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Abstract 

A constant element of our modern environment is change. In 
decision-making research however, very little is known about 
how people make choices in dynamic environments. We 
report the results of an experiment where participants were 
asked to choose between two options: a dynamic and risky 
option that resulted in either a high or a low outcome, and a 
stationary and safe option that resulted in a medium outcome. 
The probability of the high outcome in the risky option 
decreased or increased linearly over the course of the task 
while the probability of the medium outcome stayed the same 
throughout. We find that adaptation to change is related to the 
direction of that change, and that the way people adapt to 
changing probabilities relates to their willingness to explore 
available options. A cognitive model based on Instance-Based 
Learning Theory reproduces the behavioral patterns.   

Keywords: Change; Dynamic Decisions; Adaptation; 
Instance-Based Learning Theory; Decisions from Experience 

Introduction 

More than ever before the world around us seems to be 

changing rapidly. Technology has contributed to increasing 

availability of information and connectedness that 

contribute to a sense of rapid change. We make decisions in 

constantly changing situations and our ability to detect and 

adapt to those changes may determine the success of our 

choices. For example, a broker in the stock market must be 

sensitive to the changes in the interest rates in an attempt to 

maximize the long-term investments gains. In the context of 

reinforcement learning and restless bandit tasks, researchers 

have investigated change in similar settings, such as 

adaptation and detection of change, and exploration-

exploitation tradeoffs in dynamic environments (e.g., 

Gureckis & Love, 2009). Yet, relatively little is known 

about how humans detect change when the change occurs 

gradually, and particularly when making decisions from 

experience while aiming at maximizing long-term gains. 

Dynamic decision theory was first introduced by Ward 

Edwards (1962) who argued for the study of dynamic 

situations in which decision makers confront a sequence of 

decisions, and in which the environment changes while a 

decision maker is evaluating possible courses of action. Yet, 

to this date behavioral work on how humans behave under 

changing conditions and how we adapt to change is 

relatively limited. 

About a decade ago, research started to shift from the 

overwhelmingly popular study of one-shot decisions to the 

study of repeated and consequential choice. In repeated 

choice conditions, early decisions produce payoffs and 

information that may influence future choices. This is one of 

the reasons that researchers have focused on experience and 

cognitive processes such as learning, memory, and 

recognition as key psychological processes of dynamic 

decision-making (Gonzalez, Lerch, & Lebiere, 2003). 

The study of decisions from experience has expanded 

considerably in the past years, perhaps due to the 

development of simple experimental paradigms (e.g., 

“clicking paradigms”) which have been used to study choice 

in its most essential form: in binary conditions (Baron & 

Erev, 2003; Hertwig et al., 2004). These paradigms involve 

the selection between two options, in the absence of 

descriptions of possible outcomes and probabilities. For 

example, in a repeated consequential choice paradigm 

(Baron & Erev, 2003), participants select between two 

buttons a fixed number of times (e.g., 100 times). After each 

selection, an outcome is displayed (i.e., feedback). This 

outcome is the realization of a probability distribution 

assigned to the button selected, which is unknown to 

participants. This paradigm is illustrated in Figure 1. 

Using this experimental paradigm, researchers have 

investigated a number of issues relevant to how humans 

adapt to change and make choices in dynamic settings. For 

example, Rakow and Miler (2009) investigated repeated 

binary choice in which the associated probabilities of the 

outcomes could change over the sequence of trials. 

Specifically, the probability of one option would gradually 

change over a set of trials. The information given to 

participants was manipulated by providing the outcomes 

associated with each option or seeing a summary of the 

outcomes of previous trials. They observed a rapid 

adaptation (quick identification of the best option) when the 

probability changed, but a slow adaptation when only the 

outcome changed. The historic feedback helped but only in 
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early choices and not in later choices. Additionally, over all 

of their experiments, Rakow and Miler found some 

evidence that people react more quickly to negative changes 

than to positive changes. Their studies concluded with the 

importance of the adaptive nature of human memory and 

speculated how forgetting and recency of information can 

play an important role in adaptation. 

Lejarraga, Dutt, and Gonzalez (2012) used Rakow and 

Miler’s (2009) data to demonstrate how an Instance-Based 

Learning (IBL) cognitive model (Gonzalez et al., 2003) 

could account for that data. They compared the predictions 

from the IBL model to observed human choices suggesting 

that adaptation occurs through the reliance on recent 

outcomes.  More recently, Lejarraga, Lejarraga, and 

Gonzalez (2014) investigated whether groups make better 

choices than individuals in dynamic tasks using similar 

problems with changing probabilities over time. They found 

that decisions made in groups were better than individual 

decisions in stable conditions, but groups were not superior 

to individuals after a sudden change had occurred in the 

probabilities. That is, groups had more difficulty in 

detecting and adapting to a sudden change compared to 

individuals. They also used an IBL model and a Bayesian 

updating model with “perfect memory” to explain why 

groups were slower at changing their policies compared to 

individuals. 

 

 
Figure 1: Repeated choice, consequential paradigm. The example 

shows that selecting the right button may result in an outcome of 

1,000 with probability p=.2, 0 with p=.6 and 5,000 with p=.2, 

while the left button results in 1,000 with certainty (p=1). The 

probabilities are unknown to the participants. 

 

We advance this line of research in four ways: First, we 

investigate how individuals adapt to gradual and continual 

change rather than to sudden changes. This is relevant to 

test the role of human memory in adjusting to gradual 

changes by the slightly altering past experiences. Second, 

we are also interested in looking at the direction of change. 

In research related to control of dynamic systems, 

researchers have found that adapting to change and being 

able to control a dynamic system in the long term, depends 

on whether the external environmental changes occur in a 

positive (i.e., increasing amounts) or negative (i.e., 

decreasing amounts) way (Gonzalez & Dutt, 2011). We 

present results from an experiment in a repeated choice 

paradigm in conditions of gradual positive and negative 

change. Third, we analyze exploratory behavior to evaluate 

how individuals explore the environment in order to detect 

gradual change. Fourth, we demonstrate the effects of 

human memory in these changing situations with an 

Instance-Based Learning model (Gonzalez et al., 2003), 

which relies on the ACT-R architecture’s memory decay 

function (Anderson & Lebiere, 1998).  

In addition to exploring gradual and continual change, the 

paradigm we implement involves high reward outcomes that 

change from very rare to near certain; analogous to a 

foraging animal in a changing environment once rich in 

resources that gradually deplete or vice versa (Mehlhorn et 

al., 2015). This design not only extends the results of 

Rakow and Miler (2009) to gradual and continual change 

but presents a test of boundary conditions in which 

exploration between options could be abandoned before 

change is detected due to very rare or very frequent early 

experiences. Accordingly, we expected better adaptation to 

change when the high risky outcome changes from very 

frequent to very rare.  

Methods 

Participants 

Two-hundred and forty participants (88 Female, Mage 

=31.32) were randomly assigned to one of three conditions: 

increasing dynamic condition (N=76), decreasing dynamic 

condition (N=83), and stationary condition (N=81). 

Participants were recruited from Amazon Mechanical Turk 

for a “choice” experiment. They were paid $0.50 for 

participating and an additional bonus payment based on the 

points they accumulated over the course of the 100 trials, at 

a rate of 1 cent per 1000 points. The average bonus payment 

gained for the duration of the experiment of about 10 

minutes was $0.26. 

Design 

The experiment asked participants to choose repeatedly 

between two options, with the goal of maximizing their 

long-term earnings that accumulate from each of the choices 

they make over 100 trials. The two options available in each 

choice include one risky option that could result in a high 

outcome (500 points) with probability p or a low outcome (0 

points) with probability 1–p, and a safe option that could 

result in a medium outcome (250 points) all the time. The 

presentation of the safe and risky options (left/right) was 

counter-balanced.  

The main treatment involved the function of p which 

linearly increased, linearly decreased, or stayed stable as a 

function of time (choice trial number). In the increasing 

condition the probability of obtaining 500 points began at 

0.01 and increased by 0.01 each trial, up to probability 1 at 

trial 100. This condition represents an environment where 

rewards change from extremely rare to certain as a function 

of time. In the decreasing condition the probability of 

obtaining 500 points started at 1 and decreased by 0.01 each 

trial, ending at 0.01 at trial 100. This condition represents an 

environment where rewards change from certain to 

extremely rare as a function of time.  In the stationary 
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condition, the probability of obtaining 500 points stayed 

stable at 0.5 throughout. 

Importantly, the cumulative expected value (EV) for all 

the options in all the conditions remains equal to 25,000 

points over the course of the experiment. Thus, effectively 

selecting the risky option consistently over the course of 

100 trials would result in approximately 25,000 

accumulated points, the same overall accumulated outcome 

from selecting the safe option consistently over the course 

of 100 trials. However, the relative value of the two options 

changes over time. In the decreasing condition, the risky 

option is better than the safe option in the first 50 trials (i.e., 

it results in 500 points more often than 0 points) and then it 

becomes worse than the safe option in the last 50 trials. In 

the increasing condition, the risky option is worse than the 

safe option in the first 50 trials and it becomes better than 

the safe option in the last 50 trials. In the stationary 

condition the probability of getting 500 or 0 points in the 

risky option is always the same (0.5), so effectively the 

risky option is relatively as valuable as the safe option over 

the 100 trials.  

Procedure 

After providing consent and answering demographic 

questions, participants were given instructions for the game, 

and then they performed the choice task for 100 trials. Upon 

completion of the task, participants were given a final 

debriefing to determine whether they were aware of the 

changing probabilities and the direction of change. 

Participants were given their total number of points 

accumulated, translated into a monetary bonus they earned, 

and then thanked for their participation. 

Results 

As a first step, we compared the proportion of risky choices 

(P-Risky) (see Figure 2, left panel). We analyzed the data 

using a generalized logit mixed-effects model with 

condition and block (blocks of 20 trials) as fixed effects, 

and subject-specific random intercepts. We found a 

significant difference in the proportion of risky choices 

participants made across conditions, χ
2
(2) = 33.11, p < .001. 

The P-Risky was higher in the decreasing condition (M = 

0.48), followed by the stationary condition (M = 0.36), and 

the increasing condition (M = 0.25). There was also a 

significant effect of block, χ
2
(4) = 229.09, p < .001, and a 

significant interaction between condition and block, χ
2
(8) = 

1,289.77, p < .001.  

Looking at Figure 2 (left panel), the trends over time 

reveal a decrease in the P-Risky for the stationary condition, 

suggesting a general tendency to gradually select the safe 

option over time, even when the options were objectively 

equal. This is explained by risk aversion (Kahneman & 

Tversky, 1979), which has been investigated in decisions 

from experience paradigms through IBL models (Lebiere, 

Gonzalez, & Martin, 2007). The frequency and recency of 

occurrence of the low outcome in the risky option creates an 

imbalance of preference towards the safe option (Lebiere et 

al., 2007). 

Second, the patterns suggest that although the P-Risky in 

the increasing condition was the lowest, the overall 

proportion of risky choices moved in the direction of the 

increased probability in the non-stationary option. However, 

this adaptation seems to be slow. Initially, participants 

quickly favored the safe option as we observe from the 

immediate drop of the P-Risky in the first 10 trials, but they 

moved slowly towards preferring the risky option as per the 

increase in the probability of the high outcome.  

Third, the P-risky in the decreasing condition reduced 

rapidly over the course of 100 trials.  Initially, choices 

quickly favored the risky option but they started to favor the 

safe option more quickly as the probability of the high 

option decreases, suggesting probability matching behavior 

(Erev & Barron, 2005).  We observe that people were faster 

to cross the P-Risky = 0.50 threshold in the decreasing 

condition compared to the increasing condition. In the 

increasing condition, P-Risky did not reach 0.50 until the 

98
th

 trial, whereas in the decreasing condition, P-Risky 

reached the 0.50 mark on the 50
th

 trial, essentially tracking 

the probability function throughout (i.e., a demonstration of 

probability matching behavior; see also Rakow & Miller, 

2009). 

Participants seem to select the risky option that matches 

the probability of the high outcome. That is, participants 

seem to select the maximizing option more accurately in the 

decreasing rather than the increasing condition. To test this, 

we calculated the proportion of maximization choices (P-

Max) before and after the objective change of the relative 

goodness of the options (e.g. trial 50; see Figure 3, left 

panel). We found a significant difference in the P-Max 

across increasing and decreasing conditions, χ
2
(1) = 15.81, p 

< .001. The P-Max was higher in the decreasing condition 

(M = 0.66) than the increasing condition (M = 0.57). In 

addition, participants maximized more in the first period of 

the task, χ
2
(1) = 537.50, p < .001, and the interaction was 

also significant, χ
2
(1) = 1,916.19, p < .001. The P-Max for 

the increasing condition was significantly higher in the first 

half (M = 0.83) than the second half (M = 0.33; χ
2
(1) = 

1,717.80, p < .001), whereas the order is reversed in the 

decreasing condition but to a lesser degree (Mfirst half = 0.61, 

Msecond half = 0.64; χ
2
(1) = 12.34, p < .001). The contrast is 

quite stark: the maximizing rate never drops below 0.50 in 

the decreasing condition, but it is on average 0.30 in the 

second half in the increasing condition. This is consistent 

with the observation that people are adapting significantly 

more rapidly in the decreasing condition than in the 

increasing condition.  

A possible explanation for the different degrees of 

adaptation between the increasing and decreasing conditions 

is the lack of exploration of the options. As we observe in 

the stationary condition, participants’ choices drift towards 

the safe option over time, even when there is no change in 

probabilities and values.  In the increasing condition, people 

might also have this tendency given that the safe option 

appears to provide higher payoffs more often than the risky 

option in the first few trials. This might prevent participants 

form exploring the risky option in later trials.  In contrast, in 

the decreasing condition, since the risky option provides 

higher payoffs than the safe option in early trials, it is 

possible that people are more aware of the changes in the 

probability given that they are already selecting the risky 

option more often.  
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Figure 2: The left panel shows human responses and the right panel shows model predictions for each of the three conditions, marked in 

different colors, where the measure is the proportion of choosing the risky option across trials.  

 

To test for exploration, we used a measure proposed in 

past research: the alternation rate (A-rate; Gonzalez & 

Dutt, 2011; 2012). This is the proportion of switches from 

one option to another in consecutive trials. We performed 

a similar analysis (mixed-effects logit model) and we 

found a significant effect of condition, χ
2
(1) = 16.79, p 

<.001, as participants switched more between options in 

the decreasing (M = 0.30) than the increasing condition 

(M = 0.21). The effect of period (before or after trial 50) 

was not significant, χ
2
(1) = 0.43, p = .51, but the 

interaction between condition and period was significant 

(χ
2
(1) = 10.47, p = .001): while there was a difference in 

A-rate between periods in the increasing condition (p = 

.003), this was not the case in the decreasing condition (p 

= .12; Figure 4, left panel). 

Instance Based Learning Model 

An IBL model designed to account for over-time effects 

of binary choice (Gonzalez & Dutt, 2011) is a generalist 

(it applies to a wide variety of tasks) instead of a 

specialist (a model that is made for one particular task; 

Lejarraga, et al., 2012) and it builds on the ACT–R 

cognitive architecture (Anderson & Lebiere, 1998). It 

proposes that a choice is a function of the accumulated 

value (blended value) for each of the two options, through 

experience. This value is a function of the outcomes 

observed and the associated probability of retrieving the 

corresponding instances from memory. Memory retrieval 

depends on the activation of a value that reflects how 

readily available this information is in memory. In this 

IBL model, activation reflects the frequency (how many 

times an outcome has been observed in the past), recency, 

and noise of the experience. The formulation of this 

model appears in multiple past publications (e.g., 

Gonzalez & Dutt, 2011; Lejarraga, et al., 2012), but for 

completeness we reproduce it here. A choice between the 

two options is made by using the blended value V which 

represents the value of option j in a particular trial t: 

 

 

 

 

where xi refers to the payoff obtained in each option 

stored in memory as instance i for the option j, and pi is 

the probability of retrieving that instance from memory, 

which is relative to the activations of other instances in 

option j: 

 

 

 

 

where τ is random noise defined as τ = σ2, and σ is a free 

noise parameter. The activation of instance i represents 

how readily available the information is in memory: 

 

 
 

The activation is higher when instances are observed 

frequently and more recently. When an instance is not 

observed often, the memory will decay with the passage 

of time (the parameter d, the decay, is a non-negative free 

parameter that defines the rate of forgetting). The noise 

component σ is a free parameter that reflects noisy 

memory retrieval, γ is a random sample from a uniform 

distribution (between 0 and 1), and tp denotes all the 

previous trials that outcome i was observed. 
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Figure 3: The left panel shows human data and the right panel shows model predictions of average maximization rates (P-Max) in the 

changing probability conditions (increasing and decreasing) before and after the halfway point (50th trial). 

 

 

We produced predictions via simulations using this IBL 

model with parameters from past research (d = 5 and σ = 

1.5; see Lejarraga, et al., 2012). We simulated the choices 

over time of 500 participants in each of the experimental 

conditions. The right panels in Figures 2, 3, and 4, show the 

model predictions that correspond to each of the results 

observed from the human data.  

The model made predictions of choice behavior across 

time that reflected similar trends in human data (right panel, 

Figure 2). The model differed in how often it chose the risky 

option on average across the three conditions. In the 

decreasing condition, the mean P-Risky over the 100 trials 

was 0.40; in the increasing condition the mean P-Risky was 

0.32; in the stationary condition it was 0.33. This was 

largely due to worse adaptation in the increasing condition, 

in which P-Risky does not reach 0.50 until the 77
th

 trial (so 

27 trials after it would have been beneficial to do so). On 

the other hand, in the decreasing condition, the model 

begins choosing the safer alternative in advance and P-

Risky crosses the 0.50 mark on the 34
th

 trial. In the 

stationary condition, P-Risky drops to around 0.30 and 

remains around that level. In agreement with the 

observation in human participants, although the two options 

have the same EV, the model chooses the safe option about 

two times more on average than the risky option.   

The P-Max between conditions in the first and second 

half of the experiment is shown in Figure 3 (right panel). 

The average P-max in the first half (M = 0.83) is higher than 

in the second half (M = 0.48). However, in the decreasing 

condition we observed a trend in the opposite direction. In 

the decreasing condition we find that the average P-Max in 

the first half (M = 0.60) is lower than the second half (M = 

0.81).  Regarding A-rate (Figure 4), the model accurately 

predicts more switching in the decreasing condition (M = 

0.28) compared to the increasing condition (M = 0.23).  

 
 

Figure 4: Average observed (Data) and predicted (Model) 

alternation rates (A-rate) in the changing probability conditions 

(increasing and decreasing). 

 

In contrast to human participants, the predictions of the 

model are more extreme: adapting better in the decreasing 

than in the increasing condition and doing better in terms of 

maximizing choices in the second half than in the first. 

However, these are good predictions given that this is an 

“out of the box” model prediction, where the simulated data 

were produced in the complete ignorance of human data. In 

fact, when we calculated the mean squared difference 

(MSD) for each condition, we found that the predictions in 

the stationary condition were the closest to observed data, 

with an MSD of 0.006; the decreasing condition was the 

next closest with an MSD of 0.018, and the increasing 

condition was the next one with an MSD of 0.020. 

Discussion 

The main purpose of the current investigation was to 

examine how people adapt their choices to gradual and 

continual change of event probabilities. Specifically, we 

were interested in whether the direction of change 
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(increasing or decreasing probabilities of maximum 

outcomes) would have an effect on people’s choice 

behavior. According to economic theory one should expect 

no difference in choice across conditions, since the 

cumulative EV of all options was the same in all 

experimental conditions. In contrast, as expected by 

cognitive theories, results show that people are sensitive to 

the dynamics of experienced outcomes and to the direction 

of change of the associated probabilities to these outcomes.  

Three main phenomena emerged from this investigation: 

1) risk aversion in experience, 2) slow adaptation to 

increasing probabilities, and 3) fast adaptation to decreasing 

probabilities. These patterns of risky choice are reinforced 

by two observed behaviors: the maximization and the 

alternation behavior. In the increasing condition, people 

chose the best option in the first half of their experience but 

they fell far below the average optimal behavior in the 

second half; while in the decreasing condition participants 

stayed above average optimal behavior throughout. The 

results suggest that participants explore the two options 

more in the decreasing than the increasing condition. 

We observe that the IBL model provides close predictions 

to the observed behavior. Even though the performed 

simulations were not exhaustively in line with what was 

observed in the task, the model provided insightful 

observations into the mechanisms of adaptation to change. 

Introspecting into the IBL model’s mechanisms we observe, 

and it is also discussed in more detail in Lebiere et al. 

(2007), that the model naturally develops a preference for 

the safe option rather than the risky option. This is due to 

the experiences of extreme outcomes in the risky option and 

the blending choice mechanism of the model that “blends 

together” these outcomes, giving rise to a slight preference 

for the safe option (i.e., the stationary option). These 

predictions emerge from the activation of instances that 

reflects the frequency and recency of the occurrence of 

outcomes. The stationary outcome develops initially a 

higher probability of retrieval and a slightly higher blended 

value. In the increasing condition, this tendency prevents the 

model from exploring the risky option, resulting in “lack of 

awareness” of the change. In contrast, in the decreasing 

condition, because the low outcome of the risky option has 

an extreme low probability of occurrence early on, the 

model develops a preference for the risky over the safe 

option. This results in “awareness” of the change in the 

probability which helps the model being more successful at 

adapting to the probability decrease. 

In conclusion, the area of dynamic experience-based 

decision-making has remained largely unexplored and this 

study attempted to provide a deeper understanding of the 

factors that are involved in the adaptation to continuous 

dynamic change. We found that people were slower at 

adapting to changes in the outcome probability when a high 

outcome changes from rare to frequent compared to a high 

outcome changing from frequent to rare. People are slow at 

switching to a risky choice in the increasing condition and 

fast at switching to a safe option in the decreasing condition. 

Differences in exploration of the available options, joined 

with the dynamics of experience and the cognitive effects 

involved (frequency and recency of experiences) provide an 

explanation of this behavior. 

Acknowledgements 

This work was supported by the National Science 

Foundation Award Number: 1154012 to Cleotilde 

Gonzalez. 

References  

Anderson, J. R., & Lebiere, C. (1998). The atomic components 

of thought. Mahwah, NJ: Lawrence Erlbaum Associates.  

Barron, G., & Erev, I. (2003). Small feedback-based decisions 

and their limited correspondence to description-based 

decisions. Journal of Behavioral Decision Making, 16, 215-

233.  

Edwards, W. (1962). Subjective probabilities inferred from 

decisions. Psychological Review, 69, 109-135.  

Erev, I., & Barron, G. (2005). On adaptation, maximization, 

and reinforcement learning among cognitive strategies. 

Psychological Review, 112, 912-931. 

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-based 

learning in dynamic decision making. Cognitive Science, 27, 

591-635.  

Gonzalez, C., & Dutt, V. (2011). Instance-based learning: 

Integrating sampling and repeated decisions from 

experience. Psychological Review, 118, 523-551. 

Gonzalez, C., & Dutt, V. (2012). Refuting data aggregation 

arguments and how the IBL model stands criticism: A reply 

to Hills and Hertwig (2012). Psychological Review, 119, 

893-898. 

Gureckis, T. M., & Love, B. C. (2009). Short-term gains, long-

term pains: How cues about state aid learning in dynamic 

environments. Cognition, 113, 293-313. 

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). 

Decisions from experience and the effect of rare events in 

risky choice. Psychological Science, 15, 534-539.  

Kahneman, D., & Tversky, A. (1979). Prospect theory: An    

analysis of decision under risk. Econometrica, 47, 263-291. 

Lebiere, C., Gonzalez, C., & Martin, M. (2007). Instance-based 

decision making model of repeated binary choice. Paper 

presented at the 8th International Conference on Cognitive 

Modeling, Oxford, UK. 

Lejarraga, T., Dutt, V., & Gonzalez, C. (2012). Instance-based 

learning: A general model of repeated binary choice. Journal 

of Behavioral Decision Making, 25, 143-153. 

Lejarraga, T., Lejarraga, J., & Gonzalez, C. (2014). Decisions 

from experience: How groups and individuals adapt to 

change. Memory & Cognition, 42, 1384-1397. 

Mehlhorn, K., Newell, B. R., Todd, P. M., Lee, M. D., Morgan, 

K., Braithwaite, V. A., … Gonzalez, C. (2015). Unpacking 

the exploration-exploitation tradeoff: A synthesis of human 

and animal literatures. Decision, 2, 191–215. 

Rakow, T., & Miler, K. (2009). Doomed to repeat the       

successes of the past: History is best forgotten for repeated 

choices with nonstationary payoffs. Memory & Cognition, 

37, 985-1000. 

619




