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Abstract
We describe the implementation of orbital optimization for the models in the perfect pairing hier-
archy [Lehtola et al, J. Chem. Phys. 145, 134110 (2016)]. Orbital optimization, which is generally
necessary to obtain reliable results, is pursued at perfect pairing (PP) and perfect quadruples (PQ)
levels of theory for applications on linear polyacenes, which are believed to exhibit strong correlation
in the π space. While local minima and σ-π symmetry breaking solutions were found for PP orbitals,
no such problems were encountered for PQ orbitals. The PQ orbitals are used for single-point calcu-
lations at PP, PQ and perfect hextuples (PH) levels of theory, both only in the π subspace, as well
as in the full σπ valence space. It is numerically demonstrated that the inclusion of single excita-
tions is necessary also when optimized orbitals are used. PH is found to yield good agreement with
previously published density matrix renormalization group (DMRG) data in the π space, capturing
over 95% of the correlation energy. Full-valence calculations made possible by our novel, efficient
code reveal that strong correlations are weaker when larger bases or active spaces are employed
than in previous calculations. The largest full-valence PH calculations presented correspond to a
(192e,192o) problem.

KEYWORDS
strong correlation, orbital optimization, perfect quadruples, perfect hextuples, polyacenes

Abbreviations: AO: atomic orbital, BFGS: Broyden–Fletcher–Goldfarb–Shanno, CAS-SCF: com-
plete active space self-consistent field, CCVB: coupled cluster valence bond, CI: configuration in-
teraction, DMRG: density matrix renormalization group, FCI: full configuration interaction, GDM:
geometric direct minimization, HONO: highest occupied natural orbital, LUNO: lowest unoccupied
natural orbital, MC-SCF: multiconfigurational self-consistent field, MO: molecular orbital, NO: nat-
ural orbital, NOON: natural orbital occupation number, OO-CC: orbital-optimized coupled cluster,
OPDM: one particle density matrix, PP: perfect pairing, PQ: perfect quadruples, PH: perfect hex-
tuples, PPH: perfect pairing hierarchy, TPDM: two particle density matrix, VDRM: variational
reduced density matrix, VOO-CC: valence orbital-optimized coupled cluster

1. Introduction

Systems with strong correlation, in which many electronic configurations contribute significantly
to the wave function, are important in many areas of chemistry such as catalysis. Unfortunately,
their accurate yet efficient modeling is still an unsolved question in theoretical chemistry. The exact
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wave function for any system is available in theory by diagonalizing the molecular Hamiltonian in
the basis of electron configurations, yielding the full configuration interaction (FCI) approach. But,
FCI exhibits exponential scaling that limits its use to tiny systems [1–6].

Restricting the number of electronic configurations allowed in the wave function yields the mul-
ticonfigurational self consistent field (MC-SCF) method [7]. However, as typically a considerable
number – thousands to millions – of configurations are necessary to obtain a sufficiently converged
wave function, the electronic configurations allowed in the wave function are more often defined in
terms of active orbitals, as in the complete active space self-consistent field (CAS-SCF) method [8–
10] or variants thereof [11–13]. CAS-SCF still maintains the exponential scaling of FCI with respect
to the size of the active space, and is generally acknowledged to be limited to problems around the
size of 16 electrons in 16 orbitals, denoted as (16e,16o). While ideally all valence electrons should
be included in the active space, due to the limitation on the size of the feasible active space the
choice of the active orbitals is generally a complicated problem, and improper choices often yield
unreliable results [14]. The necessary active space can also change e.g. along a reaction path, further
underlining the problems caused by the limitations of this type of an approach.

Because most of the configurations in an FCI (or CAS-SCF) wave function typically have negligi-
ble weights, it is possible to truncate the wave function without losing significant accuracy [15–18].
This has been recently been exploited in various stochastic and adaptive approaches to FCI and
CAS-SCF [19–31], which have made quasi-FCI calculations feasible on much larger systems than
before. For instance, ref. 31 describes the solution of the (28e,22o) problem in oxoMn-salen to sub-
millihartree accuracy in less than a minute on 20 cores. Although these novel approaches for the
solution of the FCI problem have made calculations possible on much larger systems than with
conventional algorithms, due to their reliance on the FCI ansatz, they still scale exponentially in
the size of the active space.

The density matrix renormalization group (DMRG) approach [32–36] is able to reproduce the FCI
result, yet it affords polynomial scaling in linear systems. Unfortunately, for non-linear systems, like
CAS-SCF or FCI, DMRG succumbs to exponential scaling as well [36]. Still, DMRG has successfully
been applied to considerably larger active spaces than CAS-SCF [37–39], and is generally thought
to be the best general-purpose tool for strong correlation as it can be used to treat extremely
challenging problems such as open-shell transition metal compounds. In practice, DMRG is limited
to (nele,norbo) problems with nelnorb ď 2000 [36]. Furthermore, DMRG is not trivial to use due to
issues with the choice of various convergence parameters. There is thus still demand for approximate
methods that are able to capture the bulk of strong correlation effects while also being fast enough
to be able to handle a full-valence active space. The perfect pairing hierarchy (PPH) is one possible
candidate for such a method.

The methods in the PPH are obtained by truncating the equations of infinite-order coupled
cluster (CC) theory [40] to be exact for a singlet state (which can be open- or closed-shell) in
a (ne,no) active space for a given number of electrons n [41, 42]. The truncation of PPH bears
some similarity to, but is not to be confused with the nCC hierarchy proposed by Bartlett and
Musiał [43], where the CC diagrams are truncated for exactness for n electrons. Thus, the PPH can
alternatively be understood as a further truncation of nCC to an active space.

The simplest model in the PPH, perfect pairing [44–49] (PP), is exact for a n “ 2 singlet, whereas
the perfect quadruples [41] (PQ) and perfect hextuples [42] (PH) models are exact for n “ 4 and
n “ 6, respectively. The PP, PQ, and PH models form a hierarchy of approximations to CAS-SCF.
With our recent, efficient implementation of the PQ and PH models [50], this hierarchy can be used
to perform approximate CAS-SCF calculations on systems of unforeseen size, as will be seen later
on in the manuscript.

While CC theory is invariant to orbital rotations in the occupied-occupied and virtual-virtual
blocks, the results of truncated CC approaches generally depend on the set of occupied orbitals used
in the calculation. In orbital-optimized CC (OO-CC) theory [51] occupied-virtual (ov) rotations are
performed to minimize the CC energy. Furthermore, as core orbitals are chemically inactive, an
active space can be introduced, as is also done in CAS-SCF, yielding the valence orbital-optimized
CC (VOO-CC) method [52]. The introduction of an active space necessitates optimization of rota-
tions between active and inactive occupied orbitals, as well as active and inactive virtual orbitals,
in addition to the ov rotations in OO-CC. In the PPH, mixings within the active occupied, as well
as active virtual orbital spaces must further be considered, because the truncation is based on the
orbitals.

In the present manuscript, we describe how orbital optimization can be efficiently implemented
for the models within the PPH, and present their applications to full-valence calculations on linear
polyacenes. Ever since preliminary calculations predicted linear polyacenes to have singlet diradi-
cal ground states [53], both linear and cyclacenes have been studied intensively using a variety of
methods [54]. Famously, DMRG calculations have been used to show that the larger linear poly-
acenes exhibit strong correlation for their π electrons [55]. Other approaches used have included
density functional theory [56–61], multiconfiguration pair-density functional theory [62], projected
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Hartree–Fock theory [63], the random phase approximation [64], configuration interaction [60] (CI),
adaptive CI [27], GW theory [65], variational two-electron reduced density matrix (VRDM) the-
ory [66–69], Møller–Plesset perturbation theory [61, 70–73], spin-flip methods [74, 75], CAS-SCF
[53, 59, 71, 72, 76] as well as restricted-active space self-consistent field theory [77], valence bond [78]
and CC valence bond (CCVB) theory [79, 80], CC theory [70–72, 80] and multireference averaged
quadratic CC theory [81, 82], an algebraic diagrammatic construction scheme [83], as well as PPH
methods with approximate orbitals [50].

We chose these systems for our study, because the correlation exhibited is too strong for successful
description with conventional CC approaches, such as CC with full single and double excitations
(CCSD) [70, 71, 80], and because the CAS-SCF, VRDM, and DMRG studies have been restricted
to the π space only, as full-valence calculations would otherwise be too costly for these methods for
anything beyond the smallest acenes. As far as we are aware, the only full-valence calculations on
large polyacenes employing a method potentially capable of accurate treatment of strong correlation
that have been published are the CCVB calculations performed contemporaneously in our group
[79, 80]. Thanks to our recent implementation [50], even the larger polyacenes can be treated
accurately in full-valence active spaces using PPH methods, yielding an independent way to check
the correctness of the recent CCVB results.

As the result of our application, we find that orbital optimization can be routinely applied to
large systems, and that it significantly improves the accuracy of the PPH models. We show that
even when optimal orbitals are used, it is necessary to include single excitations as the optimal
orbitals are not Brueckner orbitals. We show that PH successfully describes strong correlation in
the STO-3G π space compared to literature DMRG reference values [55]. In agreement with the
recent CCVB results of ref. 80, and in contrast to the π active space results obtained using e.g.
DMRG [55] and VDRM [66, 68, 69], we show the strong correlation is quenched when all valence
orbitals are included in the active space. Furthermore, going beyond the STO-3G basis for the first
time with a high-level full-valence method shows that improvement of the basis set leads to even
more quenching of the strong correlation for the same active space.

In the following, i, j and k denote occupied spin-orbitals, a and b denote unoccupied spin-orbitals,
and p, q, r, s, t and u denote general spin-orbitals.

2. Theory

Analytic gradients and orbital-optimized CC theory have been discussed extensively elsewhere [51,
52, 84], but a brief overview of the optimization procedure is given below for the sake of completeness.
The CC equations are given by
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where H is the effective Hamiltonian, the correlation energy Ec is given by equation (1), and
equations (2) and (3) determine the single and double excitation ampitudes, respectively. Regardless
of the truncation of the amplitudes, the CC energy is determined solely by the single and double
excitations as

ECC
“E0 `

ÿ

ia

fa
i t

a
i `

1

2

ÿ

ijab

tai t
b
j xij } aby `

1

4

ÿ

ijab

tabij xij } aby , (4)

where E0 is the Hartree–Fock reference energy, fa
i is a Fock matrix element and xij } aby is a

two-electron integral, and tai and tabij are the single and double excitation amplitudes, respectively.
The orbitals enter the problem through the matrix elements fa

i and xij } aby. However, the orbital
rotation gradient cannot be calculated from equation (4), because the amplitudes t depend on the
matrix elements in the first order. To be able to optimize the orbitals, one must demand the
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simultaneous satisfaction of the CC equations through Lagrangian multipliers λ [85]

L “ECC
`
ÿ

ia

λa
i

@

Φa
i

ˇ

ˇH
ˇ

ˇΦ0

D

`
ÿ

ijab

λab
ij

A

Φab
ij

ˇ

ˇ

ˇ
H

ˇ

ˇ

ˇ
Φ0

E

` . . . (5)

that are known as de-excitation amplitudes, in analogy to the excitation amplitudes t.
Demanding that the variation of the CC Lagrangian (equation (5)) vanish both with respect to

the t and the λ amplitudes, equations are obtained for the λ and the t amplitudes, respectively.
Having solved for the values of t and λ, the terms in equation (5) can be regrouped into the standard
form

L “E0 ` γpqfpq ` Γpqrs xpq } rsy , (6)

where γpq and Γpqrs are then identified as the one-particle (OPDM) and two-particle density matri-
ces (TPDM), respectively. Unlike the CC energy (equation (4)), the CC Lagrangian (equations (5)
and (6)) is correct to the first order in the matrix elements. Thus, BL{Bθpq is a proper gradient for
a rotation of the orbitals through an angle θ

C ÑCeθ. (7)

The in-detail equations for the gradient are given in the Appendix.

3. Computational Details

The geometric direct minimization (GDM) approach [86], which uses a limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) approximate Hessian [87], is used to optimize the orbitals
[49, 88]. No parallel transport of previous gradients in the BFGS is used in our implementation, as
we are viewing the optimization problem on the Stiefel manifold where the efficient implementation
of parallel transport is an unsolved problem [89]. To speed up the convergence of the optimization,
also the diagonal Hessian B2L{Bθ2

pq is calculated (see the Appendix) and used to initialize the BFGS
solver.

Once a search direction θ has been chosen with GDM, a line search is performed to minimize the
Lagrangian (equation (6)); that is, Lpexpp`θqq is minimized with respect to the step size `. Because
L is a quasiperiodic function along ` [90, 91], the period of its fastest oscillation λ0 can be estimated
from the largest absolute eigenvalue |ω|max of θ as λ0 “ π{2|ω|max. This expression can be derived
when the Lagrangian has fourth-order dependence on the orbitals [92], as is the case here due to
the two-electron integrals. Relying on earlier experience [92], we chose to perform the line search
using parabolic interpolation with a trial step size of λ0{5. Once a optimal value ` has been found,
the orbitals are updated C Ñ C expp`θq and the new reference energy E0 and density matrices γ
and Γ are evaluated. Then, the new gradient and diagonal Hessian are computed, followed by either
a new line search, or the determination that successful convergence has been achieved.

The line search minimization of equation (6) has two obvious approaches. First, one may allow
the density matrices γ and Γ to relax at every point along the line, which appears the obvious
solution. However, one could also consider equation (6) as a model energy functional by assuming
the density matrices γ and Γ to be fixed. After some experimentation, we chose to pursue the latter
approach, as in addition to the slight benefit of eliminating the need to solve new amplitudes during
the line search, it also makes the search direction and preconditioning in GDM exact. Note that
even when the density matrices are frozen within the line search, every optimization step must
result in a decrease of the true CC energy, as the true, relaxed energy will always lie below the
energy predicted by the model functional.

The gradient and diagonal Hessian equations are autogenerated in a similar fashion to the CC
equations, following the machinery detailed in ref. 50. The density matrices and integrals are rep-
resented as dense subtensors in the molecular orbital (MO) basis, which is sparse in the PPH.
Also the gradient and the diagonal Hessian are generated in the paired MO basis, as this enabled
re-use of the code developed in ref. 50. However, the Fock matrix response term in the gradient
(the two-electron integral terms in equation (16) in the Appendix) is excluded from the automatic
evaluation, as it would result in the calculation of 3-index molecular integrals for PP and 4-index
molecular orbitals for PQ, which would dominate the computational cost of the models. Instead, the
response term is evaluated with hand-written code in the atomic orbital (AO) basis, allowing both
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for better scaling and for taking advantage of AO integral sparsity, reducing the cost of evaluating
the term to the same level as Hartree–Fock theory.

The methods have been implemented in a general-purpose library, which may be made publicly
available in the future. The input for a calculation is composed of the matrix elements, that is the
MO basis Fock and B matrices, which are read in from the disk. The B matrices can be precomputed
using either Cholesky [93] or resolution-of-the-identity [94] techniques. After the amplitudes have
been converged, the computer generated implementation outputs the energy, the OPDM and the
TPDM, as well as the orbital gradient and the diagonal Hessian as matrices if their calculation
has been requested. This minimal interface guarantees straightforward interfacing possibilities to
various programs.

The results of the present manuscript have been obtained by interfacing the library with the
Erkale program [95, 96]. Hartree–Fock occupied orbitals, localized [91] with the generalized
Pipek–Mezey method [97] with Becke charges and then paired with corresponding virtual orbitals
using the Sano procedure [98], have been used to initialize the orbital optimization by GDM.
Cholesky decompositions [93, 99] are used for all integral computations, with a 10´10 screening
threshold for the two-electron integral calculations, and a 10´6 threshold for the Cholesky proce-
dure. The AO Cholesky decomposition is run only once for a given molecule, at the beginning of
the Hartree–Fock calculation, constituting a trivial fraction of the total runtime of the models.

Because single excitations are analogous to orbital rotations [100] and thus imitate orbital relax-
ation effects within the active space, the orbital optimization is run without single excitations as is
done in OO-CC and VOO-CC. A gradient convergence threshold of }BL{Bθpq} ď 10´5 is used for the
PPH orbital optimization. Having converged the orbitals with PP or PQ, single-point calculations
are run with PP, PQ, and PH, and density matrices are calculated. Natural orbitals (NOs) and NO
occupation numbers (NOONs) are obtained by diagonalizing the OPDM.

4. Results

While the automated procedures would allow us to formulate an orbital optimization procedure for
all the models in the PPH, in the present work orbital optimization is undertaken only with PP and
PQ, which have been shown to exhibit excellent scaling with system size [50]. Orbital optimization
with PH is not considered, because the truncation of the intermediates that is performed in PH
requires consistent definitions of all the intermediates in the t, λ as well as the density matrix
equations, but this is not guaranteed in our code at present. We estimate the effect of the inconsistent
truncation on the NOONs to be negligible (changes in the occupation numbers of the order of 0.001).

To facilitate comparison with DMRG reference values, the molecular geometries for the poly-
acenes were adopted from ref. 55. With the molecule placed on the xy plane, σ and π orbital sym-
metries were assigned by determining the parity of the orbital φ upon reflection about the plane
φpx, y,´zq “ ˘φpx, y, zq. Like the original Pipek–Mezey method [101], the generalized Pipek–Mezey
method [97] used in the present work properly separates σ and π orbitals, but lacks severe math-
ematical shortcomings of the original formulation by Pipek and Mezey that is based on Mulliken
charges [102].

Orbital optimizations restricted to the π and σ active spaces, respectively, were attempted in
the STO-3G basis set [103] by deleting the virtual orbitals of the opposite class. Because STO-3G
is a minimal basis set, there are no inactive virtual orbitals and the optimization problem only
needs to be solved within the active space. For both the σ- and the π-space, the PP optimizations
converged within a few dozen iterations. For PQ, the σ-space orbital optimizations converged in a
few hundred iterations. However, the convergence of the PQ π-space calculations was poor: while
for the smaller acenes convergence was achieved in several hundred iterations, for 6acene the orbital
optimization was still not converged at 500 iterations, and for even larger acenes the λ amplitude
equations diverged during the orbital optimization. (These problems can be understood in light of
the results discussed later on in the manuscript: the restriction to the π space exaggerates correlation
effects, which then make orbital optimization hard.) For this reason, we will not consider orbital
optimization restricted to the σ or π space further in the manuscript.

For the full-valence STO-3G orbital optimization with PP, solutions that break σ-π symmetry
by having some orbitals of mixed character were found for multiple molecules. In contrast, we did
not encounter any broken symmetry solutions with full-valence STO-3G PQ optimized orbitals. We
have thoroughly tested this in the case of 2acene. In analogy to our recent study in self-interaction
corrected density functional theory [92], 100 different initial guesses were considered for the initial
occupied orbitals, after which the orbitals were localized with the generalized Pipek–Mezey method
and corresponding virtuals determined with the Sano algorithm. Orbital optimization initialized
with these guesses was performed using both PP and PQ. For PP, a quarter of the calculations
converged on a symmetry broken solution, while three quarters found the σ-π preserving solution
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Figure 1.: Computational scaling of the PP and PQ models in the STO-3G basis, averaged over 10
iterations. Legend: reference energy E0 (4), B matrix (l), matrix elements I (©), orbital gradient
matrix elements BI{Bθpq (˛), t amplitude iteration (ˆ), λ amplitude iteration (+), OPDM γ build
(˚), TPDM Γ build (‹), L evaluation (♥), BL{Bθpq evaluation (♠).

which is higher in energy. For PQ, all calculations converged to the same solution that preserves
σ-π symmetry. Calculations were also performed without the initial generalized Pipek–Mezey /
Sano localization procedure, in which case all PP calculations converged onto the symmetry broken
solution, and PQ again converged to the σ-π preserving solution.

It is not hard to understand why PP would have more local solutions than PQ. In PP orbital
optimization (i.e. no single excitations), the only excitations are intra-pair ones: the double exci-
tation ti

‹ ī‹

īi from the occupied alpha and beta orbital i and ī, respectively, to the corresponding
paired virtuals i‹ and ī‹, respectively. Furthermore, each amplitude ti

‹ ī‹

īi can be solved analytically,
independent of the other pairs [49]. In contrast, in PQ orbital optimization, several inter-pair double
excitations ti

‹ ī‹

jī , ti
‹ ī‹

ij̄ , tj
‹ ī‹

īi
, ti

‹ j̄‹

īi
, tj

‹ j̄‹

īi
, ti

‹ j̄‹

ij̄
, tj

‹ ī‹

jī
are added (as well as same-spin double excita-

tions), as well as the triple excitations ti
‹j‹ j̄‹

ijj̄
, tj

‹i‹ ī‹

ijj̄
, ti

‹j‹ j̄‹

jīi
, and tj

‹i‹ ī‹

jīi
and quadruple excitations

ti
‹j‹ ī‹ j̄‹

ijīj̄
. Thus, PP describes single Kekulé structures, whereas PQ adds in resonance terms which

couple the structures, eliminating the local solutions. Because the PQ orbitals thus appear well
defined, we chose to use the full-valence optimized PQ orbitals for all the single-point calculations
in our study.

The scaling of the STO-3G calculations on one of the authors’ (S.L.) workstation, using a single
Intel i7-4770 processor core, is shown in figure 1. Already in the STO-3G basis, where there are
no inactive virtual orbitals, the integral calculations and the build of the orbital gradient of the
Lagrangian are close to being the rate determining steps for the orbital optimization. Because
everything else is built only within the active space and thus does not scale with the size of the
basis, the computation of the integrals and the orbital gradient contraction will become even more
dominant in larger bases: PP has OpNactq matrix elements and OpNactNbfq orbital gradient matrix
elements, while PQ has OpN2

actq matrix elements and OpN2
actNbfq orbital gradient matrix elements,

where Nact and Nbf are the number of active orbitals and basis functions, respectively, when the
Fock response terms are handled otherwise as discussed above in the Computational Detail section.
An optimized AO implementation has been reported for PP [49]; similar techniques might prove
beneficial for PQ as well. While PQ scales asymptotically as N4

act [41, 50], PQ is still cubic scaling
for the 12acene calculation with Nact “ 228, suggesting that enormous calculations will be possible
with a fully optimized implementation.
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4.1. STO-3G basis, π space

To establish the accuracy of the orbital-optimized models, we begin in the STO-3G basis [103]
where accurate DMRG data is available in the π space [55]. Calculations are performed using the π
orbitals extracted from the full-valence optimized PQ orbitals. Because σ-π correlation is expected
to be much less important than π-π correlation, the π orbitals extracted from the full-valence PQ
optimization should not be exceedingly different from the ones that would be optimal for a π-space-
only PQ calculation, as all the π orbitals of STO-3G are anyhow included in the full-valence π
active space.

The correlation energy captured by PP, PQ, and PH, along with the Hartree–Fock energy are
shown in table 1. Because PQ optimized orbitals are used for all models, results are given both
with and without single excitations included in the single-point calculation, as these represent
relaxations in the active occupied – active virtual block. (Note however, that the singles do not
relax the other orbital degrees of freedom in PPH, namely, the active occupied – active occupied
and active virtual – active virtual rotations.) One would expect this active space orbital relaxation
effect to be minimal. However, it has also been argued that OO-CC theories that rely on projective
approaches fail to reproduce FCI results [104], because the singles amplitudes at the optimized
orbitals are not guaranteed to vanish, as they do for true Brueckner orbitals [105]. Thus, the results
obtained including single excitations should be more accurate than the ones obtained without
singles. But, due to the non-variational character of projected CC theory, the inclusion of the single
excitations may also result in a significant underestimation of the total energy. The importance of
the inclusion of single excitations is clear from the results in table 1. The energies estimated with
single excitations are noticeably lower than the ones estimated without single excitations, and are
in better agreement with DMRG.

The agreement of PH with DMRG is excellent. Without singles, PH captures >90% of the
correlation energy for all systems, and with singles, PH captures >95% of the correlation energy
for all acenes, even though the π electrons have a significant degree of delocality.

Comparing the numbers of table 1 with the analogous data using approximate orbitals (corre-
sponding to the initial guess used in the present work) in ref. 50 shows remarkable improvement in
the PQ results due to the orbital optimization carried out in the present work. While PQ orbitals
are suboptimal for PP, also the PP energies estimated with PQ orbitals are significantly lower than
those estimated with approximate orbitals.

PQ orbitals are also suboptimal for PH. However, the comparison with the energies of ref. 50
suggests that PQ orbitals yield lower energies for 2acene–6acene, while for 8acene–12acene the
energies estimated from the approximate orbitals are below the present estimates obtained with the
PQ orbitals. Because PH orbital optimization has not been attempted in the present work due to
technical issues, it remains to be seen whether this phenomenon is caused by non-variational effects
in PH, or the more delocalized nature of PH optimal orbitals compared to PQ optimal orbitals as
speculated in ref. 50.

The π-space NOONs reproduced by PP, PQ, and PH on PQ orbitals are shown in figure 2. Like
the earlier results with approximate orbitals [50], the NOONs reproduced by PH with PQ orbitals
are in qualitative agreement with the DMRG results of ref. 55. However, important differences
are noticeable. Compared to the earlier approximate orbital results [50], the signature of strong
correlation is apparent with optimized orbitals already in PQ. Also, the overcorrelation of PH for
12acene has been removed, implying it was caused by nonvariational behavior originating from
a poor orbital guess – this may be like the difference between nonvariational CCSD energies for
bond-stretching with restricted vs. unrestricted orbitals. The remaining differences between the PH
and DMRG results can be attributed to two factors: suboptimal orbitals (PQ instead of PH) and
the remaining truncation error in PH.

4.2. STO-3G basis, full-valence calculations

Having discussed the accuracy of the models in the π space, we are in a good position to continue
onto the full valence space. The excellent accuracy in the π space is noteworthy, because as discussed
in ref. 50, the perfect pairing hierarchy can be seen as a local correlation model. As the models are
able to successfully treat the delocalized π electrons in the polyacenes, they will be even better in
treating the additional correlation due to the σ electrons, which are localized.

The results of our full-valence STO-3G calculations are shown in table 2 for the correlation
energies, and figure 3 for the NOONs. As is evident from the plot, the strong correlation that is
clear in the π space calculation is quenched in the full-valence calculation. Table 3 shows the gap
between the highest occupied NO (HONO) and the lowest unoccupied NO (LUNO) in the full-
valence calculation, which is significantly larger than the one in the π-space only calculation in
table 4.

The single excitations are again found to play a significant role. Contrary to the previous case
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Figure 2.: π-space NOONs for PP, PQ and PH with and without single excitations, using PQ
orbitals.

dealing with the subset of π orbitals, here the orbitals have been optimized for the same problem.
Thus, if the orbitals had a quasi-Brueckner character, there would be little difference between the
results obtained with and without single excitations. In contrast, the results in table 2 clearly show
that this is not the case: single excitations are necessary even when the orbitals have been optimized.

4.3. cc-pVDZ basis

Full-valence orbital optimizations were performed up to 5acene in the cc-pVDZ basis set [106].
The resulting correlation energies, NOONs, and HONO-LUNO gaps are shown in table 5, figure 4,
and table 6, respectively. The correlation energies are smaller in cc-pVDZ than in STO-3G, and
the HONO-LUNO gaps are larger. While the strong correlation of the π electrons was already
quenched in the full valence space of STO-3G, the signature of strong correlation is even more
strongly quenched in the cc-pVDZ basis, even though the size of the used active space is the same
in STO-3G and cc-pVDZ. As a result of the smaller amount of correlation, the PP, PQ and PH
results are closer to each other in cc-pVDZ than in STO-3G. It is thus clear that the limited
flexibility of the STO-3G basis set results in an exaggeration of the correlation effects, and the
question about the polyradicaloid character of the polyacenes may still be unresolved.

5. Summary and Discussion

We have presented the efficient implementation of orbital optimization for the models in the perfect
pairing hierarchy, and applied the new implementation to calculations on linear polyacenes. Our
results show that orbital optimization is feasible for PQ for huge system sizes – up to (228e,228o) in
the present work – and that the optimization significantly improves the quality of the results. The
cost of orbital optimization in PP and PQ is dominated by the evaluation of matrix elements, the
cost of which can be reduced by various optimization techniques, such as evaluation in the atomic
orbital basis.

While it was found that PP may produce broken symmetry solutions that lie energetically below
the σ-π symmetry preserving solution, only a single PQ solution – which furthermore preserves
σ-π symmetry – was found for every molecule in the polyacene series. For this reason, full-valence
optimized PQ orbitals were used for all the single-point calculations in the present work.

As has been argued in the literature [104], even when optimized orbitals are used, it is necessary
to include single excitations in the treatment, because the Brueckner condition [105] may not be
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Figure 3.: Full-valence STO-3G NOONs for PP, PQ and PH with and without single excitations,
using PQ orbitals.

Without singles With singles

2acene 1.8642 1.7288 1.7091 1.8642 1.7266 1.6998
3acene 1.8372 1.7011 1.6538 1.8372 1.7046 1.6469
4acene 1.8340 1.6852 1.6227 1.8340 1.6872 1.6045
5acene 1.8280 1.6658 1.5775 1.8280 1.6710 1.5616
6acene 1.8280 1.6535 1.5474 1.8280 1.6585 1.5211
8acene 1.8286 1.6242 1.4624 1.8286 1.6326 1.4271
10acene 1.8286 1.5095 1.3842 1.8286 1.5311 1.3216
12acene 1.8138 1.3446 1.8138 1.3905

Table 3.: Full-valence STO-3G HONO-LUNO gaps for PP, PQ, PH.
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Without singles With singles

Molecule PP PQ PH PP PQ PH DMRGa

2acene 1.8642 1.6990 1.6600 1.8642 1.6956 1.6433 1.6315
3acene 1.8372 1.6617 1.5770 1.8372 1.6645 1.5602 1.5303
4acene 1.8340 1.6411 1.5293 1.8340 1.6418 1.4913 1.4213
5acene 1.8280 1.6150 1.4570 1.8280 1.6190 1.4154 1.3063
6acene 1.8280 1.5992 1.4066 1.8280 1.6025 1.3409 1.1567
8acene 1.8286 1.5608 1.2559 1.8286 1.5671 1.1450 0.7885
10acene 1.8286 1.4507 1.1102 1.8286 1.4692 0.9276 0.5777
12acene 1.8138 1.2641 0.8942 1.8138 1.3063 0.7175 0.4717b

aData from ref. 55.
bThe DMRG reference value of ref. 55 may not be converged.

Table 4.: π-space HONO-LUNO gaps for PP, PQ, PH, compared with DMRG data from ref. 55.
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Figure 4.: Full-valence cc-pVDZ NOONs for PP, PQ and PH with and without single excitations,
using PQ orbitals.
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Without singles With singles

Molecule PP PQ PH PP PQ PH

2acene 1.9120 1.8348 1.8185 1.9120 1.8340 1.8149
3acene 1.8958 1.8198 1.7907 1.8958 1.8212 1.7871
4acene 1.8939 1.8094 1.7737 1.8939 1.8102 1.7665
5acene 1.8894 1.7984 1.7525 1.8894 1.8004 1.7454

Table 6.: Full-valence cc-pVDZ HONO-LUNO gaps for PP, PQ, PH.

satisfied in projected CC theories which are non-variational. We have demonstrated that this is
true also within the PPH: the inclusion of single excitations leads to significant energy lowerings in
full-valence PQ calculations using optimized orbitals. In principle this energy lowering may also be
due to non-variational effects, but we did not witness any breaking of variationality in the present
work.

We have shown that PH used on top of PQ orbitals successfully captures the strong correlation
in the π space of the polyacenes in STO-3G, capturing over 95% of the correlation energy relative to
DMRG. While PH is already successful in the delocalized π space, because it can be understood as
a three-pair local correlation model [50], it should perform even better for the additional description
of the localized σ electrons. We have shown that once the σ electrons are included to complete the
full valence active space, the strong correlation of the π electrons of the polyacenes is quenched
in the STO-3G calculations. A similar result has been obtained contemporaneously in our group
through coupled cluster valence bond calculations [80]. The reason why the results of ref. 80 agree
with ours can be understood by analysis of the results of the PH calculations. In the method of ref.
80, excitations are included to the approximate quadruples level. In our PH calculations, the role of
quintuple and hextuple excitations (which CCVB lacks) is small, indicating they describe dynamic
correlation effects that have negligible importance on the natural orbital occupation numbers.

We have further presented the first accurate ab initio calculations on polyacenes that go beyond
the minimal STO-3G basis set. Our calculations in the cc-pVDZ basis set, employing the same
active spaces as in STO-3G, show that the adoption of a non-minimal basis set further reduces
the signature of strong correlation in the full valence space. Thus, the polyradicaloid character
of the smaller acenes claimed in works by multiple authors may then be purely an effect of an
insufficient active space and basis set, highlighting the need for further calculations, as the onset of
polyradicaloid behavior in the acene series may be delayed when all valence electrons are correlated.

Orbital optimization for strong correlation problems is often non-trivial due to the existence
of broad minima. For this reason, many approaches that guarantee second-order convergence have
been developed for MC-SCF [10, 107–116] and DMRG [117–119] calculations. While the Lagrangian
formulation (equation (6)) is not correct to second order in the orbitals, it has been recently used
for a quadratic convergence OO-CC implementation [84]. A similar approach should be feasible for
the PPH as well – possibly supplemented by the use of the proxy function approach (freezing the
density matrices between orbital update steps) which has been used in the present work. Although
the cost per iteration as well as storage requirements in such an approach would be significantly
higher than in the present one based on GDM, a second-order approach may yield converged orbitals
in considerably fewer iterations and could be pursued in future work.
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Appendix

Here, we give the equations necessary to implement the rotation gradients and diagonal Hessians
of the integrals. The rotation matrix U that is used to rotate the orbitals C

C ÑCU

is parametrized as

U “ expθ

where θ is an anti-hermitian matrix of rotation parameters. Due to the antihermicity, we can
parametrize the rotations with either only the upper or only the lower triangular part of θ. Using
the former choice we write

θ “

¨

˚

˚

˚

˚

˝

0 ∆12 ∆13 ¨ ¨ ¨ ∆1n

´∆12 0 ∆23 ¨ ¨ ¨ ∆2n

´∆13 ´∆23 0 ¨ ¨ ¨ ∆3n

...
...

...
. . .

...
´∆1n ´∆2n ´∆3n ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‚

.

or more symbolically

θ “

ˆ

0 ∆
´∆T 0

˙

.

The derivative with respect to the irreducible parameters ∆ is obtained as

BE

B∆tu
“
ÿ

rs

Bθrs
B∆tu

BE

Bθrs

“
BE

Bθtu
´
BE

Bθut
(8)

and the diagonal Hessian as

B
2E

B∆2
tu

“
ÿ

pqrs

Bθpq
B∆tu

B

Bθpq

ˆ

Bθrs
B∆tu

BE

Bθrs

˙

“
ÿ

pqrs

pδptδqu ´ δpuδqtq pδrtδsu ´ δruδstq
B

2E

BθpqBθrs

“
B

2E

BθtuBθtu
´ 2

B
2E

BθtuBθut
`

B
2E

BθutBθut
. (9)

The starting point to obtain the rotation gradients and diagonal Hessians is to write integrals
rotated by an angle θ as

hpq “UPpUQqhPQ, (10)
vpqrs “UPpUQqURrUSsvPQRS , (11)

where the capital indices P , Q, R and S refer to the reference set of orbitals, hpq are one-electron
integrals, and the shorthand notation vpqrs “ xpq } rsy is used for the two-electron integrals. Then,
by substituting the Taylor expansion

U “ expθ « 1` θ `
1

2
θ2 (12)
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the gradient with respect to the rotation parameters θ can be calculated, and evaluated at the
reference orbitals (θ “ 0) to give the orbital rotation gradient

ˆ

Bhpq

Bθtu

˙

θ“0

“htqδpu ` hptδqu, (13)

where δpq is the Kronecker delta symbol. Similarly, the gradient for the two-electron integral is

ˆ

Bvpqrs
Bθtu

˙

θ“0

“vtqrsδpu ` vptrsδqu ` vpqtsδru ` vpqrtδsu. (14)

The Fock matrix is given by

fpq “hpq `
ÿ

kPocc.

vpkqk, (15)

where the sum over k runs over occupied spin-orbitals, and thus the gradient from the Fock matrix
elements also gathers a two-electron response term

ˆ

Bfpq
Bθtu

˙

θ“0

“

ˆ

Bf0
pq

Bθtu

˙

θ“0

`pvptqu ` vpuqtq δu,occ.. (16)

Here, pBf0
pq{Btuqθ“0 denotes the gradient of the “frozen” Fock matrix, which is given by equa-

tion (13). Similar expressions to equations (13) to (16) have been presented in ref. 51. Using the
same methodology, the diagonal Hessian components can be found out to be

ˆ

B
2hpq

Bθ2
tu

˙

θ“0

“htqδtuδpt ` 2httδpuδqu ` hptδtuδqt, (17)
ˆ

B
2hpq

BθtuBθut

˙

θ“0

“
1

2
htqδpt `

1

2
huqδpu `

1

2
hptδqt `

1

2
hpuδqu (18)

`htuδpuδqt ` hutδptδqu
ˆ

B
2fpq
Bθ2

tu

˙

θ“0

“

ˆ

B
2f0

pq

Bθ2
tu

˙

θ“0

`r2p1` δtuqvptqt ` 2vtuqtδpu ` 2vpttuδqus δu,occ. (19)

ˆ

B
2fpq

BθtuBθut

˙

θ“0

“

ˆ

B
2f0

pq

BθtuBθut

˙

θ“0

`vptqt p1` δtuq δt,occ. ` vtuqtδpuδt,occ. ` vpttuδquδt,occ. (20)

`vpuqu p1` δtuq δu,occ. ` vutquδptδu,occ. ` vpuutδqtδu,occ.
ˆ

B
2vpqrs
Bθ2

tu

˙

θ“0

“vtqrsδtuδpt ` vptrsδtuδqt ` vpqtsδtuδrt ` vpqrtδtuδst (21)

`2vtqtsδpuδru ` 2vtqrtδpuδsu ` 2vpttsδquδru ` 2vptrtδquδsu
ˆ

B
2vpqrs

BθtuBθut

˙

θ“0

“
1

2
vtqrsδpt `

1

2
vuqrsδpu `

1

2
vptrsδqt `

1

2
vpursδqu (22)

`
1

2
vpqtsδrt `

1

2
vpqusδru `

1

2
vpqrtδst `

1

2
vpqruδsu

`vtursδpuδqt ` vutrsδptδqu ` vtqusδpuδrt ` vuqtsδptδru

`vtqruδpuδst ` vuqrtδptδsu ` vptusδquδrt ` vputsδqtδru

`vptruδquδst ` vpurtδqtδsu ` vpqtuδruδst ` vpqutδrtδsu.

These equations are sufficient to calculate the CC contribution to the orbital gradient and diagonal
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Hessian in equation (6). The contributions from the reference energy

E0 “
ÿ

i

hii `
1

2

ÿ

ij

xij } ijy

“
ÿ

i

fii ´
1

2

ÿ

ij

xij } ijy

are known to be[120]

BE0

B∆ai
“2fai

BE0

B∆2
ai

“2 pfaa ´ fiiq ` 2 xai } iay .
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