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A B S T R A C T   

Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important 
SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcy
clooctane) and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has 
gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant 
biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two 
computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene 
knockout targets and optimize the “IPP-bypass” pathway in P. putida to maximize isoprenol production. Alto
gether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed-batch conditions. 
This combination of computational modeling and strain engineering on P. putida for an advanced biofuels 
production has vital significance in enabling a bioproduction process that can use renewable carbon streams.   

1. Introduction 

Biological production of aviation fuels and their precursors from 
sustainable carbon sources stands to have a realistic impact on reducing 
CO2 emissions, an increasingly critical aspect of addressing climate 
change (Baral et al., 2019a; Keasling et al., 2021). For this reason, 
several sustainable aviation fuel (SAF) targets and their precursors are 
being proposed, which include not only traditional ethanol-based fuels 
(Liew et al., 2022), but also novel high-energy multicyclic compounds 
possible via bioproduction, such as fuelimycin A (Cruz-Morales et al., 
2022) and epi-isozizaene (Geiselman et al., 2020; Liu et al., 2018). One 
such important SAF precursor is isoprenol (a.k.a 3-methylbut-3-en-1-ol). 
Isoprenol is a commodity platform chemical and a vetted biogasoline 
(Department of Energy, U.S., 2021), and it is also the precursor to the jet 

fuel 1,4-dimethyl cyclooctane (DMCO). Catalytic conversion of iso
prenol to DMCO has been shown at high efficiency (Baral et al., 2021) 
and establishing a carbon-efficient conversion of renewable carbon 
sources to isoprenol would enable a highly sustainable process (Baral 
et al., 2021) for DMCO. 

While isoprenol production has been shown in model microbial hosts 
(Escherichia coli (Kang et al., 2019), Corynebacterium glutamicum (Sasaki 
et al., 2019), and Saccharomyces cerevisiae (Kim et al., 2021)), catabol
ically versatile microbes that consume a wider range of carbon com
pounds are essential to providing a cost-effective process (Baral et al., 
2019a, 2019b). In the case of plant biomass conversion, there is an ur
gent need to demonstrate production of isoprenol in microbial systems 
that can catabolize both sugars and aromatics derived from lignocellu
losic biomass. Pseudomonas putida KT2440 is an ideal conversion host 
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with a versatile conversion profile and efficient genetic tools ( Erickson 
et al., 2022; Martínez-García and de Lorenzo, 2019; Nikel and de Lor
enzo, 2018; Weiland et al., 2022; Weimer et al., 2020). While prior 
works in model organisms (Kang et al., 2016; Tian et al., 2019) have 
achieved robust isoprenol titers, a microbial host such as P. putida 
KT2440 is a more likely candidate for the final deployment for isoprenol 
production as a SAF precursor. A less-commonly used laboratory host 
such as P. putida, however, is a far more challenging system to develop as 
a bioconversion platform. For instance, the most efficient route to iso
prenol is through the heterologous mevalonate (MVA) pathway using an 
IPP-bypass that utilizes hydroxymethylglutaryl CoA (HMG-CoA) as the 
precursor (Kang et al., 2016). However, efforts in P. putida (Hernande
z-Arranz et al., 2019) have shown that the mere MVA pathway over
expression did not provide any improvements over the native 
2-C-methyl-D-erythritol 4-phosphate (MEP) pathway overexpression 
and both resulted in very low titers. A similar observation was also re
ported in cyanobacteria (Gao et al., 2016). 

In a recent study, we were able to establish the MVA pathway in 
P. putida KT2440 (Wang et al., 2022) and define the necessary cultiva
tion conditions to produce isoprenol in this host via the heterologous 
pathway. While this provides an excellent foundation for isoprenol 
production in P. putida KT2440, this microbes’ unusual metabolic profile 
presents several challenges that need to be overcome. One issue is the 
catabolism of isoprenol itself, and its intermediates, by P. putida KT2440. 
Extensive functional genomics data have recently been accumulated for 
P. putida KT2440 and have revealed genes associated with degradation 
or catabolism of non-canonical carbon sources (e.g., levulinic acid (Rand 
et al., 2017), lysine (Thompson et al., 2019) and isoprenol (Thompson 
et al., 2020)), and also provided the hypotheses for host engineering 
targets to optimize the desired catabolism and minimize the undesired 
ones. 

In addition to preventing the product degradation, the central carbon 
metabolism needs to be rewired to increase flux toward the heterologous 
isoprenol pathway whose precursor is acetyl-CoA. Since central meta
bolic intermediates such as acetyl-CoA and pyruvate are involved in 
many metabolic pathways, it is not trivial to select gene targets to 

pursue. Computationally driven metabolic engineering methods have 
gained interest during the last decade for predicting gene targets for 
overproduction of biochemicals (Maia et al., 2016). Such methods can 
predict strategies that may involve large numbers of genetic in
terventions (e.g. deletion, overexpression, or repression) to reach the 
predicted yields. Implementation of such strategies is sometimes chal
lenging even with recent advances in synthetic biology and metabolic 
engineering techniques. To address this challenge and cover a larger 
solution space we used multiple computational strain design methods 
based on elementary mode analysis or bilevel optimization. The latest 
highly curated genome-scale metabolic model (GSMM) for P. putida 
(Nogales et al., 2020) enabled the use of these approaches and also 
highlighted the differences in metabolism from model microbes such as 
E. coli. 

In this work, we employ two GSMM-guided approaches in combi
nation with targeted edits and pathway improvements to enhance the 
production of the DMCO precursor, isoprenol, in P. putida KT2440 
(Fig. 1). We first add the knowledge from functional genomics data sets 
(e.g., genes involved in isoprenol degradation) and the heterologous 
MVA pathway to update the GSMM (Fig. 2). We then use both 
Elementary mode analysis (EMA)-based methods (Terzer and Stelling, 
2008; von Kamp and Klamt, 2017) and bilevel optimization (Opt)-based 
methods (Burgard et al., 2003; Ranganathan et al., 2010) to prioritize a 
subset of host genome targets that, when deleted, are predicted to 
enhance flux to isoprenol via the MVA route. We also use known edits 
such as deletion of the pha gene cluster (PP_5003 to PP_5005) (Czajka 
et al., 2022; Dong et al., 2019; Ouyang et al., 2007; Salvachúa et al., 
2020; Wang et al., 2022) and other literature-based targets to further 
enhance isoprenol titers. Finally, we use proteomics to optimize the 
pathway configuration. Overall, our GSMM-guided approach allowed us 
to select and prioritize the intervention targets, and lead to over 3.5 g/L 
isoprenol from glucose in a minimal defined medium under fed-batch 
conditions. This titer is the highest reported for P. putida KT2440 and 
has vital significance in enabling a bioproduction process that can use 
renewable carbon streams as the starting material. 

Fig. 1. Genome-scale metabolic and pathway engineering for production of the precursor of sustainable aviation fuel DMCO (1,4-dimethylcyclooctane), isoprenol, in 
Pseudomonas putida. 
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2. Materials and methods 

2.1. Computation of constrained minimal cut sets (cMCS) and elementary 
modes 

Pseudomonas putida KT2440 genome scale metabolic model (GSMM) 
iJN1462 (Nogales et al., 2020) was used in this study although an 
upgraded GSMM for P. putida has been recently reported (Bujdoš et al., 
2023). Aerobic conditions with glucose as the sole carbon source were 
used to model growth parameters. The ATP maintenance demand and 
glucose uptake were 0.97 mmol ATP/gDCW/h and 6.3 mmol gluco
se/gDCW/h, respectively. Constrained minimal cut sets (cMCS) were 
calculated using the MCS algorithm (von Kamp and Klamt, 2017) 
available as part of CellNetAnalyzer (version 2020.2) (Klamt et al., 
2007). Excretion of byproducts was initially set to zero, except for the 
ones reported in literature as secreted metabolites specific to P. putida 
(gluconate and 2-ketogluconate (Nikel et al., 2015), 3-oxoadipate and 
catechol (Sudarsan et al., 2016), lactate and acetate (based on in house 
empirical evidence in some of our P. putida experiments as shown in 
Supplementary Fig. 1), and CO2). We calculated the maximum theo
retical yields (MTY) for isoprenol using glucose as the carbon source and 
the heterologous IPP bypass pathway (0.72 mol/mol of glucose). 
Additional inputs including minimum demanded product yield (10 %– 
85 % of MTY) and maximum demanded biomass yield at 10–25 % of 
maximum biomass yield were also specified in order to constrain the 
desired design space. The maximum size of MCS was kept at the default 
(i.e. 50 metabolic reactions). Knockouts of export reactions and spon
taneous reactions were not allowed. With the specifications used herein, 
each calculated knockout strategy (cMCS) demands production of iso
prenol even when cells do not grow. All cMCS calculations were done 
using API functions of CellNetAnalyzer (Klamt et al., 2007) on MATLAB 
2017b platform using CPLEX 12.8 as the MILP solver. The different runs, 
respective number of cut sets and number of targeted reactions to satisfy 
coupling constraints are included in Supplementary File 1. 

For elementary modes computation, a small model representing the 
central carbon metabolism of Pseudomonas putida KT2440 and the het
erologous IPP bypass isoprenol production pathway was used to calcu
late elementary modes by efmtool (Terzer and Stelling, 2008). 

2.2. Prediction of gene targets using Opt-based methods 

The iJN1462 metabolic model was also used for OptKnock and 
OptForce. The model was first modified to fix mass or charge unbal
anced reaction, remove duplicate reactions involving lipoamide 

dehydrogenase, remove the reactions catalyzed by genes on the TOL 
plasmid pWW0, remove the PPCK reaction by a pseudogene phospho
enolpyruvate carboxykinase PP_0253, and update the gene-protein- 
reaction association for the OAADC reaction from 2-dehydro-3-deoxy- 
phosphogluconate aldolase PP_1024 to oxaloacetate decarboxylase 
PP_1389. The modified model was augmented with the IPP-bypass 
pathway for isoprenol production (Supplementary File 2). 

For OptKnock, the model was preprocessed to remove blocked re
actions and metabolites and identify the reactions predicted to be 
essential for growth on glucose as a sole carbon source. The predicted 
essential reactions, spontaneous reactions, boundary reactions, and 
periplasmic transport reactions without associated genes were excluded 
from knockout targets. Several additional reactions were manually 
excluded from knockout targets to avoid undesired predictions (ATPM, 
CAT, CYO1_KT, CYTBO3_4pp, CYTCAA3pp, NADH16pp, NAt3_1p5pp, 
PItex, and PPK). The OptKnock problem was constructed using cobrapy 
(Ebrahim et al., 2013) and solved using CPLEX 12.8. Several iterations of 
OptKnock were run to identify a large number of knockout strategies 
using the solution pool and integer cuts. Another set of OptKnock so
lutions were obtained using a further constrained model where the 
secretion of other byproducts was blocked except for gluconate, 2-keto
gluconate, and acetate assuming no significant byproduct formation 
(Supplementary File 3). 

For OptForce, the model was also preprocessed to remove blocked 
reactions in glucose minimal media condition. The flux ranges for wild 
type were obtained by running flux variability analysis with constraints 
on glucose uptake, gluconate secretion, glucose dehydrogenase, gluco
nokinase, phosphogluconate dehydratase, pyruvate dehydrogenase, and 
citrate synthase taken from a previous study (Kukurugya et al., 2019). 
For isoprenol overproduction, we used 50 % of the theoretical maximum 
production as a pre-specified target to identify designs. All possible first 
and second-order necessary flux changes for overproduction were first 
identified and then used to identify the minimum set of interventions 
including flux increase, decrease, or knockouts. Several iterations of 
OptForce were run to identify a large number of designs by adding 
integer cuts using CPLEX 12.8 (Supplementary File 3). 

2.3. Context specific models and flux variability analysis 

For flux variability analysis, first context-specific models were 
generated using constraints derived from experimental data to create six 
different P. putida GSMMs to represent the 6 different P. putida strains 
engineered for isoprenol production in this study. Constraints for 
glucose uptake rate, isoprenol production rate as well as growth rate 

Fig. 2. Metabolic pathways for isoprenol production using IPP-bypass in P. putida KT2440. The gene knockout targets identified from genome-scale metabolic 
modeling are shown in blue. The heterologous genes for the IPP-bypass mevalonate pathway are shown in green. 
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were used. Next we performed flux variability analysis using fluxvar
iabilityanalysis() function in the COBRA Toolbox (Heirendt et al., 2019) 
on the MATLAB 2017b platform. 

2.4. Strains and plasmid construction 

All strains and plasmids used in this study are listed in Supplemen
tary Table 1. Strains and plasmids along with their associated informa
tion have been deposited in the public domain of the JBEI Registry (htt 
ps://public-registry.jbei.org) and are available from the authors upon 
request. Gene knockout of P. putida was performed based on the ho
mologous recombination followed by a suicide gene (sacB) counter- 
selection as previously described (Marx, 2008). The genotypes of 
gene-knockout mutants were confirmed by colony PCR using specific 
primers, followed by DNA sequencing (GENEWIZ, South San Francisco, 
CA, USA). 

2.5. Isoprenol production in P. putida 

P. putida KT2440 strains bearing isoprenol pathway plasmids (Sup
plementary Table 1) were used for isoprenol production. Starter cultures 
of all production strains were prepared by growing single colonies in LB 
medium containing 50 μg/mL kanamycin at 30 ◦C with 200 rpm shaking 
overnight. The starter cultures were diluted in 5 mL EZ rich defined 
medium (Teknova, CA, USA) containing 20 g/L D-glucose (2 %, w/v), 
25 μg/mL kanamycin in 50-mL test tubes, and 0.5 mM IPTG or arabinose 
(2 %) was added to induce protein expression with OD600 at 0.4–0.6. The 
P. putida cultures were incubated in rotary shakers (200 rpm) at 30 ◦C 
for 48 h. 

For isoprenol production runs on M9 minimal medium (Supple
mentary Table 2) with 2 % D-glucose, cryostocks were streaked to sin
gles on LB agar plate with 50 μg/mL kanamycin at 30 ◦C. Single colonies 
were inoculated and grown overnight with shaking in 5 mL liquid LB 
medium supplemented with 50 μg/mL kanamycin at 30 ◦C and 200 rpm. 
Unless otherwise mentioned, all further cultivations were performed in 
the same format and conditions. 100 μL of these overnight LB grown 
cultures were back diluted into the minimal medium and grown for 24 h. 
A second back dilution enabled complete adaptation in the minimal 
medium. For the production runs, the cells were inoculated at an initial 
OD600 of 0.2 and the isoprenol production pathway was induced with 2 
% arabinose immediately after inoculation. Samples were collected 
every 6 h until 72 h in triplicates and analyzed for growth (OD600), 
isoprenol, residual glucose and organic acids. 

The quantification of isoprenol was conducted as described in Kim 
et al. (2021) (Kim et al. (2021)). Briefly, 100 μL of ethyl acetate con
taining 1-butanol (30 mg/L) as the internal standard was added to 100 
μL of liquid cultures. The mixture was vortexed at 3000 rpm for 15 min 
and subsequently centrifuged at 21,130 × g for 3 min to separate the 
ethyl acetate phase from the aqueous phase. 1 μL of the ethyl acetate 
layer was analyzed by gas chromatography-flame ionization detection 
(GC-FID, Thermo Focus GC) equipped with a DB-WAX column (15 m, 
0.32 mm inner diameter, 0.25 μm film thickness, Agilent, USA). The GC 
oven was programmed as follows: 40 ◦C – 100 ◦C at 15 ◦C/min, 100 ◦C – 
230 ◦C at 40 ◦C/min finally, held at 230 ◦C for 2 min. The inlet tem
perature was 200 ◦C. Serial dilutions of isoprenol were prepared to 
quantify isoprenol in the samples. 

The residual glucose and organic acids were analyzed using high 
performance liquid chromatography (HPLC, Agilent, USA) equipped 
with a refractive index detector (RID) and an Aminex HPX-87X column 
(Bio-Rad, USA) with 4 mM sulfuric acid as the mobile phase in the 
isocratic mode. The following conditions were used: Mobile phase flow 
rate: 0.6 mL/min, column at 60 ◦C, RID at 35 ◦C. Serial dilutions of 
glucose and organic acids were used to determine the concentration of 
glucose and organic acids in the samples. Data analysis was carried out 
on the ChemStation software (Agilent Technologies). 

2.6. Targeted proteomics analysis of the isoprenol biosynthesis pathway 
proteins 

Cell pellets of the engineered P. putida strains for isoprenol produc
tion were prepared for targeted proteomics analysis according to the 
previous report (Chen et al. (2019a)). Briefly, cells were resuspended in 
a solution with 80 μL of methanol and 20 μL of chloroform and thor
oughly mixed by pipetting. Sixty microliters of water were subsequently 
added to the samples and mixed. Phase separation was induced with 5 
min of centrifugation at 1000 × g. The methanol and water layers were 
removed, and then methanol (80 μL) was added to each well. The plate 
was centrifuged for 1 min at 100 × g, and then the supernatant layers 
were decanted. The protein pellets were resuspended in a 100 mM 
ammonium bicarbonate buffer supplemented with 20% methanol, and 
the protein concentration was determined by the DC assay (Bio–Rad). 
Proteins from each sample were reduced by addition of tris 2-(carbox
yethyl) phosphine to 5 mM for 30 min at room temperature and followed 
by alkylation with iodoacetamide at 10 mM for 30 min at room tem
perature in the dark. Protein digestion with trypsin at 1 g/L concen
tration was accomplished with a 1:50 (w/w) trypsin/total protein ratio 
overnight. The multiple-reaction monitoring (MRM) assay was devel
oped for relative quantification of isoprenol biosynthesis pathway pro
teins through a rapid method development workflow established 
previously (Chen et al., 2019b). Targeted proteomic analysis was per
formed on an Agilent 1290 UHPLC system coupled to an Agilent 6460 
QqQ mass spectrometer according to an established protocol (dx.doi.or 
g/10.17504/protocols.io.bf9xjr7n). Briefly, 20 g Peptides of each sam
ple were separated on an Ascentis Express Peptide C18 column [2.7-mm 
particle size, 160 Å pore size, 5-cm length × 2.1-mm inside diameter 
(ID), coupled to a 5-mm × 2.1-mm ID guard column with the same 
particle and pore size, operating at 60 ◦C; Sigma-Aldrich] operating at a 
flow rate of 0.4 mL/min via the following gradient: initial conditions 
were 98% solvent A (0.1 % formic acid), 2 % solvent B (99.9 % aceto
nitrile, 0.1 % formic acid). Solvent B was increased to 5 % over 1 min, 
and was then increased to 40 % over 3.5 min. It was increased to 80 % 
over 0.5 min and held for 2.5 min at a flow rate of 0.6 mL/min, followed 
by a linear ramp back down to 2 % B at a flow rate of 0.4 mL/min over 
0.5 min where it was held for 1 min to re-equilibrate the column to 
original conditions. The eluted peptides were ionized via an Agilent Jet 
Stream ESI source operating in positive ion mode. The MS raw data were 
acquired using Agilent MassHunter version B.08.02, and were analyzed 
by Skyline software version 21.20 (MacCoss Lab Software). The MRM 
method and data are available at Panoramaweb (Sharma et al., 2014) 
(https://panoramaweb.org/genome-scale-eng-SAF-p-putida.url) and at 
ProteomeXchange via identifier PXD039868. 

2.7. Isoprenol production in fed-batch mode 

For the isoprenol production in fed-batch mode, the strains were 
cultured in 5 mL LB medium with 50 μg/mL kanamycin at 30 ◦C. For the 
adaptation, the cell culture was diluted 50-fold in the fresh 5 mL 
modified M9 minimal medium two times. Then the seed culture was 
inoculated in the 1 L baffled flask including 100 mL modified M9 min
imal medium at 30 ◦C and 200 rpm for 8 h. The cell culture was inoc
ulated at OD600 0.3 in the 2 L bioreactor (Biostat B, Sartorius, Germany) 
including the 1 L modified M9 minimal medium, which contained 6.8 g/ 
L Na2HPO4, 3.0 g/L KH2PO4, 0.5 g/L NaCl, 20 mM NH4Cl, 2 mM MgSO4, 
0.1 mM CaCl2 and trace metal solution. The 1000 X trace metal solution 
(TEKNOVA, USA) consisted of 50 mM FeCl3, 20 mM CaCl2, 10 mM 
MnCl2, 10 mM ZnSO4, 2 mM CoCl2, 2 mM CuCl2, 2 mM NiCl2, 2 mM 
Na2MoO4, 2 mM Na2O3Se, and 2 mM BH3O3. To produce isoprenol in 
the fed-batch fermentation, the dissolved oxygen (DO) and airflow were 
set to 20 % and 1 VVM (volume of air per volume of liquid per minute), 
respectively. The temperature was maintained at 25 ◦C and pH was 
maintained at 6.5 by supplementation with 25 % ammonia water. The 
isoprenol biosynthesis pathway was induced at OD600 0.6–0.8 by 2 % 
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arabinose. The antifoam B was added to the bioreactor when required. 
To feed the additional carbon and nitrogen sources, a total of 80 g 
glucose and 15 g ammonium chloride in solution was continuously 
supplied using a Watson-Marlow DU520 peristaltic pump. The feeding 
flow rate was set to closely match the glucose consumption rate at the 
end of the batch phase. After the lag phase, the feeding flow rate was 
calculated following Korz’s equation and increased every hour for a total 
of 6 h (Kang et al., 2019; Korz et al., 1995). 

μ(t)= μset +
1

t − tF
ln

V(t)
VF 

For the exponential feeding, the glucose in the medium was 
measured consistently using the glucose meter (CVSHealth, USA) and 
high-performance liquid chromatography (HPLC), and feeding rate was 
set constant in order that the concentration of glucose was dropped 
below than 1 g/L in the medium. To extract the isoprenol from the off- 
gas, the exhaust line was connected directly to a bottle including the 1 L 
oleyl alcohol as extraction solvent. For quantification of isoprenol, 10 μL 
of oleyl alcohol layer was added to 990 μL of ethyl acetate containing 1- 
butanol (30 mg/L) as internal standard. 

2.8. Isoprenol production using biomass hydrolysate 

For the isoprenol production using biomass hydrolysate, the choli
nium lysinate ionic liquid-pretreated sorghum hydrolysate was obtained 
from Joint BioEnergy Institute (JBEI) Deconstruction Division (Magur
udeniya et al., 2021) and was used as a carbon source for the engineered 
P. putida strain. The sorghum hydrolysate was adjusted at pH 6.5 by 
sodium hydroxide and supplemented with 10X modified M9 salts at 
varying concentrations (0 %, 5 %, 10 %, 15 %, 20 %, 25 %, 30 %, and 35 
% (v/v)). The glucose was added either as a sole carbon source or as 
co-substrate with sorghum hydrolysate and its concentration was 
adjusted to 20 g/L. Subsequently, we added 10 μL of 1 M MgSO4, 5 μL of 
100 mM CaCl2, 2.5 μL of trace metal solution, and 50 μL of 1 M NH4Cl to 
the modified M9 minimal medium. And the modified M9 minimal me
dium volume was adjusted to 5 mL. The strains were cultured in 5 mL LB 
medium with 50 μg/mL kanamycin at 30 ◦C overnight. To adapt the 
strain, the cell culture was diluted 50-fold in the fresh 5 mL modified M9 
minimal medium two times. Then the seed culture was inoculated in the 
culture tubes including 5 mL modified M9 minimal medium supple
mented sorghum hydrolysate at 30 ◦C and 200 rpm. The isoprenol 
biosynthesis pathway was induced at OD600 0.6–0.8 by 2 % arabinose. 
The isoprenol extraction was carried out using the same protocols as 
described above. 

3. Results and discussion 

3.1. Computational strain design for isoprenol production 

For model-guided improvement of isoprenol production, we 
employed EMA-based approaches including Elementary Flux Modes 
(EFMs) (Terzer and Stelling, 2008) and Constrained Minimal Cut Sets 
(cMCS) (von Kamp and Klamt, 2017) as well as Opt-based approaches 
including OptKnock (Burgard et al., 2003; Segrè et al., 2002) and Opt
Force (Ranganathan et al., 2010) using the GSMM for P. putida iJN1462 
(Nogales et al., 2020) augmented with the heterologous MVA pathway 
(Supplementary File 2) and a central metabolic model for P. putida 
with a lumped reaction for the heterologous MVA pathway (Supple
mentary File 4). Preliminary computational strain design results 
showed that growth-coupled production of isoprenol requires the dele
tion of 9 or more metabolic reactions in P. putida (Supplementary File 
3). However, it is not clear from computational predictions which genes 
are more important for increasing isoprenol production and therefore 
should be knocked out with high priority since the growth-coupled 
production does not happen in silico with the deletion of a subset of 
identified reactions. To this end, we generated a large number of 

computational designs using EMA-based and Opt-based methods and 
calculated the frequency of knockout targets appearing in the designs by 
each method. The frequency was used to calculate the rank order of 
targets for each method, and the rank order from different methods was 
combined to calculate the final score. Our assumption was that certain 
targets can be more important for improving isoprenol production (e.g., 
due to higher fluxes or key branch points) than others and thus will 
appear more frequently in a diverse set of computational designs. By 
generating a large number of designs using multiple computational 
methods and combining them using a rank-based ensemble approach, 
we aimed to identify such crucial targets and prioritize them for the 
experimental construction of knockout strains. Although the computa
tional model requires the deletion of all targets from a design to see 
improved isoprenol production, we hypothesized that the deletion of a 
subset consisting of these crucial targets will still lead to improved iso
prenol production. 

For the EMA-based methods, we first calculated EFMs using the 
central metabolic model. Each EFM is a minimal set of reactions carrying 
flux under the defined glucose minimal medium condition for growth as 
well as isoprenol production. A total of 360,475 EFMs were computed of 
which only 276 EFMs were selected that carried a flux through the 
biomass, ATP maintenance, glucose uptake, and isoprenol production 
reactions. A frequency-based scoring was used to prioritize targets, from 
276 different computed EFMs (Supplementary File 1). Further we used 
cMCS to compute growth-coupled strategies for isoprenol production 
using the GSMM. From a total of 60 cMCS runs, we enumerated 4950 
feasible cMCS cut set designs. We used frequency-based scoring to pri
oritize targets from the feasible cMCS designs that were computed for 
isoprenol and its precursors HMG-CoA, DMAPP or IPP (Supplementary 
File 1). 

For the Opt-based methods, OptKnock was first used to find knock
outs to couple isoprenol production to growth using the GSMM. A total 
of 157 OptKnock solutions were initially collected and pre-processed to 
120 solutions by removing redundant solutions. In addition, we con
strained the model by blocking the secretion of byproducts except for 
experimentally observed ones (e.g., gluconate, 2-ketogluconate, and 
acetate) to find another set of designs. Using the constrained model, 377 
OptKnock solutions were obtained and pre-processed to 263 solutions. 
OptForce was next used to identify strategies to improve isoprenol 
production using the GSMM. A total of 50 OptForce solutions were ob
tained, but we found that they consisted mostly of routes that increase or 
decrease flux and included only 9 knockout targets with low frequencies. 
Therefore, we decided to use the OptKnock solutions from two simula
tions to calculate the frequency for scoring gene targets (Supplemen
tary File 3). 

Finally, we combined scores from EMA-based and Opt-based pre
dictions to arrive at the top 8 priority gene targets for experimental 
implementation (Table 1 and Fig. 2). The first two priority gene targets 
(mvaB and hbdH) were involved in the degradation of endogenous me
tabolites (HMG-CoA and acetoacetyl-CoA) that also participate in the 
heterologous MVA pathway. The other priority gene targets were 
involved in central carbon metabolism including the pentose phosphate 
pathway (gntZ), pyruvate metabolism (ldhA and ppsA), and TCA cycle 
(gltA and aceA). Although some of the predicted gene targets were 
involved in the degradation of intermediates, our computational 
approach guides the metabolic engineering process by prioritizing gene 
targets predicted from well-established algorithms. Such an approach is 
needed to facilitate strain construction when a computational design 
contains many gene targets. 

3.2. Experimental implementation of metabolic rewiring for isoprenol 
production 

To experimentally verify the model-predicted targets, P. putida 
ΔphaABC strain (XW01, see Supplementary Table 2 for the list of strains) 
was used as a background strain to perform gene knockouts. This strain 
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has shown the highest isoprenol level in P. putida (104 mg/L, XW11 
strain) when using the IPP-bypass MVA pathway via a plasmid (pXW1, 
see Supplementary Table 1 for the list of plasmids) in our previous work 
(Wang et al., 2022). According to the model-predicted targets (Table 1), 
we constructed single and multiple gene knockout strains (Fig. 3a). We 
started with the PP_3540/mvaB gene as it encodes for HMG-CoA lyase 
which catalyzes a reaction transforming HMG-CoA into acetoacetate and 
acetyl-CoA, hence competing for HMG-CoA, a key precursor in meval
onate synthesis. The knockout of mvaB improved isoprenol production 
up to 164 mg/L, which increased 1.6-fold compared with the starter 
strain XW11 (Fig. 3b). 

Using this double-knockout strain (ΔphaABC ΔmvaB) as a base, we 
performed a second round of gene knockouts with PP_4116/aceA 

(isocitrate lyase), PP_4043/gntZ (6-phosphogluconate dehydrogenase), 
and PP_3073/hbdH (3-hydroxybutyrate dehydrogenase) (Fig. 3a). While 
the knockout of aceA (XW13) or gntZ (XW14) significantly decreased 
isoprenol production to 14–15 mg/L, the hbdH knockout (XW15) 
improved isoprenol production up to 241 mg/L, a 2.3-fold increase from 
the XW11 strain and 1.5-fold increase from the XW12 strain, respec
tively (Fig. 3b). As 3-hydroxybutyrate dehydrogenase (hbdH) catalyzes 
the conversion between 3-hydroxybutyrate and acetoacetate, the suc
cess of hbdH knockout in increasing isoprenol production may be 
attributed to the removal of a competing pathway of acetoacetyl-CoA, 
the first metabolite in the MVA pathway. Isocitrate lyase (aceA) con
verts isocitrate to glyoxylate, and 6-phosphogluconate dehydrogenase 
(gntZ) is a key enzyme at the shunt of the pentose phosphate pathway 
and the ED pathway. They are both involved in central carbon meta
bolism and the failure of these two knockouts in isoprenol improvement 
indicates that central carbon metabolism may require a significant 
rewiring by combinations of gene knockouts rather than a single gene 
deletion. Thus, engineering multiple gene knockouts in one strain may 
still be required to further improve isoprenol production. 

Therefore, for the third round of knockouts, we picked the highest 
producer with the triple knockouts (ΔphaABC ΔmvaB ΔhbdH, XW15) as 
a base, and performed the knockout of the genes involved in central 
carbon metabolism, gltA (citrate synthase), aceA (isocitrate lyase), and 
gntZ (6-phosphogluconate dehydrogenase) (Fig. 3a). Since citrate syn
thase is the first enzyme connecting glycolysis and the TCA cycle, it plays 
an important role in central carbon and energy metabolism. In P. putida 
KT2440, citrate synthase derives 3-fold more carbon flux from acetyl- 
CoA to TCA cycle compared with E. coli (Wang et al., 2022). Thus, the 
knockout of gltA may limit the flux out of acetyl-CoA, which is desirable 
to support the MVA pathway flux and isoprenol production. However, 
experimental results (Fig. 3b) showed that the deletion of gltA (XW16) 
significantly compromised cell growth and eventually lowered isoprenol 
production (19 mg/L). Given that the clear detriment of cell growth, gltA 
was not continued with a further round of gene knockout. Adaptive 

Table 1 
Priority Targets based on EMA-based and Opt-based approaches for experi
mental validation.  

Reaction 
ID 

Reaction Name Gene 
Association 

Notea 

HMGL Hydroxymethylglutaryl- 
CoA lyase 

mvaB 
(PP_3540) 

1st target by 
combined score 

BDH 3-hydroxybutyrate 
dehydrogenase 

hbdH 
(PP_3073) 

2nd target by 
combined score 

GND Phosphogluconate 
dehydrogenase 

gntZ 
(PP_4043) 

3rd target by 
combined score 

LDH_D D-lactate dehydrogenase ldhA 
(PP_1649) 

High cMCS/EFM 
score, low OptKnock 
score 

PPS Phosphoenolpyruvate 
synthase 

ppsA 
(PP_2082) 

High cMCS/EFM 
score, low OptKnock 
score 

CS Citrate synthase gltA 
(PP_4194) 

High OptKnock score, 
low cMCS/EFM score 

ICL Isocitrate lyase aceA 
(PP_4116) 

High OptKnock score, 
low cMCS/EFM score  

a See Supplementary File 5 for details. 

Fig. 3. Engineering gene knockout mutants for experimental validation of genome-scale metabolic modeling predictions. A The flowchart of gene knockout strain 
development; b Isoprenol production and cell growth of constructed gene knockout strains after 48 h using EZ rich medium. Data was obtained from three biological 
replicates and error bars represent standard deviation. 
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laboratory evolution to increase growth or a less severe knockdown 
approach using CRISPRi (Kozaeva et al., 2021) are good candidate ap
proaches to be attempted in the future. The knockout of aceA or gntZ on 
the XW15 strain, however, was still producing low levels of isoprenol: 
12 mg/L for XW17 strain (ΔphaABC ΔmvaB ΔhbdH ΔaceA) and 13 mg/L 
for XW18 strain (ΔphaABC ΔmvaB ΔhbdH ΔgntZ), respectively (Fig. 3b). 
In the final round of gene knockouts, the XW17 strain was used to 
integrate the gntZ deletion to create the XW19 strain (ΔphaABC ΔmvaB 
ΔhbdH ΔaceA ΔgntZ) that contains all gene knockouts that do not affect 
growth. Interestingly, the inclusion of gntZ knockout significantly 
restored isoprenol production to 114 mg/L (Fig. 3b). Although this 
isoprenol level was still lower than the two previous strains (XW12 and 
XW15), it reflects the synergy among multiple gene knockout targets. To 
understand the different effects caused by ΔaceA and/or ΔgntZ, we 
compared the production profiles for XW17 to XW19 strains (Supple
mentary Fig. 1). It was observed that the XW19 strain depleted glucose 
after 48 h while the XW17 strain showed 6 g/L residual glucose in the 
medium. Correspondingly, the cell growth showed the opposite trends 
in these three strains, such that the XW19 strain showed the highest OD, 
which is 1.7-fold higher than that of the XW17 strain. However, the 
effect on cell growth was not directly correlated with the isoprenol yield 
per consumed glucose for XW17 to XW19 strains (Supplementary 
Fig. 1). 

The growth inhibition by ΔaceA or ΔgntZ was somewhat unexpected 
since these genes had no significant fitness in minimal medium condi
tions with glucose as a carbon source (Thompson et al., 2019). We used 
the flux balance analysis to investigate whether the effect on cell growth 
is related to the rich medium setting. For each component in the EZ-rich 
medium as a sole carbon source, we calculated the maximum growth 
with and without the aceA or gntZ deletion. Out of 25 components for 
which growth can be simulated, 20 components had a decreased 
maximum growth rate with the aceA deletion. However, the gntZ dele
tion did not have an impact on the maximum growth rate. The modeling 
result for the aceA deletion is consistent with a previous observation that 
the TCA cycle operates under an anaplerotic configuration driven by the 
glyoxylate shunt in P. putida during the early exponential growth on rich 
medium (Molina et al., 2019). In the same study, isocitrate dehydro
genase was predicted to be inactive during the early and 
mid-exponential growth where the deletion of aceA would significantly 
reduce the carbon flow through central metabolism. Isocitrate dehy
drogenase is also known to be primarily responsible for the NADPH 
generation in P. putida grown on glucose (Nikel et al., 2015). Recently, it 
was shown that gntZ plays a significant role in generating excess NADPH 
under stress conditions (Nikel et al., 2021). Therefore, combining the 
aceA and gntZ deletions would require cells to undergo significant 
rewiring of central metabolism to overcome the limited carbon flux and 
NADPH availability. 

While the model requires knockout of all targets provided, we 
instead selected a subset of these targets as ranked by the frequency 
provided by several methods. The deletion of selected targets still 
showed significant improvement for isoprenol production even though 
the model does not predict growth-coupled isoprenol production with a 
subset. While a correlation analysis between isoprenol production and 
cell growth (OD600) only showed a weak positive correlation (P < 0.05, 
R2 = 0.47), it was observed that the higher producers usually showed 
better cell growth (Supplementary Fig. 2). This suggested that the 
increased isoprenol production is not at the expense of cell growth at the 
current isoprenol levels. However, not all strains showed improved 
isoprenol production and it might be necessary to delete additional 
genes to achieve a higher yield. For example, the rebound of isoprenol 
production by integrating both aceA and gntZ in one strain shows the 
importance of synergetic effects among different gene targets, which is 
not well captured by our approach. Such limitation could be alleviated 
in the future by considering the co-occurrence of gene targets and 
improving the prioritization method to handle complex or non-intuitive 
cases better. We also note that the model predictions were made using a 

minimal medium, whereas experiments were performed using EZ rich 
defined medium due to better isoprenol production (Wang et al., 2022). 
Thus, optimizing the production performance in a minimal medium 
could be a prerequisite to further demonstrate the effectiveness of our 
frequency-based prioritization of gene targets. Nonetheless, these results 
show that the deletion of prioritized gene targets can lead to significant 
improvement in isoprenol production and thus provide support for our 
computational approach. 

In summary, following the genome-scale metabolic modeling rec
ommendations, we constructed single and multiple knockout P. putida 
mutant strains. Among the engineered knockout strains, a triple 
knockout mutant strain (XW15, ΔphaABC ΔmvaB ΔhbdH) showed the 
highest isoprenol production (241 mg/L) from EZ rich medium sup
plemented with 2 % glucose. This demonstrated the utility of compu
tational approaches for host strain optimization to achieve high titer, 
rate, and yield. 

3.3. Pathway optimization for improved isoprenol production 

In parallel with the GSMM-guided metabolic rewiring efforts above, 
we continued to optimize isoprenol pathway gene expression to improve 
production in P. putida KT2440. We first expressed the IPP-bypass iso
prenol biosynthetic pathway comprising mvaE, mvaS, mk, and pmdHKQ in 
different plasmid backbones (Fig. 4a; strains IY781-IY784, Supplemen
tary Table 2) under the control of a LacI repressor in the P. putida 
ΔphaABC strain (XW01). The highest titer of 80 mg/L isoprenol was 
achieved from strain IY782, carrying the isoprenol pathway in the 
plasmid with the RK2 replication origin (Fig. 4b). Therefore, in the 
subsequent experiments, plasmid RK2 was used as the expression vector. 
Since we identified that the arabinose-inducible promoter (PBAD) is a 
stronger promoter than PA1lacO-1, (Supplementary Fig. 3) we expressed 
the isoprenol biosynthetic pathway under the PBAD promoter and 
replaced the LacI repressor with AraC, in an effort to improve isoprenol 
production. The absence of the LacI repressor resulted in the constitutive 
expression of MK and PMDHKQ under a strong Ptrc-1O promoter (Cook 
et al., 2018). The resulting strain (IY721) produced up to 395 mg/L 
isoprenol in 48 h (Fig. 4b). When combined with the GSMM approaches 
by deleting two genes, mvaB and hbdH, the resulting strain (IY846) 
improved the isoprenol production by 1.3-fold when compared to strain 
IY721, yielding approximately 536 mg/L isoprenol in 48 h (Fig. 4b). 

Previous studies in E. coli demonstrated that phosphatase over- 
expression can boost isoprenol production. In our previous paper, we 
showed that NudB, a native phosphatase of E. coli, hydrolyzed IPP and 
DMAPP into their monophosphate forms, IP and DMAP, respectively, 
which are subsequently hydrolyzed to isoprenol by other phosphatases 
such as AphA, Agp, and YqaB (Kang et al., 2016). Among these three 
phosphatases, AphA was found to best improve the isoprenol titer in 
E. coli (Kang et al., 2016). A recent study for isoprenol production in 
S. cerevisiae, however, reported that co-expressing an E. coli alkaline 
phosphatase, PhoA, produced the highest isoprenol titer (Kim et al., 
2021). Therefore, we co-expressed NudB, PhoA, and AphA along with 
the isoprenol biosynthetic pathway and found that co-expressing AphA 
alone in the ΔphaABC ΔmvaB ΔhbdH background (strain IY939 with 
plasmid pIY670) produced the highest isoprenol titer of 1,111 mg/L in 
48 h (Fig. 4b). 

In an attempt to increase the acetyl-CoA pool, we co-expressed AtoB, 
NphT7, and/or PMK, and knocked out ldhA and ppsA. Targeted prote
omics confirmed the expression of all proteins (Supplementary Fig. 4), 
but none of the strains generated higher isoprenol titers compared to 
strain IY939 (Fig. 4b). Strains co-expressing AphA also accumulated 
higher biomass compared to those not expressing AphA (Fig. 4c). 

3.4. Isoprenol production using optimized isoprenol production pathway 
and predicted metabolic rewiring in glucose minimal medium 

Using the optimized isoprenol pathway, we continued to 
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characterize the engineered strains carrying GSMM-predicted gene 
knockouts. Defined rich medium such as EZ rich medium contains 
additional carbon and nitrogen sources (e.g. amino acids) that could 
trigger complex regulatory mechanisms, such as carbon catabolite 
repression (Browne et al., 2010; Molina et al., 2019; Moreno et al., 
2009). The improved isoprenol production by the optimized pathway 
now enabled us to characterize the engineered strains in the minimal 
defined medium used for the GSMM-predicted gene targets. We tested 
wild-type and fourteen different knockout strains in the pIY670 back
ground for growth and isoprenol production in M9 glucose minimal 
media plus 20 g/L glucose (Fig. 5). Since we switched from EZ rich 
medium (several carbon sources) to minimal medium with glucose as 
the sole carbon source, we deleted an additional gene, PP_2675, to avoid 
the catabolism of isoprenol after glucose consumption as this gene was 
reported to be involved in isoprenol degradation (Thompson et al., 
2020). We observed that the IY1452 strain (ΔphaABC ΔmvaB ΔhbdH 
ΔldhA ΔPP_2675 with plasmid pIY670) had the best isoprenol titer at 
762 mg/L, Fig. 5); over 4-fold higher than WT (IY1245). The highest 
isoprenol titer observed was 816 mg/L for the IY1252 strain at 48 h but 
that reduced by about 70 %–259 mg/L at 72 h. We observed that there 
was negligible reduction in isoprenol titers in the IY1452 strain at 72 h, 
unlike the other strains in M9 glucose minimal medium. Interestingly, 
the deletion of both ldhA and PP_2675 was needed to improve the 
maximum isoprenol production titer while reducing isoprenol 

degradation (Supplementary Fig. 5). 
Next, we investigated the growth dynamics, carbon utilization, and 

isoprenol production profiles of the engineered strains via 72 h time- 
course profiles of engineered strains in M9 glucose minimal medium. 
There was no statistical difference in growth rate, and glucose con
sumption only varied slightly (Fig. 6a). IY1245 (base strain) and IY1261 
had similar isoprenol production rates during the glucose consumption 
phase (up to 42 h) but strains IY1249, IY939, IY1254, and IY1452 had 
higher rates. IY1452 strain produced isoprenol at 0.34 mmol/gCDW/hr; 
a 4.69-fold improvement compared to the base strain. Importantly, 
IY1452 did not degrade isoprenol after glucose was depleted (Fig. 6a). 

3.5. Improved isoprenol producing phenotype observed for the IY1452 
strain 

Context-specific GSMMs were used to investigate the metabolic 
changes in the engineered strains using the constraints of the gene de
letions and phenotypic data (glucose consumption, biomass formation, 
and isoprenol production rates, Fig. 6b). To compare the metabolic 
changes between the different engineered strains and WT, through flux 
redistribution, we performed flux variability analysis (FVA) for each 
context-specific GSMM. The metabolic flux span was calculated for each 
of the reactions during optimal growth under the defined constraints 
and normalized by the glucose uptake rate to compare the variability 

Fig. 4. Pathway optimization in EZ rich medium. a Schematic diagram of plasmids (Supplementary Table 2) used in this study. b Isoprenol titer obtained at 48 h 
from strains transformed with plasmids shown in a. c Cell density (OD600) from strains shown in b measured at 48 h. Data were obtained from three biological 
replicates and error bars represent standard deviation. Asterisks indicate statistical significance by Student’s t-test (**, 0.001 < P < 0.01; *** 0.0001 < P < 0.001; 
****P < 0.0001). 
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across different GSMMs. The flux span corresponds to the flexibility/ 
rigidity of each reaction during maximal growth and isoprenol pro
duction based on experimental constraints. A narrow flux span means a 
rigid flux due to either a causal or correlational effect of the strain en
gineering for improved isoprenol production indicating very 

constrained metabolism at the given isoprenol production level and thus 
could lead to potential overexpression targets. A narrow flux may also be 
an effect of the engineering aimed at reducing the carbon flux away from 
the isoprenol pathway. On the contrary, a wider flux span reflects that 
these reactions have numerous permissible carbon flux values at the 

Fig. 5. a Isoprenol production and b growth in M9 glucose minimal medium using the optimized isoprenol production plasmid (pIY670, Supplementary Table 1) 
after double adaptation. Data were obtained from three biological replicates and error bars represent standard deviation. 

Fig. 6. Time-course profiles of the engineered P. putida KT2440 strains in M9 glucose minimal medium. a Growth, glucose consumption, and isoprenol production. 
Data were obtained from three biological replicates and error bars represent standard deviation. b Specific rates estimated using the first three time points (0 h, 6 h 
and 12 h) during exponential growth. Error bars represent the estimated standard error. 
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observed isoprenol production, and some of these reactions are potential 
deletion targets to further improve isoprenol production. 

Selected reactions involving the precursor metabolites with respect 
to central metabolism and their flux spans are shown in Fig. 7. The FVA 
of the context-specific GSMM shows that the second reaction in the 
heterologous IPP-bypass isoprenol production pathway, HMGCOAS 
(mvaS, Reaction 11 in Fig. 7), has a narrow flux span in the strains with 
additional gene deletions on top of ΔphaABC, i.e. strains that have the 
PP_3540/mvaB gene deletion. Given the constraints and assumptions in 
the GSMM, we can imagine two possible reasons for this narrow flux 
span in the ΔmvaB strains compared to the wider flux span in WT and 
ΔphaABC strains. It could be a result of high flux in competing pathways 
that redirect carbon flux away from the metabolic pathways of interest 
to maintain similar growth rates as WT and ΔphaABC strains (Fig. 6b, 
0.22 hr− 1 versus 0.26 hr− 1) given the limited resources available in M9 
glucose minimal medium. Alternatively, the reduction in flux span in 
strains with mvaB deletion is perhaps due to the elimination of a critical 
degree of freedom, truly constraining the flux profile. Firstly using FVA, 
we observed a high flux in the HMG-CoA consuming reaction, in case of 
WT and ΔphaABC strains (Reaction 12 in Fig. 7), a competing reaction 
that redirects carbon flux away from the heterologous IPP-bypass 
pathway. This high allowable flux was reduced by the PP_3540/mvaB 
deletion. Secondly, based on FVA, we observed there was a high flux 
span in BDH (hbdH, Reaction 13 in Fig. 7), in the direction diverting flux 
towards butanoate metabolism, away from the heterologous IPP-bypass 
pathway. This was resolved by the PP_3073/hbdH deletion on top of the 
mvaB deletion. In the GSMM, ACACT1r (Reaction 10 in Fig. 7) was 
assumed to have flux only in the direction of IPP-bypass due to addi
tional pIY670 plasmid-borne mvaE activity. Zero flux through 
ACALDtpp (Reaction 2 in Fig. 7) represents reduction in secretion of 
byproducts such as acetaldehyde. 

Although more than 50 % of the reactions carried zero flux under 
glucose minimal medium conditions, 1304 reactions (45 %) carried a 
substantial flux (Supplementary Fig. 6). After constraining the model 
using our experimental data, the best performing strain IY1452 showed 

substantial fold changes in fluxes although the directionality of the re
actions was similar to WT (Supplementary Fig. 7). Of these 1304 re
actions, 964 reactions had an increased flux span by more than 1.5-fold 
compared to WT and were spread across central carbon metabolism and 
biosynthesis pathways. There were 225 reactions with a reduced flux 
span ranging from 1 % to 80 % of WT flux magnitudes. 69 of these re
actions had 0.5-fold or lower flux and mainly belong to alcohol degra
dation, butanoate metabolism, and also the HMG-CoA synthase reaction 
of the IPP-bypass pathway. Additionally, 156 reactions had a flux span 
reduction between 0.5-fold and 0.8-fold and were shared across non- 
unique subsystems including alanine and aspartate metabolism, 
branched amino acid metabolism, fatty acid metabolism, and PHA 
metabolism. 

In summary, when compared to WT, the best performing strain 
IY1452 showed increased flux through desirable reactions for an 
increased acetyl-CoA pool (Fig. 7b, reactions 1, 3, 5, 6, and 15) and 
reduced to negligible flux through competing reactions that redirect 
carbon flux away from the isoprenol production pathway (Fig. 7b, re
actions 2, 8, 12 and 13). A restricted flux span through reactions 11 and 
14 points toward future strain engineering to redirect flux from fatty 
acid metabolism towards HMG-CoA for further improving isoprenol 
production. A high flux span through citrate synthase (Reaction 4 in 
Fig. 7) in most of the engineered strains suggests revisiting gltA as a 
target for down-regulation. Although the gltA deletion showed a sig
nificant growth defect, it was one of the top targets predicted by our 
computational approach (Table 1) and also previously identified by ki
netic modeling as a down-regulation target to increase acetyl-CoA 
availability in P. putida (Kozaeva et al., 2021). 

3.6. Isoprenol production in fed-batch cultivation 

Four strains (IY1245 (control), IY1262, IY1452, and IY1485) were 
cultured in fed-batch mode to increase isoprenol titer by supplying 
additional carbon and nitrogen. After the batch phase with the modified 
M9 minimal medium containing 20 g/L of glucose and 1.06 g/L (or 20 

Fig. 7. Flux variability analysis for the 6 different P. putida genotypes/strains with heterologous isoprenol production pathway (pIY670). a The central metabolic 
map is shown with reactions of interest highlighted and the heterologous isoprenol production pathway in green. b Flux span normalized to glucose uptake rate for 
selected reactions. 
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mM) ammonium chloride, the feeding solution was continuously added 
to make a total of 100 g/L glucose and 2.12 g/L ammonium chloride. As 
isoprenol evaporates rapidly due to airflow in the bioreactor (Kang et al., 
2019), the exhaust line was vented through a bottle containing 1 L oleyl 
alcohol as a capture solvent to extract isoprenol from the off-gas. 

In the IY1245 control strain, the maximum cell growth and the iso
prenol production were obtained at 72 h, reaching an OD600 of 25.5 ±
0.7 and isoprenol titer of 0.5 ± 0.1 g/L, respectively (Fig. 8). The initial 
20 g/L glucose was depleted by 14 h and the isoprenol production was 
revealed from the off-gas after 24 h, but interestingly, no isoprenol was 
detected from the culture extract by then (data not shown). This suggests 
that most isoprenol produced was evaporated by airflow as previously 
reported in the E. coli study (Kang et al., 2019). The IY1262 strain 
produced 2.3 ± 0.3 g/L of isoprenol and the OD600 reached 20.5 ± 3.0 at 
96 h (Fig. 8). The growth rate of the engineered strain was slower than 
the wild-type strain, but the titer was significantly increased. The 
maximum growth and isoprenol production in the IY1452 strain were 
obtained, reaching an OD600 of 21.0 ± 3.4 at 72 h and a titer of 3.5 ±
0.3 g/L at 96 h (Fig. 8). 

Aeration is required in P. putida cultivation, but it resulted in a strong 
foaming, which was difficult to handle even with conventional anti
foaming agents. Furthermore, the excessive foam hinders the use of a 
standard cultivation protocol (Blesken et al., 2020; Vo et al., 2015). As of 
now, the precise mechanism for foaming in bioreactors remains poorly 
understood but at the same time, it is a significant problem during long 
term bioreactor cultivation. Global regulators such as GacA/GacS, have 
been reported to have an impact on phenotypes such as attachment, 

biofilm formation and other such social behaviors. There have been 
several known examples in literature. In some cases biofilm can lead to 
foaming and lapA and lapF genes are responsible for biofilm formation 
(López-Sánchez et al., 2016). The two component regulatory system 
GacA/GacS controls the activity of LapA and other social behaviors 
(Martínez-Gil et al., 2014). We do not fully understand but a previous 
report has shown benefits of deleting GacA in P. putida under bioreactor 
conditions (Eng et al., 2021). To reduce foaming during the fed-batch 
cultivation, the gacA gene was deleted in the 5 genes knockout strain 
(IY1452) as previously reported (Eng et al., 2021). The resulting IY1485 
strain reached the OD600 of 17.9 ± 0.2 at 48 h and produced 2.4 ± 0.3 
g/L of isoprenol at 96 h in fed-batch mode. Even though the gacA gene 
knockout resulted in a significant reduction of foaming, it also resulted 
in slower growth and lower isoprenol production than the other 
mutants. 

3.7. Isoprenol production using biomass hydrolysate 

The use of lignocellulosic biomass for the production of biofuels and 
bioproducts is of increasing interest (Mohammad and Bhukya, 2022) 
and P. putida is widely recognized for this purpose (Linger et al., 2014; 
Sodré et al., 2021). Therefore, we evaluated the production of isoprenol 
by strain IY1452 using a modified M9 minimal medium supplemented 
with glucose or sorghum hydrolysate as the carbon source. The highest 
isoprenol titer from this strain was 841 mg/L at 72 h in a modified M9 
minimal medium supplemented with 20 g/L of glucose as a sole carbon 
source (Fig. 9a). Isoprenol production was lower with sorghum 

Fig. 8. Growth and isoprenol production in fed-batch mode. a optical density (OD600) and b production of isoprenol by IY1245 (wild type), IY1262 (ΔphaABC ΔmvaB 
ΔhbdH ΔldhA), IY1452 (ΔphaABC ΔmvaB ΔhbdH ΔldhA ΔPP_2675), and IY1485 (ΔphaABC ΔmvaB ΔhbdH ΔldhA ΔPP_2675 ΔgacA). The fed-batch productions were 
performed in the 2 L bioreactors in M9 defined medium in triplicates. Error bars represent standard deviation. 

Fig. 9. Isoprenol production and growth using hydrolysate. a production of isoprenol by IY1452 and b optical density (OD600). The productions of isoprenol and 
growth were evaluated in the culture tubes in 5 mL modified M9 minimal medium with varying concentrations of hydrolysate in triplicates. Error bars represent 
standard deviation. 
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hydrolysate: 409 mg/L and 432 mg/L at 72 h with 5 % and 10 % sor
ghum hydrolysate, respectively (Fig. 9a). However, it is noteworthy that 
the growth rates of cultures with sorghum hydrolysate were higher than 
the growth rate with pure glucose, suggesting additional nutrients in the 
hydrolysate promoted cell growth (Fig. 9b). Despite the lower isoprenol 
titers, the culture with sorghum hydrolysate showed promise as an 
alternative production medium with a higher growth rate than the 
culture with glucose as the sole carbon source. 

Our GSMM-based computational strain design predictions were 
based on glucose as the sole carbon source under minimal medium 
cultivation conditions. Sorghum-based hydrolysates are composed of a 
variety of carbon sources that are further dependent on the pretreatment 
method (Lim et al., 2020; Park et al., 2020; Sasaki et al., 2019). It is 
reported that Sorghum-based ionic liquid (cholinium lysinate, [Ch] 
[Lys]) pretreated hydrolysate consists of glucose, xylose, acetate, and 
several aromatic compounds (Sasaki et al., 2019). P. putida KT2440 
lacks the capability to utilize xylose natively but has been reportedly 
engineered for xylose utilization (Bator et al., 2019; Dvořák and de 
Lorenzo, 2018; Lim et al., 2021). We observed improvement in growth 
across all tested fractions of hydrolysate but the isoprenol titers 
decreased with increasing fraction of hydrolysate in the medium when 
compared to glucose as the sole carbon source. This can be attributed to 
the presence of multiple carbon re-routing metabolic pathways towards 
growth versus limited bioconversion routes towards isoprenol produc
tion via the IPP-bypass pathway. 

4. Conclusions 

Anthropogenic release of carbon into the atmosphere has resulted in 
climate change, and sustainable aviation fuels (SAFs) offer an effective 
near-term means of mitigating this continued deleterious carbon release. 
In this study, we have reported our efforts to engineer strains of Pseu
domonas putida that can produce the SAF precursor isoprenol from plant- 
derived carbon sources. We simultaneously pursued rational and 
GSMM-based target selection approaches followed by engineering and 
testing in various culture configurations, including fed-batch 
bioreactors. 

Two GSMM approaches were applied, and each predicted a signifi
cant number of gene knockout targets in order to realize the computa
tionally predicted improvement in isoprenol yield. Through an ensemble 
ranking of the myriad gene targets from the two approaches, we were 
able to prioritize and reduce the total number of targets. This approach 
proved fruitful in decreasing the number of engineered strains needed to 
realize a significant improvement in titer and rate. However, we also 
observed that some of the predictions did not result in titer improve
ments, and some combinations of knockouts were detrimental to 
P. putida growth and/or isoprenol titers. Rational pathway optimization 
had a significant impact on titer improvement. The synergistic appli
cation of GSMM-guided gene knockouts and rational pathway optimi
zation led to the highest titer of isoprenol in P. putida at 1.1 g/L; a 10- 
fold improvement vs. the starting strain. Fed-batch cultivation further 
improved the titer to 3.5 g/L. 

Since knocking-out multiple genes in P. putida is not a trivial amount 
of effort, and the knock-outs frequently result in growth retardation, 
gene knock-downs could be an alternative to gene knock-out to screen 
multiple combinations of target genes. Application of CRISPR interfer
ence and building an automated process may accelerate rapid strain 
engineering to improve isoprenol TRY. Further, adaptive laboratory 
evolution (ALE)-based tolerization (Lim et al., 2020) and other 
state-of-the-art strain engineering techniques (Elmore et al., 2020; Lim 
et al., 2021) can be applied to further improve isoprenol titers, rates, and 
yields in future research. For ultimate industrial applications, additional 
improvements must be made, including further genetic engineering 
strain improvements, bioprocess optimization, and separations process 
engineering to include downstream recovery of the volatile product. 
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