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Under the potential outcomes framework, we propose a randomization
based estimation procedure for causal inference from split-plot designs, with
special emphasis on 22 designs that naturally arise in many social, behav-
ioral and biomedical experiments. Point estimators of factorial effects are
obtained and their sampling variances are derived in closed form as linear
combinations of the between- and within-group covariances of the poten-
tial outcomes. Results are compared to those under complete randomization
as measures of design efficiency. Conservative estimators of these sampling
variances are proposed. Connection of the randomization-based approach to
inference based on the linear mixed effects model is explored. Results on
sampling variances of point estimators and their estimators are extended to
general split-plot designs. The superiority over existing model-based alterna-
tives in frequency coverage properties is reported under a variety of simula-
tion settings for both binary and continuous outcomes.

1. Introduction. Factorial experiments, originally developed in the context of
agricultural experiments [Fisher (1925, 1935), Yates (1935)] and later extensively
used in industrial and engineering applications, are nowadays undergoing a third
popularity surge among social, behavioral and biomedical sciences, as a result of
the massive trend in these areas to generalize the previous treatment-control ex-
periments to include multiple factors. Among the plethora of possible multi-factor
randomization schemes available, split-plot design, thanks to its flexibility and
ease of application, has always remained a popular choice, especially when prac-
tical difficulties like economic constraints or hard-to-change factor preclude the
use of simple, unrestricted randomizations [Jones and Nachtsheim (2009)]. As a
motivating example, consider a simplified version of the education experiment de-
scribed in Dasgupta, Pillai and Rubin (2015). The goal is to evaluate the efficacies
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of two interventions—A: a mid-year quality review by a team of experts, and B:
a bonus scheme to teachers—on 224 schools in the state of New York. Assume two
possible actions for each intervention—application or nonapplication, a complete
randomization of the four combinations likely scatters the schools to be reviewed
throughout the state. Considering the prohibitive cost of travel and amount of time
cost associated with such a plan, a more practical alternative would be to divide
the 224 schools by geographic proximity into sixteen “blocks,” choose eight at ran-
dom and conduct expert quality review for all schools therein. The teacher bonus
scheme can then be applied to half of the schools within each block. This exempli-
fies a split-plot design, in which each block is considered as a larger experimental
unit referred to as a whole-plot, and each school, the original experimental unit,
a sub-plot. See Kirk (1982), Cochran and Cox (1957), Box, Hunter and Hunter
(2005) and Wu and Hamada (2009) for formal definitions.

Most factorial experiments, like any experiment, receive regression-based meth-
ods as their default method of analysis. For those under split-plot designs, this de-
fault is either the analysis of variance (ANOVA) or the linear mixed effects model
[Wu and Hamada (2009)]. Despite the good intention of both methods to adjust
for the group structure that defines split-plot designs, the actual variance estima-
tion often turns out inconsistent [Gelman (2005), Hinkelmann and Kempthorne
(2008)], likely due to the required model assumptions not being satisfied. A de-
tailed examination of this argument can be found in Freedman (2006, 2008a), who
recommended randomized-based inference as the proper solution.

Despite its long tradition in the context of treatment-control experiments
[Splawa-Neyman (1990), Neyman (1935), Kempthorne (1952), Imbens and Rubin
(2015), Ding and Dasgupta (2016)], randomization-based inference remains an al-
most uncharted field when it comes to factorial experiments. The recent works of
Dasgupta, Pillai and Rubin (2015), Espinosa, Dasgupta and Rubin (2016) and Lu
(2016) are, to the best of our knowledge, the only literature along this line, each
documenting improvements of randomization-based analysis over existing model-
based methods in the context of multi-factor completely randomized designs. Ex-
tending their methods to split-plot designs is a promising next step.

Randomization-based inference is particularly appealing when the inference has
to be restricted to a finite population of experimental units that cannot be consid-
ered a random sample from a hypothetical super population. Such scenarios mostly
occur in social, behavioral and biomedical applications, where each factor typi-
cally has two levels: treatment and control. We will thus emphasize on two-level
factorial experiments with a split-plot structure first, and in particular, consider a
22 experiment for two reasons. First, such experiments are the most simple, yet
nontrivial extensions of treatment-control experiments with a multitude of appli-
cations in the social, behavioral and biomedical sciences. Second, a 22 experiment
will make the exposition of the concepts and results more intuitive than a general
case. The results and insights obtained from such a 22 design will then be extended
to the case of more general split-plot designs.
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The contribution of this paper is three-fold. First, we develop a randomization
based estimation procedure for causal inference under 22 split-plot designs, and
demonstrate its superior frequency coverage properties over existing alternatives
via extensive simulations. Second, motivated by the group structure of units as a
defining feature of split-plot designs, we propose a decomposition of the potential
outcomes that links the difference in efficiency between a split-plot design and
a complete randomization of the same size to the level of heterogeneity among
blocks. Third, in an attempt to reconcile the finite-population randomization-based
perspective and a hypothetical super-population model-based perspective, we offer
a heuristic argument that connects the two. This connection is established by using
the asymptotics of the finite-population randomization-based residual covariances
to justify the block-diagonal structure assumed by the linear mixed effects model
for the covariances of its super-population sampling errors. This, to the best of our
knowledge, is the very first attempt that aims at reconciling the difference between
finite and super-population inferences.

The article is organized as follows. We review in Section 2 the potential out-
comes framework, discuss possible extensions when the experimental units exhibit
a “split-plot” structure, and define the causal questions in 22 factorial experiments.
The split-plot design, characterized by its treatment assignment mechanism, is in-
troduced in Section 3. The point estimators of the factorial effects and their sam-
pling variances are derived in Section 4, and their estimation addressed in Sec-
tion 5. We discuss the connection and distinction between the model-based and
randomization-based inferences in Section 6. Section 7 extends the results to gen-
eral split-plot designs. The superiority of the proposed approach over model-based
alternatives with respect to frequency coverage properties is demonstrated through
simulation studies in Section 8. We conclude in Section 9. All proofs are deferred
to the online supplementary material [Zhao et al. (2018)].

2. Potential outcomes and additivity assumptions. We review in this sec-
tion the major concepts within the potential outcomes framework [Splawa-Neyman
(1990), Rubin (1974, 1978, 2005)], and discuss some possible extensions when the
experimental units are nested within whole-plots.

2.1. Potential outcomes framework for causal inference. Consider an exper-
iment in which K different treatments are to be tested on N experimental units.
The stable unit treatment value assumption [Rubin (1980)] allows us to write the
potential outcome of unit i when exposed to treatment k as Yi(k). Whereas causal
effects are then defined as comparisons of such potential outcomes for a given
set of units, any experiment, however well designed and implemented, allows us
to observe at most one of K potential outcomes per unit, according to the treat-
ment it receives. This poses the fundamental problem of causal inference [Holland
(1986)]. Various assumptions are introduced in this context as attempts to infer
the unobserved from the observed, among which the strict additivity assumption
is arguably the most common one.
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DEFINITION 1. The potential outcomes of N units under K treatments are
“strictly additive” if the differences between any two treatments are constant across
all units, that is, Yi(l) = Yi(k) + C(k, l), where C(k, l) are some fixed real num-
bers, for all 1 ≤ i ≤ N , 1 ≤ k, l ≤ K .

For any positive integer p, let 1p be the p-dimensional vector of 1’s, Jp be
the p × p matrix of 1’s, Ip be the p × p identity matrix and Pp = Ip − p−1Jp

be the p × p projection matrix with column space orthogonal to 1p . Given
Y (k) = (Y1(k), . . . , YN(k))T, let Ȳ (k) = N−1 ∑N

i=1 Yi(k) = N−11T
NY (k) be the

population average under treatment k, let S(k, l) = (N − 1)−1Y (k)TPNY (l) be the
finite-population covariance of Yi(k) and Yi(l), and let

(2.1) S = ((
S(k, l)

))
K×K = (N − 1)−1YTPNY

be the finite-population covariance matrix, where Y is the N × K potential out-
comes matrix with columns {Y (1), . . . ,Y (K)}. Lemma 1 gives an alternative char-
acterization of strict additivity in terms of S(k, l).

LEMMA 1. The potential outcomes Yi(k) of N units under K treatments are
strictly additive if and only if the finite-population covariances S(k, l) are the same
for all k, l ∈ {1, . . . ,K}, that is, S = S0JK , where S0 is a nonnegative constant.

For simplicity, we will omit the “finite-population” before “covariance” in the
following text when no confusion would arise. All averages and covariances over a
finite set of fixed numbers will be finite-population in nature, and defined the same
way as Ȳ (k) and S(k, l) are defined for Yi(k).

2.2. Experimental units with a split-plot structure. Whereas all definitions and
discussion above apply universally to any K-treatment experiment with N exper-
imental units, possible extensions arise when the experimental units in question
exhibit a “split-plot structure,” as a result of either intrinsic characteristics like
geographic proximity, or extrinsic arrangements as induced by the design.

In particular, assume the N experimental units are nested under W groups called
whole-plots, each of size M = N/W . Index the whole-plots by w, running from
1 to W , and the units within whole-plot w by wm, running from w1 to wM . The
whole-plot average potential outcomes are defined as

Ȳw·(k) = M−1
M∑

m=1

Ywm(k) (k = 1, . . . ,K).

These aggregated potential outcomes enable the definitions of some weaker
forms of additivity as compared to that in Definition 1.

DEFINITION 2. The potential outcomes of N units in W whole-plots (WPs)
under K treatments are:
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• “between-WP additive” if the corresponding whole-plot average potential out-
comes Ȳw·(k) for W whole-plots under K treatments are strictly additive, that
is, Ȳw·(l) = Ȳw·(k) + C(k, l), where C(k, l) are some fixed real numbers, for all
1 ≤ w ≤ W and 1 ≤ k, l ≤ K ;

• “within-WP additive” if for each w, the potential outcomes of the M units within
whole-plot w are strictly additive, that is, Ywm(l) = Ywm(k) + Cw(k, l), where
Cw(k, l) are some fixed real numbers, for all 1 ≤ m ≤ M , 1 ≤ w ≤ W and 1 ≤
k, l ≤ K .

Strictly additive potential outcomes under a split-plot structure must be strictly
additive within each whole-plot and have strictly additive whole-plot averages.
Lemma 2 asserts that the converse is also true.

LEMMA 2. The potential outcomes of N units in W whole-plots are strictly
additive if and only if they are both between- and within-WP additive.

Denote by Yw(k) = (Yw1(k), . . . , YwM(k))T the sub-vector of Y (k) correspond-
ing to whole-plot w, and by Ȳ (k) = (Ȳ1·(k), . . . , ȲW ·(k))T the vector of whole-plot
average potential outcomes under treatment k. Let “⊗” be the Kronecker product.
Let

Pin = IW ⊗ PM, Pbtw = PW ⊗ (
M−1JM

)

be two mutually orthogonal N × N projection matrices that satisfy

PinY (k) = Y (k) − Ȳ (k) ⊗ 1M = ((
Ywm(k) − Ȳw·(k)

))
,

PbtwY (k) = Ȳ (k) ⊗ 1M − Ȳ (k) ⊗ 1N = ((
Ȳw·(k) − Ȳ (k)

))

and thus decompose the variation of unit wm with respect to the population aver-
age into the within- and between-WP parts.

It is straightforward to verify that

PNY (k) = PinY (k) + PbtwY (k).

Multiplying both sides of the above equation by Y (l)T, we have

(2.2) Y (l)TPNY (k) = Y (l)TPinY (k) + Y (l)TPbtwY (k) (1 ≤ k, l ≤ K).

This gives the potential outcome analogue of the sum of squares decomposition
pervading the ANOVA, extending the results of the observed outcomes in the pres-
ence of split-plot structure to that of the potential outcomes. Recalling the defini-
tion of the matrix Y with columns {Y (1), . . . ,Y (K)}, the K2 identities in (2.2) can
be summarized in matrix form as

(2.3) YTPNY = YTPinY + YTPbtwY.
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Analogous to the between- and within-WP variances of the observed out-
comes in ANOVA, define the between- and within-WP variances of Ywm(k) as the
between- and within-WP sums of squares normalized by their respective degrees
of freedom:

Sbtw(k, k) = ∥((Ȳw·(k) − Ȳ (k)))∥2

W − 1
= ∥PbtwY (k)∥2

W − 1
= Y (k)TPbtwY (k)

W − 1
,

Sin(k, k) = ∥((Ywm(k) − Ȳw·(k)))∥2

N − W
= ∥PinY (k)∥2

N − W
= Y (k)TPinY (k)

N − W
,

and the between- and within-WP covariances of Ywm(k) and Ywm(l) as

(2.4) Sbtw(k, l) = Y (k)TPbtwY (l)

W − 1
, Sin(k, l) = Y (k)TPinY (l)

N − W
.

Let

(2.5) Sbtw = ((
Sbtw(k, l)

)) = YTPbtwY
W − 1

, Sin = ((
Sin(k, l)

)) = YTPinY
N − W

.

These two covariances matrices allow us to write identity (2.3) as

(2.6) S = N − W

N − 1
Sin + W − 1

N − 1
Sbtw.

We further characterize the between- and within-WP additivities in Definition 2 as
follows.

LEMMA 3. Given the potential outcomes Ywm(k) of K treatments on N units
nested within W whole-plots, we have Sbtw = SbtwJK for some nonnegative num-
ber Sbtw if Ywm(k) are between-WP additive, and Sin = SinJK for some nonnega-
tive number Sin if Ywm(k) are within-WP additive.

We have so far introduced, in the context of general K-treatment experiments,
all concepts about the potential outcomes framework that we consider relevant
to the current topic. Specific definitions, concepts, notation and causal questions
associated with potential outcomes for 22 factorial experiments are introduced in
the next subsection.

2.3. Potential outcomes and causal effects for 22 factorial experiments. As the
name suggests, 22 factorial experiments involve K = 4 different treatments as the
22 possible combinations of two 2-level factors of interest. Refer to the two factors
as factors “A” and “B .” Of primary causal interest are the main effect of factor A

(indexed by “A”), the main effect of factor B (indexed by “B”) and the effect of
interaction between A and B (indexed by “AB ,” also refer to as “factor AB”). We
set out in this section their formal definitions at unit, block and population levels.
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To start with, code the levels of factors A and B as {−1A, + 1A} and
{−1B, + 1B}, respectively. We represent the four treatment combinations as
(−1A,−1B), (−1A, + 1B), (+ 1A,−1B) and (+ 1A, + 1B), and name in lexico-
graphic order as treatments 1 to 4.

The factorial effect of factor F ∈ F = {A,B,AB} on unit i is defined as

(2.7) τi(F ) = 2−1gT
F

(
Yi(1), . . . , Yi(4)

)T
(i = 1, . . . ,N),

where gA = (−1,−1, + 1, + 1)T, gB = (−1, + 1,−1, + 1)T and gAB = (+ 1,−1,
−1, + 1)T are mutually orthogonal contrasts that vectorize the levels of factors A,
B and AB in treatments 1 to 4, respectively. Let

(2.8) τF = N−1
N∑

i=1

τi(F ) = 2−1gT
F

(
Ȳ (1), . . . , Ȳ (4)

)T = 2−1gT
F Ȳ

be the population average, where Ȳ = (Ȳ (1), . . . , Ȳ (4))T is the vector of average
potential outcomes for the treatments. Let SF = (N − 1)−1 ∑N

i=1{τi (F ) − τF }2 be
the variance of the unit-level factorial effects. Lemma 4 restates strict additivity in
terms of SF .

LEMMA 4. The potential outcomes of N units in a 22 factorial experiment,
Yi(k) (i = 1, . . . ,N ; k = 1,2,3,4), are strictly additive if and only if all three
unit-level factorial effects are constant across all units, that is, τi (F ) = τF for all
i ∈ {1, . . . ,N} and F ∈ F ; or equivalently, SF = 0 for each F ∈ F .

When the experimental units are nested in whole-plots, we index the units by
double-index wm, and extend the idea of aggregate effects to whole-plot level to
define the whole-plot average factorial effects as

(2.9) τw·(F ) = M−1
M∑

m=1

τwm(F ) = 2−1gT
F

(
Ȳw·(1), . . . , Ȳw·(4)

)T = 2−1gT
F Ȳw·,

interpretable as WP-level factorial effects along the lines of (2.7), where Ȳw· is the
vector of whole-plot averages for the treatments.

Let τF = (τ11(F ), . . . , τWM(F))T. We define the between- and within-WP vari-
ances of τwm(F ) the same way as (2.4) defined Sbtw(k, k) and Sin(k, k):

Sbtw(F ) = τ T
F PbtwτF

W − 1
, Sin(F ) = τ T

F PinτF

N − W
.

These variances give an alternative characterization of the between- and within-
WP additivities as detailed in Lemma 5.

LEMMA 5. Given N experimental units in a 22 factorial experiment that are
nested under W whole-plots and indexed by wm, the corresponding potential out-
comes are:
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• between-WP additive if and only if all three whole-plot average factorial effects
τw·(F ) are constant across all whole-plots, that is, τw·(F ) = τF for all 1 ≤ w ≤
W and F ∈ F , or equivalently, Sbtw(F ) = 0 for each F ∈ F ;

• within-WP additive if and only if all three unit-level factorial effects τwm(F ) are
constant within each whole-plot, that is, τwm(F ) = τw·(F ) for all 1 ≤ m ≤ M ,
1 ≤ w ≤ W and F ∈ F , or equivalently, Sin(F ) = 0 for each F ∈ F .

3. Treatment assignment for a 22 split-plot design. We now introduce the
notion of the treatment assignment mechanism [Imbens and Rubin (2015)] that
leads to generation of observed outcomes as a function of the potential outcomes
discussed in Section 2 and a random vector of treatment assignment variables. We
also highlight the key difference between the assignment variables for a completely
randomized and a split-plot 22 design, and provide characterizations of both types
of designs through the randomization distribution of these assignment variables.

Assume that it is decided a priori that Nk experimental units will be assigned to
treatment k (k = 1, . . . ,4). In a completely randomized (C-R) design, the N units
are assigned to the four treatment combinations at random without any restriction.
However, in a split-plot (S-P) design one factor (e.g., A) is identified as the whole-
plot factor and the treatments are assigned in such a way that all units within the
same whole-plot receive the same level (i.e., either −1A or + 1A) of the whole-plot
factor. Next, the two levels of the other factor, referred to as the sub-plot factor, are
assigned to the units within each whole-plot using a C-R assignment mechanism.
The name split-plot can be attributed to the design’s agricultural origin.

Let Ti be the assignment variable, taking the value k if unit i is assigned to
treatment k (k = 1, . . . ,4). We characterize by Definitions 3 and 4 a “22 C-R
design” and “22 S-P design.” Most of the quantitative derivations in this article
will be based on these definitions and the randomization distributions of these
assignment variables.

DEFINITION 3. Given treatments 1 to 4 in a 22 factorial experiment and N
experimental units, a 22 completely randomized design with planned treatment
arm sizes N1, N2, N3 and N4 = N − ∑3

k=1 Nk assigns Nk units to treatment k
such that

pr(Ti = ti, i = 1, . . . ,N) =

⎧
⎪⎪⎨

⎪⎪⎩

4∏

k=1

Nk!/N !,
N∑

i=1

I{ti=k} = Nk, k = 1,2,3,4,

0, otherwise.

DEFINITION 4. Given two 2-level factors of interest, whole-plot factor A and
sub-plot factor B , and N experimental units nested within W whole-plots, each of
size M = N/W , a 22 split-plot design with planned size parameters W+ and M+
consists of two separate randomizations:
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• Whole-plot randomization that assigns W+ of W whole-plots chosen at com-
plete random to + 1A level of whole-plot factor A, and the remaining W− =
W − W+ ones to −1A level.

• Sub-plot randomization that assigns M+ of M sub-plots chosen at complete
random within each whole-plot to + 1B level of sub-plot factor B , and the re-
maining M− = M − M+ ones to −1B level.

The final treatment for sub-plot wm will be the combination of the level of factor A

received by whole-plot w in the whole-plot randomization and the level of factor
B received by itself in the sub-plot randomization. The treatment arm sizes are
given by

(3.1) (N1,N2,N3,N4) = (W−M−,W−M+ ,W+ M−,W+ M+ ).

Let Z(k) = (I{T1=k}, . . . , I{TN=k})T, such that the sum of its entries,
∑N

i=1 I{Ti=k},
equals Nk . We define

(3.2) Z∗ = (
N−1

1 Z(1)T, . . . ,N−1
K Z(K)T)T

to be the assignment vector, in which each Z(k) is normalized by its treatment
arm size to have entrywise sum one. This NK-dimensional vector gives a full
representation of the randomization result, in a form that promises easier algebra
than {Ti}Ni=1.

LEMMA 6. Under the 22 completely randomized design characterized by Def-
inition 3, the sampling expectation and covariance matrix of the assignment vector
Z∗ given by (3.2) are

EC-R

(
Z∗) = N−114N, covC-R

(
Z∗) = C ⊗ PN,

where

C = 1
N(N − 1)

(
diag

{
N

N1
,

N

N2
,

N

N3
,

N

N4

}
− J4

)
.

The whole-plot and sub-plot randomizations in Definition 4 are essentially two
independent complete randomizations. The resulting 22 split-plot design can hence
be thought of as a restricted completely randomized design [Bailey (1983)] in the
sense that all possible assignments are equally likely. Thus, Lemma 6, along with
Definition 4, leads to the following result after considerable algebra.

THEOREM 1. Under the 22 split-plot design qualified by Definition 4, the sam-
pling expectation and covariance matrix of the assignment vector Z∗ are

ES-P

(
Z∗) = N−114N, covS-P

(
Z∗) = Cbtw ⊗ Pbtw + Cin ⊗ Pin,
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where

Cbtw = 1
N(W − 1)

⎛

⎜⎜⎜⎝

rA rA −1 −1
rA rA −1 −1
−1 −1 r−1

A r−1
A

−1 −1 r−1
A r−1

A

⎞

⎟⎟⎟⎠ ,

Cin = 1
N(N − W)

⎛

⎜⎜⎜⎝

(1 + rA)rB −(1 + rA) 0 0
−(1 + rA) (1 + rA)r−1

B 0 0
0 0

(
1 + r−1

A

)
rB −(

1 + r−1
A

)

0 0 −(
1 + r−1

A

) (
1 + r−1

A

)
r−1
B

⎞

⎟⎟⎟⎠

and

rA = W+ /W−, rB = M+ /M−

are the ratios of factor arm sizes for the whole-plot and sub-plot randomizations,
respectively.

To quantify the effect of restriction imposed through the split-plot randomiza-
tion on the covariance matrix of Z∗, we examine the relationship among the coef-
ficient matrices Cbtw and Cin of the split-plot randomization defined in Theorem 1
and the matrix C of the unrestricted randomization defined in Lemma 6. Straight-
forward algebra shows that

(3.3) C = W − 1
N − 1

Cbtw + N − W

N − 1
Cin.

4. Neymanian point estimation for 22 factorial effects. Neymanian causal
inference [Imbens and Rubin (2015), Chapter 7] involves evaluation of the sam-
pling (or randomization) distributions of estimators of the causal estimands of in-
terest. In this section, we define unbiased point estimators of the three factorial ef-
fects τF (F ∈ F ), defined in (2.8), and derive their sampling variances. These point
estimators are functions of the observed outcomes Y obs

i = Yi(Ti) (i = 1, . . . ,N ),
and the treatment indicators (T1, . . . , TN).

4.1. Point estimators and their sampling variances. Let

Ȳ obs(k) = N−1
k

∑

i:Ti=k

Y obs
i

be the average observed outcome of treatment k. Substituting the unobservable
Ȳ (k) by Ȳ obs(k) in the definition of τF in (2.8) yields the Neymanian point esti-
mator of this population-level factorial effect:

(4.1) τ̂F = 2−1gT
F

(
Ȳ obs(1), . . . , Ȳ obs(4)

)T = 2−1gT
F Ȳ

obs
(F ∈ F)

where Ȳ
obs = (Ȳ obs(1), . . . , Ȳ obs(4))T.
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Let

Ỹ =

⎛

⎜⎜⎝

Y (1)
Y (2)

Y (3)
Y (4)

⎞

⎟⎟⎠

be the 4N × 4 block-diagonal matrix with diagonal vectors Y (k). It follows from

Ȳ obs(k) = N−1
k

∑

i:Ti=k

Y obs
i = N−1

k

∑

i:Ti=k

Yi(k) = Y (k)T{
N−1

k Z(k)
}
,

that Ȳ
obs = ỸT Z∗, where Z∗ is given by (3.2). Substituting this into (4.1) yields

(4.2) τ̂F = 2−1gT
F ỸTZ∗ (F ∈ F)

with assignment vector Z∗ being the only stochastic component on the right- hand
side. The randomness in τ̂F under any arbitrary 22 factorial assignment mechanism
(A-M) originates solely from the randomness in the assignment vector Z∗. Thus
the sampling expectation and variance of τ̂F are

EA-M(τ̂F ) = 2−1gT
F ỸTEA-M

(
Z∗)

,(4.3)

varA-M(τ̂F ) = 4−1gT
F ỸT covA-M

(
Z∗)

ỸgF ,(4.4)

where EA-M, varA-M and covA-M are the expectation, variance and covariance with
respect to the sampling distribution under A-M over all possible assignments. Ex-
plicit formulae under completely randomized designs follow immediately from
combining (4.3) and (4.4) with Lemma 6, and those under split-plot designs from
combining (4.3) and (4.4) with Theorem 1 and are presented as the following two
results.

THEOREM 2. Under the 22 completely randomized design characterized by
Definition 3, the Neymanian point estimator τ̂F is unbiased for τF with sampling
variance

(4.5) varC-R(τ̂F ) = 4−1(N − 1)gT
F (C ◦ S)gF (F ∈ F).

Here, “◦” denotes the entrywise product, C is the coefficient matrix defined in
Lemma 6, and S is given by (2.1).

THEOREM 3. Under the 22 split-plot design characterized by Definition 4, the
Neymanian point estimator τ̂F is unbiased for τF with sampling variance

varS-P(τ̂F ) = 4−1(W − 1)gT
F (Cbtw ◦ Sbtw)gF

+ 4−1(N − W)gT
F (Cin ◦ Sin)gF (F ∈ F),

(4.6)

where Cbtw and Cin are defined in the statement of Theorem 1 and Sbtw and Sin
are given by (2.5).
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4.2. Comparison of precisions under strict additivity. Simplified forms of
Theorems 2 and 3 are available when the potential outcomes are strictly additive,
enabling intuitive comparisons of the estimation precision.

COROLLARY 1. For strictly additive potential outcomes, the sampling vari-
ances of τ̂A, τ̂B and τ̂AB in Theorem 3 reduce to

varS-P(τ̂A) = N−1γASbtw + (4N)−1γA(γB − 4)Sin,

varS-P(τ̂B) = varS-P(τ̂AB) = (4N)−1γAγBSin,
(4.7)

where

γA = rA + r−1
A + 2, γB = rB + r−1

B + 2

with rA = W+ /W− and rB = M+ /M− as in Theorem 1 and (Sbtw, Sin) are as
defined in Lemma 3.

REMARK 1. We have minrA γA = 4 and minrB γB = 4. The increasing mono-
tonicity of (4.7) in γA and γB suggests the three sampling variances are simultane-
ously minimized when γA and γB are at their respective minimums:

min
γA,γB

varS-P(τ̂A) = varS-P(τ̂A)|γA=4,γB=4 = 4Sbtw/N,

min
γA,γB

varS-P(τ̂B)
(

= min
γA,γB

varS-P(τ̂AB)
)

= varS-P(τ̂B)|γA=4,γB=4 = 4Sin/N,

where γA = 4, γB = 4 imply rA = rB = 1, that is, the design is balanced. This
establishes the optimality of balanced designs under the assumption of strictly ad-
ditive potential outcomes.

REMARK 2. The sampling variances of τ̂A and τ̂B in (4.7) satisfy

(4.8) varS-P(τ̂A) − varS-P(τ̂B) = N−1γA(Sbtw − Sin).

This suggests more precise Neymanian estimation of the sub-plot factor B than
that of the whole-plot factor A if Sbtw − Sin > 0, and vice versa if Sbtw − Sin < 0.
An intuitive link between the discriminant Sbtw − Sin and the whole-plot hetero-
geneity can be established from a super-population perspective for potential out-
comes generated from linear mixed effects models. Specifically, assume that the
study population in question is a random sample from some super-population such
that

(4.9) Ywm(k) = µ(k) + ηw + ξwm (w = 1, . . . ,W ;m = 1, . . . ,M)

follow the linear mixed effects model with fixed treatment effects µ(k), ran-
dom whole-plot effects ηw

i.i.d.∼ N (0,σ 2
η ) and individual sampling errors ξwm

i.i.d.∼
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N (0,σ 2
ξ ) jointly independent of ηw . Note that Model (4.9) satisfies the strict addi-

tivity condition (1).
Straightforward derivations show that for k, l = 1, . . . ,4,

(4.10) E∗{
Sbtw(k, l)

} = σ 2
ξ + Mσ 2

η , E∗{
Sin(k, l)

} = σ 2
ξ ,

where E∗ denotes expectation with respect to the sampling distribution represented
via model (4.9), and Sbtw(k, l) and Sin(k, l) are given by (2.4).

Because model (4.9) satisfies the strict additivity condition (Definition 1), by
Lemmas 2 and 3, Sbtw(k, l) and Sin(k, l) in (4.10) can be replaced by constants
Sbtw and Sin, respectively, for all k, l = 1, . . . ,4. It follows from (4.10) that

(4.11) E∗(Sbtw − Sin) = Mσ 2
η ≥ 0.

This, coupled with (4.8), suggests the average sampling variance of the sub-plot
estimator τ̂B is strictly smaller than that of the whole-plot estimator τ̂A unless
σ 2

η = 0, in which case (4.9) degenerates to a simple linear model that admits no
random block effects.

4.3. Comparing complete randomization with split-plot designs. Recall that
Theorem 3 and Corollary 1 provide results on the decomposition of sampling
variances of τ̂F under split-plot designs into the between- and within-WP parts.
An analogous result for completely randomized designs follows from substituting
(2.6) into (4.5):

varC-R(τ̂F ) = 4−1(W − 1)gT
F (C ◦ Sbtw)gF

+ 4−1(N − W)gT
F (C ◦ Sin)gF (F ∈ F).

(4.12)

Contrasting (4.12) with Theorem 3 yields Corollary 2.

COROLLARY 2. For a balanced design with N1 = N2 = N3 = N4, the sam-
pling variance of τ̂F under a 22 split-plot design (S-P) differs from that under a 22

completely randomized design (C-R) by

varS-P(τ̂F ) − varC-R(τ̂F ) = C0g
T
F

{
(Cbtw − Cin) ◦ (Sbtw − Sin)

}
gF ,

where C0 is a positive constant.

Corollary 2 informs us of not only the difference in efficiency of split-plot de-
signs for each F ∈ F , but also the discrepancy in variance estimation when a split-
plot experiment is wrongfully analyzed as a completely randomized one.

COROLLARY 3. For strictly additive potential outcomes, the sampling vari-
ance under 22 completely randomized design in (4.12) reduces to

(4.13) varC-R(τ̂F ) = γAγB

4(N − 1)

(
W − 1

N
Sbtw + M − 1

M
Sin

)
, F ∈ F .
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COROLLARY 4. For strictly additive potential outcomes, the differences in
Corollary 2 reduce to

varS-P(τ̂A) − varC-R(τ̂A) = C1(Sbtw − Sin),

varS-P(τ̂B) − varC-R(τ̂B) = varS-P(τ̂AB) − varC-R(τ̂AB) = −C2(Sbtw − Sin),

where C1 and C2 are two positive constants.

With the same discriminant Sbtw − Sin as that in (4.8), Corollary 4 provides a
similar intuition as in Remark 2. Under the super-population model (4.9), it follows
from (4.11) and Corollary 4 that

E∗{
varS-P(τ̂A)

} ≥ E∗{
varC-R(τ̂A)

}
, E∗{

varS-P(τ̂B)
} ≤ E∗{

varC-R(τ̂B)
}
.

Therefore, if there is a random block effect in the super-population model (4.9),
that is, σ 2

η > 0, and a balanced split-plot design is used, then the Neymanian in-
ference for τ̂A is less precise and that for τ̂B is more precise compared to their
counterparts obtained from a balanced completely randomized design.

5. Estimating the sampling variances. In this section, we consider the prob-
lem of estimation of the sampling variances of estimated factorial effects τ̂F . From
the expression of this variance given by (4.6), it appears that its estimation requires
estimation of the quantities Sbtw(k, l) and Sin(k, l) for k, l = 1, . . . ,4. Clearly,
Sin(k, l) has to be estimated from observed outcomes within whole-plots. Because
each sub-plot is exposed to only one treatment, it is not possible to construct such
an estimator unless k = l.

Turning next to Sbtw(k, l), define Wk as the set of whole-plots that are assigned
to the level of the whole-plot factor A in treatment k, and hence have some sub-
plots assigned to k. Also, let Mw

k = {m : Twm = k} denote the set of sub-plots
within whole-plot w ∈ Wk that receive treatment k. Define the average of all ob-
served outcomes within whole-plot w that receive treatment k as

(5.1) Ȳ obs
w· (k) = ∣∣Mw

k

∣∣−1 ∑

m:Twm=k

Y obs
wm,

where |Mw
k | denotes the cardinality of Mw

k , and equals either M− or M+ depend-
ing on the level of factor B in treatment k. Then, for any k, l, which involve the
same level of A, and hence have Wk = Wl , consider, in the spirit of Sbtw(k, l), the
estimator

(5.2) sbtw(k, l) = 1
|Wk| − 1

∑

w∈Wk

{
Ȳ obs

w· (k) − Ȳ obs(k)
}{

Ȳ obs
w· (l) − Ȳ obs(l)

}
,

where |Wk| is the cardinality of Wk , Ȳ obs
w· (k) is given by (5.1), and Ȳ obs(k) is the

average of Ȳ obs
w· (k) over w ∈ Wk . Note that sbtw(k, l) is defined only for pairs (k, l)

that belong to the set
{
(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)

}
.
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LEMMA 7. Under the 22 split-plot design characterized by Definition 4, the
sampling expectations of sbtw(k, l) satisfy

E

(
sbtw(1,1) sbtw(1,2)
sbtw(2,1) sbtw(2,2)

)
= M−1

(
Sbtw(1,1) Sbtw(1,2)
Sbtw(2,1) Sbtw(2,2)

)

+ M−1

(
rB −1
−1 r−1

B

)

◦
(
Sin(1,1) Sin(1,2)
Sin(2,1) Sin(2,2)

)
,

E

(
sbtw(3,3) sbtw(3,4)
sbtw(4,3) sbtw(4,4)

)
= M−1

(
Sbtw(3,3) Sbtw(3,4)
Sbtw(4,3) Sbtw(4,4)

)

+ M−1

(
rB −1
−1 r−1

B

)

◦
(
Sin(3,3) Sin(3,4)
Sin(4,3) Sin(4,4)

)
.

Lemma 7 shows that the sampling expectations of sbtw(k, l) involve both
Sbtw(k, l) and Sin(k, l). This renders them “self-adequate” for estimating the
varS-P(τ̂F ) in (4.6).

THEOREM 4. Under the 22 split-plot design characterized by Definition 4, the
sampling variance of τ̂F can be conservatively estimated by

v̂F = 4−1gT
F

⎛

⎜⎜⎝
W−1

−

(
sbtw(1,1) sbtw(1,2)
sbtw(2,1) sbtw(2,2)

)
0

0 W−1
+

(
sbtw(3,3) sbtw(3,4)
sbtw(4,3) sbtw(4,4)

)

⎞

⎟⎟⎠ gF ,

in the sense that

varS-P(τ̂F ) − ES-P(v̂F ) = −N−1Sbtw(F ) ≤ 0.

The last inequality is strict unless the whole-plot average factorial effects τw·(F )
are constant across all w = 1, . . . ,W , that is, Sbtw(F ) = 0.

The estimator of varS-P(τ̂F ) proposed in Theorem 4 can be used for Neymanian
interval estimation. Asymptotic coverage of such a procedure can be studied by ap-
plication of the finite population central limit theorem [Hájek (1960), Li and Ding
(2017)] and is left for future research. Some empirical examination of coverage
will be done via simulations later.

6. Randomization-based versus model-based inference. We now discuss
some of the key features that set this randomization-based approach apart
from existing model-based alternatives. Recall gA = (−1,−1, + 1, + 1), gB =
(−1, + 1,−1, + 1) and gAB = gA ◦ gB , such that the kth entry in gF equals the
level of factor F in treatment k. Let D = 2−1(14,gA,gB,gAB) be the orthonor-
mal design matrix, and let gF (k) be the kth entry in gF . Denoting the vector of
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potential outcomes for unit wm by Ywm, we have by (2.7) and the orthonormality
of D that

Ywm = DDTYwm = D
{
2−1(14,gA,gB,gAB)TYwm

}

= D
(
2−11T

4Ywm,2−1gT
AYwm,2−1gT

BYwm,2−1gT
ABYwm

)T

= D
(
2µwm, τwm(A), τwm(B), τwm(AB)

)T
,

(6.1)

where µwm = 4−1 ∑4
k=1 Ywm(k) is the average of all potential outcomes for unit

wm. Denoting the kth entry of gF by gF (k), we have that

Ywm(k) = 2−1(
1, gA(k), gB(k), gAB(k)

)

× (
2µwm, τwm(A), τwm(B), τwm(AB)

)T

= µwm +
∑

F∈F
2−1gF (k)τwm(F ).

(6.2)

Averaging (6.2) over all w and m yields

(6.3) Ȳ (k) = µ +
∑

F∈F
2−1gF (k)τF ,

where µ = N−1 ∑W
w=1

∑M
m=1 µwm is the average of all 4N potential outcomes.

Recall that the treatment indicator Twm equals k if sub-plot wm is assigned to
treatment k, and that the observed outcome for unit wm is Y obs

wm = Ywm(Twm). The
derived linear model [Hinkelmann and Kempthorne (2008)] treats the population
average Ȳ (Twm) as the part in Ywm(Twm) explainable by the treatment, and de-
composes the observed outcomes as

Y obs
wm = Ywm(Twm) = Ȳ (Twm) + εwm

= µ +
∑

F∈F
2−1gF (Twm)τF + εwm,

(6.4)

where εwm = Y obs
wm − Ȳ (Twm) are the unit-level random errors, and the last equality

follows from letting k = Twm in (6.3). Let

δwm(µ) = µwm − µ, δwm(F ) = τwm(F ) − τF (F ∈ F)

be the deviations of unit-level parameters from the finite-population averages. Sub-
stitution of (6.2), with k = Twm, into (6.4) yields

(6.5) εwm = δwm(µ) +
∑

F∈F
2−1gF (Twm)δwm(F ).

The term gF (Twm) in (6.4) has the straightforward interpretation as the level
of factor F received by sub-plot wm. Such an interpretation, together with the
functional form of (6.4), reminds us of the family of additive regression models:

(6.6) Y obs
wm = β0 +

∑

F∈F
gF (Twm)βF + εmodel

wm .
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Despite the apparent resemblance between (6.4) and (6.6), however, their differ-
ence is fundamental, with the source of randomness being the first and foremost.

The family of additive regression models (6.6), on one hand, conditions on the
treatment assignments Twm for all its inference, and attributes the randomness in
Y obs

wm to the population under study being a random sample of some hypotheti-
cal super-population, reflected via εmodel

wm as the individual sampling errors. The
regression coefficients βF are treated as super-population causal parameters, and
β0 + ∑

F∈F gF (Twm)βF as deterministic super-population means.
The derived linear model (6.4), on the other hand, conditions on the compo-

sition of the finite population under study for all its inference, and attributes the
randomness in Y obs

wm solely to the random assignment of treatments, reflected via
the joint distribution of treatment assignment variables Twm. As a result, not only
the residuals εwm, but also the linear combinations µ + ∑

F∈F 2−1gF (Twm)τF are
now stochastic via their dependence on Twm [Freedman (2008a, 2008b, 2008c),
Lin (2013)], with coefficients τF , by definition (2.8), describing the finite popula-
tion. See formula (6.5) for a full specification of εwm in terms of gF (Twm).

More quantitative comparison follows from the difference in residual covariance
structure. Whereas the covariances of the εmodel

wm in (6.6) are in general specified
as model assumptions, those of the εwm in (6.4) follow naturally from identity
(6.5) and the joint distribution of Twm as determined by the treatment assignment
mechanism.

To start with, viewing (6.5) in conjunction with Lemma 4 renders the computa-
tion of covS-P(εwm, εw′m′) almost trivial under strict additivity: With δwm(F ) = 0
for all wm and F ∈ F , the residuals in (6.5) reduce to constants εwm = δwm(µ),
and the covariance of constants is always zero, that is, covS-P(εwm, εw′m′) = 0 for
all wm and w′m′ under strict additivity.

Without strict additivity, the algebra becomes tedious. To avoid unneces-
sary complexity, we report an asymptotic result in Theorem 5. In this theorem
δwm(F ) = τwm(F ) − τF as before, with τF interpreted as the limiting average of
the experimental unit-wise effects of factor F , as W and M approach infinity.

THEOREM 5. Let W and M approach infinity such that rA = W+ /W− and
rB = M+ /M− converge to positive constants ρA and ρB , respectively. Let eA =
(ρA − 1)/(ρA + 1) and eB = (ρB − 1)/(ρB + 1). Then the residual covariance
covS-P(εwm, εw′m′) for sub-plots wm and w′m′ converges to:

(i)

ρA

(ρA + 1)2

(
δwm(A), δwm(AB)

)
(

1 eB

eB e2
B

)(
δw′m′(A)

δw′m′(AB)

)

+ ρB

(ρB + 1)2

(
δwm(B), δwm(AB)

)(
1 eA

eA 1

)(
δw′m′(B)

δw′m′(AB)

)

if (w,m) = (w′,m′);
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(ii)
ρA

(ρA + 1)2

{
δwm(A) + eBδwm(AB)

}{
δw′m′(A) + eBδw′m′(AB)

}

if w = w′ but m ≠ m′; and
(iii) zero if w ≠ w′.

REMARK 3. Theorem 5 involves finite-population asymptotics [Hájek (1960),
Li and Ding (2017)]. The asymptotic condition “W,M → ∞” can be visualized as
adding till infinity new whole-plots to the current study population, and new sub-
plots to the current whole-plots. The covariance at each finite (W,M) is computed
under the split-plot design characterized by Definition 4.

COROLLARY 5. When the sequence of split-plot designs is asymptotically bal-
anced, that is, ρA = ρB = 1, the asymptotic residual covariance in Theorem 5 re-
duces to 4−1δwm(A)δw′m′(A) for sub-plots wm and w′m′ in the same whole-plot.

Theorem 5 and Corollary 5 provide an explicit account of the nonvanishing
within-whole-plot correlation of εwm under 22 split-plot designs, and thereby jus-
tify heuristically the block-diagonal covariance structure that a linear mixed ef-
fects (LME) model assumes for its sampling errors. With εLME

wm = ηw + ξwm where
ηw

i.i.d.∼ N (0,σ 2
η ) and ξwm

i.i.d.∼ N (0,σ 2
ξ ) are jointly independent, the covariance of

εLME
wm and εLME

w′m′ equals σ 2
η if w = w′, and 0 otherwise. To summarize the findings

of this section, we note that despite the similarity in structure between the LME
model (6.6) and the derived linear model (6.4), there are two major differences.
First, whereas the linear mixed effects model assumes equal covariances for all
pairs of residuals from the same whole-plot, those under the derived linear model,
as is clear from Theorem 5 and Corollary 5, vary from pair to pair even in the
asymptotics. Second, whereas the linear mixed effects model assumes indepen-
dence between whole-plots at any finite (W,M), formula (6.5) suggests otherwise
for the derived model.

7. Extension to a general split-plot assignment. We now consider a general
factorial experiment with m1 whole-plot factors F11, . . . ,F1m1 (whose levels are
difficult to change from unit to unit) and m2 sub-plot factors F21, . . . ,F2m2 for
which such restrictions do not apply. Assume that each of the m1 + m2 factors has
two or more levels. Let Zk denote the set of level combinations of Fk1, . . . ,Fkmk

(k = 1,2), and z = z1z2 (zk ∈ Zk) denote a treatment combination. Let Yi(z1z2)
denote the potential outcome of unit i if exposed to treatment combination z1z2.
A typical unit-level treatment contrast for unit i is of the form

(7.1) τi =
∑

z1∈Z1

∑

z2∈Z2

g(z1z2)Yi(z1z2),
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where g(z1z2), z1 ∈ Z1, z2 ∈ Z2, are known, not all zeros and sum to zero. The
mean τ of the unit-level contrasts defines a treatment contrast for the finite popu-
lation and is a typical estimand of interest. From (7.1),

(7.2) τ = N−1
N∑

i=1

τi =
∑

z1∈Z1

∑

z2∈Z2

g(z1z2)Ȳ (z1z2),

where Ȳ (z1z2) = N−1 ∑N
i=1 Yi(z1z2) is the average potential outcome under z1z2.

It is important to note here that the unit-level contrasts τi and population-level
contrast τ implicitly depend on the contrast coefficients g(z1z2).

As before, let N = WM , where W,M ≥ 2, and suppose the N experimental
units are grouped into W whole-plots *1, . . . ,*W , each consisting of M sub-
plots. Along the lines of the decomposition in Section 2.2, we define the following
quantities for any z1, z

∗
1 ∈ Z1 and z2, z

∗
2 ∈ Z2:

Ȳw(z1z2) = M−1
∑

i∈*w

Yi(z1z2) (w = 1, . . . ,W),(7.3)

Sbtw
(
z1z2, z

∗
1z

∗
2
) = M

W − 1

W∑

w=1

{
Ȳw(z1z2) − Ȳ (z1z2)

}{
Ȳw

(
z∗

1z
∗
2
) − Ȳ

(
z∗

1z
∗
2
)}

,(7.4)

Sin
(
z1z2, z

∗
1z

∗
2
) =

∑W
w=1

∑
i∈*w

{Yi(z1z2) − Ȳw(z1z2)}{Yi(z
∗
1z

∗
2) − Ȳw(z∗

1z
∗
2)}

W(M − 1)
.(7.5)

Expressions (7.4) and (7.5) represent, respectively, the between and within
whole-plot mean squares or products in an analysis of variance/covariance decom-
position of

∑W
w=1

∑
i∈*w

{Yi(z1z2) − Ȳ (z1z2)}{Yi(z
∗
1z

∗
2) − Ȳ (z∗

1z
∗
2)}.

7.1. Assignment mechanism and observed outcomes. Consider a two-stage
randomization similar to that discussed in Section 3, which assigns N1(z1) whole-
plots to level combination z1 of F11, . . . ,F1m1 and then, within each whole-plot,
assigns N2(z2) sub-plots to level combination z2 of F21, . . . ,F2m2 . All assignments
at each stage are equiprobable, the fixed positive integers N1(z1), z1 ∈ Z1, sum to
W , and the fixed positive integers N2(z2), z2 ∈ Z2, sum to M .

Let T1(z1) denote the set of indices w such that the whole-plot *w is assigned
to level combination z1 of F11, . . . ,F1m1 and Tw2(z2) the set of sub-plots in *w

that are assigned to level combination z2 of F21, . . . ,F2m2 . Then the set of units
assigned to any treatment combination z1z2 is

(7.6) T (z1z2) =
⋃

w∈T1(z1)

Tw2(z2).

Thus the observed outcome Y obs
i for unit i equals Yi(z1z2) where z1 ∈ Z1 and

z2 ∈ Z2 are such that the set T (z1z2) contains index i.
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7.2. Neymanian inference of treatment contrasts. We now explore Neymanian
inference of treatment contrasts like τ in (7.2) on the basis of the observed out-
comes defined in Section 7.1. Our results will pertain to any such contrast, and
hence cover, in particular, the factorial main effect and interaction contrasts that
are of special interest in the present setup.

For any z1z2, let Ȳ obs(z1z2) = {N1(z1)N2(z2)}−1 ∑
i∈T (z1z2)

Yi(z1z2) be the
mean of the observed outcomes for treatment combination z1z2. By (7.6),

(7.7) Ȳ obs(z1z2) = {
N1(z1)

}−1 ∑

w∈T1(z1)

Ȳ obs
w (z1z2),

where

(7.8) Ȳ obs
w (z1z2) = {

N2(z2)
}−1 ∑

i∈Tw2(z2)

Yi(z1z2).

PROPOSITION 1. (a) For every z1z2, E{Ȳ obs(z1z2)} = Ȳ (z1z2).
(b) For every z1z2 and z∗

1z
∗
2,

cov
{
Ȳ obs(z1z2), Ȳ

obs(z∗
1z

∗
2
)}

= I
{
z1 = z∗

1
}{

MN1(z1)
}−1{

Sbtw
(
z1z2, z

∗
1z

∗
2
) − Sin

(
z1z2, z

∗
1z

∗
2
)}

+ I
{
z1 = z∗

1
}
I
{
z2 = z∗

2
}{

N1(z1)N2(z2)
}−1

Sin
(
z1z2, z

∗
1z

∗
2
)

− (WM)−1Sbtw
(
z1z2, z

∗
1z

∗
2
)
.

Part (a) of Proposition 1 readily yields an unbiased estimator of a treatment
contrast τ defined in (7.2). The sampling variance of such an unbiased estimator
follows from part (b). Theorem 6 summarizes these results.

THEOREM 6. (a) An unbiased estimator of τ is given by

τ̂ =
∑

z1∈Z1

∑

z2∈Z2

g(z1z2)Ȳ
obs(z1z2).

(b) The sampling variance of τ̂ defined in (a) is given by

varS-P(τ̂ ) =
∑

z1∈Z1

∑

z2∈Z2

∑

z∗
2∈Z2

g(z1z2)g(z1z
∗
2){Sbtw(z1z2, z1z

∗
2) − Sin(z1z2, z1z

∗
2)}

MN1(z1)

+
∑

z1∈Z1

∑

z2∈Z2

{g(z1z2)}2Sin(z1z2, z1z2)

N1(z1)N2(z2)
−

∑W
w=1(τ̄w − τ )2

W(W − 1)
,

where

τ̄w = M−1
∑

i∈*w

τi =
∑

z1∈Z1

∑

z2∈Z2

g(z1z2)Ȳw(z1z2) (w = 1, . . . ,W).
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We now consider the estimation of varS-P(τ̂ ). Assume that N1(z1) ≥ 2 for each
z1 ∈ Z1, and let

(7.9) v̂(τ̂ ) =
∑

z1∈Z1

∑

z2∈Z2

∑

z∗
2∈Z2

{
N1(z1)

}−1
g(z1z2)g

(
z1z

∗
2
)
s
(
z1z2, z1z

∗
2
)
,

where

(7.10)

s
(
z1z2, z1z

∗
2
)

=
∑

w∈T1(z1)

{Ȳ obs
w (z1z2) − Ȳ obs(z1z2)}{Ȳ obs

w (z1z
∗
2) − Ȳ obs(z1z

∗
2)}

N1(z1) − 1
.

Comparing with (7.4), we note that s(z1z2, z1z
∗
2) is a sample counterpart of

Sbtw(z1z2, z1z
∗
2) without the multiplier M . The following result justifies using v̂(τ̂ )

defined in (7.9) as an estimator of varS-P(τ̂ ).

THEOREM 7. (a) E{v̂(τ̂ )} ≥ varS-P(τ̂ ).
(b) Equality holds in (a) above for every treatment contrast τ if and only if

between-WP additivity holds in the sense of Definition 2, that is, constancy of
Ȳw(z1z2) − Ȳw(z∗

1z
∗
2) over w = 1, . . . ,W , for every pair of treatment combina-

tions z1z2 and z∗
1z

∗
2.

REMARK 4. The results stated in Proposition 1, Theorem 6 and Theorem 7
have the following implications:

(a) Theorem 7 establishes that v̂(τ̂ ) is a conservative estimator of varS-P(τ̂ ),
potentially leading to overestimation on an average, and v̂(τ̂ ) becomes unbiased
for varS-P(τ̂ ) for every treatment contrast τ if and only if between-WP additivity
holds. It is satisfying to note that v̂(τ̂ ) is nonnegative because, by (7.9) and (7.10),
it can be expressed as

v̂(τ̂ ) =
∑

z1∈Z1

∑

w∈T1(z1)

[∑z2∈Z2
g(z1z2){Ȳ obs

w (z1z2) − Ȳ obs(z1z2)}]2

N1(z1){N1(z1) − 1} .

(b) From Proposition 1(b), which leads to the expression for varS-P(τ̂ ) in The-
orem 6(b), one can check that this variance formula is in agreement with its coun-
terpart in Theorem 3 for the 22 factorial case. Moreover, from (7.9) and (7.10),
it can be seen that the expression v̂(τ̂ ) matches the expression for v̂F defined in
Theorem 4 for the 22 factorial case.

8. Simulations. We evaluate in this section, via simulation, the frequency
coverage property of the Neymanian split-plot interval estimators indicated at the
end of Section 5. For ease of presentation, this is done with reference to the 22

factorial.
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8.1. Generative models for potential outcome matrices (POMs). In what fol-
lows, the potential outcomes are said to be without WP effect if they arise from a
generative model such that the distribution of Ywm(k) depends possibly on m and
k but not w; else, they are with WP effect. As an extreme case of the latter, the po-
tential outcomes are said to have ultimate WP effect if Ywm(k) equals Ȳw·(k) with
probability 1, for all w, m and k. Clearly, ultimate WP effect implies within-WP
additivity, and hence strict additivity, if, in addition, between-WP additivity holds.
We consider here five types of potential outcomes:

(I) binary potential outcomes without WP effect,
(II) binary potential outcomes with ultimate WP effect,

(III) continuous potential outcomes without WP effect,
(IV) continuous potential outcomes with WP effect,
(V) continuous potential outcomes with ultimate WP effect

in combination with three types of additivity assumption:

(i) strict additivity,
(ii) between-WP additivity,

(iii) no assumption about additivity.

This gives a total of 5 × 3 = 15 types of POM, from which specific POMs are
generated in two steps:

1. Generate Y (1) according to the designated potential outcomes type. See Ta-
ble 1 for details about the generative models.

2. Conditional on Y (1), generate Y (k) (k = 2,3,4) according to the designated
additivity type. See Table 2 for details about the generative models.

TABLE 1
Generative models for Y (1) under potential outcomes (PO) types (I)–(V)

PO type Generative model for Y(1) = (Y11(1), . . . ,YWM(1))T

(I) Ywm(1)
i.i.d.∼ Bern(0.5).

(II) Ȳw·(1)
i.i.d.∼ Bern(0.5), and Ywm(1) = Ȳw·(1).

(III) Ywm(1) are independent normals with means µwm = 2(−1)I {m≤M/2} and
variances (σ 2

11, . . . ,σ 2
WM) being a random permutation of 2(1T

N/2,0T
N/2).

This makes half of the potential outcomes constant.

(IV) Ywm(1) = ηw + εwm, where ηw and εwm are i.i.d. standard normals.

(V) Ȳw·(1)
i.i.d.∼ N (0,1), and Ywm(1) = Ȳw·(1).
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TABLE 2
Generative models for Y (k) (k = 2,3,4) under the 15 POM types as combinations of the five

potential outcomes (PO) types (I)–(V) in Table 1, and the three additivity (ADT) types: (i) strict,
(ii) between-WP and (iii) no assumption about additivity

ADT type PO type Generative model for Y(k) (k = 2,3,4)

(i) (I)–(V) Y (k) = Y (1).

(ii) (I) Y (k) are independent WP-wise permutations of Y (1), such that the
numbers of 1’s within each WP are the same for Y (k) and Y (1). This
ensures (8.1).

(II), (V) Y (k) = Y (1). Under ultimate WP effect, we have Ywm(1) = Ȳw·(1) and
Ywm(k) = Ȳw·(k); (8.1) holds if and only if Ywm(k) = Ywm(1).

(III), (IV) Ywm(k) = Y ′
wm(k) − {Ȳ ′

w·(k) − Ȳw·(1)}, where Y ′(k) are i.i.d. as Y (1).
Subtracting Ȳ ′

w·(k) − Ȳw·(1) ensures (8.1).

(iii) (I)–(V) Y (k) are i.i.d. as Y (1).

Strict additivity for all five potential outcomes types is imposed by letting Y (k) =
Y (1) (k = 2,3,4), and between-WP additivity by letting

(8.1) Ȳw·(k) = Ȳw·(1) (k = 2,3,4;w = 1, . . . ,W),

such that the resulting POMs satisfy Definitions 1 and 2, respectively, with all dif-
ferential constants being zero. No generality is lost so far as the coverage rate is
concerned.

8.2. Interval estimates and their coverage rates. For each realized POM, cov-
erage rates of the Neymanian split-plot (S-P) interval estimators, as indicated at the
end of Section 5, are summarized over 1000 independent split-plot randomizations
and compared to those of the following three alternatives:

• GLM interval estimators.
The 100(1 − α)% confidence intervals under the standard generalized lin-
ear model (GLM) with the levels of factors A and B and their interaction as
explanatory variables.

• GLME interval estimators.
The 100(1 − α)% confidence intervals under the standard generalized linear
mixed effects model (GLME) that includes also whole-plot dummy, in addi-
tion to the levels of factors A and B and their interaction, as explanatory
variable.

• C-R interval estimators.
The 100(1 − α)% Neymanian interval estimators for 22 completely random-
ized (C-R) design discussed by Dasgupta, Pillai and Rubin (2015).
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All GLMs are fitted by the standard R function “glm” and all GLMEs by “glmer,”
both with “binomial” link for binary potential outcomes types (I)–(II) and “iden-
tity” link for continuous potential outcomes types (III)–(V). We abbreviate “GLM”
to “LM” and “GLME” to “LME” in the latter case as the identity link reduces the
two generalized models to linear and linear mixed effects models, respectively.

8.3. Results. We realize each of the 15 POM types at two sizes: (W,M) =
(40,40) and (80,80), and construct the intervals at confidence level 1 − α = 0.95.
Results for the 15 POMs at (W,M) = (40,40) are shown in Figure 1; the overall
superiority of S-P interval is evident. Results at (W,M) = (80,80) exhibit quite
similar patterns, and are thus not included here to avoid redundancy.

The intended “approximate exact-coverage under between-WP or strict addi-
tivity and over-coverage if otherwise” is fulfilled by the S-P interval for all but
potential outcomes types (II) and (V) under strict additivity. Despite its undue
conservativeness towards τB and τAB in these two cases, the S-P interval remains
to be the only interval that “does not under-cover;” see Table 3 for the untruncated
statistics regarding the severe under-coverage of τA by LM and LME intervals. The
fact that τ̂B and τ̂AB in these two cases are virtually constant at their respective
true values τB and τAB over all possible assignments, as a result of the ultimate
WP effect, may render even S-P’s undue conservativeness excusable.

For potential outcomes type (IV) in particular, S-P markedly outperforms LM

(C-R) in all three factorial effects, matches LME in the main effect of whole-plot
factor A and beats the latter in all other cases. The fact of potential outcomes
type (IV) being actually generated from LME model accentuates S-P’s victory even
further.

The general inadequacy of C-R, LM and GLM intervals for potential outcomes
types (II), (IV) and (V), on the other hand, exemplifies the possible severe under-
coverage when split-plot experiments are wrongfully analyzed as completely
randomized ones, even when the preferred randomization-based perspective is
adopted.

An additional set of simulations was conducted with binary potential outcomes
with WP effect, and the outcomes were found similar to those reported in Table 3
and Figure 1. Details are given in the supplemental article [Zhao et al. (2018)].

9. Discussion. Randomization-based causal inference, originally developed
by Splawa-Neyman (1990) and Neyman (1935) in the context of completely ran-
domized, randomized block and Latin square designs, (a) attributes the random-
ness in experimental data to the actual physical randomization of the experiments,
(b) allows for the definition of causal effects over a finite population of interest and
(c) extends the super-population notions of “unbiased” point estimators and “con-
servative” interval estimators to the finite-population settings. Under this inferen-
tial framework, we proposed a new procedure for analyzing split-plot designs, and
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FIG. 1. Coverage rates summarized over 1000 independent split-plot randomizations with
rA = rB = 1 at (W,M) = (40,40) (1 − α = 0.95). All bars start from the nominal coverage rate
0.95 and grow upwards/downwards to the actual values, truncated at 0.85. Results of C-R and LM

are combined for potential outcomes (PO) types (III)–(V), since the procedure by which Dasgupta,
Pillai and Rubin (2015) constructed the C-R renders it numerically identical to the LM.
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TABLE 3
Coverage rates (%) averaged over 1000 independent split-plot randomizations with rA = rB = 1 at

(W,M) = (40,40) for potential outcomes (PO) types (II) and (V)

PO type (II) PO type (V)

S-P C-R GLM GLME S-P LM (C-R) LME

Strict additivity τA 95.0 0.0 0.0 32.5 95.0 22.9 25.9
τB 100.0 100.0 100.0 100.0 100.0 100.0 100.0
τAB 100.0 100.0 100.0 100.0 100.0 100.0 100.0

No assumption τA 99.3 33.9 34.4 84.3 99.6 45.4 99.6
about additivity τB 99.7 42.3 44.0 33.2 97.2 39.6 27.1

τAB 98.7 36.8 47.3 26.2 100.0 65.0 43.8

demonstrated its superior frequency coverage property over existing model-based
alternatives.

Whereas the length limit restrains us from going any further, the interested
reader may find the following two directions, among others, worthy of future ex-
ploration. First, Rubin (1978) and Dasgupta, Pillai and Rubin (2015) discussed
Bayesian causal inference for completely randomized designs in the context of
treatment-control and 2K factorial experiments, respectively. How to extend the
same framework to split-plot designs in a way that also guarantees frequency prop-
erties is yet unclear. Second, Fisher (1935) proposed the use of a randomization test
for sharp null hypotheses regarding the treatment effects at unit level. Extension of
such framework to split-plot designs should complement the current Neymanian
framework’s focus on the population-level parameters.
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SUPPLEMENTARY MATERIAL

Supplement to “Randomization-based causal inference from split-plot de-
signs”(DOI: 10.1214/17-AOS1605SUPP; .pdf). We give proofs of the theorems
and provide additional simulation studies.
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Supplement to

“Randomization-based causal
inference from split-plot designs”

By Anqi Zhao, Peng Ding, Rahul Mukerjee and Tirthankar Dasgupta

Harvard University, University of California at Berkeley, Indian Institute of
Management Calcutta, and Rutgers University

In the supplement, we present technical details that cover all our theo-
rems. In particular, proofs of Theorems 1, 2, 5 and 7 and Proposition 1 are
given. Theorem 3 follows readily from Theorem 1 exactly as Theorem 2 fol-
lows from lemma 6. Moreover, as noted in Section 7, Theorem 6 is immediate
from Proposition 1 while Theorem 4 follows from Theorem 7. More technical
details can be found in Anqi Zhao’s Ph.D. thesis from Department of Statis-
tics, Harvard University. We also provide additional simulation studies.

PROOFS

Proof of Lemma 4. Let Yi = (Yi(1), Yi(2), Yi(3), Yi(4))t. On one hand,
under strict additivity, there exists some constants c2, c3, c4 such that
Yi(2) = Yi(1)+c2, Yi(3) = Yi(1)+c3, Yi(4) = Yi(1)+c4 for all i 2 {1, . . . , N},
and we can write Yi as

Yi = (Yi(1), Yi(2), Yi(3), Yi(4))
t = Yi(1)14 + (0, c2, c3, c4)

t
.

Thus, for any F 2 F ,

⌧i(F ) = 2�1gt
FYi = 2�1gt

F {Yi(1)14 + (0, c2, c3, c4)
t}

= 2�1
Yi(1)g

t
F14 + 2�1gt

F (0, c2, c3, c4)
t = 2�1gt

F (0, c2, c3, c4)
t

are constant for all i 2 {1, . . . , N}. This proves the necessity of the condition.
On the other hand, given ⌧i(F ) being constant across all units, it follows

from (6.1) in the main text that

Yi = D(2µi, ⌧i(A), ⌧i(B), ⌧i(AB))t = D(2µi, ⌧A, ⌧B, ⌧AB)
t
,(A.1)

Y = (2µ, ⌧A1N , ⌧B1N , ⌧AB1N )Dt
.
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We have

PNY = PN (2µ, ⌧A1N , ⌧B1N , ⌧AB1N )Dt

= (2PNµ, ⌧APN1N , ⌧BPN1N , ⌧ABPN1N )Dt

= (2PNµ, 0N , 0N , 0N )Dt = (2PNµ, 0N , 0N , 0N )(14, gA, gB, gAB)
t

= 2PNµ1t4 ,

S = (N � 1)�1
Y

t
PNY = (N � 1)�1(PNY)t(PNY)

= (N � 1)�1(2PNµ1t4)
t(2PNµ1t4) = 4(N � 1)�1

14(µ
t
PNµ)1t4

=
4(µt

PNµ)

N � 1
141

t
4 =

4(µt
PNµ)

N � 1
J4 .

By Lemma 1, this implies strict additivity with S
2
0 = 4(N�1)�1µt

PNµ.

Proof of Lemma 5. Treating whole-plot w as unit i in Lemma 4 proves
the between-WP part, whereas the within-WP part follows in a straightfor-
ward manner from

Ywm = D(2µwm, ⌧wm(A), ⌧wm(B), ⌧wm(AB))t

= D(2µwm, ⌧w·(A), ⌧w·(B), ⌧w·(AB))t

as a modification of (A.1).

The following lemma is useful for proving lemma A.2, which in turn is the
building block for the proof of Theorem 1.

Lemma A.1. For a completely randomized design with N experimen-

tal units, K di↵erent treatments, and planned treatment arm sizes Nk withP
K

k=1Nk = N , the treatment assignment vectors Z(k) = (I{T1=k}, . . . , I{TN=k})
t

satisfy

(A.2) Ec-r{Z(k)} =
Nk

N
1N , covc-r{Z(k)} =

Nk(N �Nk)

N(N � 1)
PN .

Proof. For any given unit i, the probability of it receiving treatment
k equals prc-r(Ti = k) = Nk/N . The indicator I{Ti=k} thus follows a
Bernoulli(Nk/N) distribution with Ec-r(I{Ti=k}) = Nk/N — from which
follows immediately the first equality in (A.2) — and

varc-r(I{Ti=k}) =
Nk

N

✓
1� Nk

N

◆
.(A.3)
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The covariances of any two dimensions i and j (i 6= j) in Z(k) satisfy

covc-r(I{Ti=k}, I{Tj=k})(A.4)

= Ec-r(I{Ti=k}I{Tj=k})� Ec-r(I{Ti=k})Ec-r(I{Tj=k})

= prc-r(Ti = Tj = k)�
N

2
k

N2
=

Nk(Nk � 1)

N(N � 1)
�

N
2
k

N2

= �Nk(N �Nk)

N2(N � 1)
.

Given the right-hand side of (A.3) satisfies

Nk

N

✓
1� Nk

N

◆
=

Nk(N �Nk)

N2
=

Nk(N �Nk)

N(N � 1)
� Nk(N �Nk)

N2(N � 1)
,

organizing (A.3) and (A.4) into covariance matrix form yields

covc-r {Z(k)} =
Nk(N �Nk)

N(N � 1)
IN � Nk(N �Nk)

N2(N � 1)
JN =

Nk(N �Nk)

N(N � 1)
PN .

This completes the proof.

Under the 22 split-plot design qualified by Definition 4, let Aw be the level of
factor A for whole-plot w in the whole-plot randomization, and let Bwm be
the level of factor B for sub-plot wm in the sub-plot randomization. Recall
from the main text that Twm = k if sub-plot (w,m) receives treatment k,
and that gA(Twm) and gB(Twm) indicate the levels of factors A and B in
treatment Twm respectively. We have

(A.5) Aw = gA(Twm) , Bwm = gB(Twm) .

For z 2 {�1,+1}, define ZA(z) = (I{A1=z}, . . . , I{AW=z})
t 2 {0, 1}W and

ZB(z) = (I{B11=z}, . . . , I{BWM=z})
t 2 {0, 1}N as the factorial analogues of

Z(k) for the whole-plot and sub-plot randomizations respectively.
For treatment k with gA(k) 2 {�1,+1} level of factor A and gB(k) 2

{�1,+1} level of factorB, introduce shorthand notationsZA(k) = ZA{gA(k)}
to indicate the whole-plots that receive gA(k) level of factor A, and ZB(k) =
ZB{gB(k)} to indicate the sub-plots that receive gB(k) level of factor B.
Further define

• W(1) = W(2) = W�, W(3) = W(4) = W+ such that W(k) indicates the
total number of whole-plots in which treatment k will be observed,
and
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• M(1) = M(3) = M�, M(2) = M(4) = M+ such that, for each whole-plot
that receives gA(k) level of factor A in the whole-plot randomization,
M(k) of its M sub-plots end up in treatment arm k.

The following lemma gives the covariance structures of ZA(k) and ZB(k) as
a central building block for the proof of Theorem 1.

Lemma A.2. Z(k) can be expressed as

(A.6) Z(k) = {ZA(k)⌦ 1M} �ZB(k) = [diag {ZA(k)}⌦ IM ]ZB(k) ,

where {ZA(k)}4k=1 and {ZB(k)}4k=1 are mutually independent with expecta-

tions and covariances

covs-p {ZA(k),ZA(l)} = gA(k)gA(l)
W+W�

W (W � 1)
PW ,(A.7)

Es-p {ZB(k)} =
M(k)

M
1N ,(A.8)

covs-p {ZB(k),ZB(l)} = gB(k)gB(l)
M+M�

M(M � 1)
Pin .(A.9)

Proof of Lemma A.2. It follows from identities

I{Twm=k} = I{Aw=gA(k)}I{Bwm=gB(k)} (w = 1, . . . ,W ;m = 1, . . . ,M)

that

Z(k) = (I{T(11)=k}, . . . , I{T(WM)=k})
t

= (I{A1=gA(k)}1
t
M , . . . , I{AW=gA(k)}1

t
M )t � (I{B11=gB(k)}, . . . , I{BWM=gB(k)})

t

= {ZA{gA(k)}⌦ 1M} �ZB{gB(k)} = {ZA(k)⌦ 1M} �ZB(k)

= [diag {ZA(k)⌦ 1M}]ZB(k) = [diag {ZA(k)}⌦ IM ]ZB(k) .

This proves (A.6).
Applying Lemma A.1 to the whole-plot randomization yields

Es-p{ZA(k)} =
W(k)

W
1W , covs-p {ZA(k)} =

W+W�
W (W � 1)

PW ,

and it follows immediately from ZA(�1) = 1W �ZA(+1) that

covs-p {ZA(�1),ZA(+1)} = �covs-p {ZA(+1)} = � W+W�
W (W � 1)

PW .
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As a result, we have

covs-p{ZA(k),ZA(l)} = covs-p[ZA{gA(k)},ZA{gA(l)}]

= (�1)I{gA(k) 6=gA(l)}
W+W�

W (W � 1)
PW = gA(k)gA(l)

W+W�
W (W � 1)

,

where the last equality holds because gA(k) 6= gA(l) implies {gA(k), gA(l)} =
{�1,+1}. This proves (A.7).

Last, but not least, to better understand the covariance structure of

ZB(k), let us introduce Z(w)
B

(k) = (I{Bw1=gB(k)}, . . . , I{BwS=gB(k)})
t as the

M -dimensional sub-vector of ZB(k) that corresponds to whole-plot w. For
any fixed k 2 {1, 2, 3, 4}, the sub-plot randomization mechanism renders

Z(w)
B

(k) (w = 1, . . . ,W ) iid with

Es-p{Z(w)
B

(k)} =
M(k)

M
1M , covs-p{Z(w)

B
(k)} =

M+M�
M(M � 1)

PM

as follows from Lemma A.1. The expectation and covariance of ZB(k) can
thus be computed whole-plot by whole-plot as

Es-p{ZB(k)} =
⇣
Es-p{Z(1)

B
(k)}t, . . . , Es-p{Z(W )

B
(k)}t

⌘t
=

M(k)

M
1N ,

which proves (A.8), and

covs-p{ZB(k)} = Bdiag
h
covs-p{Z(1)

B
(k)}, . . . , covs-p{Z(W )

B
(k)}

i

= IW ⌦ covs-p{Z(1)
B

(k)} =
M+M�

M(M � 1)
IW ⌦PM =

M+M�
M(M � 1)

Pin .

Thus,

(A.10) covs-p {ZB(�1)} = covs-p {ZB(+1)} =
M+M�

M(M � 1)
Pin ,

and it follows immediately from identity ZB(+1) = 1N �ZB(�1) that

(A.11) covs-p{ZB(�1),ZB(+1)} = � M+M�
M(M � 1)

Pin .

Finally, the fact that gB(k)gB(l) equals 1 if gB(k) = gB(l) and equals �1 if
gB(k) 6= gB(l) allows us to unify (A.10) and (A.11) into one formula as

covs-p{ZB(k),ZB(l)} = covs-p[ZB{gB(k)},ZB{gB(l)}]

= gB(k)gB(l)
M+M�

M(M � 1)
Pin ,

which proves (A.9). This completes the proof of Lemma A.2.



6 A. ZHAO ET AL.

Proof of Theorem 1. We again approach the mean and covariance
matrix of Z⇤ from those of the Z(k) (k = 1, 2, 3, 4).

In particular, let ZA = {ZA(k)}4k=1. The law of iterated expectations
allows us to decompose the covariance of Z(k) and Z(l) into

covs-p {Z(k), Z(l)} = covs-p [Es-p {Z(k) | ZA} , Es-p {Z(l) | ZA}](A.12)

+ Es-p [covs-p {Z(k),Z(l) | ZA}] .

Refer to the two components on the right as the covariance of expectations

and the expectation of covariance, respectively. Given

Es-p {Z(k) | ZA}
(A.6)
= Es-p [{ZA(k)⌦ 1M} �ZB(k) | ZA]

= {ZA(k)⌦ 1M} � Es-p{ZB(k) | ZA}

= {ZA(k)⌦ 1M} � Es-p{ZB(k)}
(A.8)
= {ZA(k)⌦ 1M} �

✓
M(k)

M
1N

◆
=

M(k)

M
{ZA(k)⌦ 1M} ,

we have

covs-p[Es-p{Z(k) | ZA}, Es-p{Z(l) | ZA}](A.13)

=
M(k)M(l)

M2
covs-p{ZA(k)⌦ 1M , ZA(l)⌦ 1M}

=
M(k)M(l)

M2
covs-p {ZA(k), ZA(l)}⌦ JM

(A.7)
=

M(k)M(l)

M2
gA(k)gA(l)

W+W�
W (W � 1)

PW ⌦ JM

= gA(k)gA(l)
W+W�M(k)M(l)

N(W � 1)
Pbtw .

This gives the covariance of expectations component of (A.12). Likewise,
given

covs-p {Z(k),Z(l) | ZA}
(A.6)
= covs-p {[diag {ZA(k)}⌦ IM ]ZB(k), [diag {ZA(l)}⌦ IM ]ZB(l) | ZA}

= [diag {ZA(k)}⌦ IM ] covs-p {ZB(k),ZB(l) | ZA} [diag {ZA(l)}⌦ IM ]

= [diag {ZA(k)}⌦ IM ] covs-p {ZB(k),ZB(l)} [diag {ZA(l)}⌦ IM ]

(A.9)
= [diag {ZA(k)}⌦ IM ]

⇢
gB(k)gB(l)

M+M�
M(M � 1)

IW ⌦PM

�
[diag {ZA(l)}⌦ IM ]

= gB(k)gB(l)
M+M�

M(M � 1)
[diag {ZA(k)}⌦ IM ](IW ⌦PM )[diag {ZA(l)}⌦ IM ] ,
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we have

Es-p

"⇢
gB(k)gB(l)

M+M�
M(M � 1)

��1

covs-p {Z(k),Z(l) | ZA}
#

= Es-p ([diag {ZA(k)}⌦ IM ] (IW ⌦PM ) [diag {ZA(l)}⌦ IM ])

= Es-p ([diag {ZA(k)} IWdiag {ZA(l)}]⌦ (IMPMIM ))

= Es-p [diag {ZA(k) �ZA(l)}]⌦PM

= {Es-p(I{Z1=gA(k)}I{Z1=gA(l)}) · IW }⌦PM

= Es-p(I{Z1=gA(k)=gA(l)}) (IW ⌦PM ) =

✓
I{gA(k)=gA(l)}

W(k)

W

◆
(IW ⌦PM )

= I{gA(k)=gA(l)}
W(k)

W
Pin .

Multiply both sides by gB(k)gB(l)M+M�/{M(M � 1)} to have
(A.14)

Es-p [covs-p {Z(k),Z(l) | ZA}] = I{gA(k)=gA(l)}gB(k)gB(l)
W(k)M+M�

N(M � 1)
Pin .

This gives the expectation of covariance component of (A.12).
Substituting (A.13) and (A.14) into (A.12) yields

covs-p{Z(k),Z(l)} = gA(k)gA(l)
W+W�M(k)M(l)

N(W � 1)
Pbtw(A.15)

+ I{gA(k)=gA(l)}gB(k)gB(l)
W(k)M+M�

N(M � 1)
Pin ,

and

covs-p
�
N

�1
k

Z(k), N�1
l

Z(l)
 
=

�
W(k)M(k)W(l)M(l)

��1
covs-p {Z(k),Z(l)}

(A.16)

= C
btw
k,l

Pbtw + C
in
k,l
Pin ,

where

C
btw
k,l

=
gA(k)gA(l)

W(k)W(l)

W+W�
N(W � 1)

, C
in
k,l

=
I{gA(k)=gA(l)}gB(k)gB(l)

W(l)M(k)M(l)

M+M�
N(M � 1)

.

It is straightforward to verify that Cbtw
k,l

is the (k, l)th entry of Cbtw and C
in
k,l

is the (k, l)th entry of Cin. This, coupled with (A.16), completes the proof.
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Proof of Lemma 6. For any i, j = 1, . . . , N , and k, l = 1, . . . , 4, k 6= l,
under the completely randomized design,

EC-R
⇥
I{Ti=k}

⇤
= Nk/N,

EC-R

h
I{Ti=k}I{Tj=k}

i
=

Nk

⇥
(N �Nk) I{i=j} +Nk � 1

⇤

N(N � 1)
,

EC-R

h
I{Ti=k}I{Tj=l}

i
=

NkNl

⇥
1� I{i=j}

⇤

N(N � 1)
.

Hence, EC-R
�
N

�1
k

Z(k)
 
= N

�1
1N , and

covC-R

h
I{Ti=k}, I{Tj=k}

i
=

N
2
k

�
NN

�1
k

� 1
� ⇥

I{i=j} �N
�1
⇤

N(N � 1)
,

covC-R

h
I{Ti=k}, I{Tj=l}

i
= �

NkNl

⇥
I{i=j} �N

�1
⇤

N(N � 1)
,

so that

covC-R
�
N

�1
k

Z(k)
 

=
NN

�1
k

� 1

N(N � 1)
PN ,

covC-R
�
N

�1
k

Z(k), N�1
l

Z(l)
 

= � 1

N(N � 1)
PN .

The result readily follows from the above.

Proof of Theorem 2. The unbiasedness of ⌧̂F is evident from Lemma
6 and the first equation in (?? ). Next, for k, l = 1, . . . , 4, by Lemma 6 and
(2.1), the (k, l)th element of ỸtcovC-R (Z⇤) Ỹ is:

C(k, l)Y (k)tPNY (l) = (N � 1)C(k, l)S(k, l),

where C(k, l) is the (k, l)th element of C. Hence the truth of the claim about
variance follows from the second equation in (??).
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Proof of Theorem 5. As ✏wm defined in (6.5) is a finite sum, and each
Twm has a finite number of possible values, it follows from (6.5) that the
limiting covariance between ✏wm and ✏w0m0 is given by, say,

lim covS-P (✏wm, ✏w0m0)(A.17)

= 4�1
X

F2F

X

F 02F
�wm(F )�w0m0(F 0)cov0 {gF (Twm), gF 0(Tw0m0)} ,

where cov0 is the covariance arising from the limiting distribution of (Twm, Tw0m0)
as W and M approach infinity in the manner stated in the Theorem. Also,
let E0 and var0 denote the expectation and variance arising from the limiting
distribution of Twm.

(i) First, we consider the case (w,m) = (w0
,m

0). Note that Twm equals 1,
2, 3 or 4 with respective probabilities

(W�/W )(M�/M) = 1/ {(rA + 1)(rB + 1)} ,
(W�/W )(M+/M) = rB/ {(rA + 1)(rB + 1)} ,
(W+/W )(M�/M) = rA/ {(rA + 1)(rB + 1)} ,
(W+/W )(M+/M) = rArB/ {(rA + 1)(rB + 1)} ,

Thus, its limiting distribution assigns probabilities

1/ {(⇢A + 1)(⇢B + 1)} = ⇡̄A⇡̄B,

⇢B/ {(⇢A + 1)(⇢B + 1)} = ⇡̄A⇡B,

⇢A/ {(⇢A + 1)(⇢B + 1)} = ⇡A⇡̄B,

⇢A⇢B/ {(⇢A + 1)(⇢B + 1)} = ⇡A⇡B,

to values 1, 2, 3 and 4, where ⇡A = ⇢A/(⇢A + 1), ⇡A = ⇢B/(⇢B + 1),
⇡̄A = 1� ⇡A and ⇡̄B = 1� ⇡B.
Recall, from the definition of gA, that gA(Twm) takes values �1, �1, +1
and +1 if Twm equals 1, 2, 3 and 4 respectively. Thus, E0 {gA(Twm)} =
⇡A � ⇡̄A, and

var0 {gA(Twm)} = 1� (⇡A � ⇡̄A)
2 = 4⇡A⇡̄A = 4⇢A/(⇢A + 1)2.

From the definitions of gB, gAB, eA and eB, similar calculations yield

var0 {gB(Twm)} = 4⇡B⇡̄B = 4⇢B/(⇢B + 1)2,

cov0 {gA(Twm, gB(Twm} = 0,

var0 {gAB(Twm)} = 4(⇡̄A⇡̄B + ⇡A⇡B)(⇡̄A⇡B + ⇡A⇡̄B)

= 4{⇢Ae2B/(⇢A + 1)2 + ⇢B/(⇢B + 1)2},
cov0 {gA(Twm, gAB(Twm} = 4⇡A⇡̄A(⇡B � ⇡̄B) = 4⇢AeB/(⇢A + 1)2

cov0 {gB(Twm), gAB(Twm)} = 4⇡B⇡̄B(⇡A � ⇡̄A) = 4⇢BeA/(⇢B + 1)2.
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Substituting the above expressions in (A.17), the result stated in part
(i) of Theorem 5 follows.

(ii) Next, let w = w
0, m 6= m

0. Along the lines of (i), the limiting dis-
tribution (Twm, Twm0) assignes probabilities ⇡̄A⇡̄2

B
, ⇡̄A⇡̄B⇡B, ⇡̄A⇡B⇡̄B,

⇡̄A⇡
2
B
, ⇡A⇡̄2

B
, ⇡A⇡̄B⇡B, ⇡A⇡B⇡̄B and ⇡A⇡

2
B

to the pairs (1,1), (1,2),
(2,1), (2,2), (3,3), (3,4), (4,3) and (4,4) respectively. Proceeding as in
case (i),

cov0 {gA(Twm), gA(Twm0)} = 4⇡A⇡̄A = 4⇢A/(⇢A + 1)2,

cov0 {gB(Twm), gB(Twm0)} = 0,

cov0 {gA(Twm), gB(Twm0)} = cov0 {gB(Twm), gA(Twm0)} = 0,

cov0 {gAB(Twm), gAB(Twm0)} = 4⇡A⇡̄A(⇡B � ⇡̄B)
2 = 4⇢Ae

2
B/(⇢A + 1)2.

cov0 {gA(Twm), gAB(Twm0)} = cov0 {gAB(Twm), gA(Twm0)}
= 4⇡A⇡̄A(⇡B � ⇡̄B) = 4⇢AeB/(⇢A + 1)2,

cov0 {gB(Twm), gAB(Twm0)} = cov0 {gAB(Twm), gB(Twm0)} = 0.

Substituting the above expressions in (A.17), the result stated in part
(ii) of Theorem 5 follows.

(iii) Finally, if w 6= w
0, then Twm and Tw0m0 are independent in their limiting

distribution, and the result stated in part (iii) follows.

To prove the results stated in Section 7, the following two lemmas are useful.

Lemma A.3. Let (xj1, xj2), j = 1, . . . , H, be H(� 2) pairs of real num-

bers and X̄k =
P

H

j=1 xjk/H, k = 1, 2. Consider fixed positive integers h1

and h2, satisfying h1 + h2  H. Let Q1 and Q2 be randomly chosen disjoint

subsets of {1, . . . , H}, having cardinalities h1 and h2, respectively, all such

choices of Q1 and Q2 being equiprobable. If x̄k =
P

j2Qk
xjk/hk, k = 1, 2,

then

cov (x̄1, x̄2) = �
P

H

j=1

�
xj1 � X̄1

� �
xj2 � X̄2

�

H(H � 1)
.

Lemma A.4. Let (Xj1, Xj2), j = 1, . . . , H, be H(� 2) independent pairs
of random variables with a finite covariance for each pair, µjk = E(Xjk),
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X̄k =
P

H

j=1Xjk/H, and µ̄k =
P

H

j=1 µjk/H, k = 1, 2. Then

E

8
<

:

HX

j=1

�
Xj1 � X̄1

� �
Xj2 � X̄2

�
9
=

; /(H � 1)

=
HX

j=1

cov (Xj1, Xj2) /H +
HX

j=1

(µj1 � µ̄1) (µj2 � µ̄2) /(H � 1).

In the following proofs, E1 and cov1 denote unconditional expectation and
covariance with respect to the whole-plot level randomization, while E2 and
cov2 denote expectation and covariance with respect to the sub-plot level
randomization, conditional on the whole-plot level assignment.

Proof of Proposition 1. (a) For each w 2 T1(z1), by (7.8) and (7.3),

(A.18) E2

n
Ȳ

obs
w (z1z2)

o
= Ȳw(z1z2).

So, by (7.7) and (7.3),

E

n
Ȳ

obs(z1z2)
o

= E1

8
<

:{N1(z1)}�1
X

w2T1(z1)

Ȳw(z1z2)

9
=

;

= W
�1

WX

w=1

Ȳw(z1z2) = Ȳ (z1z2).

(b) As in (a), by (7.8), (7.7) and (7.3),

E2

n
Ȳ

obs(z1z2)
o

= {N1(z1)}�1
X

w2T1(z1)

Ȳw(z1z2),

E2

n
Ȳ

obs(z⇤1z
⇤
2)
o

= {N1(z
⇤
1)}

�1
X

w2T1(z⇤1 )

Ȳw(z
⇤
1z

⇤
2).

Hence,

cov1
h
E2

n
Ȳ

obs(z1z2)
o
, E2

n
Ȳ

obs(z⇤1z
⇤
2)
oi

=

8
><

>:

W�N1(z1)
(W�1)WN1(z1)

P
W

w=1

�
Ȳw(z1z2)� Ȳ (z1z2)

 �
Ȳw(z1z⇤2)� Ȳ (z1z⇤2)

 
, if z1 = z

⇤
1

� 1
W (W�1)

P
W

w=1

�
Ȳw(z1z2)� Ȳ (z1z2)

 �
Ȳw(z⇤1z

⇤
2)� Ȳ (z⇤1z

⇤
2)
 
, if z1 6= z

⇤
1 .
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Here the first case is a rephrasing of the standard covariance formula for a
pair of sample means under simple random sampling without replacement,
whereas the second case follows from Lemma A.3 with the sets T1(z1) and
T1(z⇤1) playing the roles of Q1 and Q2 there. Recalling (7.4), the above two
equations can be summarized as

cov1
h
E2

n
Ȳ

obs(z1z2)
o
, E2

n
Ȳ

obs(z⇤1z
⇤
2)
oi

(A.19)

= {WMN1(z1)}�1
Sbtw (z1z2, z

⇤
1z

⇤
2) {WI(z1 = z

⇤
1)�N1(z1)} .

Next, for w = 1, . . . ,W and any z1z2, z⇤1z
⇤
2 , define

Sin,w (z1z2, z
⇤
1z

⇤
2)(A.20)

= (M � 1)�1
X

i2⌦w

�
Yi(z1z2)� Ȳw(z1z2)

 �
Yi(z

⇤
1z

⇤
2)� Ȳw(z

⇤
1z

⇤
2)
 
,

and from (7.5) observe that

(A.21) Sin (z1z2, z
⇤
1z

⇤
2) = W

�1
WX

w=1

Sin,w (z1z2, z
⇤
1z

⇤
2) .

From (7.7) and (7.8), we now obtain

cov2
n
Ȳ

obs(z1z2), Ȳ
obs(z⇤1z

⇤
2)
o

=

8
>>>>>>><

>>>>>>>:

P
w2T1(z1)

Sin,w(z1z2,z⇤1z⇤2){M�N2(z2)}
MN2(z2){N1(z1)}2

, if z1 = z
⇤
1 and z2 = z

⇤
2 ,

�
P

w2T1(z1)
Sin,w(z1z2,z⇤1z⇤2)

M{N1(z1)}2
, if z1 = z

⇤
1 and z2 6= z

⇤
2 ,

0, if z1 6= z
⇤
1 .

Here the first case follows from the standard variance formula for sample
mean under simple random sampling without replacement, whereas the sec-
ond case is a consequence of Lemma A.3, with Tw2(z2) and Tw2(z⇤2) playing
the roles of Q1 and Q2 there. Finally, the third case is evident because T1(z1)
and T1(z⇤1) are disjoint when z1 6= z

⇤
1 . Summarizing the above,

cov2
n
Ȳ

obs(z1z2), Ȳ
obs(z⇤1z

⇤
2)
o

(A.22)

= I(z1 = z
⇤
1)

P
w2T1(z1)

Sin,w (z1z2, z⇤1z
⇤
2) {MI(z2 = z

⇤
2)�N2(z2)}

MN2(z2) {N1(z1)}2
.



CAUSAL INFERENCE FROM SPLIT-PLOT DESIGNS 13

This yields

E1

h
cov2

n
Ȳ

obs(z1z2), Ȳ
obs(z⇤1z

⇤
2)
oi

(A.23)

= I(z1 = z
⇤
1)

P
W

w=1 Sin,w (z1z2, z⇤1z
⇤
2) {MI(z2 = z

⇤
2)�N2(z2)}

WMN1(z1)N2(z2)
,

= I(z1 = z
⇤
1)
Sin (z1z2, z⇤1z

⇤
2) {MI(z2 = z

⇤
2)�N2(z2)}

MN1(z1)N2(z2)
,

using (A.21). Because

cov
n
Ȳ

obs(z1z2), Ȳ
obs(z⇤1z

⇤
2)
o

= cov1
h
E2

n
Ȳ

obs(z1z2)
o
, E2

n
Ȳ

obs(z⇤1z
⇤
2)
oi

+ E1

h
cov2

n
Ȳ

obs(z1z2), Ȳ
obs(z⇤1z

⇤
2)
oi

,

the result follows from (A.19) and (A.23).

Proof of Theorem 7. (a) If we recall the definition s(z1z2, z1z⇤2) from
(7.10), then by (A.18) and substituting

�
Ȳ

obs
w (z1z2), Ȳ obs

w (z1z⇤2)
�
, w 2 T1(z1)

for the pairs (Xj1, Xj2), j = 1, . . . , H in Lemma A.4,

(A.24)

E2 {s(z1z2, z1z⇤2)}

= {N1(z1)}�1
X

w2T1(z1)

cov2
n
Ȳ

obs
w (z1z2), Ȳ

obs
w (z1z

⇤
2)
o

+ {N1(z1)� 1}�1
X

w2T1(z1)

n
Ȳw(z1z2)� ē

Y (z1z2)
on

Ȳw(z1z
⇤
2)� ē

Y (z1z
⇤
2)
o
,

where

(A.25) ē
Y (z1z2) = {N1(z1)}�1

X

w2T1(z1)

Ȳw(z1z2),

and ē
Y (z1z⇤2) is similarly defined. Also for any w 2 T1(z1), by (A.20),

(A.26)

cov2
n
Ȳ

obs
w (z1z2), Ȳ

obs
w (z1z

⇤
2)
o
=

Sin,w (z1z2, z1z⇤2) {MI(z2 = z
⇤
2)�N2(z2)}

MN2(z2)
,



14 A. ZHAO ET AL.

analogously to (A.22), invoking lemma A.3 for the case z2 6= z
⇤
2 . By (A.24),

(A.25) and (A.26), we have

E {s(z1z2, z1z⇤2)} = E1 [E2 {s(z1z2, z1z⇤2)}]

=

P
W

w=1 Sin,w (z1z2, z1z⇤2) {MI(z2 = z
⇤
2)�N2(z2)}

WMN2(z2)

+

P
W

w=1

�
Ȳw(z1z2)� Ȳ (z1z2)

 �
Ȳw(z1z⇤2)� Ȳ (z1z⇤2)

 

W � 1

=
Sin (z1z2, z1z⇤2) {MI(z2 = z

⇤
2)�N2(z2)}

MN2(z2)
+

Sbtw (z1z2, z1z⇤2)

M

=
Sbtw (z1z2, z1z⇤2)� Sin (z1z2, z1z⇤2)

M
+ I(z2 = z

⇤
2)
Sin (z1z2, z1z⇤2)

N2(z2)
.

From (7.9), it is now immediate that E {bv(b⌧)} equals the sum of the first
two terms in the expression for varS-P(b⌧) in Theorem 6(b). This proves (a).

(b) Equality holds in part(a) if and only if the third term in the expression
for varS-P(b⌧) in Theorem 6(b) vanishes, i.e., if and only if ⌧̄w (defined in
Theorem 6) is constant over w = 1, . . . ,W . From the definition of ⌧̄w, it
is not hard to see that this happens for every treatment contrast ⌧ if and
only if Ȳw(z1z2)� Ȳw(z⇤1z

⇤
2) is constant over w = 1, . . . ,W , for every pair of

treatment combinations z1z2 and z
⇤
1z

⇤
2 .

ADDITIONAL SIMULATIONS

Based on the reviewer’s suggestions, an additional set of simulations were
conducted by generating binary potential outcomes with WP-e↵ect, that is
an intermediate scenario between PO types (I) and (II) described in Section
8. To generate these potential outcomes, the following generative model for
Y (1) was used:

Ywm(1) = I{Ỹwm(1) > 0},

where Ỹwm(1) = ⌘w + ✏wm with ⌘w and ✏wm being iid standard normals.
The generative models for Y (k), k = 2, 3, 4 under ADT type (i) (strict

additivity) and (iii) (no assumption about additivity), were the same as
for the PO type (I)-(V) indicated in Table 2. For ADT-type (ii) (block-level
additivity), the generative model used was the one corresponding to PO type
(I) in Table 2. Using the above models, potential outcomes were generated
with (W,M) = (40, 40), and 95% confidence intervals were constructed using
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four methods: (a) the proposed method (S-P), (b) ignoring the split-plot
assignment (C-R), (c) using the generalized linear model (GLM) and (b)
using the generalized mized e↵ects model (GLME).

Fig 2: Results of additional simulations for binary potential outcomes with
(not ultimate) block e↵ect. Coverage rates summarized over 1,000 indepen-
dent split-plot randomizations with rA = rB = 1 at (W,M) = (40, 40)
(1�↵ = 0.95). All bars start from the nominal coverage rate 0.95 and grow
upwards/downwards to the actual values, truncated at 0.85.

Strict Between-WP No Assumption
Additivity Additivity about Additivity

Figure 2 summarizes the results (coverage rates) of these simulations.
Similar to the five types of potential outcomes considered earlier, the supe-
riority of the proposed approach over C-R and GLM under all three addi-
tivity assumptions, and over GLME under no assumption about additivity
is established in this Figure.
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