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ABSTRACT OF THE DISSERTATION

Computing with Femtosecond Laser Pulses

by

Tingyi Zhou
Doctor of Philosophy in Electrical and Computer Engineering
University of California, Los Angeles, 2022

Professor Bahram Jalali, Chair

Time stretch instruments have been exceptionally successful in discovering single-shot ul-
trafast phenomena such as optical rogue waves and have led to record-speed microscopy,
spectroscopy, lidar, etc. These instruments encode the ultrafast events into the spectrum
of a femtosecond pulse and then dilate the time scale of the data using group velocity dis-
persion. Generating as much as Thit per second of data, they are ideal partners for deep
learning networks which by their inherent complexity, require large datasets for training.
However, the inference time scale of neural networks in the millisecond regime is orders of
magnitude longer than the data acquisition rate of time stretch instruments. This under-
scores the need to explore means where some of the lower-level computational tasks can be
done while the data is still in the optical domain. To address this predicament, we propose
the Nonlinear Schrodinger Kernel computing. This real time computing framework utilizes
optical nonlinearities to map the data onto a new domain in which classification accuracy is
enhanced, without increasing the data dimensions. A novel training scheme for the kernel is

developed by utilizing digital phase encoding of the input data.

1



The dissertation of Tingyi Zhou is approved.
Achuta Kadambi
Fabien Scalzo
Kang Lung Wang

Bahram Jalali, Committee Chair

University of California, Los Angeles

2022

1l



To my family

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . .

2 Nonlinear Schrodinger Kernel for hardware acceleration of machine learn-

NG . . e
2.1 Technical Approach . . . . . . . . . . . ...
2.1.1 Demonstrated Tasks . . . . . . ... .. ... . oL
2.1.2 Experiment Description . . . . ... . ... ... ... ... .....
2.1.3 Machine Learning Models . . . . . ... ... ... ..
2.1.4 Performance Evaluation . . .. .. ... ... ... ... .. .....

2.2 Demonstration of Exclusive OR Operation . . . . . . ... ... ... ....
2.3 Demonstration of Classification Tasks . . . . . . . . ... ... .. ... ...
2.4 Practical Considerations: Impacts of Additive and Quantization Noise . . . .
2.5 Discussion . . . . . .o
2.6 SUMMATY . . . . . v e
2.7 Matherials and Methods . . . . . . . ... 0 oo
2.7.1 Datasets . . . . . ..
2.7.2 Mathematical Description . . . . . . .. ... ... L.
2.7.3 Simulations . . . ... oo
2.74 Experiment . . . . .. ...
2.7.5 Machine Learning Algorithms . . . . . . .. .. ... ... ... ...
2.7.6  Machine Learning Evaluation Methodology . . . . . . . . . . ... ..

2.8 Appendices . . ...

10

11

16



2.8.1 Example Output of the Nonlinear Schrodinger Kernel . . . . . . . . . 29

2.8.2 XOR Immunity to Noise . . . . . . .. ... ... ... ... ... .. 29

3 Low Latency Computing for Time Stretch Instruments. . . . . . . . . .. 32
3.1 Experimental System . . . . .. ... .o oL 32
3.2 The Crucial Role of Optical Nonlinearity . . . . . . ... .. ... ... ... 34
3.3 Training of Optical Nonlinearities for Machine Learning . . . . . . . . . . .. 36
3.4 Limitations . . . . . . .o 38
3.5 Summary ... 38
3.6 Materials and Methods . . . . . . . . . ... oo 39
3.6.1 Experiments . . . . . . . ... 39

3.6.2 Insight into the Critical Role of Optical Nonlinearity . . . . . . . .. 41

3.6.3 Mathematical Model . . . . . .. ... 42

3.6.4 Datasets and Machine Learning Model . . . . . . . . ... ... ... 43

4 Additional Study on the Nonlinear Schrodinger Kernel . . . . . ... .. 46
4.1 Accelerating Nonlinear Schrodinger Kernel . . . . . . . .. ... .. ... .. 46
4.1.1 Acceleration in the Optical System . . . . . . . ... ... ... ... 47

4.1.2  Acceleration in the Digital Classifier . . . ... ... ... ... ... A7

4.2  Dimension Effect of the Nonlinear Schrodinger Kernel . . . . . . . . .. . .. 50
4.3 Further Studies . . . . . . . . . . 52
4.3.1 Mathematical Explanation Behind the Optical Kernel . . . . . . . .. 52

4.3.2 Deployment of the Optical Kernel . . . . . . .. ... ... ... ... 54

5 Conclusion . . . . . . . . 55

vi



References

vii



1.1

2.1

2.2

LIST OF FIGURES

The Nonlinear Schrodinger Kernel computing framework. Samples of the input
data are first assigned to virtual nodes through spectral modulation. The input
data are nonlinearly projected to an output representation with a transformation

governed by the Nonlinear Schrodinger Equation (NLSE). [ZSJ22] . . . . . . ..

Simplified block diagram showing the basic building blocks. A broadband fem-
tosecond mode-locked laser is used as the spectral source. The data are modulated
onto the optical spectrum and transformed by nonlinear propagation in an opti-
cal medium. The inset shows the evolution of the data-modulated spectrum (cell
image data). The spectrum at the output is read by a conventional spectrometer
based on diffraction gratings or by time stretch spectroscopy for fast single-shot
performance (examples of each are shown). Classification is performed using

machine learning algorithm in the digital domain. [ZSJ22] . . .. ... ... ..

Demonstration of nonlinear operation using a linear predictor. The data points
are not linearly separable, but the Nonlinear Schrodinger Kernel maps them into
a space where they are. Left pane shows the XOR ground truth. Middle pane
shows that a linear predictor cannot produce the correct output on its own. Right
pane is the output of a linear predictor preceded by the Nonlinear Schrodinger
Kernel, showing an error-free XOR operation. The output probability of ‘0’ is
mapped in grayscale over a range from 0 (black) to 1 (white). The boundary of
the prediction is outlined with dashed gray lines, which can be seen to separate
the expected output values of the 4 possible pairs. The details of the experimental

setup are described in the Materials and Methods (section 2.7). [ZSJ22]
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2.3

24

The table shows the scores and predicted output by a linear support vector ma-
chine (SVM) model with and without the Nonlinear Schrodinger Kernel. These
results show that without the Nonlinear Schrédinger Kernel, the operation fails,
while implementation of the physical kernel results in successful operation. The
results show that the scores are transformed into a linearly separable array.

[ZST22] o o,

Results for four different cases: (a) microscope-derived cancer cell images with a
time stretch (TS) spectrometer Kernel readout, (b) microscope-derived cancer cell
images with a grating-based spectrometer Kernel readout, (c¢) brain intracranial
pressure (ICP), and (d) spoken digits. For each dataset, the area under the curve
(AUC) is reported after threefold cross-validation. For all four datasets, compared
with the linear classifier alone, the (physical) Nonlinear Schrédinger Kernel shows
improvement that is similar to or better than that obtained by the (numerical)
radial basic function (RBF) kernel. (e) A bar chart shows the latency in the
processing of one sample through the RBF kernel and the Nonlinear Schrodinger
Kernel. The results are grouped by dataset, including cell data using the grating-
based spectrometer readout, cell data using the TS spectrometer readout, brain
ICP, and the audio signals recorded from spoken digits. The bar chart shows a
latency (on a Xeon 3 GHz CPU with 64 GB of RAM) on the order of 1E-3 to 1E-2
seconds for the RBF kernel with linear classifier, while the Nonlinear Schrédinger
Kernel achieved a substantially reduced latency, on the order of 1E-5, almost

negligible compared to linear classifier itself. . . . . ... ... ... ... ...
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2.5

2.6

2.7

Classification results with different machine learning algorithms. The perfor-
mance of the Nonlinear Schrodinger Kernel in the classification of various datasets
(tasks) is shown: brain intracranial pressure (ICP), spoken digit, cell image data
with time stretch spectrometer readout, and cell image data with grating-based
spectrometer readout. For each dataset, we show the performance with and with-
out the Nonlinear Schrodinger Kernel for five different classifiers: ridge regression,
spectral regression for kernel discriminant analysis (SR-KDA), random forests,
support vector machine (SVM) with RBF kernel, and neural network. The area
under the curve (AUC) is reported using the original data with no kernel as input
before (gray) and after processing with the Nonlinear Schrodinger Kernel (blue).
The improvement achieved following processing with the Nonlinear Schrodinger
Kernel is consistent for most algorithms and on all datasets, showing that the
Nonlinear Schrodinger Kernel can improve the performance of a wide range of

machine learning algorithms, both linear and nonlinear. . . . . .. .. ... ..

The robustness of the Nonlinear Schrodinger Kernel-based model against additive
and quantization noises. A ridge regression model was trained on 4 datasets
processed after the data were projected into an implicit high-dimensional space
with the Nonlinear Schrodinger Kernel. The mean squared error (MSE) between
the predicted output of the model and the ground truth is reported for various
levels of quantization precision. Three levels of additive noise are reported: no

noise, 5% and 10%. The lines are fits to the data points. . . . . . . .. ... ..

Example output of the Nonlinear Schrodinger Kernel for (a) Brain intracranial
pressure (ICP) (b) Spoken digit (c¢) Cell image with grating-based readout (d)
Cell image (Time stretch readout). The horizontal axis is the sample number,
the vertical axis is the normalized amplitude level. The (c) and (d) are similar

because the data are the same. They’re only different in spectrum readout

30



2.8

3.1

Exclusive OR (XOR) logic gate simulation with linear predictor and Nonlinear
Schrodinger Kernel showing immunity to (a) quantization noise, and (b) addi-
tive noise. Since the output of the Nonlinear Schrodinger Kernel is analog, the
resolution and sampling rate of the digitizer can impact the prediction. This
figure shows the impact of quantization and noise on the classification when per-
forming the XOR task. The experimentally measured optical spectrum after the
Nonlinear Schrodinger Kernel is used to train a linear regression model. Then
quantization and additive noises are added to the data. Inference is performed
using the trained model on the noisy data and the values of the model output
are recorded. In (a), we show the effect of quantization on the inference output.
In (b), we show the effect of noise on the quantization output. Even at 2-bit
quantization or with 30% additive noise, the linear regression output still very
close to the ground truth. These results show that the Nonlinear Schrodinger

Kernel offers strong robustness against noise . . . . . . . ... ... ... ...

Optimization of a tunable Nonlinear Schrodinger Kernel. The system contains a
tunable Nonlinear Schrodinger Kernel and a digital feedback loop. In the tunable
Nonlinear Schrodinger Kernel, the phase-encoded input data(n) is mapped onto
the spectrum of a supercontinuum laser via spectral modulation. The modulated
laser propagates through a nonlinear optical element, where the nonlinear process
is engineered by the phase code p(w). The output spectrum of the nonlinear
optical element S,,; is then acquired using a spectrometer and sent to a classifier
F. The classification error is calculated by comparing the predicted class Cpredict
and the ground truth Cgp. This error is used as an input to an optimization
algorithm to update the phase code for achieving lower classification errors. The

details can be found in the Materials and Methods (section 3.6). . . . . . . ..
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3.2

3.3

(a) The evolution of the optical spectrum in the linear optical kernel where non-
linear coefficient v = 0/(W - km)(b) The evolution of the optical spectrum in the
nonlinear optical kernel where v = 11/(W - km). (c) Bar chart comparing the
classification error for three cases: the baseline error calculated without kernel
(blue, 14.7%), the linear optical kernel (green, 14.9%), and the nonlinear optical
kernel (orange, 7.8%). The baseline error is calculated by directly feeding the
input data to the digital backend, which in this case is a linear support vector
machine (SVM) classifier. For (a) and (b), the horizontal axis is the wavelength,
the vertical axis is the propagation distance (normalized to the effective length
of the optical element). The color indicates the optical intensity in the log scale

with color bar on the side. The red arrow point to the propagation direction.

Optimization of Nonlinear Schrodinger Kernel on three datasets: (a) Time stretch

biological cell image (b) Phalanges bones outline (c) Electroencephalogram (EEG).

In each bar chart, the classification error for three cases is compared: Baseline
error (gray), untrained Nonlinear Schrédinger Kernel (blue), and trained Nonlin-
ear Schrodinger Kernel (orange). The baseline error is calculated by feeding the
input data directly into the digital backend — a linear support vector machine

(SVM) classifier. All the results are calculated via 3-fold cross validation.
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4.1

4.2

The latency can be greatly reduced by using an integrated waveguide instead of
an optical fiber to induce 3rd-order nonlinearities. Exclusive OR (XOR) opera-
tion results of the Nonlinear Schrodinger Kernel using an integrated waveguide
as nonlinear optical components. Results are from numerical simulations. Two
different waveguides are used in this simulation using the model built in chap-
ter 3: silicon [BJO4][LEP17] and silicon nitride [TON18]. The silicon waveguide
has a dimension of 220nm x 480nm with 10mm in length. Such a waveguide
has —850ps/(nm - km) dispersion and 16000/(W - km) nonlinear coefficient at
1588nm (center wavelength of the modulated pulse). The silicon nitride has a
dimension of 550nm x 300nm with a length of 0.2mm. The dispersion at 1588nm
is 223.68ps/(nm - km) and nonlinear coefficient is 500,000/(W - km). We use
a laser source with 50W peak power and 45nm bandwidth in both cases. The
optical spectrum after Nonlinear Schrodinger Kernel is read out by a simulated
spectrometer with 100nm bandwidth and 0.1mm resolution. A linear support
vector machine (SVM) is trained using the spectrum. The table shows the pre-
dictions of the trained model as well as the corresponding scores. It demonstrates
that the waveguide can also be used as a nonlinear optical component and could

greatly reduce the latency because of the compact size. . . . . . . . . ... ..

Inference latency of a Nonlinear Schrodinger Kernel using a waveguide as the non-
linear element and Fied Programmable Gated Array (FPGA) as digital backend.
The waveguide used in this system is a 1.3mm silicon nitride with a dispersion of
—233ps/(nm - km), and a nonlinear coefficient of 500000/(W - km). The FPGA
parameters are taken from a Xilinx Zync UltraScale+ RFSOC ZU42DR.

xiil

49



4.3

4.4

The evolution of the laser spectrum during nonlinear propagation in Nonlinear
Schrodinger Kernel working in (a) Normal dispersion (b) Anomalous dispersion
and (c) Zero dispersion regimes using time stretch cell image dataset as input.
This nonlinear process is illustrated using 2-D heatmaps, with the horizontal
axis as the wavelength, and the vertical axis as the pulse propagation distance
(normalized to the effective length of the optical medium). The horizontal axis
for all three cases is set to the same range to show the input spectrum is the same.
For the zero dispersion case in (c¢), however, the output spectrum is far broader
than the other two cases, thus an inset is placed to show the evolution of the full
spectrum. The color indicates the optical intensity in the log scale with a color
bar next to each figure. The red arrow point to the propagation direction. The
dashed red line shows the trend of spectral evolution. Both spectral broadening

and spectral narrowing can be observed. . . . .. .. ... L.

Classification error vs the data dimension. The horizontal axis is the natural log
of the ratio of the output data dimension to the input data dimension of the op-
tical kernel, and the vertical axis is the classification error. The blue dots are the
classification error calculated using data with corresponding dimensions, and the
red curve is the fit. The gray dashed line is the baseline classification error calcu-
lated by feeding the input data directly into the digital backend. The output data
with different dimensions are obtained by sampling the original output spectrum
with different dimensions. The resampled data and used to train a linear Support
Vector Machine (SVM) classifier. The classification error is calculated via 3-fold

cross validation. This simulation uses the time stretch cell image dataset.
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CHAPTER 1

Introduction

Photonic time stretch is a state-of-the-art sensing technique that measures single-shot ul-
trafast events by first encoding it onto the spectrum of an optical pulse and then dilating
the time scale of the data using group velocity dispersion[1998 and Unified] [BCJ98]|[ZCJ22].
Time stretch instruments have been exceptionally successful in various applications, includ-
ing optical rogue waves [SRKO7], optical soliton dynamics [HKJ17], relativistic electron
dynamics [REL15], chemical transients in combustion [MLM20], stock wave [HGI18], optical
gyroscope [KSC22|, and have led to record-speed microscopy [SKV16] and lidar [JKJ20].
While encouraging, these femtosecond instruments that acquire billions of frames of data

per second also require ultrafast realtime processing of the acquired data.

Neural networks have emerged as a generic computational framework that achieves spec-
tacular performance in image and speech recognition and synthesis. While revolutionary,
these performance gains are not without cost. First, the exponential growth in the required
computing power outpaces the semiconductor roadmap known as Moore’s law by several or-
ders of magnitude [XDH18][TGL20]. Second, the large, labeled datasets required for training
these models are not available in many application domains. Third, the latency inherent in
deep neural networks can be problematic in applications where sensors generate a torrent of

data that must be classified in realtime.

These predicaments call for a fresh look into the design of machine learning and com-
puting systems that can operate with small training datasets, offer low latency, and do not

rely on ever-increasing computational performance and memory size. Among several alter-



native approaches to computing is the use of analog systems to efficiently perform specialized
computations, an approach that echoes the early days of computing [Isal4]. An attractive
attribute of analog systems is that they do not need to be trained; however, purely analog
computing systems are susceptible to noise and do not scale. A modern approach to analog
computing is one where analog does not replace the digital computer but rather serves as
a hardware accelerator for it [SJ15]. For example, one can simulate the properties of an
inaccessible and complex system, such as that underlying hydrodynamic phenomena, with
a more user-friendly and compact proxy system, such as wave propagation in a nonlinear
optical fiber, which is governed by the same differential equations. A natural computer based
on such rapid phenomenon can serve as a surrogate for the computation of fluid dynamics
phenomena [SJ15]. When considering the vast state space that needs to be explored, the
benefits are even greater. A related framework could involve the use of wave propagation in
a metamaterial to perform specialized computational tasks such as solving specific integral
equations [EEE19]. With an instrument capable of capturing the output of such natural com-
puters in real time, billions of scenarios can be readily acquired on an ultrashort timescale
to map the vast space of complex outputs that emerge from the nonlinear responses to dif-
ferent inputs. A related technique is Reservoir Computing, which utilizes analog systems to
transform the input data into a much higher dimensional space and perform pattern analysis
with a simple readout [TYH19]. Other studies have been on the emulation of a neural net-
work with optical components. The approach is to use lasers and spatial light modulators or
integrated optical circuits to mimic the matrix multiplication function of a neural network

[LRY 18][GMA19][WOG20].

In chapter 2, a new concept in data representation and classification is reported [ZSJ22].
Specifically, we show that when seeded with data, nonlinear optics enable a linear learning
algorithm to learn a nonlinear function or decision boundary that separates the data into
the correct classes. The core of this system, which we call the Nonlinear Schrodinger Kernel,

nonlinearly projects data that have been modulated onto the spectrum of a femtosecond
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Figure 1.1: The Nonlinear Schrodinger Kernel computing framework. Samples of the input
data are first assigned to virtual nodes through spectral modulation. The input data are
nonlinearly projected to an output representation with a transformation governed by the

Nonlinear Schrédinger Equation (NLSE). [Z2SJ22]

laser pulse into a space in which the data that normally could not be linearly separated, can

now be separated with a linear predictor.

Fig. 1.1 shows a qualitative interpretation of our approach. The input data are first
mapped to spectrum nodes of a femtosecond laser pulse by a spectral modulator and then
undergo a nonlinear transformation in an optical device causing complex energy and phase
transfer between the nodes. The nonlinear transformation is governed by the Nonlinear
Schrodinger Equation (NLSE) [Agr12]. The output spectrum is measured and then fed into

a numerical machine learning algorithm for classification. In this approach, the spectral



modulation of data followed by nonlinearly transforming the data into an implicit high-
dimensional representation enables certain nonlinear classification problems to be solved with
a low-latency linear classifier. We emphasize that this dimensionality increase is implicit,
not explicit (actual increase in dimensionality is not necessary although that may improve

performance).

We verify this technique by performing classification on a variety of data. We show
that the combination of the Nonlinear Schrodinger Kernel with a digital classifier provides
improvements in accuracy and latency over a conventional, purely digital classifier. To
provide insight into the operation of the kernel, we compare its performance to the radial
basis function (RBF), the most common numerical kernel in machine learning, and show
that both enable a linear classifier to perform nonlinear classification, while the physical

kernel is orders of magnitude faster, with high resilience against quantization and additive

noise [ZSJ22].

We also note that since this is an open-loop (untrained) system with a low degree of
tunability, its performance is inevitably data-dependent. In chapter 3, we propose an ap-
proach to tune and optimize the nonlinear optical transfer function of the kernel. While the
nonlinear optical system parameters cannot be tuned, the nonlinear process can be effec-
tively engineered by varying the phase of the femtosecond laser pulse. This is based on the
insight that most nonlinear interactions, such as self-phase modulation, four-wave mixing,
etc. are coherent processes that depend on the input phase [Agr12]. Therefore, tuning the
spectral phase of the input data will inevitably change the nonlinear interaction among spec-
tral components [CBJ05]. Since the data is encoded onto the spectrum, this process changes
the nonlinear interaction among data dimensions. A digital feedback loop is added to the

system for optimization of the kernel.

In chapter 4, we provide additional studies on the Nonlinear Schrodinger Kernel, including
the further acceleration of the kernel and its dimension effect. We show that the kernel can

be further accelerated by orders of magnitude via (1) using the integrated silicon nitride



waveguide as the nonlinear optical element and (2) implementing the linear classifier on an
edge device. We also show that the Nonlinear Schrodinger Kernel does not increase the

dimension of the data. On the contrary, it works even when the dimension is reduced.

Since this technique operates with femtosecond pulses and spectrally modulated data, it is
inherently compatible with a wide range of single-shot instruments enabled by time stretch
data acquisition, including time stretch microscopy [CMT16] [LMC19] and spectroscopy
[KCB99] for continuous realtime acquisition and classification of ultrafast events. To this
end, successful operations with both a conventional grating spectrometer and the time stretch

spectrometer are demonstrated.



CHAPTER 2

Nonlinear Schrodinger Kernel for hardware

acceleration of machine learning

Alternative machine learning approaches that have extremely low latency and can work with
only a small training dataset are needed for applications where the insatiable demands of
deep learning methods for computing power and large training data cannot be met [TGL20].
In this chapter, we report a new optical accelerator for Al that exploits femtosecond laser
pulses for both data acquisition and computing enabling classification at short time scales
for fast optical imaging, sensing, and metrology [ZSJ22]. Modulation of data onto the spec-
trum of femtosecond optical pulses followed by projection into a new space using nonlinear
optics reduces the latency in the nonlinear classification of certain data by orders of mag-
nitude. The approach is validated by the classification of various datasets, including brain
intracranial pressure [SLH12], cancer cell imaging [CMT16][LMC19], spoken digit recogni-
tion [JSF18], and the classic exclusive OR benchmark for nonlinear operation. The concept is
demonstrated by seeding the nonlinear effect that is responsible for many fascinating natural
phenomena, such as optical rogue waves [SRKO07|. Stimulation of nonlinear optical interac-
tions with spectrally modulated data transforms the data such that a computationally-light
linear algorithm can learn a nonlinear decision boundary that separates the data into the
correct classes. Since the optical kernel is not trained, its performance is inevitably data-
dependent. Quantitative comparison with a popular numerical kernel offers insights into
how this physical technique accelerates inference. Single-shot operation is demonstrated

using time stretch data acquisition [BCJ98][ZCJ22].



2.1 Technical Approach

The effectiveness of the proposed approach is evaluated through a number of experimental
protocols. An interesting property of the Nonlinear Schrodinger Kernel is that it projects the
original signal into a modified space that emphasizes certain nonlinear properties of the data.
In terms of functionality, similarities exist between the Nonlinear Schrodinger Kernel and the
concept of “kernel projection” or “the kernel trick” in the machine learning literature. The
utility of this processing method is that it transforms nonlinearly separable data to become

linearly separable in the new, modified space.

2.1.1 Demonstrated Tasks

We illustrate the effectiveness and versatility of the proposed technique on several examples,
including XOR logic operation followed by several classification tasks, including the detec-
tion of intracranial hypertension [SLH12], cell image classification for cancer detection via
time stretch microscopy [CMT16][LMC19], and recognition of spoken digits[JSF18]. All the
datasets include ground-truth class labels that are used to train a numerical machine learning
model in a supervised manner. The model is placed after the physical Nonlinear Schrodinger
Kernel. Additional details on these datasets are provided in Materials and Methods (section

2.7).

2.1.2 Experiment Description

As shown in Fig. 2.1, the prototype Nonlinear Schrg”dinger Kernel computing system con-
sists of a fiber-based supercontinuum laser source, a spectral modulator, a nonlinear optical
element, and a spectrum readout followed by a machine learning classifier operating in the
digital domain. The data are first modulated onto the laser spectrum through the spec-
tral modulator. The modulated waveform then passes through a nonlinear optical element

where the data are nonlinearly transformed. We define the combination of the spectral



modulation and the nonlinear transformation as the Nonlinear Schrodinger Kernel. Because
of the spectral nature of this kernel, it can also be called the Lambda Kernel, in homage
to the convention of representing wavelengths with the symbol lambda (\). The optical
spectrum output from the Nonlinear Schrodinger Kernel is read out and fed into the digital
signal processor (DSP) for XOR logic and machine learning classification tasks. For clas-
sification, the spectrum is sampled such that it has the same dimensionality as the input
data. The nonlinear element in the experiment is a highly nonlinear fiber. For capturing
the output spectrum in the experiments, both the traditional grating-based spectrometer
and time stretch spectrometer for fast single-shot operation [KCB99] are demonstrated. To
maximize the nonlinearities, the experimental system works in anomalous dispersion regime
where extreme nonlinear processes such as optical rogue waves occur [SRK07]. Despite the
highly nonlinear nature of the pulse propagation, the system is made stable by keeping the

optical power below the threshold for the onset of modulation instability.

In addition to the experimental setup, we employ mathematical simulations to help design
the experimental system and gain insight into its operation. A detailed description of the

simulation model and experimental setup can be found in Materials and Methods (2.7).

2.1.3 Machine Learning Models

As part of our experiments, we evaluate the performance of popular machine learning al-
gorithms with and without preprocessing using the Nonlinear Schrodinger Kernel. These
algorithms include ridge regression [HK70], random forests [Ho95], spectral regression for
kernel discriminant analysis (SR-KDA) [CHH11], neural networks, and support vector ma-
chines (SVMs) [CV95]. For all these methods, it is assumed that the input data are sampled
as X € R™? and the output class label as Y € R"*¢, where c is the number of classes. The
dimensionality d and the number of samples n of the input data vary with respect to the
dataset used. A more detailed description of these algorithms is presented in Materials and

Methods (section 2.7).
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Figure 2.1: Simplified block diagram showing the basic building blocks. A broadband fem-

tosecond mode-locked laser is used as the spectral source. The data are modulated onto
the optical spectrum and transformed by nonlinear propagation in an optical medium. The
inset shows the evolution of the data-modulated spectrum (cell image data). The spectrum
at the output is read by a conventional spectrometer based on diffraction gratings or by
time stretch spectroscopy for fast single-shot performance (examples of each are shown).

Classification is performed using machine learning algorithm in the digital domain. [ZSJ22]

2.1.4 Performance Evaluation

The performance of each machine learning model is evaluated using 3-fold cross-validation,
and the accuracy is reported using the area under the receiver operating characteristic (ROC)
curve (AUC). The AUC represents the probability that the model will be able to predict the
label correctly for a new pair of positive and negative samples. With the same cross-validation
split, we compare the AUC of each model with the data before and after processing with the
Nonlinear Schrodinger Kernel, and we repeat the experiment protocol on each dataset. A

detailed description of these steps can be found in the Materials and Methods (section 2.7).



2.2 Demonstration of Exclusive OR Operation

We first examine the Exclusive OR (XOR) task, a classic problem that cannot be solved
with a linear model and that serves as a benchmark for nonlinear operation. When four
points representing the binary input pairs ((0,0), (0,1), (1,0), (1,1)) and their corresponding
XOR output (0,1,1,0) are used as the training data, a linear predictor will inevitably result
in an error when attempting to reproduce the results of the XOR operation (as illustrated
in Fig. 2.2) because the data points are linearly nonseparable in their original space. On
the other hand, after processing the data with the Nonlinear Schrodinger Kernel, a linear

predictor can be trained to successfully perform the XOR operation without error.

To gain insight into how the Nonlinear Schrédinger Kernel projects the input data into a
linearly separable representation, the output probability of ‘0’ is represented by a grayscale
map with values ranging from 0 (black) to 1 (white), as shown in Fig. 2.2. The boundaries of
the grayscale map are depicted as dashed lines, which clearly show the accurate separation of
the four pairs of inputs. This example reveals that with the use of the Nonlinear Schrodinger
Kernel, the linearly nonseparable data points are projected to a space where they become
linearly separable. An important property of the Nonlinear Schrodinger Kernel projection
is that it is untrained; in other words, the output labels of the pairs of data points are not

used to obtain the projected values in the new space.

For further intuition into the transformation performed by the combined operation of
spectral modulation and nonlinear evolution, we examine the scores and the predictions ob-
tained by a linear SVM model with and without the application of the Nonlinear Schrédinger
Kernel (Fig. 2.3). The scores, calculated as the inner products of the model weights and the
input data, show that the accuracy improvement is caused by the modification of the score

into a linearly separable form.
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Figure 2.2: Demonstration of nonlinear operation using a linear predictor. The data points
are not linearly separable, but the Nonlinear Schrédinger Kernel maps them into a space
where they are. Left pane shows the XOR ground truth. Middle pane shows that a linear
predictor cannot produce the correct output on its own. Right pane is the output of a
linear predictor preceded by the Nonlinear Schrodinger Kernel, showing an error-free XOR
operation. The output probability of ‘0’ is mapped in grayscale over a range from 0 (black)
to 1 (white). The boundary of the prediction is outlined with dashed gray lines, which can
be seen to separate the expected output values of the 4 possible pairs. The details of the

experimental setup are described in the Materials and Methods (section 2.7). [ZSJ22]

2.3 Demonstration of Classification Tasks

Having demonstrated the ability of the Nonlinear Schrodinger Kernel to perform nonlin-
ear projection, we then test the hypothesis that the kernel may act as a nonlinear feature
extractor that highlights certain properties of the signal and makes challenging signal clas-
sification problems solvable with a simple machine learning model. In particular, we focus
on several challenging tasks with varying degrees of complexity, including the detection of
brain intracranial hypertension, classification of blood cell images for cancer detection, and

recognition of spoken digits. Both grating-based spectrometer and time stretch spectrometer
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without Nonlinear with Nonlinear

XOR Schrédinger Kernel Schrédinger Kernel
Input  Ground Truth | Score Output | Score Output
00 0 0.99 1 -1.03 0
01 1 1.05 1 1.03 1
10 1 -1.05 0 0.99 1
11 0 -0.99 0 -0.99 0

Figure 2.3: The table shows the scores and predicted output by a linear support vector ma-
chine (SVM) model with and without the Nonlinear Schrédinger Kernel. These results show
that without the Nonlinear Schrédinger Kernel, the operation fails, while implementation
of the physical kernel results in successful operation. The results show that the scores are

transformed into a linearly separable array. [ZSJ22]

are demonstrated. For grating based spectrometer, the spectral range varies among different
datasets. For Brain data (Fig. 2.4e), the spectral range is 1550nm to 1630nm with 0.1 nm
resolution. For the cell images with grating-based spectrometer (Fig. 2.4), it is 1560nm to

1620nm.

Fig. 2.4 provides the classification results for four cases: cancer cell image data with time
stretch spectrometer readout (2.4a), cancer cell image data with grating-based spectrometer
readout (2.4b), brain ICP (2.4¢), and spoken digit (2.4d). All results are experimental except
the spoken digit which is based on simulation because the length of which (5000 samples)
exceeds pixels numbers in our spectral modulator. The accuracy is calculated using the
AUC after 3-fold cross-validation (details provided in the Materials and Methods, section
2.7). As a benchmark, we compare the performance of the Nonlinear Schrodinger Kernel
with the commonly used numerical kernel, the RBF, for performing nonlinear classification

with a linear classifier. When the same data are applied to both models, for most cases, the
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Nonlinear Schrodinger Kernel reaches an accuracy similar to the numerical RBF kernel. One
exception is the spoken digit, where the Nonlinear Schrodinger Kernel has much higher AUC
(accuracy) than the RBF kernel, showing that the performance of this technique is data-
dependent, which also happens to the conventional numerical kernel. These results suggest
that the physical processes of spectral modulation and nonlinear evolution perform, with
orders of magnitude lower latency (Fig. 2.4.e), a conceptually similar task as the so-called

“kernel trick” in machine learning literature.

While Fig. 2.4 highlights the benefit of the Nonlinear Schrodinger Kernel when imple-
mented with a linear classifier, we now turn to more advanced machine learning classifiers
that already include nonlinearity in their models, including random forests, SR-KDA, SVM
(with RBF kernel), and neural network. Specifically, we aim to test whether the Nonlinear
Schrodinger Kernel can further improve the result obtained with these already nonlinear
classifiers. The bar chart in Fig. 2.5 summarizes the experimentally measured performance
of the Nonlinear Schrodinger Kernel with five different classification algorithms. The AUC
is reported using the data before (gray) and after processing with the Nonlinear Schrodinger
Kernel (blue). Among all datasets, consistent improvement in the AUC can be observed
across most classification methods; for example, an average of 5.8% improvement in AUC
was observed for the brain ICP dataset. The table shows that similar improvement is ob-
served on other datasets. These results reveal that the Nonlinear Schrodinger Kernel can
benefit the classification, and the performance is data-dependent. One exception is cell image
dataset with random forest and SVM classifiers. There the Nonlinear Schrodinger Kernel

leads to less accuracy (—0.1% to —0.3%). This is addressed in the discussion section (section

2.5).
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Figure 2.4: Results for four different cases: (a) microscope-derived cancer cell images with
a time stretch (TS) spectrometer Kernel readout, (b) microscope-derived cancer cell images
with a grating-based spectrometer Kernel readout, (c¢) brain intracranial pressure (ICP),
and (d) spoken digits. For each dataset, the area under the curve (AUC) is reported after
threefold cross-validation. For all four datasets, compared with the linear classifier alone,
the (physical) Nonlinear Schrédinger Kernel shows improvement that is similar to or bet-
ter than that obtained by the (numerical) radial basic function (RBF) kernel. (e) A bar
chart shows the latency in the processing of one sample through the RBF kernel and the
Nonlinear Schrodinger Kernel. The results are grouped by dataset, including cell data using
the grating-based spectrometer readout, cell data using the TS spectrometer readout, brain
ICP, and the audio signals recorded from spoken digits. The bar chart shows a latency (on
a Xeon 3 GHz CPU with 64 GB of RAM) on the order of 1E-3 to 1E-2 seconds for the RBF
kernel with linear classifier, while the Nonlinear Schrédinger Kernel achieved a substantially

reduced latency, on the order of 1E-5, almost negligible compared to linear classifier itself.
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Brain Intracranial Pressure (ICP) Spoken Digits

Nonlinear Nonlinear
No Kernel  Schrodinger AAUC No Kernel  Schrodinger AAUC
Kernel Kernel
Ridge Regression 62.3 67.4 I 5.1 51.3 77.5 l 26.2|

SR-KDA 68.0 77.1 . 9.1 | 57.0 79.9 I 22.5
Random Forest 51.3 58.8 . 25 78.2 87.4 D 9.2

SVM 76.3 81.1 I 58 54.1 89.9 . 555
Neural Network 65.2 6727 125 51.9 sa7 B3 ]
Cell Images (Time Stretch Spectrometer) Cell Images (Grating-based Spectrometer)
Nonlinear Nonlinear
No Kernel  Schrodinger AAUC No Kernel  Schrodinger AAUC
Kernel Kernel
Ridge Regression 90.6 95.3 .E 90.5 96.2 m
SR-KDA 94.9 95.8 E 0.9 94.9 97.0 ! 2.1
Random Forest 99.4 9910 [ 03 99.5 99.4 |} -0.1
SVM 98.9 98.7 i -0.2 98.9 98.7 E -0.2
Neural Network 96.0 96.4 [| 0.4 96.0 96.8 E 0.8

Figure 2.5: Classification results with different machine learning algorithms. The perfor-
mance of the Nonlinear Schréodinger Kernel in the classification of various datasets (tasks)
is shown: brain intracranial pressure (ICP), spoken digit, cell image data with time stretch
spectrometer readout, and cell image data with grating-based spectrometer readout. For
each dataset, we show the performance with and without the Nonlinear Schrédinger Kernel
for five different classifiers: ridge regression, spectral regression for kernel discriminant anal-
ysis (SR-KDA), random forests, support vector machine (SVM) with RBF kernel, and neural
network. The area under the curve (AUC) is reported using the original data with no kernel
as input before (gray) and after processing with the Nonlinear Schrodinger Kernel (blue).
The improvement achieved following processing with the Nonlinear Schrodinger Kernel is
consistent for most algorithms and on all datasets, showing that the Nonlinear Schrodinger
Kernel can improve the performance of a wide range of machine learning algorithms, both

linear and nonlinear.
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2.4 Practical Considerations: Impacts of Additive and Quantiza-

tion Noise

We next investigate the limitations imposed by signal detection. When dealing with physical
systems that are inherently analog in nature, the quantization noise of the analog to digital
converter, as measured by its number of bits, can act as a performance bottleneck. This is
particularly true for real-time systems that operate at high bandwidth [MCB17]. In addition,
the number of bits used to store the model weights also needs to be considered because despite

the improvement in accuracy, a higher number of bits requires larger memory.

To this end, Fig. 2.6 shows the robustness of the Nonlinear Schrodinger Kernel-projected
representations across the various quantization resolutions applied to the input and internal
weights of the model. For this purpose, we utilize the ridge regression model and quantize
the model weights with different number of bits while simulating additive white Gaussian
noise of 0, 5, and 10% of the data. The noise is added to the data after it is processed
with the Nonlinear Schrodinger Kernel, and the error is evaluated for each combination
of noise and quantization precision using the relative mean squared error (MSE), which is
calculated between the predicted output of the ridge regression model and the ground-truth
label and reported for various levels of quantization precision for the model weights. Finally,
a continuous line that best fits the error values is plotted. For all four cases, the MSEs
stay steady until the number of bits reduces below certain levels. For brain ICP and cell
image, the MSE sharply increases when the number of bits reaches 2 or 3. For spoken digits
data, the MSE significantly rises when the number of bits is less than 6. This difference
can be explained by the property of data itself. As spoken digit datasets are recordings of
sound waves, it is more dynamic compared to brain ICP or cell image waveform (Fig. 2.7 in
appendices section 2.8). Therefore, it requires a higher resolution during quantization. It can
also be observed that compared to quantization, the additive noise has much less influence

on the prediction. Overall, the results in Fig. 2.6 are notable because they demonstrate the
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Figure 2.6: The robustness of the Nonlinear Schrodinger Kernel-based model against additive

and quantization noises. A ridge regression model was trained on 4 datasets processed

after the data were projected into an implicit high-dimensional space with the Nonlinear

Schrodinger Kernel. The mean squared error (MSE) between the predicted output of the

model and the ground truth is reported for various levels of quantization precision. Three

levels of additive noise are reported: no noise, 5% and 10%. The lines are fits to the data

points.
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robustness of the Nonlinear Schrodinger Kernel technique. Additional results for nonlinear

XOR operation can be found in appendices section 2.8

2.5 Discussion

In the present implementation of the Nonlinear Schrédinger Kernel, the input data is mapped
onto the optical spectrum, in contrast to the commonly used temporal modulation. We
choose spectral modulation, instead of temporal modulation, because the time scale of fem-
tosecond pulse ( 50fs) is too short to allow modulation of complex waveforms. Expressed
differently, there are no electro-optic modulators with such bandwidth. On the other hand,
these short optical pulses have broad spectral bandwidth, which allows modulation of 100’s
or even 1000’s of data samples onto the spectrum. We point out that many time stretch
instruments, such as the time stretch microscope, operate based on this principle of spectral

modulation of data onto a femtosecond pulse [CMT16][GAG12].

Fig. 2.5 shows that the performance of this technology depends on the dataset and in a
small subset, the performance slightly decreases. This is expected because the optical kernel
is an open-loop system, which means it is not trained for optimized performance on every
single dataset. Furthermore, in the present system, the control of nonlinearity can only
be achieved by varying the laser power and the length of the nonlinear element, so there
are only two degrees of tuning. Also, for classification tasks, we don’t rely on increases of
dimensionality — the output spectrum is subsampled such that it has the same dimension as
the input data. As a result, it is less flexible compared to trainable high-dimensional models
such as deep neural networks. On certain datasets, such as spoken digit and brain ICP, the
Nonlinear Schrodinger Kernel provides significant improvement. While the low degrees of
tuning of the physical kernel imposes such limitations, it does have an important benefit.
By allowing a simple linear classifier to perform nonlinear classification tasks, it eliminates

the need for large training datasets and reduces latency by orders of magnitude.
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2.6 Summary

The past decade has seen blazing advances in artificial intelligence for image and speech
recognition and synthesis. Despite the increasing speed of digital processors, the execution
time of these algorithms is still orders of magnitude slower than the time scales in ultrafast
optical imaging, sensing, and metrology. In this chapter, we reported a new concept in
hardware acceleration of Al that exploits femtosecond pulses for both data acquisition and
computing. In the experiments, data is first modulated onto the spectrum of a supercontin-
uum laser. Then, a nonlinear optical element performs a data transformation analogous to a
kernel operation projecting the data into an intermediate space in which data classification
accuracy is enhanced. The output spectrum is sampled by a spectrometer and is sent into
a digital classifier that is lightly trained. We showed that the nonlinear optical kernel can
improve the linear classification results just like a traditional numerical kernel (such as the
radial-basis-function) but with orders of magnitude lower latency. We further showed that
this technique can work with various other digital classifiers. Finally, we demonstrated that
the technique is resilient to nonidealities such as additive and quantization noise in the sys-
tem. The performance is data-dependent due to the absence of training in the optical part

of the system.

2.7 Matherials and Methods

We provide in this section (1) a description of the datasets, (2) the mathematical description
of the Nonlinear Schrodinger Kernel, (3) details of the simulations model, (4) the experi-
mental setup, (5) the machine learning algorithms, and (6) the machine learning evaluation
methodology. The datasets are chosen to cover various classification applications and signal

modalities including imaging, intracranial pressure, and audio recordings
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2.7.1 Datasets

The dataset used in this study include the detection of intracranial hypertension, cell image
classification for cancer detection via time stretch microscopy, and recognition of spoken

digits. The details are as follows:

Continuous Intracranial Pressure (ICP) Waveforms: Traumatic brain injury (TBI) can
lead to secondary brain injury due to pressure effects created by a hematoma and disrupted
cerebrospinal fluid circulation. The immediate goal of TBI treatment is minimizing this
risk by mitigating elevations in intracranial pressure (ICP). However, due to the wide het-
erogeneity of the degree of severity of TBI and the difficulty to assess them, the medical
management of TBI patients is particularly challenging. This dataset originates from 154
patients [SLH12] admitted for various conditions related to the known risk of intracranial
hypertension (IH). The majority of the patients (108 patients) were treated for brain in-
juries (TBI, subarachnoid hemorrhage (SAH), and intracerebral hemorrhage (ICH)). A total
of 63,954 ICP alarms were recorded from bedside monitors. ICP signals were recorded con-
tinuously at a sampling rate of 240 Hz using ventriculostomy systems. In our experiments,
a random sample of 434 alarms is used. Expert annotation was obtained by a biomedical
engineer using dedicated annotation software created in our research laboratory and was
asked to label them using the following criterion: an alarm is a false positive if there was no
drainage to treat ICP elevation within 15 minutes following the alarm, a true alarm other-
wise. This anonymized dataset of ICP signals originates from the University of California,
Los Angeles (UCLA) Medical Center, and its usage was approved by the local institutional

review board committee (IRB).

Spoken Digits: The Free-Spoken Digit Dataset (FSDD) [JSF18] is an audio/speech
dataset consisting of 2000 recordings of spoken digits (0-9) in wav files at 8kHz. FEach
recording contains a spoken digit that was recorded under different conditions and from four

different individuals. The recordings were trimmed so that they have near minimal silence
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at the beginnings and ends. Our classification experiments are posed by considering the
classification between digits “zero” and “one” (total number of 400 data examples). Each

recording is described by 5,000 dimensions.

Time Stretch Cell Images: This dataset corresponding to cell images was from time
stretch flow through microscope described in [CMT16][GAG12][LMC19]. Using a pair of
diffraction gratings, a femtosecond laser pulse is converted into a collimated 1-D spatial
rainbow. When this spatially and spectrally dispersed pulse illuminates the sample, the spa-
tial information is modulated onto the optical spectrum. Using a low-loss dispersive fiber,
the spectrum is then mapped into time and stretched such that it is slow enough to be
digitized by a realtime analog to digital converter. In order to achieve high sensitivity under
single-shot operation, the dispersive fiber is pumped to create simultaneous Raman amplifi-
cation and time stretching. The sample was blood cells flowing serially through a microfluidic
channel, and the details of which have been described in our earlier publications [CMT16].
The classification task amounts to differentiating between three cases: the background, the
white blood cells (OT-II hybridoma T-cells), and the colon cancer cells (SW-480 epithelial)
[CMT16]. This dataset corresponds to a random sample of 600 observations equally dis-
tributed between the three classes (i.e. background, normal, and cancer). Each data sample

is described by 128 dimensions.

2.7.2 Mathematical Description

Here we provide a mathematical description of the Nonlinear Schrodinger Kernel. As il-
lustrated in Fig. 2.1, the data is first modulated onto the E-field of the optical pulse in

spectrum domain with a mapping function, M:
M : data(n) — X (w) (2.1)

where data(n) is the nth sample of the input dataset, X (w) is the laser optical spectrum

after its modulation with the data. If the data is unipolar, it is modulated on the power
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spectrum; if the data is bipolar, it is modulated on the field spectrum.

The data residing on the modulated laser pulse is projected onto another space when
the pulse undergoes a nonlinear transformation characterized by the Nonlinear Schrodinger
Equation (NLSE):

0X PX  B3PX
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5. - P T3Per T e

. «
+ Y X P X — 5 X (2.2)

here z is the propagation distance, 3 is the group delay, #5 and (3 are dispersion parameters,

v is nonlinear coefficient, and ~ is the attenuation coefficient.

The output is obtained by solving the NLSE with an initial condition,

X(t) = /+OOX(w)ej“tdw (2.3)

T 2w

This partial differential equation can be solved numerically via Split-Step Fourier Method
(SSFM). The SSEM assumes that for optical field propagating a small distance h, the dis-
persive and nonlinear effects act independently. More specifically, propagation from z to
z + h can be split into two steps. In the first step, the nonlinearity acts alone in the time
domain. And in the second step, dispersion act alone in the spectrum domain [Agrl2].
Mathematically:

SSEFM(X(t)) = F~1{"? . {F(X(t)) - "V X(0}} (2.4)

here, F is the Fourier Transform, D and N is the dispersion and nonlinear operator respec-

tively, which can be written as:

o : N
D = %52602 + %53003 5 (2.5)
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here Ty is related to the slope of Raman gain spectrum.

The output of the nonlinear propagation is converted into the frequency domain by a

Fourier transform performed by the diffraction grating or the time stretch spectrometer,
+00

Y(w) = / Y (H)e-itdt (2.7)

—00
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Signal detection is achieved by the optical to electrical converter, such as photodetectors,

which measures the optical power:
Ipp =Y (w)[? (2.8)

eta is the photosensitivity, IpD is the photocurrent. The generated photocurrent is then

quantized and send into a classifier in the digital domain:

Cy = H(Z wlpp) (2.9)

here, C, is the predicted class, H is the activation function, w is the trained weights.

2.7.3 Simulations

We first developed an optical simulation model in order to design the experiments and gain
insight into the operation of the Nonlinear Schrodinger Kernel computing. It was further
used to study the dependence of the classification accuracy with respect to signal to noise
ratio and quantization noise of the digitizer which plays a paramount role in single-shot
operations. Two simulations are reported in this chapter: classification on spoken digit

dataset and XOR operation. The simulation parameters are set differently.

Since the spoken digit dataset has a high dimensionality (5000) that exceeds the limit of
the spectral modulator in the experiment setup. So, we perform this task via simulation. In
this simulation, the laser is modeled with a Gaussian pulse centered at 1550nm with 28nm
bandwidth. The peak power of the input laser is set to 82001 . The spectral modulator is
modeled by multiplying the amplitude of the spectrum with the data. The propagation of the
laser pulse inside the highly nonlinear fiber is modeled by solving the Nonlinear Schrodinger
Equation (NLSE) using the split-step Fourier method (SSFM). In this system, the fiber
model was a 50m highly nonlinear fiber with nonlinear index v = 15/(W - km), dispersion D
= —4ps/(nm - km), and dispersion slope S = —0.019ps/(nm? - km) at 1550nm. The optical
loss is 0.02dB/km . The kernel output is resampled to maintain the same dimensionality as

the input data (5000).
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For XOR operation, the laser is centered at 1589nm with a super-Gaussian spectrum.
The spectral bandwidth is 39.1nm to match the bandwidth of the spectral modulator. The
peak power is 20WW. As for the nonlinear optical element, its length is set to 500m with
0.02dB/km optical loss. The dispersion is 1.43ps/(nm? - km). And the dispersion slope is
0.04ps/(nm?-km). The linear model is trained using the output spectrum of the kernel with
four pairs of input: (0,0), (0,1), (1,0), (1,1). The model is then tested with the same data
to show the nonlinear operation the kernel can perform. To further evaluate this technology,
400 pairs of input (x,y) are generated where x,y € [0,1]. The output is tested with the
trained model and the probability of predicting ‘0’ can be calculated.

The software model is implemented in MATLAB and was executed on a server equipped

with 64 GB memory and an Nvidia RTX TITAN GPU with 24 GB memory.

2.7.4 Experiment

The experimental setup is illustrated in Fig. 2.1. Its main components are a mode-locked
laser source, a spectral modulator, a highly nonlinear fiber, and an optical spectrum read-
out mechanism. The data is first linearly interpolated to match the total bandwidth of the
spectrum modulator, then used as an input to shape the amplitude of the spectrum filter
applied on the broadband laser source by the spectral modulator. The spectrally modulated
pulse propagates through the highly nonlinear fiber where the nonlinear evolution happens.
The output is measured with the optical spectrum readout mechanisms such as traditional
grating-based spectrometer or time stretch spectrometer [KCB99]. For every input data
observation, a corresponding spectrum output is measured. The measured spectrum is used

as an input for machine learning classification.

The optical source is a femtosecond mode-locked fiber laser followed by an Erbium-
Doped Fiber Amplifier (EDFA) (ELMO from Menlo Systems). The source produces < 90fs
pulses with 90nm optical bandwidth centered at 1560nm with 30W optical peak power.

The spectral modulator is a Waveshaper model 1000 S/L by Finisar which operates in
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the L-band from 1567nmtol1609nm with a 42nm bandwidth. It can control the amplitude
and phase of an optical pulse by applying a reconfigurable spectrum filter with a 500-pixel
resolution. The highly nonlinear fiber, manufactured by Corning, is a 500m fiber with
nonlinear index v = 11/(W - km), dispersion D = —0.089ps/(nm - km) and dispersion slope
S = 0.04ps/(nm? - km) at 1550 nm. With this information, the dispersion at the center of

the modulated pulse can be approximated:

D1sssnm = Dissonm + S - (15688 — 1550) = 1.43ps/(nm - km) (2.10)

Despite it’s working in the anomalous dispersion regime, the system is still stable be-
cause its optical power is below the threshold for modulation instability. The grating-based
spectrometer is Ando AQ6317B optical spectrum analyzer which is set to work at the range
from 1550nm to 1630nm for Brain data (Fig. 2.4c) with 0.1nm resolution. For the cell
images, the grating-based spectrometer (Fig. 2.4b) ranges from 1560nm to 1620nm. The
time stretch spectrometer is a —101ps/(nm-km) dispersion compensation fiber followed by a
10G H z Discovery DSC-R402 photodetector and a Tektronix DPO 71604 Oscilloscope with
16GH z electric bandwidth and 50G Sample/s sampling rate. For classification tasks, the
output of the Nonlinear Schrodinger Kernel is sampled so that it has the same dimensions

as the input data.

2.7.5 Machine Learning Algorithms

Ridge Regression: Ridge regression [HK70] is used in our experiments as a baseline machine
learning model. In the context of linear regression, the goal is to fit a function f(x;) = a’x+b

to the pairs of training data samples (z;, y;) that minimizes the residual sum of square (RSS):

RSS = Y (f(w) — i) (211)

i=1

By concatenating ‘1’ to each input vector x;, the RSS can be written as a vector product:
RSS = (XTa - Y)'(XTa-Y) (2.12)
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In ridge regression, a regularization term is added based on the norm of the model a:

RSSM’dge = Z((CLT;UZ- - %)2 + Oé|a‘2) = RSS + oz|a]2 (213)

i=1

where model vector a is obtained as follows:
a=(XXT+al) ' Xy (2.14)
and [ is the identity matrix.

Random forest (decision tree): A random forest [Ho95] is an ensemble learning method
that relies on a set of independently trained random forests. Random forests have successfully
been used for classification and regression problems. They operate by constructing multiple
random forests at the training phase, followed by aggregating their results by a majority
vote (classification) or averaging (regression). In most applications, the random forest model

tends to provide higher accuracy than single random forest approaches.

In a random forest, each tree is constructed according to a randomly sampled subset of
observations and a randomly sampled set of variables. This allows a diverse set of learners
that are then averaged, thus reduces the variance associated with a single tree, and decreasing
the generalization error. In this work, the trees are constructed by the CART tree fitting
method [BFS84]. At each iteration, a set of observations is split into disjoint subsets, such
that a loss criterion is minimized. The resulting representation is a tree data structure in
which each internal (non-leaf) node is labeled with a variable name and a corresponding split
value, while a leaf is labeled with a fitted value, the class label for classification problems,

or a numerical value for regression problems.

Spectral Regression for Kernel Discriminant Analysis (SR-KDA): Spectral regression (SR-
DA) [CHHO7] is a method developed to solve discriminant analysis as formulated in ridge
regression RSS,iq5 but using linear graph embedding (LGE). SR-DA proposes to can first
find eigenvector y by solving Wy = ¢Dy and then solve a regularized linear least square
problem:

argmin |y — X" all> + &|a] (2.15)
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This two-step process is termed spectral regression (SR) that enjoys two key benefits: (1)
W and D are usually sparse and hence an efficient algorithm Lanczos is available to obtain
eigenvectors; (2) Various matured techniques are available to solve the linear least squares
(e.g., ridge regression). SR-DA is an application of SR in solving a supervised learning
problem where y contains class labels for X. In this case, W becomes a block-diagonal with
Wi; equal to 1/nC' when both z; and z; belong to class C' and nC' is the number samples
belonging to class C. SR-KDA [CHH11] generalizes SR-DA by projecting the input data
onto a high-dimensional space via a kernel K, and class labels y to obtain vectors «. This

is achieved using a Cholesky decomposition:

r = chol(K + d1) (2.16)

a=7r\("\y) (2.17)

Support Vector Machines (SVM): A support vector machine (SVM) [CV95] is a super-
vised machine learning technique for classification problems where each sample z; € X is
labeled by y; € {—1,1}. SVM aims at finding the optimal separating hyperplane that mini-
mizes the misclassification rate on the training set while maximizing the sum of distances of
the training samples from this hyperplane. Formally, this problem accounts for finding the

parameter «, such that:
1
argmgn iaTQa — elsubjecttoy’a =0,0<a; <C,i=1,...,n (2.18)

where C' is a constant that controls the amount of penalty on the error term during the

minimization process, e is the vector of all ones, and @ is a matrix defined as:

Qij = yiy; K (21, 7;) (2.19)

This minimization provides a solution for the following function:
n

flz) = Z(yiOéiK($7 ;) + b) (2.20)

i=1
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Neural Network: Feedforward networks consist of a series of layers. The first layer has
a connection from the network input. Each subsequent layer has a connection from the
previous layer. The final layer produces the network’s output. Feedforward networks can be
used for any kind of input to output mapping. A feedforward network with one hidden layer
and enough neurons in the hidden layers can fit any finite input-output mapping problem. By
using stochastic gradient descent with momentum (SGDM) optimizer together with cross-

entropy loss function, we train a 7-layer feedforward network.

2.7.6 Machine Learning Evaluation Methodology

Through our experiments, we aim at evaluating the effectiveness of the Nonlinear Schrodinger
Kernel on various datasets and machine learning algorithms. The original input is processed
through the Nonlinear Schrodinger Kernel to produce a modified signal that is used as input
to a classifier. Standardization of the data is performed by subtracting the median for each

feature. After standardization, the total range is rescaled in [0, 1].

All our classifications are performed using three-fold cross-validation. For a trained clas-
sifier, the receiver operating characteristics (ROC) curve is used to describe its sensitivity
and specificity and summarized as the area under ROC (AUC) which provides a quantita-
tive robust measure of classifier performance. The AUC parameter serves as an effective
analysis metric for finding the best-performing classifier algorithms. The hyperparameters
of each model are optimized independently using nested cross-validation, which is applied to
the training dataset at each iteration. For cell image dataset, since it has three classes, we
calculate the average AUC of three one vs. rest classifiers [PD03]. When studying the effect
of nonlinearity, we calculate the classification error via 3-fold cross-validation using a linear

SVM classifier.

Memory and compute resources may impose restrictions on the precision of the models
and their input, and often limit deployment of the machine learning models on the edge

devices. As part of our experiments, we tested the sensitivity of the model to both degree of
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quantization and level of noise, as measured by the relative mean squared error (MSE). The
quantization is applied to both the data (after Nonlinear Schrédinger Kernel) and model
weights. In addition to that, additive noise (from 0% to 10%) is also used for further

distorting the data.

2.8 Appendices

In this section, we present (1) Example output of the Nonlinear Schrodinger Kernel. (2)

additional simulations showing the immunity to noise,

2.8.1 Example Output of the Nonlinear Schrodinger Kernel

Here we provide example output of the Nonlinear Schrodinger Kernel. Fig. 2.7 shows the
example output of Nonlinear Schrodinger Kernel for all datasets. Compared to cell image and
brain ICP, spoken digit dataset gives a much more complicated signal with high-frequency

component and large dynamic range. Therefore, it requires higher quantization precision.

2.8.2 XOR Immunity to Noise

Here we demonstrate the robustness of the Nonlinear Schrodinger Kernel in nonlinear XOR
operation. Fig. 2.8 demonstrates the robustness of the exclusive or (XOR) logic operation
(which is the standard benchmark) by Nonlinear Schrédinger Kernel in presence of (a) quan-
tization noise and (b) additive noise. In these simulations, the nonlinear element was the
highly nonlinear fiber used in our experiments and described in the Materials and Methods
section. The system can operate with a digitizer resolution as low as 2 bits and large additive
noise. These results supplement the dependence of classification accuracy with bit depth and

signal to noise ratio presented in the main text.
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Figure 2.7: Example output of the Nonlinear Schréodinger Kernel for (a) Brain intracranial

pressure (ICP) (b) Spoken digit (c) Cell image with grating-based readout (d) Cell image

(Time stretch readout). The horizontal axis is the sample number, the vertical axis is the

normalized amplitude level. The (c¢) and (d) are similar because the data are the same.

They’re only different in spectrum readout
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Figure 2.8: Exclusive OR (XOR) logic gate simulation with linear predictor and Nonlinear
Schrodinger Kernel showing immunity to (a) quantization noise, and (b) additive noise. Since
the output of the Nonlinear Schrodinger Kernel is analog, the resolution and sampling rate
of the digitizer can impact the prediction. This figure shows the impact of quantization and
noise on the classification when performing the XOR task. The experimentally measured
optical spectrum after the Nonlinear Schrodinger Kernel is used to train a linear regression
model. Then quantization and additive noises are added to the data. Inference is performed
using the trained model on the noisy data and the values of the model output are recorded.
In (a), we show the effect of quantization on the inference output. In (b), we show the effect
of noise on the quantization output. Even at 2-bit quantization or with 30% additive noise,
the linear regression output still very close to the ground truth. These results show that the

Nonlinear Schrodinger Kernel offers strong robustness against noise
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CHAPTER 3

Low Latency Computing for Time Stretch Instruments

In the last chapter, we introduced a novel computing framework, the Nonlinear Schrodinger
Kernel. We demonstrate that this technique utilizes optical nonlinearities to accelerate
machine learning data classification by projecting the data onto an implicit high-dimensional
space in which classification accuracy is enhanced. A major limitation of this technique is
the fixed optical transfer function, which prevents training and generalizability. Here we
show that the optical kernel can be effectively tuned and trained by utilizing digital phase
encoding of the femtosecond laser pulse leading to a reduction of the error rate in data

classification.

3.1 Experimental System

Fig. 3.1 shows the system block diagram featuring closed-loop optimization of the optical
kernel. This system contains a highly tunable Nonlinear Schrodinger Kernel and a digital
feedback loop. In the tunable kernel, the input data(n) is mapped into the spectrum domain
(data(w)) and amplitude modulated onto a supercontinuum femtosecond laser pulse. The
data then travels through a nonlinear optical element where it is nonlinearly transformed.
The transformed data is finally captured by a spectrometer and sent to a backend digital
classifier which adopts a light machine learning model. To avoid increasing data dimensions,
the output spectrum of the kernel is sampled to match the dimension of the input data. The
tuning is achieved by modulating a spectral phase ¢(w) onto the laser pulse during spectral

modulation, equivalent to encoding the phase of the input data. This ‘phase code’ modifies
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Figure 3.1: Optimization of a tunable Nonlinear Schrodinger Kernel. The system contains a
tunable Nonlinear Schrodinger Kernel and a digital feedback loop. In the tunable Nonlinear
Schrodinger Kernel, the phase-encoded input data(n) is mapped onto the spectrum of a
supercontinuum laser via spectral modulation. The modulated laser propagates through
a nonlinear optical element, where the nonlinear process is engineered by the phase code
¢(w). The output spectrum of the nonlinear optical element S,,; is then acquired using a
spectrometer and sent to a classifier F. The classification error is calculated by comparing
the predicted class Cpyegict and the ground truth Cgr. This error is used as an input to an
optimization algorithm to update the phase code for achieving lower classification errors.

The details can be found in the Materials and Methods (section 3.6).
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the nonlinear interaction in the nonlinear element and hence engineers the optical kernel.
In the digital feedback loop, the algorithm compares the predictions with the ground truth
and calculates the average classification error for the whole dataset. Subsequently, a new
phase code is generated by an optimizer who aims at minimizing this error. The system runs
iteratively to obtain the optimal phase code, through which the optical kernel is trained for
optimal performance. The details of the experiment system can be found in the Materials

and Methods (section 3.6).

3.2 The Crucial Role of Optical Nonlinearity

In Fig. 3.2 we show via simulation the evolution of a femtosecond pulse, that has been
spectrally modulated with data, through the nonlinear optical element. The output spectrum
is classified using a simple machine learning algorithm. Also shown in Fig. 3.2 is the error
produced by using a linear support vector machine (SVM) classifier as the digital backend.
Here the nonlinear kernel is fixed, i.e. not tuned. As described in the Methods section, the
data is the 1-D linescan images of biological cells lowing through a microfluidic channel. The
images are captured by a time stretch microscope [CMT16][LMC19]. The dataset contains
three types of images: (1) no cell is present, (2) a normal cell, and (3) a cancer cell. The

classification task is to distinguish three different types.

In Fig. 3.2a, a linear kernel is simulated by setting the nonlinear coefficient to zero.
As expected, the optical spectrum remains unchanged. As shown in Fig. Fig. 3.2c¢ the
classification error remains almost unchanged at 14.9% compared to the 14.7% baseline
error obtained by feeding the data directly into the backend digital classifier. Fig. Fig. 3.2b
shows the propagation of the same spectrally modulated pulse in the nonlinear element. To
avoid an increase in data dimension, we operate in the spectrum narrowing regime. This
occurs when the pulse undergoing self-phase modulation has a negative chirp [Agr12]. The

output spectrum is sampled such that it has the same dimensions as the input data (128) as
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Figure 3.2: (a) The evolution of the optical spectrum in the linear optical kernel where
nonlinear coefficient v = 0/(W-km)(b) The evolution of the optical spectrum in the nonlinear
optical kernel where v = 11/(W - km). (c) Bar chart comparing the classification error for
three cases: the baseline error calculated without kernel (blue, 14.7%), the linear optical
kernel (green, 14.9%), and the nonlinear optical kernel (orange, 7.8%). The baseline error is
calculated by directly feeding the input data to the digital backend, which in this case is a
linear support vector machine (SVM) classifier. For (a) and (b), the horizontal axis is the
wavelength, the vertical axis is the propagation distance (normalized to the effective length
of the optical element). The color indicates the optical intensity in the log scale with color

bar on the side. The red arrow point to the propagation direction.
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explained in the Methods section. The nonlinear transformation reduces the classification
error to 7.8%, confirming the utility of the optical kernel in enhancing machine learning

without sacrificing (ie. increasing) the data dimensionality.

Comparing the effect of linear and nonlinear kernels, it can be observed that the enhance-
ment in classification accuracy cannot be achieved without optical nonlinearity. However,
as a proper machine learning technique, the nonlinearity must be tunable so it can be op-
timized. Previous research has demonstrated the successful control of optical nonlinearity
using the spectral phase modulation of the input light [CBJ05]. Here we apply to same
technique to tuning and optimization of the nonlinear optical kernel where the optimization

is guided by the classification error.

3.3 Training of Optical Nonlinearities for Machine Learning

In this section, we demonstrate that the nonlinear optical kernel can be tuned by applying
phase encoding to the input data. As mentioned in the introduction, the intuition behind
this approach is as follows. Nonlinear optical interactions such as self-phase modulation,
Four Wave Mixing (FWM), etc. are coherent in nature, i.e. they are sensitive to the phase
of the input pulse. It then follows that manipulating the input phase influences the output

produced by the optical nonlinearity.

The experimental implementation is shown in Fig. 3.1. Spectral phase modulation
within a digital feedback loop controls the nonlinear optical interactions and hence tunes
the optical kernel. A genetic algorithm arrives at the optimal phase code that minimizes the
error of the digital classifier. The results for three datasets are experimentally demonstrated.
The datasets described in the Materials and Methods (section 3.6) include cell images (Fig.
3.3a) [CMT16][LMC19], phalanges bones outline (Fig. 3.3b)[BLB17], and EEG (Fig. 3.3c)
[DG17].

Fig. 3.3 shows that, in all three datasets, both the trained (orange), as well as the fixed
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Figure 3.3: Optimization of Nonlinear Schrodinger Kernel on three datasets: (a) Time stretch
biological cell image (b) Phalanges bones outline (c¢) Electroencephalogram (EEG). In each
bar chart, the classification error for three cases is compared: Baseline error (gray), untrained
Nonlinear Schrodinger Kernel (blue), and trained Nonlinear Schrodinger Kernel (orange).
The baseline error is calculated by feeding the input data directly into the digital backend

— a linear support vector machine (SVM) classifier. All the results are calculated via 3-fold

cross validation.
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(untrained) kernel (blue), produce a lower error rate compared to the baseline case where
no optical kernel is used (gray). However, the trained optical kernel leads to a lower error
than the fixed kernel. The baseline error is obtained by feeding the input data directly
to the digital backend. The results prove that the phase encoding can effectively tune the
performance of the Nonlinear Schrodinger Kernel, and combined with the digital feedback

loop renders the optical kernel trainable.

In these experiments, the phase code is generated using a polynomial with two tunable
parameters for the second-order and the third-order coefficients. This scheme can be eas-
ily expanded to more parameters to provide additional degrees of freedom. Details of the

experiments are also in the Materials and Methods (section 3.6).

3.4 Limitations

Some of the limitations of this technique and potential future research are as follows. First,
the maximum allowed dimension of the input data is dependent on spectral modulation. In
our experiments, we use a commercial waveshaper (details in the Methods section) with 500
pixels. This limits the maximum dimension of the input data to 500. Second, even though
the kernel can be trained, the performance in terms of classification error is still data-
dependent, as seen in 3.3. Such is the case with all machine learning techniques because
they are statistical in nature (as opposed to deterministic). One possible direction for future
research is to correlate the classification performance with the properties of the input data

to identify the type of data for which optical kernel computing is most effective.

3.5 Summary

The recently introduced optical kernel computing utilizes optical nonlinearities to transform

data such that nonlinear classification can be done with a computationally light linear digital
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classifier. The so-called Nonlinear Schrédinger Kernel computing is ideal for low latency
classification of data that is modulated onto the spectrum of femtosecond lasers. Such is
the case with time stretch imaging and spectroscopy instruments [MCB17][ZCJ22]. In the
previous implementation of this technique, the property of the kernel was entirely governed
by the nonlinear coefficient of the optical medium. Hence the kernel could not be trained
or optimized as required in machine learning tasks. In this chapter, we presented a solution
to this predicament by introducing spectral phase modulation of the input pulse within a
digital feedback loop. Phase modulation influences how data is transformed by nonlinear
optical interactions and allows the optical kernel to be trained. The training is shown to

reduce the classification error on three diverse datasets.

3.6 Materials and Methods

In this section, we provide details of (1) experimental implementation for kernel optimization,
(2) simulation study showing the critical role of optical nonlinearities, (3) mathematical

formulation of the optical kernel, and (4) the datasets and machine learning model.

3.6.1 Experiments

The physical implementation of the closed loop optical kernel computing system follows Fig.
3.1. The supercontinuum laser is a mode-locked Erbium-doped fiber laser (ELMO) followed
by an Erbium-doped fiber amplifier (ELMA), both from Menlo Systems. It produces < 90fs
laser pulses centered at 1560nm with 90nm bandwidth. The approximate pulse peak power
is 30 W after the amplifier. The data modulates the optical spectrum using a Finisar
(now II-VI / Coherent) Waveshaper model 1000 S/L. It operates in the L band (1567nm
1609nm) with a 500-pixel resolution. The Waveshaper performs both amplitude and phase
modulation simultaneousl. The amplitude is the input data (scaled between 0 to 1), while

the phase is the (phase) code that is applied to tune the nonlinear effects. The nonlinear
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optical element is a 500m highly nonlinear fiber (HNLF) from Corning. It has a nonlinear
coefficient v = 11/(W - km), a low dispersion of D = 1.43ps/(nm - km), and dispersion
slope S = 0.04ps/(nm? - km) at 1588nm. An Ando AQ6317B optical spectrum analyzer
with 0.1nm resolution measures the output spectrum. The sampling range of the spectrum
analyzer is set differently for each dataset depending on the actual bandwidth of the output.
For the cell image and phalanges bones outline dataset, it is 1545nm  1635nm. For the
EEG dataset, it is 1550nm  1630nm. The measured spectrum is resampled so that it has
the same dimension as the input. It is then min-max standardized and sent to a linear SVM

(support vector machine) classifier.

The digital feedback loop is implemented in MATLAB on a computer with 16 GB RAM
memory. It runs iteratively to optimize the performance of the Nonlinear Schrodinger Kernel.
In each iteration, the classification error rate is the average over the entire dataset and is
calculated via 3-fold cross validation. It is sent to the optimizer which is a genetic algorithm
[Hol75] from MATLAB Global Optimization Toolbox. To minimize the classification error,
it compares the result from the current iteration with the previous ones and generates the
phase code for the next iteration. In this paper, the phase code is calculated by a third-order

polynomial with adjustable coefficients,
o(w) = aw?® + bw? (3.1)

here, a and b are the tunable coefficients generated by the optimizer. The first-order co-
efficient is not taken into consideration as it simply causes a constant delay and does not
affect the nonlinear optical process. The optimization results are shown in Fig. 3.3. The
optimal coefficients for the cell image dataset (Fig. 3.3a) are shown in Table 3.6.1. The op-
timized classification error, Erri.qineq are also attached in comparison with the unoptimized

classification error ET7yntrainea 201d the baseline error Er7p,setine-
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Cell Imgage Phalanges Bones EEG

a(x1072%) 1.353 0.854 1.022
b(x10737) -3.628 0.925 -4.742
Erryained 4.5% 27.5% 30.7%
Erruntrained 8.0% 31.5% 36.04%
Erryasetine 15.0% 35.2% 30.7%

Table 3.1: Optimal Phase Code

3.6.2 Insight into the Critical Role of Optical Nonlinearity

To assess the role of optical nonlinearities in the operation of the Nonlinear Schrodinger Ker-
nel, a computer model is created in MATLAB. The supercontinuum laser source is modeled
as a transform-limited pulse with a supper-Gaussian spectrum centered at 1588nm. It has a
40nm bandwidth consistent with the passband of the spectral modulator (waveshaper). The
spectral modulation is modeled by multiplying the input data (time stretch cell image data,
scaled between 0 to 1) by the laser spectrum. For these simulations, the phase code is set to
0 to simulate the unoptimized (open loop) system. The modulated laser pulse is then sent
through a nonlinear optical element, in this case, an HNLF. The complex propagation in the
fiber is modeled by solving the time domain Nonlinear Schrodinger Equation (NLSE) using
the split-step Fourier method (SSFM) implemented in MATLAB. This algorithm divides the
fiber into short segments (steps) to separate different effects, computing iteratively to obtain
an approximate solution [Agrl12]. In each step, the spectrum of the optical pulse is recorded
to track the evolution of the input, as shown in Figure 2. The output of the HNLF is mea-
sured using a spectrometer, which is modeled by a fast Fourier transform (FFT) and absolute
square. Finally, the collected spectrum is resampled so that it has the same dimension as

the input, mean-std standardized, and sent to a linear SVM classifier.

For the simulation shown in Fig. 3.2, the length of the fiber is set to 500m. The optical

loss is 0.02dB/km, the dispersion coefficient (D) is 1.43ps/(nm - km), the dispersion slope
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(S) is 0.04ps/(nm? - km) at 1588nm, and the optical power P is 20WW. For the linear
kernel, the nonlinear coefficient (v) is Orad/(W - km). While for the nonlinear kernel, v =
1lrad/(W - km). The spectrum is sampled from 1570nm to 1610nm with 128 sampling

points to match the dimension of the input data.

The MATLAB model runs on a server equipped with 64 GB memory and an NVIDIA
RTX TITAN GPU with 24 GB memory. The SSFM algorithm is modified from the open-

source function ssprop and accelerated by implementation on GPU using CUDA.

3.6.3 Mathematical Model

The mathematical description of the Nonlinear Schrodinger Kernel computing is provided in
this section. As shown in 3.1, the data is first mapped into the optical spectrum by assigning
each entry of the data to a frequency. In the current experiments, the data resides in a file
and is modulated onto the femtosecond pulse spectrum using a waveshaper. The waveshaper

performs the following mapping M:
M : data(n) — data(w) (3.2)

data(n) is the input where n is its n-th entry, and w is the corresponding optical frequency.

This filter is then applied to a supercontinuum laser pulse:

Ein(w) = y/data(w) - Epsere?™) (3.3)

here, Ej,ser is the supercontinuum laser source, ¢(w) is the phase code which is also applied by
the waveshaper for the purpose of training. E;, is the modulated pulse which will then enter
the nonlinear stage. The data is modulated onto the power spectrum, which is equivalent
to multiplying its square root by the E-field. The modulated laser is sent into a nonlinear

optical element, where complex nonlinear transformation is governed by the NLSE:

agit) — (D + N)E@®) (3.4)
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here E is the electric field of the optical pulse, z is the propagation distance, D is the
dispersion operator, and N is the nonlinear operator, which can be calculated from the

parameters of the nonlinear optical element [11]. By solving NLSE using the initial condition:

1 ptoe .
Ent = —/ e By (w)dw (3.5)

T J—o0
The output FE,,(t) is thus obtained. The nonlinearly trasnformed input data is subse-

quently acquired along with the laser spectrum S,,;(w). According to the Fourier transform,

the spectrum is:

Eput(w) = / T et ()t (3.6)

—00

Sout(W) = | Egue (W) (3.7)

The classification is then performed on the measured output spectrum:
Copredict = F(Sout) (3.8)
here, C)cqict is the predicted class, and F' is a linear SVM classifier. We chose the linear SVM

for its ubiquity and simplicity. Other classifiers can also be used.

In the feedback loop, the classification error err(Cpyredict, Car) is calculated by comparing
the prediction and the ground truth. Since Cpeqic is a function of phase code p(w), we can

obtain the optimal ¢(w) by minimizing the error:

H%H)l eTT(Cpredicta CGT) (39)
p(w

In this paper, the optimizer is a genetic algorithm, as mentioned in the experiments

section.

3.6.4 Datasets and Machine Learning Model

The performance of the trained Nonlinear Schrédinger Kernel is evaluated with three datasets:
time stretch cell image [CMT16][LMC19], phalanges bones outline [BLB17], and EEG [DG17].

The details are provided as follows.
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The time stretch cell image dataset is the image of cells acquired in time stretch micro-
scopic flow cytometry [CMT16][MCB17]. In this setup, a femtosecond laser pulse is spatially
dispersed into a collimated 1-D rainbow using a pair of diffraction gratings. The rainbow
illuminates a microfluidic channel while sample blood cells pass by. Through this, the spatial
features of the illuminated cells are modulated onto the spectrum of the femtosecond laser
pulse. Those features are then read out in realtime using a time stretch spectrometer, where
a low-loss dispersive fiber maps the spectrum in time. The temporal waveforms that mimic
the optical spectrum are digitized by a realtime analog to digital converter. Each frame is
one linescan of the cells moving along with the microfluidic flow. The details of the setup are
described in our earlier publications [MCB17]. The dataset contains three types of linescans:
the background, the colon cancer blood cells (SW-480 epithelial), and the white blood cells
(OT-II hybridoma 497 T-cells). Each class includes 200 observations (waveforms), and each

waveform has 128 dimensions (spatial features). The details can also found in 2.7.1

Phalanges bones outline is an open-source dataset from the UCR Time Series Classifi-
cation Archive [BLB17]. It studies the correctness of an automatic phalanges bone outline
extraction algorithm. The algorithm is applied to X-ray images for extracting the outlines
of three bones of the middle finger (phalanges). The extraction is then evaluated by three
human evaluators. This paper uses a selection of 400 observations evenly distributed in two
classes: correct outlines and incorrect outlines. The details of the dataset can be found in

[Dav13].

The EEG dataset is an open-source dataset from UCI Machine Learning Repository
[DG17]. It comes from the test that measures the brain’s electrical activity. The data is
collected using the Emotiv EEG Neuroheadset for studying the correspondence between
EEG signals and human eye motions. This paper uses a subsample of 400 observations from
the dataset with two eye motion states (200 for each): eye open and eye closure. Each

observation has 14 dimensions.

The backend digital classifier in this study adopts a linear SVM model [Vap63]. The
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classification errors are calculated via three-fold cross validation.
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CHAPTER 4

Additional Study on the Nonlinear Schrodinger Kernel

In previous chapters, we introduced a novel low-latency computing technology for ultrafast
femtosecond instruments. It utilizes the complex nonlinear process in the optical components
to project the data onto an implicit high dimensional space, where the classification can be
achieved using simple lightweight digital classifiers. Since this projection is implicit, there’s
no actual increase in the data dimension. More importantly, the inference latency of this
Nonlinear Schrodinger Kernel is in microsecond timescale, which is orders of magnitude lower

than the traditional numerical kernel.

In this chapter, we report additional studies on the characteristics of the Nonlinear
Schrodinger Kernel. We first explore the further acceleration of the optical kernel, and
then investigate its dimension effect. Finally, we describe some future works that can be

done to help understand and deploy this optical kernel.

4.1 Accelerating Nonlinear Schrodinger Kernel

The Nonlinear Schrodinger Kernel has shown impressive acceleration of machine learning
data classification. It outperforms the traditional numerical method by orders of magni-
tude (Section 2.3). To further accelerate classification, we perform a theoretical study on
a simulated Nonlinear Schodinger Kernel using the model built in chapter (3). We divide
the system into two parts, the physical processing in the optical system, and the digital

computing in the computer. In this section, we first demonstrate that we can accelerate
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the physical processing by substituting the lengthy HNLF with an integrated waveguide,
then demonstrate that we can accelerate the digital computing by implementing the linear

classifier onto an edge device.

4.1.1 Acceleration in the Optical System

In previous chapters, we report a Nonlinear Schrodinger Kernel using a highly nonlinear
fiber (HNLF). Even with fascinating results, it can hardly deny that meters - even hundreds
of meters of fibers are required for the system to properly function. On the other hand, the
same 3rd-order optical nonlinearities are also present in integrated waveguides composed of
materials such as silicon and silicon nitride. Since the scale of the waveguides is usually
in cm or mm, if implemented into the kernel, can easily achieve picosecond latency. We
demonstrate the successful operation of an optical kernel with a waveguide on the XOR task
(Fig. 4.1). Two different waveguides are used in this simulation: silicon [BJO4][LEP17] and
silicon nitride [TON18]. The silicon waveguide has a dimension of 220nm x 480nm with
10mm in length. Such a waveguide has —850ps/(nm - km) dispersion and 16000/(W - km)
nonlinear coefficient at 1588nm (center wavelength of the modulated pulse). The silicon
nitride has a dimension of 550nm x 300nm with a length of 0.2mm. The dispersion at
1588nm is 223.68ps/(nm - km) and nonlinear coefficient is 500,000/ (W - km). In both cases,
we use a laser source with 50W peak power and 45nm bandwidth. The optical spectrum
after Nonlinear Schrédinger Kernel is read out by a spectrometer with 200nm bandwidth

(1500nm to 1700mm) and 0.1nm resolution.

4.1.2 Acceleration in the Digital Classifier

The successful operation demonstrated in Fig. 4.1 shows that the integrated nonlinear
waveguide can be used in place of the lengthy HNLF. This reduces the delay caused by the

propagation inside the nonlinear optics of several orders of magnitude. Another bottleneck
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. Prediction Prediction
Prediction

. after Nonlinear after Nonlinear
XOR before Nonlinear vy -
schrédinger Kernel Schrédinger Kernel Schrédinger Kernel
& (Silicon) (Silicon Nitride )
Input  Ground Truth Score Output Score Output Score Output
00 0 0.99 1 -0.88 0 -0.99 0
01 1 1.05 1 0.95 1 1.00 1
10 1 -1.05 0 1.00 1 1.00 1
11 0 -0.99 0 -1.07 0 -1.00 0

Figure 4.1: The latency can be greatly reduced by using an integrated waveguide instead of
an optical fiber to induce 3rd-order nonlinearities. Exclusive OR (XOR) operation results
of the Nonlinear Schrodinger Kernel using an integrated waveguide as nonlinear optical
components. Results are from numerical simulations. Two different waveguides are used in
this simulation using the model built in chapter 3: silicon [BJ04][LEP17] and silicon nitride
[TON18]. The silicon waveguide has a dimension of 220nm x 480nm with 10mm in length.
Such a waveguide has —850ps/(nm-km) dispersion and 16000/ (W - km) nonlinear coefficient
at 1588nm (center wavelength of the modulated pulse). The silicon nitride has a dimension
of 550nm x 300nm with a length of 0.2mm. The dispersion at 1588nm is 223.68ps/(nm-km)
and nonlinear coefficient is 500,000/(W - km). We use a laser source with 50W peak power
and 45nm bandwidth in both cases. The optical spectrum after Nonlinear Schrodinger Kernel
is read out by a simulated spectrometer with 100nm bandwidth and 0.1nm resolution. A
linear support vector machine (SVM) is trained using the spectrum. The table shows the
predictions of the trained model as well as the corresponding scores. It demonstrates that
the waveguide can also be used as a nonlinear optical component and could greatly reduce

the latency because of the compact size.
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Figure 4.2: Inference latency of a Nonlinear Schrédinger Kernel using a waveguide as the non-
linear element and Fied Programmable Gated Array (FPGA) as digital backend. The waveg-
uide used in this system is a 1.3mm silicon nitride with a dispersion of —233ps/(nm - km),
and a nonlinear coefficient of 500000/(W - km). The FPGA parameters are taken from a
Xilinx Zync UltraScale+ RFSOC ZU42DR.

is the speed of the digital classifier, as shown in Fig. 2.4, where the inference latency of
the optical kernel is almost the same as a linear classifier. This can be resolved by simply
implementing the digital linear classifier onto an edge device, such as a Field Programmable
Gated Array (FPGA). Here we analyze the inference latency of a kernel built on an integrated
silicon nitride waveguide and an FPGA as a digital backend. The results are shown in Fig.

4.2. The data used in this example is the time stretch cell image data [CMT16][LMC19].

In this system, the length of the silicon nitride waveguide is 1.3mm, so the propagation

latency is:

Lgi
tprop = n—22NL — 941 3¢ — 3/299792458 = 8.67¢ — 125 = 8.67ps (4.1)
C
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here t,,.,, is the pulse propagation time inside the waveguide, n is the refractive index, c is

the speed of light.

The latency of the digital classifier is determined by the computation speed of the FPGA.
For a Xilinx Zync UltraScale+ RFSOC ZU42DR, the computation of a linear classifier re-
quires 25 clocks. Using an 800 MHz clock, the latency is 25 x 1.25ns = 31.25ns

As a result, the total inference delay is 31.258 ns, which is another three orders of mag-
nitude lower than the original Nonlinear Schrodinger Kernel. Since the FPGA can only
perform simple computations, highly nonlinear models such as radial basis function (RBF)
cannot be implemented. Therefore, the acceleration brought by the optical kernel becomes

5 orders of magnitude compared to the numerical RBF Kernel.

4.2 Dimension Effect of the Nonlinear Schrodinger Kernel

Next, We turn to the dimension study. In this system, the data is mapped onto the optical
spectrum, and the nonlinear transformation is achieved by shaping this spectrum. This is
a highly dynamic process, which can be affected by various parameters, including the value
of the 2nd-order dispersion [Agr12]. Fig. 4.3 shows examples of nonlinear processes inside
the nonlinear optical component under different conditions. Here, the nonlinear processes
are illustrated by plotting the evolution of the optical spectrum of the laser (modulated
with time stretch cell image data[CMT16]). Three cases: normal dispersion, anomalous
dispersion, and zero dispersion are shown here. For normal dispersion, there’re two stages
of evolution. In the first stage, when the peak power of the optical pulse is high, self-
phase modulation (SPM) dominates, which results in the broadening of the laser spectrum.
During this, however, group velocity dispersion also gradually brings down the peak power
which is essential for SPM. This led to the second stage, where the dispersion dominates
the process and the optical spectrum remains unchanged, as shown in Fig. 4.3a. When it

comes to anomalous dispersion 4.3b, the situation becomes more complicated. As a result
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Figure 4.3: The evolution of the laser spectrum during nonlinear propagation in Nonlinear
Schrodinger Kernel working in (a) Normal dispersion (b) Anomalous dispersion and (c) Zero
dispersion regimes using time stretch cell image dataset as input. This nonlinear process is
illustrated using 2-D heatmaps, with the horizontal axis as the wavelength, and the vertical
axis as the pulse propagation distance (normalized to the effective length of the optical
medium). The horizontal axis for all three cases is set to the same range to show the input
spectrum is the same. For the zero dispersion case in (c), however, the output spectrum is
far broader than the other two cases, thus an inset is placed to show the evolution of the full
spectrum. The color indicates the optical intensity in the log scale with a color bar next to
each figure. The red arrow point to the propagation direction. The dashed red line shows

the trend of spectral evolution. Both spectral broadening and spectral narrowing can be

observed.

of fiber dispersion, the laser is positively chirped during the initial stage of propagation.
The chirping then interacts with fiber nonlinearity, compressing the optical spectrum. For
zero dispersion, since the peak power of the temporal pulse is kept as is all the way through
the evolution with negligible loss, it accumulates huge nonlinearity. As a result, significant

spectral broadening can be observed in Fig. 4.3c.

Since the data is mapped onto the spectrum of the femtosecond laser pulse, spectral
broadening and compression also affect the dimension of the data. The spectral broadening

increase the data dimension, and the compression reduces it. To avoid putting an extra
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burden on the digital classifier, we chose to work in dimension reduction, in other words, an

anomalous dispersion regime.

We further evaluate the dimension effect of the kernel. Fig. 4.4 shows the analysis of
dimensions’ influence on the classification error. We control the output data dimension by
varying the sampling resolution of the optical spectrum. We sample the output spectrum
with a various number of sampling points, train a linear support vector machine (SVM)
classifier with the resampled data and then calculate the classification error via 3-fold cross

output () colored
input

validation. The plot has two parts, the dimension reduction (% <1,in
put

in red), and the dimension increase (2424 > 1 [n2P% > () colored in yellow). We observe
put nput

that the classification error drops below the baseline error even before the output reaches the

same dimension as the input. From this, we can conclude that the Nonlinear Schrodinger

Kernel can effectively reduce the data dimension while improving the classification accuracy.

4.3 Further Studies

The Nonlinear Schrodinger Kernel has shown to be an effective technique for ultrafast data
processing in femtosecond instruments. However, there’re a few missing pieces. First of all,
the effectiveness of this technology, though experimentally demonstrated, is not mathemat-
ically proven. Also, the prototype system is bulky, making it difficult to be deployed in real

instruments. Here we provide some potential studies that can be performed in the future.

4.3.1 Mathematical Explanation Behind the Optical Kernel

In previous chapters, to explain the working principle of the Nonlinear Schrodinger Kernel,
we drew an analogy to a numerical kernel function, and name it after the term 'kernel’.
However, this is rather metaphorical. In the next step, we can continue in this direction,

and examine if this is an exact kernel.

In the numerical kernel trick, the kernel function obeys Mercer’s theorem, also known as
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207 Dimension Dimension
Reduction Increase

baseline error without kernel

15

Classification Error

Output Dimension
Input Dimension

Figure 4.4: Classification error vs the data dimension. The horizontal axis is the natural log
of the ratio of the output data dimension to the input data dimension of the optical kernel,
and the vertical axis is the classification error. The blue dots are the classification error
calculated using data with corresponding dimensions, and the red curve is the fit. The gray
dashed line is the baseline classification error calculated by feeding the input data directly
into the digital backend. The output data with different dimensions are obtained by sampling
the original output spectrum with different dimensions. The resampled data and used to
train a linear Support Vector Machine (SVM) classifier. The classification error is calculated

via 3-fold cross validation. This simulation uses the time stretch cell image dataset.
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Mercer’s conditions. It states that an effective kernel function must be symmetric, contin-
uous, and, when written in matrix form, takes the form of a positive semi-definite matrix
[Bar|[Wei]. We can build on the mathematical model reported in previous chapters and

examine whether it satisfies Mercer’s conditions.

This is one direction of explaining the working principle of the Nonlinear Schrodinger
Kernel. Note that our results have shown the effectiveness of this technology regardless it

constitutes a real mathematical kernel or not.

4.3.2 Deployment of the Optical Kernel

Despite the effectiveness of the reported system, it’s a bulky prototype that is difficult to be
implemented in ultrafast instruments. For deployment, certain parts need to be switched to
integrated components. For example, the nonlinear optical media in the current system is a
500m highly nonlinear fiber, which can be replaced by a millimeter silicon nitride waveguide.
The time stretch spectrometer uses a spool of dispersion compensation fiber, which can be
replaced by a millimeter highly dispersive waveguide as well. Also, we can focus on the study
of the new integrated optical sources to replace the mode-locked laser used in the current

system.
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CHAPTER 5

Conclusion

The fast-evolving neural networks have become powerful tools for various applications. How-
ever, the inference latency is orders of magnitude slower than the time scales of the femtosec-
ond instruments [MCB17][ZCJ22]. To solve this problem, we demonstrated a new concept
in Al hardware acceleration that exploits femtosecond laser pulses for computing. This tech-
nology, known as the nonlinear optical kernel, is analogous to a traditional numerical kernel,
functioning by projecting the data into an implicit high-dimensional space and reading it
out using a linear classifier in micro or even nanosecond timescale. It is robust against sys-
tem nonidealities such as quantization and additive noise and requires no increase in data
dimensions. The optimization of the kernel can be achieved by introducing spectral phase

modulation of the femtosecond laser pulse within a digital feedback loop

This technology is a great example of using optical physics for accelerating computing in
Artificial Intelligence (AI), which is part of a bigger emerging paradigm known as physics-Al
symbiosis, where physics and Al accomplish each other. Another example is Al surrogate
models, where Al is used to accelerate the solution of physics equations [JZK22]. This is
the result of the evolution of science. In the early days, scientific advancement was purely
empirical and data-driven. After the establishment of physics, this process became deter-
ministic. In recent years, with Al being introduced into scientific discovery, the trend is
shifting again. Even though the deterministic approach won’t be completely replaced, this

physics-Al symbiosis will exist for a long time.
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