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Abstract

Direct neural recordings from human auditory cortex have demonstrated encoding for acoustic-

phonetic features of consonants and vowels. Neural responses also encode distinct acoustic 

amplitude cues related to timing, such as those that occur at the onset of a sentence after a 

silent period or the onset of the vowel in each syllable. Here, we used a group reduced rank 

regression model to show that distributed cortical responses support a low-dimensional latent 

state representation of temporal context in speech. The timing cues each capture more unique 

variance than all other phonetic features and exhibit rotational or cyclical dynamics in latent 

space from activity that is widespread over the superior temporal gyrus. We propose that these 

spatially distributed timing signals could serve to provide temporal context for, and possibly bind 

across time, the concurrent processing of individual phonetic features, to compose higher-order 

phonological (e.g. word-level) representations.
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1. Introduction

Natural speech is a continuous stream of complex acoustic features, and listeners build 

representations of auditory objects at multiple levels, from phonemes, to syllables, words, 

and phrases (Berwick et al., 2013; Chomsky, 1985). The cortical basis of these dynamic 

compositional operations is an active area of research. There is evidence that the superior 

temporal gyrus (STG) performs speech-specific extraction of acoustic-phonetic features 

(Mesgarani et al., 2014), but where and how these segmental features are composed into 

longer units like words is less understood. Since the cascade of neural activity evoked 

by a given acoustic-phonetic feature can last longer than the feature itself (Gwilliams et 

al., 2020; Khalighinejad et al., 2017; Mesgarani et al., 2014; Näätänen and Picton, 1987; 

Norman-Haignere et al., 2020), there is potential for overlap in the neural representations 

over time. Hence the neural computations underlying speech comprehension should have 

a way to keep track of the temporal context of the individual phonetic units in order to 

compose them into a higher order unit such as a word (Fischer-Baum, 2018; Gwilliams et 

al., 2020).

We hypothesized that the mechanisms underlying temporal context tracking and 

composition in auditory cortex would be reflected in low-dimensional latent dynamics of 

electrocorticography (ECoG)-scale neural recordings. As neural recordings have grown in 

dimension, latent state models have become more popular as the explanatory framework for 

understanding neural computation. We use the terms “latent state” and “latent dynamics” 

to refer to low-dimensional approximations of high-dimensional neural recordings across 

time (e.g. recordings across many neurons or many electrodes). For example, principal 

component analysis (PCA) can be used to reduce a 256-dimensional timeseries of ECoG 

recordings into a 3-dimensional timeseries (the top 3 principal components) that capture as 

much variance as possible. PCA is one of many techniques that can be used to capture 

a high-dimensional signal in low-dimensional terms. In general, if a low-dimensional 

representation captures important properties of the high-dimensional signal, those properties 

can often be better described and visualized in low dimensions, for example by plotting a 

3-dimensional timeseries as a trajectory in a 3-dimensional plot.

Going further than just plotting latent dynamics, there is a growing trend to use the 

geometric characteristics of latent states (i.e. the shapes formed by the low-dimensional 

trajectories) to gain insight into the computational roles that are being played by the network 

(Russo et al., 2020, 2018; Seely et al., 2016; Vyas et al., 2020). One such geometrical 

motif is rotational dynamics (Churchland et al., 2012), which happen when the latent 

dynamics form circles or closed loops. Rotational dynamics may play a computational 

role in coordinating movements over time in the motor system (Buonomano and Laje, 

2010; Cannon and Patel, 2021; Russo et al., 2020, 2018) (see Section 5). While the neural 

activity underlying speech perception is likely to be very different from that underlying 

motor sequencing, low-dimensional dynamics across the speech-responsive network in STG 

could reflect similar computational strategies to coordinate temporal context during speech 

perception.
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There is already reason to believe that STG encodes information about timing: some STG 

populations respond to amplitude onset events found at the beginning of a sentence after 

a silent period, or the acoustic edges that occur at the onset of vowels in syllables (called 

‘peak rate’ events because they are defined by peaks in the first derivative of the speech 

envelope timeseries) (Hamilton et al., 2018; Oganian and Chang, 2019). If these signals are 

strong (representing a large proportion of the variance), temporally similar across different 

populations, and spatially widespread, they could constitute a meaningful low-dimensional 

latent state. In fact, Hamilton and colleagues (Hamilton et al., 2018) were able to find 

low-dimensional dynamics tied to sentence onsets using unsupervised linear dimensionality 

reduction. Unfortunately, due to the complex nature of the task (with a high-dimensional 

stimulus space and relevant stimulus features occurring closely in time), unsupervised 

methods have trouble uncovering dynamics related to other stimulus features, whose neural 

responses may overlap temporally and spatially with sentence onset responses. This makes 

it difficult to describe latent dynamics related to peak rate events, which are more closely 

aligned in timescale to the low-level compositional operations that we seek to describe. 

Supervised models, on the other hand, have historically focused on individual electrodes and 

as a result fail to describe latent dynamics that may reflect computational principles on a 

larger spatial scale.

Here we use a multivariate supervised approach to model the activity across all speech-

responsive STG electrodes. Using integrative reduced rank regression (iRRR) (Li et al., 

2019), we estimate latent states by reducing the high-dimensional ECoG timeseries into 

a set of low-dimensional responses to specific stimulus features. In other words, we 

simultaneously estimate a separate low-dimensional latent state for each stimulus feature, 

including sentence onsets, peak rate events, and acoustic-phonetic features based on the 

place and manner of articulation. We find that iRRR outperforms models that treat each 

electrode individually, indicating that substantial feature-related information is shared across 

electrodes. The sentence onset and peak rate features explain more of the variance than 

phonetic features, reaffirming the importance of these timing-related features for encoding in 

STG. Furthermore, the latent states for the onset and peak rate features are low-dimensional 

(5 and 6 dimensional, respectively) and distributed over centimeters of cortex, indicating a 

widespread signal that would be available to coordinate local and downstream processing. 

Geometrically, the latent dynamics contain a large proportion of rotational dynamics. 

Projections of the neural responses onto these low-dimensional spaces can be used to decode 

the time relative to the most recent sentence onset or peak rate event, with performance that 

is better than decoding from the full high-dimensional responses across all electrodes. We 

propose that the sentence onset response is an initialization signal and the peak rate latent 

states encode the time relative to acoustic events at the sentence and syllable scales. For 

peak rate, this spatially distributed timing signal could be used in local and downstream 

processing when composing word-level representations from low-level acoustic features.

2. Theory

High gamma amplitudes in neural voltage recordings are known to correlate with the 

firing rates (Dubey and Ray, 2020; Manning et al., 2009; Ray et al., 2008; Ray and 

Maunsell, 2011; Scheffer-Teixeira et al., 2013) and dendritic processes (Bédard et al., 2006; 
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Leszczyński et al., 2020; Miller et al., 2009; Suzuki and Larkum, 2017) of neurons near the 

electrode (Buzsáki et al., 2012), and we use them here as a proxy for the level of population 

activity under the ECoG electrodes. Successful previous models of high gamma activity 

over STG have taken two different approaches: using univariate supervised regression to 

model single-electrode responses as a function of spectral or linguistic characteristics in 

the audio speech signal (Aertsen and Johannesma, 1981; Holdgraf et al., 2017; Mesgarani 

et al., 2014; Oganian and Chang, 2019; Theunissen et al., 2001), and using unsupervised 

dimensionality reduction to infer latent states from the multivariate signals without reference 

to the characteristics of the audio stimulus (Hamilton et al., 2018).

2.1. Classic univariate regression modeling

The advantage of regression models is that they characterize the relationship between the 

neural responses and acoustic features in the speech signal. In classic univariate models, 

the high gamma responses on individual electrodes are considered to be the result of a 

convolution of time-dependent receptive fields with corresponding time series of acoustic 

features. The classic spectrotemporal receptive field (STRF) model (see Section 3.5), for 

example, uses a mel spectrogram of the stimulus as the acoustic feature representation, 

resulting in a framework where the neural receptive fields act as a linear filter on the 

speech spectrogram (Theunissen et al., 2001). Based on the observation that electrode 

activity over STG reflects information at the level of phonetic features rather than individual 

phonemes (Mesgarani et al., 2014), Oganian and Chang (2019) used an event-based feature 

representation to capture these effects and to show that some electrodes additionally have 

responses triggered by sentence onsets and sharp transients in the acoustic envelope of 

the speech signal, called peak rate events. While these models have been instrumental in 

describing the response patterns on individual electrodes, they fail to capture latent dynamics 

that are shared across multiple electrodes, which could uncover computational principles at 

work at a larger spatial scale.

2.2. Unsupervised dimensionality reduction modeling

An alternative approach uses unsupervised dimensionality reduction to investigate latent 

structure in neural responses to speech (Hamilton et al., 2018). Using convex nonnegative 

matrix factorization, Hamilton and colleagues showed that electrodes can be naturally 

classified into two groups, “onset” electrodes that have a short increase in high gamma 

activity at the onset of a sentence, and “sustained” electrodes that show increased high 

gamma activity throughout the stimulus. This observation is also apparent using principal 

component analysis (Section 3.12 and Supplementary Figure S1), in which the first 

component has a characteristic sustained profile, and the second component has the 

onset profile. Note that the high gamma signals are not intrinsically low-dimensional: 2 

dimensions capture only 24% of the variance in speech responsive electrodes (comparable 

to 16.9% of the variance in all electrodes captured in the first two clusters of (Hamilton et 

al., 2018)) and 189 dimensions are necessary to capture 80% of the variance. This could be 

related to the high-dimensional nature of the task: in an unsupervised framework in which 

the system responds to stimulus features, the response dimensionality needs to be at least as 

high-dimensional as the task itself (Gao et al., 2017; Stringer et al., 2019). Furthermore, both 

of these components are time-locked to sentence onset, and it is difficult to connect them or 
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higher components to other speech features, possibly because the dynamics related to other 

features are not orthogonal to the sentence-onset subspace or to each other. In particular, 

the dependence of the neural responses on the peak rate events is not apparent from this 

analysis, and a model that could capture latent dynamics related to peak rate would be 

valuable for describing population encoding of shorter timescales.

2.3. Our approach: integrative reduced rank regression

Here we apply a model that combines the advantages of the regression and dimensionality 

reduction approaches, using multivariate integrative reduced rank regression (iRRR) (Li 

et al., 2019) to estimate the latent dynamics attributed to each speech feature separately 

(sentence onsets, peak rate events, and phonetic feature events coded by their place and 

manner of articulation). This group-reduced-rank model partitions the expected neural 

activity into a separate latent state for each feature, choosing the best latent dimensionality 

for each feature while penalizing the total dimensionality across all features. The resulting 

estimates of feature-specific latent states have explanatory power that goes beyond both 

individual electrode models and unsupervised dimensionality reduction models.

3. Methods

3.1. Participants

Participants included 11 patients (6M/5F; aged 16–60 years old, median 29) undergoing 

treatment for intractable epilepsy. As a part of their clinical evaluation for epilepsy surgery, 

high-density intracranial electrode grids (AdTech 256 channels, 4 mm center-to-center 

spacing and 1.17 mm diameter) were implanted subdurally over the left peri–Sylvian cortex. 

All subjects were left-language-dominant (see Table S1 for more clinical and demographic 

details). All procedures were approved by the University of California, San Francisco 

Institutional Review Board, and all patients provided informed written consent to participate. 

Data used in this study was previously reported in (Hamilton et al., 2018).

3.2. Experimental stimuli

Stimuli consisted of 499 English sentences from the TIMIT acoustic-phonetic corpus 

(Garofolo et al., 1993), spoken by male and female speakers with a variety of 

North American accents. Stimuli were presented through free-field Logitech speakers 

at comfortable ambient loudness (~70 dB), controlled by a custom MATLAB script. 

Participants passively listened to the sentences in 4 blocks, each lasting about 4 min. A 

subset of 438 sentences were selected for analysis that were heard once by all 11 subjects. 

The sentences had durations between 0.9 and 2.6 s, with a 400 ms intertrial interval.

3.3. Neural recordings and electrode localization

Neural recordings were acquired at a sampling rate of 3051.8 Hz using a 256-channel PZ2 

amplifier or 512-channel PZ5 amplifier connected to an RZ2 digital acquisition system 

(Tucker-Davis Technologies, Alachua, FL, USA).

Electrodes were localized by coregistering a preoperative T1 MRI scan of the individual 

subject’s brain with a postoperative CT scan of the electrodes in place. Freesurfer was used 
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to create a 3d model of the individual subjects’ pial surfaces, run automatic parcellation 

to get individual anatomical labels, and warp the individual subject surfaces into the 

cvs_avg35_inMNI152 average template (Desikan et al., 2006; Fischl et al., 2004). More 

detailed procedures are described in (Hamilton et al., 2017).

3.4. Preprocessing

For each electrode, the high gamma amplitude time series were extracted from the 

broadband neural recordings as follows (Edwards et al., 2009; Hamilton et al., 2018; Moses 

et al., 2016; Oganian and Chang, 2019). First, the signals were downsampled to 400 Hz, 

rereferenced to the common average in blocks of 16 channels (blocks shared the same 

connector to the preamplifier), and notch filtered at 60, 120, and 180 Hz to remove line 

noise and its harmonics. These LFP signals were then filtered using a bank of 8 Gaussian 

filters with center frequencies logarithmically spaced between 70 and 150 Hz (see Table S2). 

Using the Hilbert transform, the amplitude of the analytic signal was computed for each of 

these frequency bands, and for each electrode the high gamma amplitude was defined as the 

first principal component across these 8 frequency bands. Finally, the high gamma amplitude 

was further downsampled to 100 Hz and z-scored based on the mean and standard deviation 

across each experimental block.

3.5. Electrode selection

In order to select speech-responsive electrodes over STG, electrodes were included (1) if 

they were located over the STG, as identified in the Freesurfer anatomical parcellation of 

the individual subject cortical surface, and (2) if their high gamma activity was predicted 

by a linear spectrotemporal model with r2 above 5% (Hamilton et al., 2018). Note that 

several electrodes appear to be located away from STG in the cvs_avg35_inMNI152 average 

template (e.g. Fig. 1a) – this is an artifact of the warping to the average brain.

For this single electrode analysis, the model had the form of a spectrotemporal receptive 

field (STRF):

y(t) = ∑
f

∑
τ

s(f, t − τ)β(τ, f) + e(t)

(1)

where y is the high gamma amplitude on a single electrode across time t, S is the mel 

spectrogram of the speech audio signal, β are unknown regression coefficients, and e is 

the zero-mean Gaussian error term. The frequencies f take on values between 75 Hz and 8 

kHz, and delays τ take on values between 0 and 500 ms. By fitting regression coefficients 

across frequencies and delays, the response on the electrode at a given time is modeled as a 

function of the recent history of the stimulus spectrogram (up to 500 ms in the past). Ridge 

regression was used to fit the models (see Section 3.7 for details of the ridge regression 

framework): the data were split into 80% training and 20% testing data sets, the training data 

was used to choose the α parameter according to a 5-fold cross-validation, the full training 

data was fit using the chosen α parameter, and the r2 was assessed on the testing data (see 

Section 3.8 for computation of r2). Electrodes with r2>0.05 were included in subsequent 
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analyses. The selected electrodes and their corresponding r2 values are shown in Fig. 1A (N 
= 331).

3.6. Regression model setup

The model uses a multivariate adaptation of the event-based regression framework of 

Oganian and Chang (2019). In matrix form, the model has the following structure:

Y = ∑
f = 1

F
XfBf + E

(2)

Where:

• Y is the T × N matrix of z-scored high gamma amplitude values across 

electrodes and timepoints. The time dimension represents a concatenation of 

all 438 sentence stimuli that were heard by every subject, from 500 ms before 

sentence onset until 500 ms after sentence offset (132,402 timepoints, later split 

for cross validation, see Section 3.7). The electrode dimension includes speech-

responsive electrodes from all subjects (331 electrodes).

• Each Xf T × D  represents the delayed feature events for feature f. The first 

column contains the feature events across time (1 representing an event occuring, 

0 otherwise. For peak rate, events were coded by a real-valued magnitude, see 

Fig. 1B). Following columns contain the same time series, offset by time-delays 

between 10 ms and 750 ms (76 delays). There were 12 features: sentence onset, 

peak rate, dorsal, coronal, labial, high, front, low, back, plosive, fricative, and 

nasal (described below).

• E T × N  is Gaussian noise, assumed to be uncorrelated across electrodes

• Bf D × N  are the coefficient matrices, i.e. the multivariate temporal response 

functions (MTRFs), representing the responses of each electrode to the given 

feature across electrodes and delays

• T: number of timepoints; N: number of electrodes, D: number of delays, F: 

number of features.

Electrodes from all subjects were included in the same model fit, in keeping with the 

analysis in (Hamilton et al., 2018), in order to maximize statistical power and spatial 

coverage of STG. However, the model performance is similar for single subjects (See 

Section 3.13 and Supplementary Figure S2).

The features used to represent the stimulus were chosen to capture both the phonetic 

contents of speech, as summarized in (Mesgarani et al., 2014), as well as the speech-

envelope landmarks that have been shown to predict neural responses: sentence onsets 

(Hamilton et al., 2018) and peak rate events (Oganian and Chang, 2019). Sentence onset was 

defined as the sound onset time for the sentence stimulus. Peak rate was extracted by taking 

Stephen et al. Page 7

Hear Res. Author manuscript; available in PMC 2024 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the derivative of the analytic envelope of the speech signal: the peak rate event times were 

the times when the derivative reached a maximum, and the peak rate magnitude was the 

value of the derivative at that time point (Oganian and Chang, 2019). Phonetic feature event 

times (dorsal, coronal, labial, high, front, low, back, plosive, fricative, nasal) were extracted 

from time-aligned phonetic transcriptions of the TIMIT corpus, which were timed to the 

onset of the respective phonemes in the speech signal (Garofolo et al., 1993).

Fig. 1B shows the feature events for an example sentence stimulus, “They’ve never met, you 

know”. The top two panels show the stimulus waveform and mel spectrogram, respectively, 

with the times of sentence onset and peak rate events indicated with vertical lines (solid and 

dashed, respectively). The features fall into two categories: timing (sentence onset and peak 

rate) and acoustic-phonetic (dorsal, coronal, labial, high, low, front, back, plosive, fricative, 

nasal). With the exception of peak rate, all of the feature events were encoded as binary time 

series with a 1 representing an event occurring, and 0 otherwise. For peak rate, the time 

series contained continuous values representing the slope of the acoustic amplitude signal 

at the time of maximal change, and 0 at all other times (in Fig. 1B, red lines indicate peak 

rate event times and red numbers indicate the peak rate magnitude). We chose to include 

magnitude for peak rate events, because it is known to correlate very well with stressed 

syllables, i.e. syllables with higher stress will have higher peak rate magnitude.

3.7. Model fitting

We fit the model using ordinary least squares (OLS), ridge regression, and integrative 

reduced-rank regression (iRRR) (Li et al., 2019). The way we use OLS and ridge regression 

here is equivalent to traditional univariate modeling, and we include them for comparison to 

the multivariate iRRR approach. The difference between the three is the objective function 

that is minimized to choose the fitted coefficient matrices:

Bf, OLS f = 1
F = argmin

Bf ∈ RD × N
1

2T Y − ∑
f = 1

F
XfBf

ℱ

2

(3)

Bf, ridge f = 1
F = argmin

Bf ∈ RD × N
1

2T Y − ∑
f = 1

F
XfBf

ℱ

2

+ α ∑
f = 1

F
Bf ℱ

2

(4)

Bf, iRRR f = 1
F = argmin

Bf ∈ RD × N
1

2T Y − ∑
f = 1

F
XfBf

ℱ

2

+ λ ∑
f = 1

F
wf Bf *

(5)
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where ∥ ⋅ ∥ℱ represents the Frobenius (L2) norm, ∥ ⋅ ∥* represents the nuclear norm (i.e. the 

sum of the singular values of the bracketed matrix), the wf s are weights chosen as described 

below, and α and λ are regularization parameters that are chosen as described below.

The weights used for the iRRR model were chosen to balance the different features (Li et al., 

2019):

wf = σ Xf, 1 N + r Xf /T

(6)

where σ Xf, 1  is the first singular value of the matrix Xf and r Xf = D is the rank of matrix 

Xf. Note that the cost functions Eqs. (3)–((5)) treat the noise variance for all electrodes 

equally – because the high gamma signal on each electrode was z-scored in preprocessing, 

we assume that the noise variance is the same for all electrodes. In addition, all predictors Xf

and responses Y were column-centered before fitting the models.

In iRRR, the nuclear norm penalty acts as an L1 penalty on the singular values of each 

feature matrix Bf, so the regression tends to find solutions where the feature matrices are 

low-rank (i.e. sparse in the singular values). Because many of the singular values will be 

zero, the fitted feature matrices can be represented using a low-dimensional singular value 

decomposition:

Bf = UfSfV f
T

(7)

where Uf is D × k, Sf is k × k, and V f
T is k × N, for some k < N. In other words, the full 

multivariate feature receptive fields can be represented with a small number of patterns 

across time (columns of Uf), patterns across electrodes (rows of V f
T), and corresponding 

weights (values on the diagonal of Sf). The number of dimensions k can be different for 

each feature, and it comes from balancing the contribution of the feature to the first term of 

Eq. (5) (the mean squared error) with the contribution of the feature to the second term (the 

nuclear norm penalty), relative to other features. Increasing the tuning parameter λ will tend 

to decrease the total number of dimensions used across all features.

Note that the approach of using a regression framework to fit a group-reduced rank model 

of neural activity has been used before (Aoi et al., 2020; Aoi and Pillow, 2018): the 

iRRR framework differs in that it uses an L1 relaxation, resulting in a convex optimization 

formulation that can be fit efficiently using alternating direction method of multipliers.

In order to compute confidence intervals for model performance metrics (Section 3.8), 

models were fit using 10-fold cross validation, using group cross validation to keep time 

points corresponding to the same sentence stimulus in the same fold. For ridge regression 

and iRRR, an additional nested 5-fold cross validation was used to choose the α and λ 
parameters within each fold of the outer cross-validation. For ridge regression, a separate 

Stephen et al. Page 9

Hear Res. Author manuscript; available in PMC 2024 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



α parameter was chosen for each electrode (consistent with the standard approach for 

univariate models), while iRRR used a single λ parameter for the full multivariate fit.

3.8. Model performance metrics

Total explained variance (Fig. 1C) was calculated as:

r2 = 1 − SSres
SStot

(8)

where the SSres is the residual sum of squares computed on the testing dataset:

SSres  = Y − ∑
f = 1

F
XfBf

ℱ

2

(9)

and SStot is the total sum of squares computed on the testing dataset:

SStot = ∥ Y ∥ℱ
2

(10)

The group nuclear norm (Fig. 1D) was computed as the penalty term in the iRRR model:

∑
f = 1

F
wf Bf *

(11)

Because OLS and ridge regression yield full-rank coefficient matrices, the number of 

parameters (Fig. 1E) used for both is DN. For iRRR, the number of parameters is 

k D + N + 1 , based on the singular value decomposition described in Eq. (6).

Unique explained variance for each feature (Fig. 1F) was computed by fitting a reduced 

iRRR model without the feature f, and then comparing the total explained variance of the 

full model rFull 
2  to the total explained variance of the reduced model r−f

2 . The reduced iRRR 

model was fit using the same λ value as the full model, chosen using nested cross validation 

on the full model as described above. For the “all timing” category, the reduced model was 

fit without sentence onset and peak rate, and for the “all phonetic” category, the reduced 

model was fit without the phonetic features. The unique explained variance was expressed as 

a percentage of the full model:

100 × rFull
2 − r−f

2

rFull
2

(12)
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All metrics are reported in terms of the mean across the 10 folds of the cross validation, and 

95% confidence intervals are ±t9, 0.975S / 10, where s is the sample standard deviation across 

the 10 cross validation folds. Note that these confidence intervals do not account for the 

dependence between cross-validation folds due to reuse of samples in training and testing 

sets, and may therefore be smaller than the true intervals (Austern and Zhou, 2020; Bates et 

al., 2023; Bengio and Grandvalet, 2004).

Significant differences between conditions were assessed using paired two-tailed t-tests 

across cross-validation folds (Dietterich, 1998) for the following comparisons (with the 

resulting p-value ranges):

1. Total explained variance for OLS vs Ridge (p>0.05), OLS vs iRRR (p<0.0005), 

and Ridge vs iRRR (p<0.0005).

2. Unique explained variance of sentence onset vs each acoustic-phonetic feature 

and peak rate vs each acoustic-phonetic feature. Here the p-values were 

Bonferroni corrected across the (2 timing features times 10 acoustic-phonetic 

features) 20 comparisons. After correction, all comparisons were significant with 

p<0.0005.

3. Unique explained variance of the combined timing features vs the combined 

acoustic-phonetic features (p<0.0005).

Similar to the confidence intervals described above, the significance tests did not account for 

the dependence between cross-validation folds and may therefore have an inflated type II 

error (Austern and Zhou, 2020; Bates et al., 2023; Bengio and Grandvalet, 2004).

3.9. Computing predicted responses

Given a model fitted with iRRR, the predicted latent response to a stimulus matrix Xf is 

given by:

Y f; latent = XfUfSf

(13)

Where Xf T × D  represents the delayed feature events for feature f, Uf is the D × k time 

components for feature f, and Sf is a diagonal matrix containing the weights for each 

component (k × k). Y f; latent is a T × k matrix representing the predicted response within the 

k-dimensional latent space of the feature. Fig. 3 shows the predicted sentence onset and peak 

rate responses to the sentence “They’ve never met, you know”.

3.10. jPCA

The plane of fastest rotation for the sentence onset and peak rate latent states (Fig. 3C) was 

identified by applying jPCA (Churchland et al., 2012) to the feature coefficient matrices Bf. 

Using jPCA, we modeled the temporal receptive fields in the coefficient matrix as a linear 

dynamical system evolving over delays:
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dBf(t)
dt = MBf(t)

(14)

where t indexes the delay dimension of Bf, so the dynamical system describes the evolution 

of an N-dimensional dynamical system over D timepoints. By approximating the derivative 

on the left hand side using first differences, the transition matrix M can be fit using 

regression. Furthermore, the purely rotational component of the transition matrix can be 

isolated by constraining the matrix M to be skew-symmetric, having purely imaginary 

eigenvalues that come in complex conjugate pairs. The pair of eigenvectors with the largest 

magnitude eigenvalues describes the plane with the fastest rotations.

It is important to note that jPCA identifies planes with fast rotational dynamics, regardless 

of whether they capture a large proportion of the variance of the dynamics in the original 

dynamical system. Classic jPCA uses PCA in preprocessing in order to confine the analysis 

to six dimensions of largest variance. Here, the iRRR model chooses k dimensions for each 

feature that are most valuable to the overall fit of the model. Hence there was no need 

to perform additional PCA to reduce the dimensionality. However, because the coefficient 

matrices had dimensions capturing very little variance, we did subselect components to 

capture 98% of the variance of the coefficient matrices. For both sentence onset and peak 

rate, this corresponded to the top 3 components. Hence the jPCA plane represents the plane 

of maximal rotation within a 3-dimensional subspace capturing 98% of the variance in the 

5-dimensional (or 6-dimensional) coefficient matrix for sentence onset (or peak rate). If we 

had used more components for the jPCA computation, the rotational dynamics would be 

stronger but they would capture much less of the variance (using k dimensions vs using 3 

dimensions: 2.8% vs 31.8% for sentence onset and 4.8% vs 20.3% peak rate), making them 

less informative about the overall population dynamics.

Once the jPCs were computed using the coefficient matrices, the predicted trajectory for a 

given stimulus (Fig. 3F and G) is calculated as:

Y f; jPCA = XfJf

(15)

Jf = E1 + E2, j E1 − E2

where E1 and E2 are the eigenvectors with largest eigenvalues of the skew-symmetric matrix 

M defined above. Jf is therefore the N × 2 projection matrix from electrode space onto the 

plane of highest rotation from jPCA.

3.11. Event latency decoding

For the decoding analysis (Fig. 4), a perceptron model was trained to predict the time 

relative to the most recent feature event (up to 750 ms). The model was designed using the 
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MLPRegressor class of the sklearn package, with one hidden layer with 20 hidden units 

using a logistic activation function. We used a simple perceptron model in order to account 

for possible nonlinearities in the mapping from electrode space / feature latent space to 

relative times.

Using the same cross-validation framework that was used for iRRR model fitting, the 

perceptron model was trained using the training data (high gamma amplitudes) either across 

all electrodes Y or using the projected data onto the latent state subspace:

Y f, proj = Y V f

(16)

where V f is the N × k matrix of electrode components for feature f, as above. The T × k
matrix Y f, proj is an approximation of the latent state across time, but it may be contaminated 

by activity from other features because the V f matrices do not describe orthogonal 

subspaces. It also contains activity from noise.

Performance of the models was assessed using r2 (Eq. (8)) on the held-out testing data 

for the cross-validation fold. The 95% confidence intervals were computed using the t 

distribution as described above, and the performance of the models trained on all electrodes 

was compared to the performance of the models trained on the latent projections using a 

two-sided paired t-test, as described above (Section 3.8), Bonferroni corrected across the 12 

features.

3.12. Principal component analysis

For Supplementary Figure S1, a standard principal component analysis (PCA) was run using 

the same data matrix as used above (Y, the T × N matrix of z-scored high gamma amplitude 

values across 331 electrodes during the presentation of 438 sentences). Because the data are 

already centered, PCA is just a singular value decomposition of the data matrix:

Y = UYSYV Y
T

(17)

where UY  is a T × N orthogonal matrix where the columns represent the N principal 

components across time, and V Y
T is a N × N matrix where the rows represent the spatial 

support of each principal component. SY  is a diagonal N × N matrix with ordered diagonal 

elements s1, s2, …, sN. The percent of the variance explained by a component i can be 

calculated as:

100 × si
2

∑j = 1

N

sj
2

(18)
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Note that the “percent explained variance” in PCA (Supplementary Figure S1) is not 

comparable to the “total explained variance” in the regression analysis (Section 3.8 and 

Fig. 1C), because the PCA explained variance is computed on the training data, while the 

regression explained variance is computed on held-out testing data.

3.13. Single subject analysis

For Supplementary Figure S2, the entire pipeline was run for a single subject, SL04. In 

this analysis, the Y matrix defined above of z-scored high gamma amplitude values across 

electrodes and timepoints was restricted to only the speech-responsive STG electrodes 

from SL04 (45 electrodes). This subject was chosen based on the large number of speech-

responsive electrodes over STG, and their coverage of both middle and posterior STG. 

Surface plots in Figure S2 use the subject’s cortical surface, without warping to the average 

brain.

4. Results

The fits to our integrative reduced rank regression model reveal that high gamma responses 

to speech stimuli across hundreds of electrodes can be parsimoniously represented as a 

combination of a few low-dimensional latent state responses to specific feature events in the 

stimulus. Two latent states in particular, corresponding to the sentence onset and peak rate 

features, reflect a large proportion of the explained variance in the model, and their dynamic 

properties suggest specific computational roles in the speech perception network.

4.1. iRRR outperforms models that treat each electrode individually, and sentence onset 
and peak rate capture more of the variance than phonetic features

Fig. 1C–E compare the three different fitting frameworks: OLS, ridge regression, and iRRR. 

Because the regression framework is the same for all three, the fitted models have very 

similar total explained variance (r2 computed over all electrodes, Fig. 1C). All of the models 

have a proportion of explained variance of about 0.2, which can be partially explained by the 

fact that each stimulus was presented only once, so the data contains both stimulus-related 

activity and trial-specific noise. In addition, this is an aggregate over all speech-responsive 

electrodes: some electrodes are more stimulus-driven than others (see Fig. 1A). Comparing 

the three fitting frameworks, iRRR by design achieves a much smaller nuclear norm (Fig. 

1D), which results in solutions that can be described with 94% fewer parameters than OLS 

and ridge regression (Fig. 1E). The fact that the iRRR model captures as much information 

as the single-electrode models using far fewer parameters suggests that substantial feature-

related information is shared across electrodes.

Fig. 1F shows the unique explained variance of each of the features in the iRRR fit: sentence 

onset and peak rate explain a larger percentage of the full model variance than each of 

the phonetic features (p<0.0005 for all comparisons using a two-sided paired t-test after 

Bonferroni correction). This suggests that these two timing features reflect a substantial 

amount of the speech-induced response across STG.

When the features are grouped into timing (sentence onset and peak rate) and phonetic 

(all other features) groups, both groups explain a large proportion of the variance (15% 
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and 22%, respectively). Comparing the groups, however, the phonetic features explain more 

of the unique variance than the timing features (p<0.0005, two-sided paired t-test). This 

could be surprising in light of the individual feature comparisons: while timing features 

capture more explained variance than phonetic features when compared individually, when 

combined they capture less explained variance. This is likely due to (1) correlations between 

individual phonetic features that lead to lower individual unique explained variance and 

(2) the fact that more electrodes respond to sentence onset and peak rate than individual 

phonetic features (Oganian and Chang, 2019), meaning that sentence onset and peak 

rate have more widespread spatial support than the more spatially localized phonetic 

features. This more widespread spatial support means that the iRRR model is better able to 

consolidate the activity patterns across multiple electrodes, i.e. capture the latent dynamics, 

for the sentence onset and peak rate features than for the phonetic features. Accordingly, the 

following two sections describe the latent state representations for the sentence onset and 

peak rate features in more detail.

4.2. The model fit captures known response differences between pSTG and mSTG

In Hamilton and colleagues’ (Hamilton et al., 2018) unsupervised model, the “onset” cluster 

of electrodes was found to occur primarily over the posterior portion of STG (pSTG). This 

observation led them to propose that pSTG may play a role in detecting temporal landmarks 

at the sentence and phrase level, because the short-latency, short-duration responses to 

sentence onsets in pSTG would be able to encode the event time with high temporal 

resolution. This idea fits well within a long history of evidence that stimulus responses 

in mSTG have longer latencies and longer durations than those in pSTG (Hamilton et al., 

2021; Jasmin et al., 2019; Yi et al., 2019). Here, the model fits recapitulate these known 

differences between mSTG and pSTG.

As discussed above (Eq. (6)), the feature response matrices that are fitted by the iRRR model 

can be decomposed into a small number of components across time (“time components”, 

columns of Uf), components across electrodes (“spatial components”, rows of V f
T), and 

corresponding weights (values on the diagonal of Sf). Fig. 2 shows the Sentence Onset and 

Peak Rate fitted feature matrices decomposed in this way (Since Uf and V f are orthonormal, 

their columns are unit vectors: as a result, their units are arbitrary and can be best interpreted 

in relative terms).

Fig. 2A and B show the time components scaled by their corresponding weights, and Fig. 

2C and D show the first two spatial components. To illustrate how the low dimensional 

components map back to the response functions for individual electrodes, Fig. 2E and 

F show the individual electrode response functions (rows of Bf), colored by the spatial 

component from Fig. 2C and D.

Looking at the left panel of Fig. 2C and 2E, we can see that electrodes that have large 

values in the first spatial component (red circles in Fig. 2C, left) have relatively larger 

overall responses to sentence onset events (red lines in Fig. 2E, left). These electrodes 

occur primarily over pSTG (i.e. posterior to the lateral exit point of the transverse temporal 

sulcus), which is in line with previous findings (Hamilton et al., 2018).
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For peak rate, the first component plays the same role: electrodes that have larger values in 

the first spatial component (Fig. 2D, left) have relatively larger overall responses to peak 

rate events (Fig. 2F, left). Electrodes with large peak rate responses are not limited to pSTG 

like sentence onset electrodes: rather, they are distributed over all of STG. In other words, 

the encoding of peak rate in STG is not focal but is distributed over centimeters of cortex, 

suggesting a representation on a large spatial scale. Interestingly, the second component 

does appear to have a spatial distinction between pSTG and mSTG: electrodes with positive 

values for the second component tend to occur over pSTG, while electrodes with negative 

values for the second component tend to occur over mSTG (i.e. anterior to the lateral exit 

point of the transverse temporal sulcus, Fig. 2D, right). The negative and positive values 

distinguish response functions by their temporal response profile: positive values correspond 

to electrodes that have an early peak rate response, while negative values correspond to 

electrodes that have a late peak rate response (Fig. 2F, right). This suggests that peak rate 

responses over pSTG are faster than peak rate responses over mSTG.

4.3. Feature latent states have rotational dynamics that capture continuous relative 
timing information

To show how the latent states behave during the presentation of a stimulus, we used the 

fitted model to predict the dynamics in each latent state during the presentation of the 

sentence “They’ve never met, you know” (Fig. 3, see Section 3.9 for the calculation of the 

predicted responses).

The sentence onset latent space has 5 dimensions and the peak rate latent space has 6 

dimensions. While the sentence onset feature only occurs once at the beginning of the 

stimulus, evoking a single response across the sentence onset dimensions, the peak rate 

feature occurs several times, and the dynamics of the peak rate latent state do not go back 

to baseline in between peak rate events (Fig. 3B and C). Plotting the top three dimensions, 

which capture more than 98% of the variance in the coefficient matrices (Bf), shows cyclical 

dynamics for both sentence onset and peak rate (Fig. 3D and E): the sentence onset state 

rotates once at the beginning of the sentence, and the peak rate latent state rotates 3–4 times, 

once after each peak rate event.

To quantify this effect, we used jPCA (Churchland et al., 2012) to identify the most 

rotational 2 dimensional subspace within the top three components of Bf. These planes 

capture 31.8% and 20.3% of the variance in the sentence onset and peak rate coefficient 

matrices, respectively, and they highlight the cyclical dynamics that were visible in the top 3 

dimensions (Fig. 3F and G).

Note that seeing cyclical dynamics in the latent states is not necessarily surprising: the 

coefficient matrices Bf describe smooth multivariate evoked responses that will tend to 

start and end at the same baseline. Indeed, the cyclical dynamics may reflect a so-called 

“horseshoe effect” arising from short- and long-latency responses to the same events 

(Elsayed and Cunningham, 2017; Michaels et al., 2016), as is evident in Fig. 2F. Our 

data and model are also not intended to distinguish between a dynamical code versus a 

representational code, which is an ongoing controversy in the field: a representational code 
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explains neural activity with behavioral or external factors, while a dynamical code explains 

neural activity as a function of previous neural activity. While these two frameworks are not 

mutually exclusive, neural systems may be better explained by one or the other in different 

situations (Michaels et al., 2016; Russo et al., 2018; Vyas et al., 2020).

Here, we highlight the rotational dynamics to motivate a geometrical argument for the role 

of the peak rate responses in downstream processing. We will make the case (see Section 

5) that the structure of the peak rate responses enables them to act as a temporal context 

signal against which other features are organized. In order for the peak rate latent state to 

play this role, the trajectories should be sufficiently spread out in latent space to enable 

downstream areas to decode the time relative to the most recent peak rate event using just 

the instantaneous latent state. We investigate whether this is true in the next section.

4.4. Latent states from the model can be used to decode time relative to feature events

So far, we have described how the model is fit using known feature event times, and how 

the fitted model can be used to predict responses given new feature events. We also wanted 

to know whether the model fit could be used to decode the timing of events, which would 

indicate that sufficient information is contained in the feature responses for downstream 

areas to use them as temporal context signals.

The set of spatial components for each feature defines a feature-specific subspace of the 

overall electrode space. The projection of the observed high gamma time series onto this 

subspace is an approximation of the feature latent state (note that it is not exact, because the 

different feature subspaces are not orthogonal to each other). We asked whether this latent 

projection time series could be used to decode the time since the most recent feature event.

Fig. 4 shows the result of this analysis (details of the methods are in Section 3.11): a 

perceptron model was trained to decode the time since the most recent feature event up 

to 750 ms, given either the activity on the full set of electrodes or the projection of the 

electrode activity onto the corresponding feature subspace. The decoder for sentence onset 

performs slightly better when using all electrodes, which may be due to the large proportion 

of the overall activity that is time-locked to sentence onsets (see Supplementary Figure S1). 

For all other features, however, decoder performance using the reduced-dimensional latent 

subspaces performs even better than decoding using the full dimensional activity across 

electrodes (paired t-test over 10 cross validation folds, p<0.05 with Bonferroni correction 

across 12 features). Because no information is gained in the projection operation, this is an 

indication that projecting onto the latent subspaces increases the signal to noise ratio, i.e. 

removes activity that is irrelevant to decoding relative time.

5. Discussion

We have shown that a low dimensional regression model, iRRR, performs as well as 

classic models in representing high-gamma responses to timing and phonetic features of 

auditory stimuli, while using far fewer parameters. It accomplishes this compression by 

capturing similarities in feature responses that are shared across electrodes, which enables 

a low-dimensional latent state interpretation of the dynamics of high gamma responses to 
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stimulus features. The sentence onset and peak rate features capture more unique variance 

than the other (phonetic) features, their responses are spread over both mSTG and pSTG, 

and their latent states show rotational dynamics that repeat after each event. Based on the 

geometry, duration, and spatial extent of the latent dynamics, we make the case that the 

sentence onset response could act as an initialization signal to kick the network into a 

speech-encoding state, while the peak rate response could provide a widespread temporal 

context signal that could be used to compose word-level representations from low-level 

acoustic and phonetic features.

The large magnitude of sentence onset responses in ECoG high gamma responses has been 

reported before (Hamilton et al., 2018): here, we confirm their large contribution to STG 

responses both using our iRRR model (Fig. 1) and using PCA (Supplementary Figure S1). 

Importantly, the latent dynamics related to sentence onset last about 600 ms (Fig. 2a). 

Since sentences in English often last longer than 600 ms (e.g. the sentences in the TIMIT 

corpus used here ranged from 900 ms to 2.6 s), these onset-related dynamics are unsuited 

to encode temporal context on an entire sentence level. Furthermore, sentence boundaries 

in continuous natural speech are rarely indicated with pauses or silence (Yoon et al., 2007), 

meaning that neural responses to acoustic onsets are unlikely to code sentence transitions. 

Rather, the latent dynamics in response to onsets may serve as a non-speech specific 

temporal indicator of the transition from silence to sound, occurring during perception of 

any auditory stimulus. During speech perception, the speech-related cortical networks could 

use this non-specific event as a reset or initialization signal. The idea that a large transient in 

the latent state could act to transition a network between states is also thought to occur in the 

motor system, where condition-invariant movement onset responses in the latent state mark 

the transition from motor preparation to motor behavior (Kaufman et al., 2016).

With regard to the peak rate dynamics, we propose that the computational role of the peak 

rate feature response is to keep track of word-level temporal context using a clock-like 

representation. The idea that structured latent state dynamics can act as clocks has been 

proposed in several different cognitive domains, most commonly in the motor system 

(Buonomano and Laje, 2010; Churchland et al., 2012; Remington et al., 2018; Vyas et 

al., 2020) (c.f. (Lebedev et al., 2020)) and in temporal interval estimation and perception 

(Cannon and Patel, 2021; Gámez et al., 2019; Mauk and Buonomano, 2004; Wang et al., 

2018). In the motor system, Russo and colleagues (Russo et al., 2020) describe population 

dynamics in primary motor cortex (M1) and supplementary motor area (SMA) while a 

monkey performed a cyclic motor action. The population dynamics in M1 were rotational, 

exhibiting one rotation for each motor cycle, while the dynamics in SMA were shaped like 

a spiral, where 2-dimensional rotations for each motor cycle were translated along a third 

dimension. They proposed that this structure would be well-suited to keep track of progress 

through multi-cycle actions: each rotation encodes a single action, and translation along the 

third dimension encodes progress through the motor sequence. The rotational component 

of SMA population trajectories has also been suggested to operate as a time-keeping signal 

in auditory beat perception, where rotations through latent space keep track of the interval 

between beats (Cannon and Patel, 2021).
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The peak rate latent state in STG could similarly be playing a computational role in auditory 

speech perception: the rotations in the peak rate subspace could serve to keep track of the 

time relative to the peak rate event, chunking time into intervals starting at the onset of 

a vowel. These intervals could then be used by downstream processing to give temporal 

context to the fine-grained phonetic feature information conveyed by other subpopulations. 

In other words, the rotational peak rate latent state could provide a temporal scaffolding 

on which individual phonetic features can be organized. Fig. 5 illustrates this idea: when 

hearing the sentence “It had gone like clockwork,” the peak rate latent state partitions the 

sentence into four rotations, each one capturing the time since the most recent peak rate 

event. Downstream processing streams could combine this information with the phonetic 

feature information to put the phonetic feature events into their local context, here at the 

level of words or small sets of words (Fig. 5C). Peak rate is in a unique position to play 

this role: it is the only feature that repeats within the linguistic structure of speech at the 

level of syllables/words, without reference to the linguistic contents. In addition, the peak 

rate responses are distributed over centimeters of cortex (Fig. 2D) so the temporal context 

information would be widely available to local and downstream processing.

In order for the peak rate latent state to play this role, it should have a couple of properties. 

First, there should be a mapping from points in state space to different relative times. As 

we showed in Fig. 3, the rotational dynamics cause different relative times to be encoded 

in different locations of the latent space. Second, the trajectories in latent space should be 

consistent enough to support decoding of relative time in the presence of noise. In Fig. 4, we 

showed that the projections of the neural activity onto the subspaces spanned by the feature 

latent states support decoding of the time relative to the most recent feature event. Note 

that while the latent state projections support decoding better than decoding from the full 

high-dimensional signal, the actual performance for peak rate is somewhat low (~50%). A 

possible reason for this could be that some peak rate events are more effective at driving the 

latent state than others (even after accounting for peak rate magnitude, as the model does), 

resulting in inconsistent decoding of the time since the most recent peak rate event.

Beyond the two-dimensional rotational dynamics, the peak rate latent trajectory forms 

a spiral in 3 dimensions (Fig. 5B), similar to population trajectories in SMA during 

motor sequences (Russo et al., 2020). This suggests that the peak rate subpopulation may 

additionally encode the ordering of the word-level intervals within a larger linguistic context, 

such as the phrase level.

Furthermore, the representation of these intervals does not require top-down predictive 

coding (Hovsepyan et al., 2020; Lewis and Bastiaansen, 2015; Park et al., 2015; Pefkou 

et al., 2017) or entrainment of ongoing oscillations (Canolty, 2007; Ghitza, 2011; Giraud 

and Poeppel, 2012; Hovsepyan et al., 2020; Martin, 2020; Pittman-Polletta et al., 2020): in 

our model they are implemented via event-related potentials triggered by discrete acoustic 

(peak rate) events. While top-down and oscillatory mechanisms may play important roles 

in speech perception, our model demonstrates that some speech segmentation and context 

processing can be performed without them.
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The events that we focus on for speech segmentation are peak rate events, moments of sharp 

increases in the acoustic envelope. The peak rate events in the model are coded with their 

magnitude (the slope of the rise in the acoustic envelope), which allows the model dynamics 

to change proportionally to the size of the event. This is important because peak rate events, 

also called auditory onset edges (Biermann and Heil, 2000; Doelling et al., 2014; Heil and 

Neubauer, 2001), differ in magnitude based on the stress level of the corresponding syllable 

(Oganian and Chang, 2019). This means that the dynamics triggered by peak rate events 

are sensitive to prosodic structure, both stressed syllables within words and stressed words 

within phrases. To investigate this further, it would be helpful to use a speech stimulus 

corpus with more complex prosodic structure than the TIMIT corpus used here.

In summary, our model (iRRR) represents STG high gamma responses to natural speech 

stimuli as a superposition of responses to individual phonetic and timing features, where 

each feature has a corresponding low-dimensional latent state that is shared across 

electrodes. It performs as well as single electrode models while using far fewer parameters, 

indicating that substantial feature-related information is shared across electrodes. Sentence 

onset and peak rate events, features representing timing at the sentence and syllable scales, 

capture more unique variance than phonetic features. The latent dynamics for sentence onset 

and peak rate contain information about the time since the most recent (sentence onset or 

peak rate) event, and the information is distributed across centimeters of cortex. We make 

the case that for peak rate, this relative timing information could play a role in composing 

word-level representations from low-level acoustic features, without requiring oscillatory or 

top-down mechanisms.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
iRRR outperforms models that treat each electrode individually, and sentence onset and 

peak rate capture more of the variance than phonetic features. A: Electrodes used for model 

fitting, colored according to the testing r2 of the linear spectrotemporal (STRF) model 

(electrodes were selected for subsequent analysis if they were located over STG and if their 

testing r2 for the spectrotemporal model was greater than 0.05). B: Features used for feature 

temporal receptive field modeling. Top: the acoustic waveform of an example sentence. 

The solid vertical line shows the sentence onset event, and the dashed vertical lines show 

the times of the peak rate events. Second panel: the corresponding mel-band spectrogram. 

Third panel: the envelope of the acoustic waveform (black) and the positive rate of change 

of the envelope (red). The peaks in the positive envelope rate of change are the peak rate 

events. Bottom: the feature time series. White space represents no event (encoded by 0 in 

the feature matrix), black lines represent event times (encoded by 1), and red lines indicate 

peak rate event times with their corresponding magnitude indicated to the right. C, D, 

E: Performance of the iRRR model in comparison to ordinary least squares (OLS) and 

ridge regression (Ridge). 95% confidence intervals were estimated using the standard error 

of the mean across cross-validation folds (see Section 3.8). Significance was assessed for 

comparisons using two-sided paired t-tests across cross-validation folds, *** p<0.0005. C: 

Total explained variance, computed as the testing r2 computed over all speech-responsive 
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electrodes. D: Group nuclear norm, meaning the penalty term from the iRRR model (see 

Eq. (11)). E: The effective number of parameters for the fitted models. F: Unique explained 

variance for each feature (over all speech-responsive electrodes), expressed as a percentage 

of the variance captured by the full model. Comparing individual features, both timing 

features have significantly more unique explained variance than all phonetic features, after 

Bonferroni correction over pairs (left). Also shown is the unique explained variance for the 

combined timing features (sentence onset and peak rate) and the combined phonetic features 

(right). When the features are grouped, the phonetic features capture more unique explained 

variance than the timing features.
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Fig. 2. 
The model fit captures known response differences between pSTG and mSTG. A and B: 

Time components for the sentence onset and peak rate response matrices, scaled by their 

singular value (all panels of this figure use the fit from the first cross-validation fold). C: 

The first two spatial components (across electrodes) for sentence onset. E: The electrode 

responses to sentence onset events (rows of the sentence onset response matrix), colored by 

the first (left) or second (right) peak rate spatial component. The first spatial component for 

sentence onset shows that electrodes with large sentence onset responses (red lines in the left 

plot of E) tend to be in posterior STG (red circles in the left plot of C). D and F: (like C 

and E, but for peak rate). The second spatial component divides electrodes into fast and slow 

peak rate responses (red and blue lines in the right plot of F), which tend to occur over pSTG 

and mSTG, respectively (red and blue circles in the right plot of D).
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Fig. 3. 
Feature latent states have rotational dynamics that capture continuous relative timing 

information. A: Acoustic waveform of the stimulus. Solid and dashed vertical lines indicate 

the timing of the sentence onset and peak rate events, respectively. Colors along the x-axis 

are used to indicate time in parts D-G. B, C: Predicted latent states for the sentence onset 

and peak rate features corresponding to the given stimulus. D, E: Top three dimensions of 

the predicted sentence onset and peak rate latent states (the top three dimensions capture 

98.7% and 98.8% of the variance in the sentence onset and peak rate coefficient matrices, 

respectively). F, G: Projection of the predicted sentence onset and peak rate latent states onto 

the plane of fastest rotation (identified using jPCA). The displayed jPCA projections capture 

31.8% and 20.3% of the variance in the sentence onset and peak rate coefficient matrices, 

respectively. All panels of this figure use the fit from the first cross-validation fold.

Stephen et al. Page 28

Hear Res. Author manuscript; available in PMC 2024 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Latent states from the model can be used to decode time relative to feature events. 

Performance of a perceptron model trained to decode the time relative to the most 

recent feature event, for each feature. The models were trained either using the full 

high-dimensional set of high gamma responses across electrodes (blue bars) or using the 

projection of those responses onto the subspaces spanned by the feature latent states (orange 

bars). Performance is quantified using the testing set r2.
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Fig. 5. 
Peak rate rotational latent states could provide a temporal scaffolding on which individual 

acoustic features can be organized. A: The acoustic waveform for the stimulus “It had gone 

like clockwork”. Solid vertical lines indicate the times of peak rate events, and colored 

dashed vertical lines indicate the times of phonetic feature events. Colors are used to indicate 

time in all panels. B: The predicted peak rate latent state follows a spiral trajectory in the 

top 3 dimensions. C: Projected onto the plane of greatest rotation (jPC1 and 2), the predicted 

peak rate latent state divides the sentence into four intervals, each consisting of a rotation 

through state space that captures the time since the peak rate event occurred. Downstream 

processing could combine the relative time information encoded in the peak rate subspace 

(grey traces) with the feature identities encoded in the feature subspaces (colored points) to 

compose higher-order representations of words or small groups of words. Text in panels B 

and C indicates the approximate timing of the words in the stimulus.
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