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Abstract

Recently, several studies have analyzed the statisti-
cal properties of low power wireless links in real en-
vironments, clearly demonstrating the differences be-
tween experimentally observed communication prop-
erties and widely used simulation models. However,
most of these studies have not performed in depth
analysis of the temporal properties of wireless links.
These properties have high impact on the perfor-
mance of routing algorithms.

Our first goal is to study the statistical temporal
properties of links in low power wireless communi-
cations. We study short term temporal issues, like
lagged autocorrelation of individual links, lagged cor-
relation of reverse links, and consecutive same path
links. We also study long term temporal aspects,
gaining insight on the length of time the channel
needs to be measured and how often we should up-
date our models.

Our second objective is to explore how statistical
temporal properties impact routing protocols. We
studied one-to-one routing schemes and developed
new routing algorithms that consider autocorrela-
tion, and reverse link and consecutive same path
link lagged correlations. We have developed two new
routing algorithms for the cost link model: (i) a gen-
eralized Dijkstra algorithm with centralized execu-
tion, and (ii)a localized distributed probabilistic al-
gorithm.

1 Introduction

Recent studies indicate profound differences between
experimentally observed properties of low power com-
munication links and widely used simulation mod-
els [1, 2, 3, 4, 5]. Nevertheless, most of these studies
have not performed in depth analysis of the temporal
properties of wireless links. These properties have a
strong impact on the performance of many protocols
and localized algorithms used in low power networks,

in particular, routing algorithms.
Our starting point is a study of statistical tempo-

ral properties of links in low power wireless commu-
nication systems. We emphasize on time dependent
properties, which have strong ramifications on rout-
ing protocols. The results of the study are used to
analyze how statistical temporal properties impact
routing protocols. We studied one-to-one routing
protocols and provided several suggestions for proto-
col designers using the insight gained from our anal-
ysis. We have also developed new routing algorithms
that consider autocorrelation, reverse link and con-
secutive same path link lagged correlations. The first
algorithm is a generalized Dijkstra algorithm with
centralized execution. The second algorithm is a lo-
calized probabilistic algorithm with distributed exe-
cution.

In our study, we do not consider packet losses in-
troduced by traffic synchronization (concurrent traf-
fic, contention based MAC). Nevertheless, our results
are useful for two reasons. First, they apply directly
when using contention free MAC protocols, like pure
TDMA or pseudo-TDMA schemes [6]. Second, they
provide a tight upper bound as to what is achievable
when using contention-based MAC schemes.

2 Related Work

There is a large body of literature on temporal models
of radio propagation that have influenced this work.
The emphasis has been on the variability of signal
strength in proximity to a particular location [7].
Small scale fading models based on Rayleigh and Rice
distributions are used for modeling localized time
durations (a few microseconds) and space locations
(usually one meter) changes [7].

The differences between the classical models and
our approach are numerous and include different
modeling objectives (reception rate of packets vs.
signal strength), our radios have different features
(e.g. communication range in meters instead of km),
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Figure 1: Layout of the nodes

we capture phenomena that is not addressed by the
classical channel models (asymmetry, correlations be-
tween reception rate of links), we use different model-
ing techniques (free of assumptions, non-parametric
vs. parametric), and we use unique evaluation tech-
niques (evaluation of multi-hop routing).

More recently there have been many empirical
studies with deployments in several environments
using low-power RF radios [1, 2, 3, 4, 5]. The
majority of these studies used the TR1000 [8] and
CC1100 [9] low power RF transceivers (used by the
Mica 1 [10] and Mica 2 [11] motes respectively). How-
ever, most of these studies concentrate on analyzing
the spatial characteristics of the radio channel and
do not analyze the temporal variability of link qual-
ity over extended periods of time. Zhao et al. [2]
performed some temporal analysis using an array of
nodes placed in a straight line with two hour ex-
periments. They demonstrated heavy variability in
packet reception rate for a wide range of distances
between a transmitter and receiver. Furthermore,
Cerpa et al. [4] used heterogeneous hardware plat-
forms consisting of Mica 1 and Mica 2 motes in three
different environments to collect comprehensive data
about the dependency of reception rates over time
with respect to a variety of parameters.

There are also several important empirical studies
using medium-power RF radios in indoor and out-
door environments [12, 13]. These studies use 802.11
wireless radios. Aguayo et al. [12] measured the tem-
poral variability of the packet reception rate for very
short time scales (from 10 ms to 10 seconds) showing
that the packet loss rate for all links could be consid-
ered independent for very small time scales (10 to 100
ms), and then it begins deviating for some percentage
of links at larger time scales. Draves et al. [13] com-
pared different link quality estimation metrics, show-
ing that the ETX metric [14] performs significantly
better than hop-count and packet pair in static wire-
less environments.

There are three major differences between the anal-
ysis and evaluation developed in this paper and the

previous work. The first is that we study the impact
of a significantly large number of factors that impact
the quality of wireless links over time and attempt
to model not only isolated pairs of transmitters and
receivers, but also the correlation between different
pairs and different subsets of links with significantly
larger time scales (several days). The second major
difference is that we have developed a new link qual-
ity metric that more accurately measures the impact
of the temporal variations of the wireless channels.
Finally, using the knowledge built with our analy-
sis, we implemented two new routing algorithms that
take advantage of our findings.

All of our techniques use non-parametric proce-
dures. In particular, we directly leverage on smooth-
ing and density kernel estimators [15, 16, 17].

3 Experimental Methodology

We performed experiments using the SCALE wire-
less measuring tool [4]. The basic data collection
experiments work as follows. Either a single desig-
nated node or a group of nodes transmit a certain
number of packet probes (one transmitter at a time
in the case of multiple transmitters). Each probe
packet contains the sender’s node id and a sequence
number. The rest of the nodes record the packets
received from each neighbor and keep updated con-
nectivity statistics, using the sequence numbers to
detect packet losses.

All experiments were conducted in an indoor office-
like setting of approximately 20m by 20m. A total
of 55 Mica 1 mote [10] nodes, which uses the RFM
TR1000 radio chip [8], were placed in a grid structure
in the environment at approximately 1m distances.
The layout of the nodes is shown in Figure 1.

We collected four types of data sets:
Data set A. A single node broadcasts a packet ev-

ery second, all other nodes record the received pack-
ets for a period of 24 hours. The purpose of this data
set was to establish the behavior of links over an ex-
tended period of time. Four different nodes (10, 23,
44, and 54) were selected as the broadcasting node.

Data set B. Node 23 broadcasts a packet every
second, all other nodes record received packets for a
period of 96 hours. This data set is used to determine
if there is cyclical patterns in the link quality over
multiple days.

Data set C. Node 23 broadcasts a packet each
second to all other nodes in the network for a period
of 30 hours, where the packet size rotates in 10, 15,
20, 30, 40, 80, 120, 135, 145, 150, 155, 170 and 190
bytes. A packet of each size is sent every 13 seconds.
The set is used to determine the impact of the packet
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Figure 2: Aggregate of reception rate by minute.

size on link quality.
Data set D. All nodes broadcast a packet one at a

time in round robin fashion with one second intervals
between nodes for 48 hours. A packet is broadcasted
by each node every 55 seconds. We collected two of
these traces, the first one with round robin using node
id sequence of 1, 2, . . . 55, and the second one with a
random node id sequence.

4 Temporal Properties

In this section we analyze several individual and
group link properties of wireless links in our exper-
iments. Our goal is to improve our qualitative and
quantitative understanding of the link temporal prop-
erties, providing intuition for network design and op-
eration, as well as statistically sound conclusions.

4.1 Single Link Autocorrelation

The most common measure for the quality of links
is the percentage of received packets over a certain
period of time, reception rate (RR). We will see that
a better measure is to consider the average number of
packets that must be sent before a packet is received.
We will refer to this value as the required number of
packets (RNP). Commonly, it is assumed there is a
reverse relationship between RNP and RR. However,
temporal correlations often invalidates this.

For example, consider the four links shown in Fig-
ure 2. In this case, we show the aggregated reception
rate (by minute) of the data from set B. In Figure
2(a) we see a link with an average reception rate of
48.02%. This link is highly unreliable and the re-
quired number of packets (with constant back-off)
will be high (1189.65), even though there are minutes
where the link is reliable. In Figure 2(b)) we show a
link that has very high reception rate (95.36%). In
this case, while a few messages were not received the
link was completely reliable with very low required

RR−1 1-1.1 1.1-1.2 1.2-1.5 1.5-2 2-5 5-10

Cons. 0.970 0.695 0.661 0.658 0.607 0.555

Table 1: 1/RR and RNP Consistency

number of packets (1.05). Consider the medium qual-
ity links shown in Figures 2(c) and 2(d). The first link
has a RR of 86.39% and the second link has a RR of
79.86%. When using RR as a quality metric, clearly
the first link is better than the second. Surprisingly,
when using RNP, the second link is much better than
the first. The reason of this counterintuitive result
is due to the fact that the RR metric does not take
into account the underlying distribution of the losses;
short periods of zero RR in any particular time inter-
val will trigger the RNP to higher values, even though
the average RR might still be higher than the other
link in the same time interval. As a result of this in-
consistent behavior, the required number of packets
provides a better picture of the usefulness of the link.

We statistically analyze the relationship between
the reception rate and the required number of pack-
ets using data sets B and D to fully characterize the
usefulness of moderate links. Fig. 3 shows the rela-
tionship between RNP and RR in log scale. If the
underlying distribution of packet losses corresponds
to a random uniform distribution, we would expect a
one-to-one relationship between RNP and RR. From
the figure we clearly see this is not the case. Perhaps
more importantly, using RR as the main evaluation
of link quality estimation can lead to gross overesti-
mation of the quality of certain links. It is clear that
there exist many pairs of links i and j where one link
i has both lower RR and lower RNP than link j.

Fig. 3(b) shows the CDF of RNP as a function of
RR for different percentages of population below each
curve. We observe that most of the values tend to
converge at very high or very low RR values, but the
values of 10% < RR < 90% tend to be quite spread.

These figures show that RR is not a precise esti-
mator for absolute RNP values in a significant range.
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Figure 3: RNP as a function of 1/RR
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Figure 4: RNP and Autocorrelation

Table 1 shows the consistency levels based on differ-
ent 1/RR value groups. In our study, our criteria of
consistency is defined as the probability of the 1/RR
estimator to rank the links in the same ranking order
as their RNP values within each group, or in other
words, the relative difference with respect to other
links (not the absolute value). The consistency for
all links is 0.959. However, from the table we observe
that the RR measure is only a consistent RNP estima-
tor for the higher quality link (RR > 90%), and the
consistency decreases rapidly after that. Note that a
50% consistency estimator is as useful as flipping a
coin.

The likelihood of the required number of packets
for a given distance is presented in Figure 4(a). We
used data sets A and B for analysis. The figure illus-
trates that when the distance between the transmit-
ter and receiver is low, there is a high likelihood that
the RNP will be low. However, as distance increases,

we do not see a corresponding increasing trend in
RNP as would be expected if there exists a strong
relationship between the two factors. Often for any
given distance there is a non-trivial likelihood that
the RNP will be fairly low. As a result, the distance
between two radios is not the determining factor in
the quality of the link.

Next, we analyze the autocorrelation of three qual-
itatively different types of links (good, medium, bad)
by using conditional probabilities (CP) of two events,
a packet reception after a packet reception (1→1) and
a packet loss after a packet loss (0→0) for different
time intervals (τ : 2n seconds with n : 1, 2, . . . 15). We
observe in Figure 4(b) that good links tend to have
a very high and very low CP for the 1→1 and 0→0,
respectively over very long periods of time. This in-
dicates that good links are quite stable. On the other
hand, bad links are stable as well for shorter periods
of times, but their properties tend to disappear once
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Figure 6: Conditional Probability (1→1 and 0→1) as a function of Reception Rate
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Figure 5: RR as a function of time

we go into longer periods of time (in the order of ∼9
hrs). Medium links tend to have higher correlation
for successful packet reception (1→1) than for packet
losses (0→0). In the latter case, the autocorrelation
drops for the larger time intervals.

There are several conclusions we can draw from our
analysis. First, the RNP metric is a better metric
than RR to estimate the quality of the links because
it takes into account the underlying distribution of
losses. Second, RNP is not directly proportional to
1/RR. Third, similarly to RR, RNP is not correlated
with distance. Finally, it is useful to initially mea-
sure the channel aggressively using a constant back-

off strategy in a learning phase to fully characterize
all the links, and then later switch to a very sparse
sampling strategy.

4.2 Global Quality Bandwidth

It is interesting to try to identify the existence of
a particular time during the day where the average
quality of all links from a transmitter is significantly
better. The confirmation of the existence of this spe-
cial time would affect the design of algorithms that
could detect and opportunistically make use of it by
transferring large amounts of data during that time
interval.

We used data set B for this analysis. Figure 5
shows the average reception rate of all links in the
system at the granularity of minutes. We can con-
clude that the global quality bandwidth of the system
has very little oscillations over time and for all prac-
tical purposes it remains constant. There is no magic
moment where we could opportunistically try to send
more data to maximize chances of being delivered.

4.3 Covariance of Same Source Links

We also study properties of two links starting from
the same source with the goal to verify whether rout-
ing strategies that explore multiple paths in parallel

5
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can significantly improve their chances of delivering
the packet to the final destination.

We used data sets A and B for this task. Figure 6
shows the conditional probability of successfully re-
ceiving a packet if a node in another link also received
it (1→1), and the conditional probability of success-
fully receiving a packet if a node in another link didn’t
receive it (0→1). We used three qualitatively differ-
ent links (good, bad, and medium) to establish a com-
parison. Figure 6(a) shows that when a high quality
link received a packet, most likely all other links will
receive the same packet almost directly proportion-
ally to the reception rate. Figures 6(b) and 6(c) show
that when medium and bad quality links receive a
packet from the source, the high quality links will
also receive the same packet with very high proba-
bility. Figure 6(d) shows that when a good quality
link does not receive a packet, with very high proba-
bility none of the other links will receive that packet
either, even other high quality links. Therefore, there
is very little incentive in spending more energy and
bandwidth by trying to exploit multiple paths con-

currently because chances are that none of the nodes
will receive the packet. Figures 6(f) and 6(e) show
that when bad and medium quality links do not re-
ceive the packet from the source, high quality links
still have high chances of receiving it (as intuition
would indicate).

Our main conclusion from this analysis is that
when routing data using high quality links, we should
use single path routing strategies and abandon multi-
ple concurrent paths strategies because they provide
very little benefit for the increased cost in terms of
energy consumption and contention for resources.

4.4 Forward and Reverse Link Corre-

lation

In this subsection, we study the forward and re-
verse link properties between a pair of nodes. These
properties are important for any protocol that uses
two-way communication between source and destina-
tion, and in particular, when using hop-by-hop re-
liable schemes with acknowledgements (acks). The
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key questions we try to answer are when are the
best times to forward and acknowledge reception of
a packet and what is the best metric to measure the
combined data forward and reverse acknowledgment
total cost.

For this analysis we use data set D. The first ques-
tion we address is whether there is any advantages in
immediately sending an ack from the 1-hop destina-
tion to the source for a packet just received. We call
the conditional required number of packets (CRNP)
and the conditional reception rate (CRR) the cost in
the reverse direction (acknowledgment from destina-
tion to source), conditional upon successfully receiv-
ing a packet in the forward direction. Figs. 7(a) and
7(b) show the percentage of links that have higher
CRNP and CRR in the reverse direction in compar-
ison with their overall RNP and RR in the reverse
direction when a packet was successfully received in
the forward direction as a function of the time waited
to send the ack back (τ , measured in seconds). We
analyzed six qualitatively different classes of links
that are of potential interest for routing purposes:
all links, high quality links (RNP < 1.3), medium
quality links (1.3 < RNP < 5), low quality links(RR
> 5) and links with high distance over RNP ratios
classified into two groups (top 20% and top 40%).
In Fig. 7(a) we see that for all links in general and
for almost all classes of links (except for the top 40%
of useful links), the percentage of links with CRNP
larger than RNP is quite small, and it is smaller when
the ack is sent back as soon as possible (the smaller
the RNP the better). Similarly, in Fig. 7(b) we see
that the percentage of links with CRR larger than
RR is higher for all links in general and almost all
classes of links (except the top 40% and bad links)
when the ack is sent back immediately. Therefore,
there is a significant advantage to send ack signals in
the first few seconds after reception. The advantage
diminishes as waiting time increases.

The other aspect we are interested is to determine

the actual cost of a link when using hop-by-hop acks,
and whether this cost could be estimated by the sum
of the individual RNP in the forward and reverse di-
rection, without requiring on-line measurement of the
actual conditional cost. Considering only the RNPs
in each link direction may not necessarily determine
the best quality link if the forward and reverse direc-
tion present different levels of correlation for differ-
ent links. Figure 8 shows the relationship between
the sum of each individual RNP in each direction,
and the actual RNP cost for all links when sending
the acknowledgment immediately. In particular, we
could observe from Fig. 8(b) that the sum of one-way
RNPs is quite correlated with the actual link cost,
with stronger correlation for smaller RNP values. In
addition, the percentage of consistency (as defined in
section 4.1) for this estimator is very high (96.2%).
Therefore, the sum of RNPs is almost always a good
indicator of overall quality of the link.

We conclude that there is significant benefit to ac-
knowledge packets immediately because we increase
the chances of the acknowledgement being received.
We also conclude that an accurate cost metric could
be well estimated using only the individual RNP val-
ues of each direction because the number of inconsis-
tent links is not significant.

4.5 Packet Size

In this section, we analyze how the packet size affects
the RR and the RNP. Each packet transmitted has
a minimum fixed overhead provided by the starting
symbol sequence, the radio header and the CRC. This
cost is fixed and independent of the packet payload
size. Our main motivation is to improve transmission
efficiency by having proportionally less overhead per
useful bit transmitted in the payload.

Using data set C, the first question we try to an-
swer is to whether there is a fundamental trend or
change that occurs for RR and/or RNP as a func-
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Figure 11: Link Cost for 2-hop Forwarding Links

0 20 40 60
10

−6

10
−4

10
−2

10
0

10
2

Tau

Lo
g(

L1
)

All Pairs
RNP < 1.25
1.25 < RNP < 3
RNP > 3
Useful Links

Figure 10: L1 RNP differences as a function of time

tion of packet size globally in the network. Figures
9(a) and 9(b) show the average RR and RNP as a
function of different packet sizes for all links in the
experiment. We see that the average RR slowly de-
crease and the RNP slowly increases until a packet
size of 125 bytes.

The next aspect we would like to explore is to un-
derstand whether the change in packet sizes affect all
links equally or if there is any relationship as a func-
tion of average RR. Figure 9(c) shows the relation-
ship between the rate of change of the average RR as
a function of the packet size for each pair of nodes in
the experiments. The factor m on the y-axis corre-
sponds to the slope of the linear interpolation of the
average reception rates and different packet sizes for
each link. All the different m coefficients are plot-
ted as a function of the average reception rate for
all packet sizes. We see that links with very low (<
20%) or very high (> 80%) RR are less affected by the
change in packet size. Links with medium RR show a
much larger variation. The quality variation of these
group of links is strongly affected as we increase the
packet size.

We can conclude that using larger packet sizes is
certainly better in terms of efficiency by minimiz-
ing the overhead per useful bit transmitted without
significantly increasing the RNP. Larger packet sizes
could be use for opportunistic aggregation of data in
intermediate nodes when multiple data packets are
intended for the same destination, and when trans-
mitting large amount of information.

4.6 Temporal Consistency of Links

It is also important to analyze long term correlations
and the uniformity of links. The main motivation in
this section is to determine how stable the links are
and how often we have to update estimates about
their quality.

Figure 10 shows the L1 norm of relative RNP dif-
ferences for the five qualitatively different classes of
links as a function of time (measured in hours). Note
that y-axis follows a logarithmic scale and the fine
structure of the differences is not completely visible.
However, a number of conclusions is apparent and
the most important features are well captured using
logarithmic scale.

We see that the most stable links are the low RNP
links with very small differences 10−3 from the av-
erage over extended periods of time. An interesting
result is that the variability of the high distance/RNP
links (useful links) is also well below the average of
all the links. Their change rate is less than 1% over
60 hours. Finally, we see that links with RNP > 3
change at very rapid pace. However, since most of
the links in our experiments were good links, the av-
erage variability for all links is skewed more heavily
by the stability of the good links.

So, the stability of the links vary drastically de-
pending on the quality of each link. Importantly,
good quality links (high RR, low RNP) tend to be
very stable over time. This is an additional reason
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Algorithm 1 Two-Hop Correlation Shortest Path
Algorithm

1: procedure CSP(W, i) . connectivity matrix and
source node

2: V = all n ∈ W − i . init candidate set
3: InitState(W,i) . init all the state variables
4: while V 6= ∅ do . candidate nodes available
5: u =RemoveBest(V ) . based on shortest

distance
6: for all n ∈ W (u) do

7: for all p ∈ W (u) do . all neighbors of u
8: UPDATE(u, n, p). update direct paths
9: end for

10: for all p ∈ W (n) do . all neighbors of n
11: UPDATE(n, p, u) . update other
12: end for

13: end for

14: end while

15: end procedure

16: procedure Update(s, d, p)
17: D(s, d, p) = BestDist(s, p) + W (s, d, p)
18: P (s, d, p) = BestPath(s, p) + s

19: if MD(d) > D(s, d, p) then . relaxation
condition

20: MD(d) = D(s, d, p)
21: MP (d) = P (s, d, p)

22: end if

23: end procedure

why those high quality links are exactly the ones that
should be used in routing traffic.

4.7 Correlation Among Links on the

Same Path

In this section, we study the link properties between
two links in the same forwarding path. These prop-
erties are important since they can determine the to-
tal number of hops we need to gather information to
make sound routing decisions.

We are interested in establishing the actual cost of
a link when forwarding the packet in the path upon
successful reception from the previous hop. Consid-
ering only the RNP of the previous hop link to choose
the link for routing purposes may not necessarily de-
termine the best link if the next hop link presents dif-
ferent levels of correlation for different previous hop
links. Figure 11 shows the relationship between the
sum of each individual RNP and RR in each hop,
and the actual RNP cost for all links when forward-
ing the packet immediately to the next hop. We see
from Fig. 11(b) that the sum of one-way RNPs in the
forward direction is almost always greater than the
actual cost of the forwarding path. The gains when

using conditional RNP in the forwarding path are
more significant than the one obtained in Section 4.4
and should be considered in order to establish the
right quality metric for routing decisions.

We conclude that the link quality metric for rout-
ing should not only consider the RNP of individual
links, but the actual conditional RNP based on the
previous hop to get more accurate results with rout-
ing. Combining this result with the results of Sec-
tion 4.4, means that when we are using a hop-by-hop
acknowledgment mechanism it would be convenient
to use an implicit acknowledgement strategy; i.e. for-
ward the packet to the next hop immediately and
combine it with a flag to indicate an ack to the pre-
vious hop from which we receive the packet.

5 Impact on Routing

In this section, we present some of the lessons learned
in our previous analysis that could impact the design
of routing algorithms and two new routing algorithms
that could be used depending on the level of dynamics
expected by the operation of the system.

5.1 Lessons Learned

There are several lessons learned that can impact the
way we do routing in sensor networks. While RR is
the most intuitive metric to measure link quality, it is
not always correct, and RNP should be used instead.
High quality links are very good and quite stable over
time. These links consistently rank among the top
links over long periods of time. Therefore, centralized
solutions are attractive because they allow to calcu-
late an optimal solution to the shortest path routing
problem and have low overhead in terms of the to-
tal number of control packets required to update the
routing tables.

Nevertheless, there are cases when a centralized so-
lution may not scale. For example, the network may
not have enough number of good links to route all
packets to the destinations. In addition, increasing
levels of dynamics might be introduced by nodes fail-
ing, and/or by applying a sleeping scheduling mech-
anism on a subset of the available nodes [18, 19].

5.2 Centralized Routing Algorithm

Based on the analysis performed in Section 4, we
showed that link correlations in the reverse-forward
links and the consecutive links on the same path are
significant and cannot be ignored. Therefore, any op-
timal solution of the shortest path routing problem
should also consider the correlations among links.
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Figure 12: Operation of the Two-Hop Correlation Shortest Path Algorithm

We have developed a generalized version of the Di-
jkstra algorithm that calculates the shortest path and
considers correlations among links on the same path.
The input of the algorithm consists of the source node
id i and a 3-dimensional connectivity matrix indexed
with variables source (s), destination (d), and previ-
ous hop (p) that have the following values:

Wi,n,i =

{

cRNPi,n ∀ n neigh i,

∞ otherwise.
(1)

Ws,d,p =

{

sRNPp,s,d ∀ ∃ (s, d, p) tuples,

∞ otherwise.
(2)

The pseudo code is shown in Algorithm 1. The ar-
guments needed are the W matrix and the source
node i. The InitState call in line 3 initializes all
the state variables. For the source i, MD(i) = 0,
MP (i) = ∅, for the neighbors n of source i, MD(n) =
W (i, n, i), MP (n) = i, and for the rest of the (s, d, p)
tuple MD(s) = D(s, d, p) = ∞, MP (s) = P (s, d, p) =
∅. The while loop that goes from lines 4 to 14 shows
the main algorithm that is quite similar to standard
SP Dijkstra. The differences are in the additional
for loop in lines 10 to 12 and in the modified UP-

DATE procedure. Due to the correlations that may
exist among links on the same path, the addition of a
new node from the candidate set may affect previous
routes to nodes that are not directly connected to the
node being added to the covered set. In addition, we
require to keep additional path state information in
order to update the precedence matrix when a situa-
tion like this arises.

Figure 12 shows an example of the algorithm in
action on a small four node network. The nodes are
labeled with letters, the numbers inside the nodes
indicate the shortest distance (MD) known at each
step, and the edges show the different link costs de-
pending on which previous node the packet comes

from. For simplicity, several edges have the same
cost in both directions. Note that there might be
several edges between each pair of nodes depending
on the previous hop (e.g. b → d cost is five if com-
ing from a, and one if coming from c). Figure 12(a)
shows the first step of the algorithm at initialization.
The source node a is the only node in the defined
set (bold), the shortest distance (MD) to the direct
neighbors b and c is updated, and the distance of
all the remaining nodes (d) is ∞ (M in the figure).
Figure 12(b) shows the next step of the algorithm.
Node b is removed from the candidate set, and all
their neighbor nodes are updated. The results so far
are identical to standard Dijkstra. Figure 12(c) shows
the next step. When adding node c to the defined set
(bold), this node does not have new direct neighbors
from the candidate set. The standard Dijkstra algo-
rithm would have stopped here. However, due to the
high correlation with the link b → d, a better short-
est path to d that goes from a → c → b is updated
when using our algorithm. The running time of the

algorithm is O(n3) for dense and O( n3

logn
for sparse

networks. It shows average improvements over the
standard Dijkstra algorithm between 11% and 24%
on set of networks that are formed by subset of nodes
in our network.

5.3 Distributed Routing Algorithm

There are some scenarios where a centralized solution
does not scale and distributed solutions are preferred.
For example, there are several topology control al-
gorithms [18, 19] that turn a subset of nodes off to
save energy. These mechanisms change the underly-
ing topology, forcing a recalculation of the optimal
paths every time a node is turned off. Under these
conditions, distributed solutions that depend on lo-
calized information may be more attractive.

We present a randomized distributed algorithm for
solving the routing problem between two nodes in the
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network. We assume that nodes only know the RNP
from other neighbors, and that packets include the
aggregate RNP of the path (aRNP). This aRNP is
the sum of all the RNPs in the path with respect to
the original sender, and it is updated by each node in
the packet forwarding path. Only directly connected
nodes know when a neighbor is down (turned itself off
and/or died). Source and destination nodes periodi-
cally send traffic to each other, enabling data traffic
in both directions. The most important assumption
we make is that good (i.e. low RNP) end-to-end paths
are bidirectional as shown in section 4.4.

Each node maintains aRNP state for each (neigh-
bor, sender) tuple. This state is updated every time a
new packet from the sender is received via the neigh-
bor. The aRNP estimated is calculated using an ex-
ponential weighted moving average (EWMA) with α
factor of 0.01 (i.e. each new sample weighs 1% on
the current estimate). Upon reception of a packet,
each node unicasts the packet to the next hop. The
next hop is determined probabilistically based on the
aRNP estimates to the destination (calculated using
previous traffic coming from the destination as ex-
plained above). The forwarding probability for each
next hop candidate is given by the inverse of the
aRNP for the (neighbor, destination) tuple divided
by the sum of the aRNP inverses of all next hop
candidate neighbors (neighbor, destination) tuples,
all factors using a power factor δ. For instance, the
probability of forwarding the packet to neighbor a,
with final destination D, and a . . . n possible next hop
neighbor candidates is given by:

Pa =
(1/aRNPa,D)

δ

∑

a≤i≤n (1/aRNPi,D)
δ

(3)

6 Simulation Results

We conducted simulations using EmStar [20] to mea-
sure the performance of our distributed algorithm in
the presence of node dynamics. We set up a 60-node
network for our simulations, with node degrees vary-
ing from 2 to 11, and with different link quality val-
ues. The best link had an RNP of 1.0, and the worst
had an RNP of 6.387.

Each node in the simulation is initialized with the
optimal routes calculated using the algorithm de-
scribed in section 5.2 using all available nodes in the
network. For each experiment, traffic is sent between
source and destination with a constant bit rate. In
each simulation run, we put 10% of the nodes to sleep
(excluding source and destination), and then after
a period of time (12 minutes), another 10% of the
nodes go to sleep and the previous dormant nodes
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ized/Distributed

wake up. Each time nodes go to sleep, the optimal
route between source and destination is re-calculated
instantly (no overhead, ideal case).

We implemented in Emstar a series of modules
to simulate our distributed solution. LQE is the
RNP link quality estimator implemented using the
methodology described in the previous section. HBH,
is a simple hop by hop reliability scheme that im-
plements a stop and wait protocol. Finally, MIN-
RNP implements the distributed routing algorithm
described in section 5.3. We use a power factor δ of
two for routing in our simulations.

The main performance metric we measured was the
average total number of packets required to transmit
one message back and forth between source and des-
tination. Optimal routes tend to minimize the to-
tal number of packets required to transmit reliably
between source and destination, and thus minimize
energy consumption. Fig. 13 shows the relationship
between the centralized optimal solution and our dis-
tributed solution. From the graph we see that when
the cost of the path is small, the difference between
the optimal and our distributed solution is not sig-
nificant. When the path cost increases, the differ-
ence increases as well. The relative efficiency of the
distributed case with respect to the centralized algo-
rithm is 0.324 in the worst case. The convergence
time of the algorithm is larger for higher cost paths.
One of the reasons for this behavior is that the larger
the cost path, the higher the probability of a path
with a larger number of hops. The probability of our
routing algorithm picking a sub-optimal path prob-
abilistically increases with the path length and the
average node degree.

It is interesting and instructive to analytically find
the relationship between the total cost, including
overhead, of the centralized algorithm and the cost
of the distributed algorithm as a function of the fre-
quency at which nodes switch their radios on/off. We
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assume that each time a node turns it’s radio off, it
floods a packet to all the nodes in the network inform-
ing it is disconnecting from the topology. No node
floods the same packets twice, guaranteeing that each
flooded packet will be forwarded at most N times.

We use the following parameters in our analysis.
N is total number of nodes in the network (or rout-
ing domain); p is the percentage of nodes changing
their radio status (on or off); f is the frequency of
the status change (how frequent p% nodes change
on/off); u is the update frequency (how frequent the
nodes update their connectivity estimates to/from
their neighbors); d is the data rate; α is the opti-
mal cost of shortest path routing between source and
destination (measured in total number of packets re-
quired per data packet sent); β: distributed routing
algorithm cost between source and destination per
data packet. This cost can be approximated to γ ∗α,
where γ is the efficiency factor).

The cost of the centralized algorithm (CA) is given
by CA = 2∗(u+f ∗p)∗N2+α∗d, being the first term
the cost of sending (using flood) node and link quality
estimation updates back and forth to the central node
(running CA), and the last term the data forwarding
cost. The cost of the distributed algorithm (DA) is
given by DA = γ ∗ α ∗ d.

In most practical cases of sensor networks, N will
be O(100) in a single routing domain, u << f , p
will be between 0.1 to 0.5 (depending on deployed
density). Assuming γ = 2 (50% efficiency), d = 0.1
pkts/sec, and α = 10, then the frequency of node
status change should be less than ≈30 minutes in
order for the distributed solution to compete with
the centralized one.

7 Conclusion

We studied the statistical temporal properties of links
used by low power wireless communication systems.
We identified a set of properties that are the most
relevant for the design of efficient routing protocols.
For example, high temporal correlation implies the
need to use the required number of packets instead
of reception rate as the quality metric and implies
the importance of using only high quality links. High
variance in time lagged correlation of forward and
reverse links implies the need for immediate send-
ing of acknowledgments, while low short time vari-
ance of links favors communication using long pack-
ets. Correlations between links on the same multi-
hop paths imply a need for the development of new
types of shortest path algorithms, while high consis-
tency of high quality links over time implies the rare
need to update the models of communication links.

Guided by the obtained insights, we have developed
and analyzed two new routing algorithms: (i) a gener-
alized Dijkstra algorithm with centralized execution
that considers correlation of successive links in multi-
hop communication, and (ii) a localized probabilistic
algorithm that uses statistics about the reverse for-
warding paths to establish probabilistic gradients on
the forwarding path. We also performed simulations
to analyze the overhead of the distributed solution
with respect to the optimal solution in the scenario
were a subset of nodes is powered down in order to
save energy.
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