cross-validated random forest (RF) regression and
subsequently calculated the average Pearson R correlation for the
predicted values of each test set vs the actual response values. For
randomized topologies, each row of features were randomly shuffled
in the featurematrix, for the given response variable, and the same 10-
fold cross validated RF regression performed.

Network validation 2: ChIP-qPCR
Cells fixed in 1% formaldehyde were washed with PBS, scraped and
pelleted. After cell lysis, chromatin was sheared using a Bioruptor
(Diagenode). The lysates were immunoprecipitated (IP) overnight with
4ug anti-RARα ChIP-seq grade antibody (Diagenode: Catalog #
C15310155; Lot # A704-001) or control IgG (Diagenode: Catalog #
C15410206; Lot # RIG001AK). The immunoprecipitates were then
washed, reverse-crosslinked, and subjected to proteinase K digestion.
DNA from IP samples and input were eluted using Zymo-spin ChIP kit
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and quantified using SYBR green qPCR. Forward Primer 5′-
TCCTCATTGCCAGCTTCAG-3′; Reverse Primer 5′ CGTGATCTTGCG-
GATCTTCT-3′. Data are shown as % input.

Downstream power analysis of PPR
An adequate number of samples is required in order to control the
false positive (type I error) and false negative rates (type II error) when
conducting hypothesis testing. Low-powered studies often produce
more false negatives compared to high-powered studies. As part of our
strategy to identify key cluster-specific TFs based on PPR, we devel-
oped a strategy based on hypothesis testing with control of the type I
error, allowing for sufficient statistical power when identifying sig-
nificant elements between two distributions.

For a given TF, the correlation of its regulatees is considered by
performingprincipal components analysis (PCA) using the PageRank z-
scores of its regulatees, thus obtaining a set of principal components
that account for 90% of the data variance. The Hotelling T-Squared
test, which has previously been used to compact the small sample size
issues in microarray analysis, was applied to the regulatee dimension
reductionmatrix for eachTF. Let χ ik = ½χ ik1,χ ik2, . . . ,χ ikp�0 be thedata for
patient p in group i (RA cluster), with k measurement variables (prin-
cipal components). Here, letn1 be the number of patients in group 1, n2
be the number of patients in group 2, μ1kdenote themeanvalue for the
distribution of measurement variable k in group 1, and μ2k denote the
mean value for the distribution ofmeasurement variable k for group 2.
The Hotelling’s T-squared test is based on the assumption that the
covariance matrices for measurement variables in the two underlying
groups are equal, so under the null hypothesis, we can calculate the
assumed pooled common covariance matrix. Thus, the Hotelling’s
T-squared test can be conducted as follows (Eq. 3):

H0: all the μ1k = μ2k
H1: at least one μ1k ≠ μ2k

F =
n1 +n2 � k � 1
kðn1 +n2 � 2Þ T

2 ~ Fk,n1�k�1 whereT
2 = ðχ1 � χ2Þ0 Sp

1
n1

+
1
n2

� �� ��1

ðχ1 � χ2Þ

ð3Þ

This strategy takes into account any potential relationships
between regulatees and also gains increased statistical power because
it uses a larger set of regulatees for each hypothesis test in identifying
significant TFs.

Histone Chip-seq and EpiSig
Histone ChIP-seq data for six core histone modifications (H3K4me1,
H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3) were
downloaded from ref. 8. EpiSig, an unsupervised learning approach
to simultaneously cluster and align sequencing patterns without
prior knowledge8, was re-run solely for the RA FLS lines in this study.
78,598 signal-enriched 5 kbp regions were clustered into 245 co-
modified 5kbp clusters (Supplementary Figs. 4 and 7). Cluster ana-
lysis was performed by variability assessment and significance test-
ing. Variable regions were then mapped to genes using the GREAT
analysis tool40.

siRNA transfection
6 Primary RA FLS cell lines (highest ranked by RARα PPR: RA6, RA1,
RA4 (CL1) and lowest ranked by RARα PPR: RA10, RA11, RA9 (CL2))
were cultured (at 5% CO2, 37 °C) in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with L-glutamine, gentamicin,
penicillin/streptomycin, and 10% heat-inactivated fetal bovine serum
(FBS) as previously described41. Optimal RARα knockdown by siRNA
transfection was performed as previously described42 and assessed in
time course experiments. Cells were transfected with ON-
TARGETplus SMARTpool siRNA targeting human RARα (Dharma-
con) or ON-TARGET plus Nontargeting Pool siRNA (Dharmacon)

using the Human Dermal Fibroblast Nucleofector Kit (Lonza) and
cultured in 10%FCS for 3 days. These pools includemultiple targeting
or matched control siRNA sequences. Cells were serum starved for
18 h in 0.1%FCS/DMEM and subsequently treated with IL-1 (2 ng/ml)
for 6 h. RNA was extracted using the RNeasy kit (Qiagen) and qPCR
was performed using a cell-based standard approach43. Ct (threshold
cycle) values were normalized to glyceraldehyde phosphate dehy-
drogenase (GAPDH).

Functional assays of gene expression
FLS were stimulated with IL-1b for 6 h, after which RNA was extracted
and processed for qPCR. Ct values were then normalized to glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH).

Western blot analysis
After transfection, RA FLS were cultured for 3 days. For CDKN2B ana-
lysis, cells were serum-starved for 18 h in 1%FCS/DMEM, and subse-
quently treated with IL-1 (2 ng/ml) for 24 h. FLS were lysed with RIPA
buffer (Invitrogen) plus Protease Inhibitor Cocktail (Sigma). The pro-
tein concentrations in the lysate extracts were determinedwith the DC
protein assay kit (Bio-Rad). Protein samples from FLS lysates
(25–30μg) were loaded into a NuPAGE 4–12% Bis Tris gel (Invitrogen)
and transferred to a Polyvinylidene difluoride (PVDF) membrane
(ThermoFisher). After blocking with Tris-buffered saline plus 0.1%
Tween 20 (TBST) containing 5% non-fat milk for 1 h at room tem-
perature, the membranes were incubated with mouse monoclonal
RARα antibody (Santa Cruz: Catalog# sc-515796, Lot #B0421) and
rabbit monoclonal CDKN2B antibody (Cell Signaling Technology:
Catalog# 36303, lot#1) diluted 1:1000, and GAPDH antibody diluted
1:5000 (Cell Signaling Technology) at 4 °C overnight. The membranes
were washed three times and incubated with horseradish peroxidase-
conjugated anti-rabbit and anti-mouse IgG antibodies for 1 and 2 h,
respectively. The protein visualization was performed with Clarity
Western ECL substrate (Bio-Rad) and the quantitation was performed
using Versadoc Imaging system and Quantity One software (Bio-Rad)
version 4.6.6.

Proliferation assay
11 RA FLS were cultured in triplicate in DMEM containing 10% FBS. Cell
proliferation was assayed after 4 h incubation with MTT (3-(4,5-dime-
thylthiazol-2-yl)−2,5-diphenyl tetrazolium bromide) at 1 and 5 days
after plating44. Fluorescence was quantified using a plate reader with
Tecan i-Control 2.0 software.

Invasion assay
6 Primary RA FLS cell lines (highest ranked (CL1) and lowest ranked
(CL2) by RARα PPR) were plated on a Matrigel-coated invasion
chamber (Corning). After 4 h serum starvation, the medium was
replaced, and TGFβ (20 ng/ml) was added to the top chamber. After
24 h incubation, chamber inserts were fixed in 100% methanol and
stained with crystal violet solution. Themigrated cells on the bottom
of the membrane were quantified using ImageJ software. Blinded
quantification was done either manually or in a semi-automatic
manner via adjustment thresholds, binarising images and subse-
quently using the ‘Analyze particle’ tool. Fold changes for TGFβ-
induced invasion were calculated by normalizing on respective
controls with media alone.

Phospho SMAD2/3 ELISA
8 primary RAFLS were plated, and serum starved for 18 h in 0.1%FCS/
DMEM and subsequently treatedwith TGFβ (20 ng/ml) for 30min. Cell
lysates were collected and phospho SMAD2/3 and total SMAD2/3 (Cell
Signaling Technology) were measure by ELISA, according to the
manufacturer’s protocol. Fluorescence was quantified using a plate
reader with Tecan i-Control 2.0 software.
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TGFβ ELISA
After transfection, 8 primary RAFLSs were seeded in 24-well plates and
cultured in DMEM with 10% FCS at 37 °C for 24 h. Cells were serum
starved for 18 h in 1%FCS/DMEMand then treatedwith IL-1 (2 ng/ml) for
24 h. TGFβ in cell culture supernatants were measure by ELISA (R&D
system) according to the protocols provided by the manufacturer.
Fluorescence was quantified using a plate reader with Tecan i-Control
2.0 software.

All-trans retinoic acid treatment and proliferation assay
CL1 and CL2 FLS were plated in triplicate in a 96-well plate (2 × 103
cells/well) with DMEM containing 10% FBS. After 24 h, medium was
replaced by a serum-deprived (1% FBS) medium containing 1μM of
ATRA (Sigma-Aldrich, St. Louis, MO, USA) or with DMSO for 1 h. PDGF-
BB (10 ng/ml)was added to thewells and cells were incubated for 5 and
7 days. Cell growth was determined after 4 h incubation with MTT (3-
(4,5-dimethylthiazol-2-yl)−2,5-diphenyl tetrazolium bromide) and was
read at 550nm with a spectrophotometer. Fold change in cell growth
was calculated by normalizing each cell line with its median value
from day 1.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
TheATAC-seq, RNA-seq, andChIP-seqdata that support thefindings of
this study have been previously deposited in the Gene Expression
Omnibus with the primary accession code GSE112658 and in the
Database of Genotypes and Phenotypes (dbGaP) with the dbGaP study
accession code phs001615.v1.p1. The EpiTensor promoter-enhancer
interactiondata andCIS-BPmotif input referencedata used, alongwith
the PageRank and expression data generated in this study, have been
deposited in the Figshare collection [https://doi.org/10.6084/m9.
figshare.c.6152160]. Source data are provided with this paper.

Code availability
The Taiji multi-omics bioinformatics pipeline used to analyze the data
is available at: https://github.com/Taiji-pipeline/Taiji
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