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a b s t r a c t

Existence and uniqueness of solutions to non-smooth initial data are established for a
slight modification of the degenerate regularization of the well-known Perona–Malik
equation first proposed in Guidotti and Lambers (2009). The results heavily rely
on the choice of an appropriate functional setting inspired by a recent approach
to degenerate parabolic equations via so-called singular Riemannian manifolds
(Amann, 2013, 2016).

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the early 90s, P. Perona and J. Malik [18] introduced a novel paradigm by proposing the use of
nonlinear diffusion as an image processing tool. The stark contrast between the numerical effectiveness
of their method and its mathematical ill-posedness, see [16], spurred significant subsequent research in
mathematics and image processing. A number of mathematical “fixes” have been proposed over the past
decades. It is referred to [12] for an overview. Of relevance for this article is the fractional derivatives’ based
regularization proposed in [14]. While it is well-posed as a quasi-linear parabolic equation, it appears so only
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in a smooth context (i.e. for smooth enough initial data). Characteristic functions or linear combinations
thereof are, however, of extreme interest in applications since edges (sharp transitions in gray level) are an
essential feature of many images. Mathematical results in function spaces which contain them are therefore
desirable. As, even in the corresponding linear case, uniqueness may fail to hold (see [13] for an illustration),
the careful choice of functional setting is paramount. It has indeed been impossible thus far to identify
an appropriate concept of weak solution yielding well-posedness for a class of initial data large enough
to include characteristic functions of smooth sets. Allowing for non-smooth initial data readily leads to
degenerate parabolic equations. The precise degeneration type, however, depends on the exact properties of
the chosen non-smooth initial datum. The construction of a unique solution proposed here is therefore based
on the use of function spaces defined around a fixed singular function (in order to fix the degeneration type)
and of recently developed results for parabolic equations on singular Riemannian manifolds which provide a
tool for analyzing degenerate parabolic equations with fixed degeneration; see [2,4,21,22]. While the results
of this paper do not resolve the general uniqueness/non-uniqueness question, they appear to be the first
delivering non-trivial existence results of solution to non-smooth initial data and uniqueness in a restricted
class of functions which share a common singularity.

The remainder of the paper is organized as follows: Results about maximal regularity for parabolic
equations and weighted function spaces are presented in Section 2. Local well-posedness of the nonlinear
model is shown in Section 3 and global well-posedness is established in Section 4 by means of the principle of
linearized stability for small perturbations of the non-smooth initial datum. The main results are formulated
in Theorems 3.14, 3.19, and 4.6.

1.1. Notations

For s ≥ 0 and p ∈ (1,∞), we denote by Fs(RN ) the function spaces obtained by replacing F by Wp or
BC. If QN is the N -dimensional unit cube, the spaces Fsπ(QN ) are the corresponding subspaces consisting
of periodic functions with periodicity box given by QN .

Given any topological set U , Ů denotes the interior of U .
For any two Banach spaces X,Y , X .= Y means that they are equal in the sense of equivalent norms.

The notation Lis(X,Y ) stands for the set of all bounded linear isomorphisms from X to Y .
The symbol ∼ always denotes Lipschitz equivalence. We write Ṅ = N \ {0}.

2. Maximal Lp-regularity in a weighted Lp-framework

2.1. Transforming the problem onto the torus

Let N = 1, 2, define QN = [−1, 1)N , and consider the following problem:
∂tu− div


αε(u)∇u


= 0 in QN × (0,∞),

u periodic,
u(0) = u0 in QN ,

(2.1)

where αε(u) =

1 + |∇1−εu|2

−1 and ε ∈ (0, 1). A precise definition of the fractional derivative appearing in
the nonlinear coefficient αε will be given in Section 3.

We shall be interested in non-smooth initial data u0 for which αε(u0) vanishes on a C3-submanifold
Γ ⊂ Q̊N of codimension 1 (which may not be connected). For δ sufficiently small, we can always choose
a 2δ-tubular neighborhood U2δ ⊂⊂ Q̊N of any such Γ , even if Γ has merely C2 boundary. Define
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d ∈ C3(QN \ Γ , (0, 1]) by

d(x) =


dist(x,Γ ), in Uδ \ Γ ,
1, in QN \U2δ,

(2.2)

and observe that dist(x,Γ ) is well-defined and C3 for δ sufficiently small.
Considering x1, x2 ∈ RN to be equivalent if x1 − x2 = 2m for some m ∈ ZN , let φ be the projection

mapping taking x ∈ RN to its equivalence class. It clearly holds that φ(QN ) = TN , where TN is the
N -dimensional torus.

Throughout the rest of this paper, unless stated otherwise, we always assume that

• s ≥ 0, k ∈ Ṅ, 1 < p ≤ ∞ and ϑ ∈ R.
• F = Wp for 1 < p <∞, or F = BC.

Remark 2.1. If we equip TN with the metric φ∗gN , where gN is the N -dimensional Euclidean metric on
QN and φ∗ =


(φ

QN )−1∗, i.e. φ∗gN is the pullback metric along (φ


QN )−1, then (TN , φ∗gN ) is a closed

smooth manifold. Therefore, any periodic function space Fsπ(QN ) defined on (QN , gN ) is isomorphic to
the corresponding Fs(TN ) defined on (TN , φ∗gN ). So all well-established function space theory results,
such as those pertaining to interpolation and to lifting properties, transfer to the spaces Fsπ(QN ). See, for
instance, [25, Chapter 7] for more details on function space theory on closed manifolds.

We let ΓT = φ(Γ ) and set

(M, g) = (TN \ ΓT, φ∗gN |TN\ΓT).

Denote the metrics gN and φ∗gN by (·|·) and (·|·)g, and the norms induced by gN and φ∗gN by | · | and | · |g,
respectively.

As long as it causes no confusion, we will denote the usual covariant derivative, divergence, and Laplacian
on (QN , gN ) as well as their restrictions to (QN \ Γ , gN ) by ∇, div and ∆ respectively. Similarly, ∇g, divg
and ∆g will denote their counterparts on both (TN , φ∗gN ) and (M, g).

Now problem (2.1) can be equivalently stated as
∂tu− divg(αε(u)∇gu) = 0 in TN × (0,∞),
u(0) = u0 in TN .

(2.3)

Here it is understood that αε(u) = φ∗αε(φ∗u).

2.2. Periodic weighted function spaces

Note that the function defined by

ρ(x) = d(y), y ∈ φ−1(x) ∩ QN , (2.4)

is well-defined on M and satisfies ρ ∈ C3(M, (0, 1]). We will begin with the definition of weighted function
spaces on (M, g) (see [2,3]) in order to derive the definition of the corresponding weighted periodic function
spaces on QN \ Γ .

Given an arbitrary finite dimensional Hilbert space X, denote its inner product by (·|·)X . The weighted
Sobolev space of X-valued functions W k,ϑp (M, X) is defined as the completion of D(M, X), the space of
X-valued test-functions, with respect to the norm

∥ · ∥k,p;ϑ : u →

k
i=0
∥ρϑ+i|∇igu|g∥pp

 1
p

,
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with the understanding that Lϑp (M, X) = W 0,ϑ
p (M, X) and that ∇i+1

g u := ∇g ◦ ∇igu. The weighted
Sobolev–Slobodeckii spaces are defined as

W s,ϑp (M, X) :=

Lϑp (M, X),W k,ϑp (M, X)


s/k,p

,

for s ∈ R+ \N, k = [s]+1. Here (·, ·)θ,p is the standard real interpolation method [1, Chapter I.2.4.1]. Define

BCk,ϑ(M, X) :=

{u ∈ Ck(M, X) : ∥u∥k,∞;ϑ <∞}, ∥ · ∥k,∞;ϑ


, (2.5)

where ∥u∥k,∞;ϑ := max0≤i≤k ∥ρϑ+i|∇igu|g∥∞.

Remark 2.2. Note that (M, g) is an incomplete manifold. Indeed, by [5, Lemma 3.4] and [20, Proposition 12],
(M, g; ρ) can be seen as a C2-singular manifold. It follows that the weighted function spaces introduced above
are all well-defined for (M, g) (cf. [2,3,21]). The properties of weighted function spaces defined on C2-singular
manifolds established in the cited references are all inherited by the weighted function spaces Fs,ϑ(M, X).

We can define periodic weighted function spaces on (QN \ Γ , gN ) in the same manner just by replacing the
weight function ρ, ∇g and | · |g by d, ∇ and | · |, respectively. We denote these spaces by Fs,ϑπ (QN \ Γ , X).
By the identification

Fs,ϑπ (QN \ Γ , X) .= φ∗Fs,ϑ(M, X), (2.6)

the space Fs,ϑπ (QN \ Γ , X) enjoys the same properties as Fs,ϑ(M, X). For notational brevity, we still denote
the norms of the weight function spaces Fs,ϑπ (QN \ Γ , X) by ∥ · ∥k,p;ϑ and ∥ · ∥k,∞;ϑ, respectively.

Lemma 2.3. Let s ≥ 0 for F = Wp or s ∈ N for F = BC and ϑ ∈ R, then it holds that

(i) ∇ ∈ L

Fs,ϑπ (QN \ Γ ,R),Fs−1,ϑ+1

π (QN \ Γ ,RN )


.

(ii) div ∈ L

Fs,ϑπ (QN \ Γ ,RN ),Fs−1,ϑ+1

π (QN \ Γ ,R)


.

Proof. (i) follows from [2, Theorem 7.5], (2.5) and (2.6). (ii) is a consequence of [21, Propositions 2.5, 2.8].

Notice that there is a difference in weights between the above lemma and the Refs. [2, Theorem 7.5]
and [21, Proposition 2.8]. The former is due to the fact that weights in [2] depend on whether sections
are defined on the tangent or cotangent bundle and we do not distinguish between them here. The latter
stems from the fact the divergence operator is defined for sections of the tangent bundle, while the covariant
derivative naturally maps into the cotangent bundle and going between the two requires a change of weight
(see [21, Proposition 2.5]). �

Lemma 2.4. For ϑ′ ∈ R and s, ϑ as in Lemma 2.3, we have that

[u → ρϑu] ∈ Lis

Fs,ϑ

′+ϑ
π (QN \ Γ , X),Fs,ϑ

′

π (QN \ Γ , X)

.

Proof. See [21, Propositions 2.4] and (2.6). �

Lemma 2.5. Let s ≤ k ∈ Ṅ and ϑi ∈ R with i = 0, 1. [(u, v) → (u|v)X ] is a continuous bilinear map in each
of the following functional settings

W s,ϑ0
p,π (QN \ Γ , X)×BCk,ϑ1

π (QN \ Γ , X)→W s,ϑ0+ϑ1
p,π (QN \ Γ ) or

BCk,ϑ0
π (QN \ Γ , X)×BCk,ϑ1

π (QN \ Γ , X)→ BCk,ϑ0+ϑ1
π (QN \ Γ ).
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Proof. This follows from [3, Theorem 13.5] and (2.6). �

Lemma 2.6. Suppose that ki ∈ N, ϑi ∈ R with i = 0, 1, 0 < θ < 1 and k0 < k1. Then
W k0,ϑ0
p,π (QN \ Γ , X),W k1,ϑ1

p,π (QN \ Γ , X)

θ,p

.= W kθ,ϑθp,π (QN \ Γ , X),

where ξθ := (1− θ)ξ0 + θξ1 for any ξ0, ξ1 ∈ R and the case kθ ∈ N needs to be excluded.

Proof. It follows from [3, Theorem 8.2(i), formulas (8.3), (21.2)] and (2.6). �

Proposition 2.7. Suppose that s > k + N
p and ϑ ∈ R. Then

W s,ϑp,π (QN \ Γ , X) ↩→ BC
k,ϑ+Np
π (QN \ Γ , X).

Proof. See [2, Theorem 14.2(ii)] and (2.6). �

2.3. Maximal regularity of type Lp

In this subsection, we will state some preliminary concepts and results of maximal Lp-regularity for
differential operators and their application to quasi-linear parabolic equations. The reader is referred to [1,
6], and [9] for more details about these concepts.

We consider the following abstract Cauchy problem
∂tu(t) +Au(t) = f(t), t ≥ 0

u(0) = 0.
(2.7)

For θ ∈ (0, π], the open sector of angle 2θ is denoted by

Σθ := {ω ∈ C \ {0} : | argω| < θ}.

Definition 2.8. Let X be a complex Banach space, and A be a densely defined closed linear operator in X

with dense range. A is called sectorial if Σθ ⊂ ρ(−A) for some θ > 0 and

sup{|µ(µ+A)−1| : µ ∈ Σθ} <∞.

The class of sectorial operators in X is denoted by S(X). The spectral angle φA of A is defined by

φA := inf{φ : Σπ−φ ⊂ ρ(−A), sup
µ∈Σπ−φ

|µ(µ+A)−1| <∞.}.

Definition 2.9. Assume that X1
d
↩→X0 is some densely embedded pair of Banach spaces. Suppose that

A ∈ S(X0) with dom(A) = X1. Then, the Cauchy problem (2.7) is said to have maximal Lp-regularity
if, for any

f ∈ Lp(R+, X0),

Eq. (2.7) has a unique solution

u ∈ Lp(R+, X1) ∩H1
p (R+, X0).

We denote this by

A ∈MRp(X1, X0).
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Maximal regularity theory has proven a powerful tool in the theory of nonlinear parabolic equations. We
will apply it to the study of problem (2.1). To this end, let us consider the following abstract evolution
equation 

∂tu+A(u)u = f(u), t ≥ 0,
u(0) = 0,

(2.8)

in X0. We have the following existence and uniqueness result for Eq. (2.8).

Theorem 2.10 ([7, Theorem 2.1]). Let 1 < p < ∞ and X1
d
↩→X0 be a densely embedded pair of Banach

spaces. Setting X1/p := (X0, X1)1−1/p,p, suppose that U ⊂ X1/p is open and that A, f satisfy

(A, f) ∈ C1−U,MRp(X1, X0)×X0

.

Then for every u0 ∈ U , there exist T = T (u0) > 0 and a unique solution of (2.8) on J = [0, T ] with

u ∈ Lp(J,X1) ∩H1
p (J,X0).

3. Local well-posedness of the nonlinear model

In this section, we will establish the existence and uniqueness of solutions to (2.1). The precise definition
of the fractional gradient ∇1−ε in the one and two dimensional cases will be stated separately in the following
two subsections. In order to allow for non-smooth initial data for (2.1) and the corresponding degeneration
in the diffusion coefficient they cause, it is necessary to resort to weighted spaces. We put

E0 := Lϑ+2ε
p,π (QN \ Γ ), E1 := W 2,ϑ

p,π (QN \ Γ ),

and

E 1
p

:= (E0, E1)1−1/p,p = W
2−2/p,ϑ+ 2ε

p
p,π (QN \ Γ ).

Throughout the rest of this section, we always assume

ϑ ≤ −2, p > max

N + 2
ε

,−N + 2ε
ϑ


, ε ̸= 1

2 (3.1)

or

ϑ = −2ε, p > max


2N + 2
ε

,
4N + 5

2


, ε > 1− 1

2p . (3.2)

Conditions (3.1) and (3.2) are imposed in order for technically necessary embeddings to be valid. Notice
that the first condition allows for more freedom in the choice of ε, whereas the second will make it possible
to obtain stronger results (see Section 4).

If (3.1) holds, then it is not hard to verify by the definition of W k,ϑp (QN \Γ ) in Section 2.2 and the choice
of ϑ that

E0 ↩→ Lp,π(QN ) and E1 ↩→W 2
p,π(QN ).

Interpolation theory implies that

E 1
p
↩→W 2−2/p

p,π (QN ). (3.3)

We define RΓ to be the set of functions which are a constant on each component of QN \ Γ .
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Lemma 3.1. Assume that (3.2) is satisfied. Then

E1 ↩→W 2
p/2,π(QN ).

Proof. First note that for p satisfying (3.2), by Proposition 2.7, one has that

E1 ↩→ BC
1,ϑ+Np
π (QN \ Γ ).

Therefore, any u ∈ E1 admits a smooth trace γΓ (u) and γΓ (u) = 0; similarly γΓ (|∇u|) = 0, in view of the
assumptions on the parameter ϑ. These estimates imply that, on each component of QN \ Γ , u and ∇u
admit unique continuous extensions onto Γ and thus that E1 ↩→ BC1

π(QN ).

Pick q < p. First, it is clear that E1 ↩→ Lq,π(QN ) since, by definition,
QN
|∇2u|q dx ≤


QN
|d2ε−2d2−2ε∇2u|q dx

≤


QN
|d2ε−2|

qp
p−q dx

 p−q
p


QN
|d2−2ε∇2u|p dx

q/p
.

To make the first term on the right hand side of the inequality finite, it suffices to require that (2ε−2) qpp−q >
−1. This is clear for N = 1 where the singularity is at isolated points, whereas for N = 2 it follows from the
fact that the singularity is along a smooth curve. The above parameter inequality is equivalent to

ε > 1− 1
2q + 1

2p .

Taking q = p/2 yields ε > 1− 1
2p . �

The assumption p > 4N+5
2 in (3.2) guarantees that p > 2N+2

ε and ε > 1− 1
2p do not conflict.

3.1. One dimensional case

Since we are working with periodic functions on Q = [−1, 1), we can define ∇1−ε = ∂1−ε by means of
Fourier series

∂1−εu := |∂|−εu′ := F−1diag

iπk

|k|ε


Fu,

where F denotes the Fourier transform and diag{ iπk|k|ε } denotes the multiplication operator (in Fourier space)
by the function [k → iπk

|k|ε ].

Lemma 3.2.

∂1−εu(x) =


Q
cε

u′(y)
|x− y|1−ε

dy +


Q
hε(x− y)u′(y) dy,

for some constant cε > 0 and hε ∈ C∞.

Proof. By definition, one has that

∂1−ϵu(x) =


Q
Gϵ(x− y)u′(y) dy,

with Gϵ(k) = 1
|k|ϵ

, k ∈ Z∗ := Z \ {0}.
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This means that

Gϵ(x) =

k∈Z∗

1
|k|ϵ

eπikx = 2−ε

k∈Z

η(k/2)
|k/2|ϵ e

2πi(k/2)x,

where η ∈ C∞(R) is a cut-off function with

η(x) =


0, |x| ≤ 1/8,
1, |x| ≥ 1/4.

Notice that the Poisson summation formula [24, p. 362] yields, at least formally at first, that

Gϵ(x) =

k∈Z

η(k/2)
|k|ϵ

eπikx

= c|x|ε−1 + cF

[η(·/2)− 1]| · /2|−ε


(x) + c


k∈Z∗
F

η(·/2)| · /2|−ε


(x+ 2k), (3.4)

for x ∈ [−1, 1). The second term after the last equality sign is C∞ as the Fourier transform of a compactly
supported function. The function F


η(·/2)| · /2|−ϵ


appearing in the last series is rapidly decreasing at

infinity (faster than the reciprocal of any polynomial) as the Fourier transform of a smooth function. This
rapid decay implies that the last series converges uniformly for x in [−1, 1) since none of the addends in
the series has a singularity in this interval. It follows in particular that the distribution after the second
equality sign in (3.4) is in fact regular, that is, a locally integrable function. Now, while the assumptions of
the Poisson summation formula are not met for a straightforward validity of (3.4), it is possible to replace

k∈Z∗

1
|k|ϵ

eπikx

by 
k∈Z∗

1
|k|ϵ

eπikxe−δ(k/2)2/2

with δ ∈ (0, 1] before applying the summation formula to obtain

Gδε = Hε ∗
1√
2πδ

e−(·)2/2δ,

where Hε is the expression after the last equality sign in (3.4). Letting δ → 0 and using Lebesque’s
dominated convergence theorem, we obtain the validity of (3.4) itself since Gδε converges to Gε in the
sense of distributions, while the convolution term converges to Hε in L1(−1, 1). The claim follows denoting
the sum of the last two terms of (3.4) by hε. �

Lemma 3.3. Assume that (3.1) or (3.2) is satisfied. Then

∂1−ε ∈ L

E 1
p
, BC1

π(Q)

.

Proof. First note that Fsπ(Q) .= φ∗Fs(T), so function space theory on compact manifolds applies; see [25,
Chapter 7].

(i) If (3.1) is assumed to hold, from (3.3), we can infer that

∂1−ε ∈ L

E 1
p
,W 1+ε−2/p
p,π (Q)


,

since the mapping properties of ∂1−ε readily follow for the Bessel potential spaces (which can be defined
in terms of decay properties of Fourier coefficients) and, then for Sobolev–Slobodeckii spaces as well, by
interpolation. Now the statement follows from Sobolev embedding and from p > 3

ε in (3.1).
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(ii) If, instead, we assume (3.2), then, Lemma 3.1 and interpolation theory imply that

E 1
p
↩→

Lp/2,π(Q),W 2

p/2,π(Q)


1−1/p,p

.= B
2−2/p
p/2,p,π(Q).

Thus we infer that

∂1−ε ∈ L

E 1
p
, B

1+ε−2/p
p/2,p,π (Q)


.

Now embedding theorems for Besov spaces and p > 4
ε in (3.2) complete the proof. �

In dimension 1, we are interested in initial data that are close to piecewise constant functions in some proper
topology.

It suffices to take the following function H as a generic representative of piecewise constant functions

H(x) = χ(−1/2,1/2)(x) =


1, x ∈ (−1/2, 1/2),
0, |x| ≥ 1/2.

(3.5)

This means that we choose Γ = {±1/2} and H ∈ RΓ .

Proposition 3.4. The function ∂1−εH satisfies

∂1−εH(x) = cε


1

|x+ 1/2|1−ε −
1

|x− 1/2|1−ε


+ hε(x+ 1/2)− hε(x− 1/2), x ∈ Q

where hε ∈ C∞, for some constant cε > 0.

Proof. Using the kernel representation given in Lemma 3.2 and the fact that H ′ = δ−1/2 − δ1/2 yields that

∂1−εH(x) = cε


1x+ 1
2
1−ε − 1x− 1

2
1−ε


+ hε(x+ 1/2)− hε(x− 1/2), x ∈ Q,

and the claim follows. �

Taking d as in (2.2), there exists some E > 1 such that

1/E < d1−ε|∂1−εH| < E , near Γ . (3.6)

We assume that the initial datum is of the form

u0 = H + w0, w0 ∈ E 1
p
.

Remark 3.5. A typical example of the perturbation term w0 could be sin(64πx2).

For any w ∈ E 1
p
, we define

A (w)u := −div(αε(H + w)∇u).

Recall that αε(H + w) := 1
1+|∂1−ε(H+w)|2 .

We will apply the theory of R-bounded operators to prove that the operator A (w) enjoys the property
of maximal Lp-regularity.

Definition 3.6. Let X1 and X0 be two Banach spaces. A family of operators T ∈ L(X1, X0) is called R-
bounded, if there is a constant C > 0 and p ∈ [1,∞) such that for each N ∈ N, Tj ∈ T and xj ∈ X1 and
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for all independent, symmetric, {−1, 1}-valued random variables εj on a probability space (Ω ,M, µ) the
inequality 

N
j=1

εjTjxj


Lp(Ω ;X0)

≤ C


N
j=1

εjxj


Lp(Ω ;X1)

is valid. The smallest such C is called R-bound of T . We denote it by R(T ).

Definition 3.7. Suppose that A ∈ S(X). Then A is called R-sectorial if there exists some φ > 0 such that

RA(φ) := R{µ(µ+A)−1 : µ ∈ Σφ} <∞.

The R-angle φRA is defined by

φRA := inf{θ ∈ (0, π) : RA(π − θ) <∞}.

The class of R-sectorial operators in X is denoted by RS(X).

Let R > 0 and BR := {w ∈ E 1
p

: ∥w∥E 1
p

< R}.

Lemma 3.8. There exists a constant C such that

d1−ε|∂1−ε(H + w)| < C, w ∈ BR,

and

1/C < d2ε−2αε(H + w) < C, w ∈ BR.

Proof. (i) It follows from Lemma 3.3 that

|∂1−εw| is uniformly bounded for w ∈ BR,

and the boundedness of d1−ε|∂1−εH| follows from (3.6). This proves the first assertion.

(ii) We have that

d2ε−2αε(H + w) = 1
d2−2ε + d2−2ε|∂1−ε(H + w)|2 .

The first assertion implies the uniform lower bound of the second. It follows from the expression for ∂1−εH

in Proposition 3.4 that, in a small enough δ-neighborhood Uδ of Γ , one has that

d1−ε|∂1−εH| > cε
2 ,

where cε is the constant in Proposition 3.4. Clearly, by the uniform boundedness of |∂1−εw| in BR, it holds
that

d1−ε(x)w(x)→ 0, and d2−ε(x) d
dx
w(x)→ 0 as x→ Γ . (3.7)

Choosing δ sufficiently small yields d1−ε|∂1−εw| < cε
4 inside Uδ. Therefore,

d2−2ε|∂1−ε(H + w)|2 > c2
ε

16 in Uδ, w ∈ UR.

Outside Uδ, d2−2ε is bounded from below by a positive constant. This proves the uniform upper bound in
the second assertion. �

Lemma 3.9. For each w ∈ E 1
p
,
d2ε−1 d

dxαε(H + w)
 ∼ 1 in a δ-neighborhood Uδ of Γ .
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Proof. Let u = H + w and observe that
d

dx
αε(u) = −2α2

ε(u)∂1−εu
d

dx
∂1−εu.

An easy computation and Proposition 3.4 show that

d2−ε
 ddx∂1−εH

 ∼ 1.

By (3.7), in a sufficiently small δ-neighborhood Uδ of Γ , we have that

d1−ε|∂1−εu| ∼ 1, d2−ε
 ddx∂1−εu

 ∼ 1.

In combination with Lemma 3.8, this yieldsd2ε−1 d

dx
αε(u)

 ∼ 1, in Uδ. � (3.8)

Lemma 3.10. There exists a constant C such that

1/C < sign(1− 2ε)d2ε d
2

dx2αε(H) < C

in a δ-neighborhood Uδ of Γ .

Proof. Direct computations show

d2

dx2αε(H) = αε(H)3|∂1−εH|2


6
 ddx∂1−εH

2 − 2∂1−εH
d2

dx2 ∂
1−εH



− 2αε(H)3


∂1−εH

d2

dx2 ∂
1−εH +

 ddx∂1−εH

2

.

By Proposition 3.4, one can verify that

d3−ε d
2

dx2 ∂
1−εH ∼ 1,

and

6
 ddx∂1−εH

2 − 2∂1−εH
d2

dx2 ∂
1−εH ∼ 2(1− ε)(1− 2ε)d2ε−4, near Γ .

Note that, by the previous estimates and Lemma 3.9, it holds that

d2εαε(H)3

∂1−εH
d2

dx2 ∂
1−εH +

 ddx∂1−εH

2
 ∼ d2−2ε.

Thus this term can be made arbitrarily small by shrinking Uδ. To sum up, in a sufficiently small δ-tubular
neighborhood Uδ, we have

sign(1− 2ε)d2ε d
2

dx2αε(H) ∼ |1− 2ε|.

This completes the proof. �

Lemma 3.11. αε(H) ∈ BC2,2ε−2
π (Q \ Γ ), and for each w ∈ E 1

p
, we have

αε(H + w) ∈ BC1,2ε−2
π (Q \ Γ ).
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Moreover, for any R > 0,

[w → αε(H + w)] ∈ Cω(BR, BC1,2ε−2
π (Q \ Γ )),

where ω is the symbol for real analyticity.

Proof. By Lemma 3.3 and Proposition 3.4, we readily infer that

αε(H) ∈ C2
π(Q \ Γ ) and αε(H + w) ∈ C1

π(Q \ Γ ).

The rest of the proof for the first assertion follows from Lemmas 3.8–3.10.

By the estimates in Lemmas 3.8 and 3.9, we already knew that

∂1−ε(H + w) ∈ BC1,1−ε(Q \ Γ ).

Lemma 2.5 implies that 
w → 1

αε(H + w)


∈ Cω


E 1
p
, BC1,2−2ε

π (Q \ Γ )

.

The manifold (M̂, ĝ) := (M, g/ρ2) has bounded geometry, and thus BCk-function spaces are well defined.
We denote these spaces by BCk(M̂). Note that the space

BC1,0
π (Q \ Γ ) .= φ∗BC1(M̂).

See [4, Section 4]. Applying [23, Proposition 6.3] to BCk-functions and in view of Lemma 2.4, we can infer
that

[w → αε(H + w)] ∈ Cω(BR, BC1,2ε−2
π (Q \ Γ ))

for any R > 0. �

Lemma 3.12. Assume that w ∈ E 1
p
. Then for each k, there exists a sufficiently small δk-neighborhood Uδk

of Γ such that

∥αε(H)− αε(H + w)∥BC1,2ε−2(Ūδk\Γ) ≤ 1/k.

Proof. We have

αε(H)− αε(H + w) = αε(H)αε(H + w)

∂1−ε(2H + w)


∂1−εw.

Thus, by Lemma 3.8, for some C > 0

d2ε−2|αε(H)− αε(H + w)| ≤ Cd1−ε|∂1−εw|.

This term can be made arbitrarily small by shrinking the neighborhood Uδ. The estimate for d
dx


αε(H) −

αε(H + w)


follows similarly by utilizing Lemmas 3.3, 3.8 and 3.9. �

We can now establish the following maximal regularity property for the operator A (w) for every w ∈ E 1
p
.

Proposition 3.13. Let 1 < p <∞ and ε satisfy (3.1) or (3.2). Then, for any w ∈ E 1
p
, the operator

A (w) ∈MRp(W 2,ϑ
p,π (Q \ Γ ), Lϑ+2ε

p,π (Q \ Γ )).
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Proof. This theorem is a consequence of the work in [21,22]. We would like to refer the reader to these two
papers for more details, and thus only necessary explanations will be pointed out here.

(i) For small δ > 0, by [5, Theorem 1.6], (Ūδ \ Γ , dx) is a singular manifold.

Lemmas 3.8–3.10 imply that

αε(H)
1

2−2ε ∈ BC2,−1(Ūδ \ Γ ), d−1αε(H)
1

2−2ε ∼ 1.

Put h = sign(1− 2ε) logαε(H). Then direct computations showαε(H)
1

2−2ε
d

dx
h

 =
αε(H)

2ε−1
2−2ε

d

dx
αε(H)

 ∼ d2ε−1 d

dx
αε(H)

 ∼ 1,

via Lemma 3.9, and by Lemma 3.10

αε(H)
2ε

2−2ε
d

dx


αε(H) d

dx
h


= sign(1− 2ε)αε(H)

2ε
2−2ε

d2

dx2αε(H) ∼ sign(1− 2ε)d2ε d
2

dx2αε(H) ∼ 1.

Therefore, the function h satisfies conditions (H2ε1) and (H2ε2) defined in [21, Section 5.1] with λ = 2ε on
(Ūδ \ Γ , dx). This means that (Ūδ \ Γ , dx) with αε(H)

1
2−2ε as a singularity function is a singular manifold

satisfying property H2ε. The reader may refer to [21] for more details.

The proof of [21, Theorem 5.18] shows that the operator −A (0) generates an analytic contraction strongly
continuous semigroup on L2ε+ϑ

p (Ūδ \ Γ ) with

D(A (0)) .= W̊ 2,ϑ
p (Ūδ \ Γ ), 1 < p <∞.

Here for F ∈ {BC,Wp}, F̊s,ϑ(Ūδk \ Γ ) is defined as the closure of D(Uδ \ Γ ) in Fs,ϑπ (Q \ Γ ). One can show
that the semigroup {e−tA (0)}t≥0 is positive by means of the same argument as in step (iii) of the proof
for [22, Theorem 4.8].

(ii) Let

X0(δ) = L2ε+ϑ
p (Ūδ \ Γ ), X1(δ) = W̊ 2,ϑ

p (Ūδ \ Γ ).

Now, following exactly the same argument as in step (iv) and (4.14) of the proof for [22, Theorem 4.8], one
concludes that

A (0) ∈ RS(X0(δ)) with φRA (0) < π/2.

Moreover, by the definition of R-bound, it is easy to verify that for some θ > π/2

R{µ(µ+ A )−1 : µ ∈ Σθ} is increasing in δ.

So is the norm ∥A −1(0)∥X0(δ),X1(δ).

It follows from Lemmas 2.3 and 3.12 that, by shrinking δ, we can always make ∥(A (w) −
A (0))A −1(0)∥L(X0(δ)) arbitrarily small. As a direct consequence of the perturbation theorem of R-sectorial
operators, cf. [9, Proposition 4.2], we infer that

A (w) ∈ RS(X0(δ)) with φRA (w) < π/2.

The last step is to use a standard decomposition and gluing procedure as in step (v)–(vii) of the proof
for [22, Theorem 4.8], and we can prove that for some ω ≥ 0

ω + A (w) ∈ RS(L2ε+ϑ
p,π (Q \ Γ )) with φRA (w) < π/2.

Then the assertion follows from [9, Theorem 4.4]. �
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Now we will apply Proposition 3.13 to proving existence and uniqueness of solutions to Eq. (2.1). We first
consider the problem linearized in the initial datum H.

∂tu− div

αε(H)∇u


= 0 in Q× (0,∞),

u periodic,
u(0) = H in Q.

(3.9)

Clearly, u∗ ≡ H solves (3.9).
Then we look at the nonlinear problem

∂tu− div

αε(u+ u∗)∇u


= 0 in Q× (0,∞),

u periodic,
u(0) = w0 in Q.

(3.10)

Take R > 0 so large that w0 ∈ BR, then by Lemmas 2.3, 2.5, 3.11 and Proposition 3.13,
w → div


αε(H + w)∇·


∈ Cω


BR,MRp(E1, E0)


. (3.11)

Hence the condition in Theorem 2.10 is satisfied. The same theorem implies the existence of a unique solution

ũ ∈ E1(J) := Lp(J,E1) ∩H1
p (J,E0)

to (3.10). We thus conclude that û = ũ+ u∗ is a solution to (2.1) with initial value u0 = H + w0.
We will show that û is indeed the unique solution in the class E1(J)⊕ RΓ , where

E1(J)⊕ RΓ :=

u ∈ L1,loc(J × (Q \ Γ )) : u = u1 + u2, u1 ∈ E1(J), u2 ∈ RΓ


.

Note that by [7, Formula (2.1)] and (3.1) and (3.2)

E1(J) ↩→ C

J,E 1

p


, and RΓ ∩ E 1

p
= {0Q\Γ}.

Indeed, by Proposition 2.7, E 1
p
↩→ BC

1,ϑ+ 2ε+N
p

π (Q\Γ ). But p > −N+2ε
ϑ in (3.1) or p > 2N+2

ε in (3.2) implies
that

u(x)→ 0 as x→ Γ , u ∈ BC1,ϑ+ 2ε+N
p

π (Q \ Γ ).

For any u ∈ E1(J)⊕ RΓ , we have thus a unique decomposition

u = u1 + u2 with u1 ∈ E1(J), u2 ∈ RΓ .

If u ∈ E1(J)⊕RΓ solves (2.1), by u(0) = u1(0) + u2 = w0 +H, we immediately infer that u2 = H. Now the
uniqueness of the solution to (3.10) implies u1 = ũ. The uniqueness of the solution to (2.1) in E1(J) ⊕ RΓ

follows.
We are now ready to state the following well-posedness theorem for (2.1).

Theorem 3.14. Assume that one of the following conditions holds

ε ∈ (0, 1
2 ) ∪ ( 1

2 , 1), ϑ ≤ −2 and p > max{ 3
ε ,−

1+2ε
ϑ }, or

ε ∈ (1− 1
2p , 1), ϑ = −2ε, and p > max{ 4

ε ,
9
2}.

Suppose that Q = [−1, 1) and that H is a piecewise constant function on Q. Let Γ be the discontinuity set
of H. Then, given any u0 = H + w0 with

w0 ∈W
2−2/p,ϑ+ 2ε

p
p,π (Q \ Γ ).
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Eq. (2.1) has a unique solution

u ∈ Lp(J,W 2,ϑ
p,π (Q \ Γ )) ∩H1

p (J, Lϑ+2ε
p,π (Q \ Γ ))⊕ RΓ

for some J := [0, T ] with T = T (u0) > 0. Moreover,

u ∈ C

J,W

2−2/p,ϑ+ 2ε
p

p,π (Q \ Γ )

⊕ RΓ .

3.2. Two dimensional case

In dimension two, the fractional gradient is defined again via Fourier series. For a periodic function u,
∇1−εu is defined as

∇1−εu := F−1 diag{|k|−ε}F |∇u|.

The choice of |∇u| instead of ∇u is mainly for computational simplification.

Lemma 3.15. For all u ∈ C1
π(Q2)

∇1−εu(x) = cε


Q2

|∇u|(y)
|x− y|2−ε

dy +


Q2
hε(x− y)|∇u|(y) dy

for some constant cε > 0 and hε ∈ C∞.

Proof. It follows from a proof similar to that of Lemma 3.2 and the two dimensional Poisson summation
formula. �

Lemma 3.16.

∇1−ε ∈ L

E 1
p
, BC1

π(Q2)

.

Proof. The proof is the same as that of Lemma 3.3. �

We are interested in initial data close to linear combinations of characteristic functions of disjoint bounded
C3-domains. Just like in the one dimensional case, we take a generic initial value function H = χΩ , where
Ω ⊂ Q̊2 is a bounded C3-domain, and let Γ = ∂Ω .

Since Ω is a set of finite perimeter, it is reasonable to take |∇H| = ∥∂Ω∥. It is known that ∥∂Ω∥ = H1xΓ ;
see [10, Section 5.1]. For any ψ ∈ C∞c (Q2),

⟨ψ,∇1−εH⟩ = ⟨F−1|k|−εFψ, |∇H|⟩

=

Γ


Q2


cε

|x− y|2−ε
+ hε(x− y)


ψ(x) dx dH1(y)

=


Q2
ψ(x)


Γ


cε

|x− y|2−ε
+ hε(x− y)


dH1(y) dx

by Fubini’s Theorem and Lemma 3.15, and Hn is the n-dimensional Hausdorff measure. So we have

∇1−εH(x) =

Γ

cε
|x− y|2−ε

dH1(y) +

Γ

hε(x− y) dH1(y), x ∈ Q2 \ Γ .

Moreover, by its convolution definition, ∇1−εH ∈ C∞π (Q2 \ Γ ).
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Proposition 3.17.

∇1−εH ∈ BC2,1−ε
π (Q2 \ Γ ),

and the following estimates hold in a δ-tubular neighborhood Uδ of Γ

d1−ε∇1−εH ∼ 1, d2−ε|∇∇1−εH| ∼ 1, d3−ε|∆∇1−εH| ∼ 1,

along with

sign(1− 2ε)d2ε∆αε(H) ∼ 1.

Proof. Without loss of generality, we may assume that Ω is simply connected. More complicated situation
can be treated similarly.

(i) Let I(x) :=

Γ

1
|x−y|2−ε dH

1(y). To estimate I(x) for those x inside a δ-tubular neighborhood Uδ of Γ ,
we first note that there exists a diffeomorphism

Λ : Uδ → Γ × (−δ, δ) : x → (Π (x), dΓ (x)),

where Π (x) is the metric projection of x onto Γ and dΓ (x) is the signed distance from x to Γ . dΓ (x) < 0 if
x is in the interior of Γ .

Λ−1 : Γ × (−δ, δ)→ Uδ : (p, s) → p + sνΓ (p),

where νΓ denotes the outer normal of Γ . Λ and Λ−1 are C2-continuous. For every x ∈ Uδ, we pick a
coordinate chart, Ox, around Π (x) and chart maps ψx, ϕx such that

ψx : Ox → (−1, 1) with ϕx = ψ−1
x and ψx(Π (x)) = 0.

Moreover, ϕ∗xgN |Γ ∼ g1, the one dimensional Euclidean metric, uniformly in x.

To estimate I(x) for x ∈ Uδ, first notice that
Ox

1
|x− y|2−ε

dH1(y) ∼
 1

−1

1
(y2 + z2) 2−ε

2
dy,

where z = dΓ (x). The Lipschitz constant in this equivalence is independent of x. Without loss of generality,
we assume that z > 0 and δ < 1; then 1

−1

dy

(y2 + z2) 2−ε
2

= 1
z1−ε

 1/z

−1/z

dy

(1 + y2) 2−ε
2

= 2
z1−ε

 1

0

dy

(1 + y2) 2−ε
2

+
 1/z

1

dy

(1 + y2) 2−ε
2



∼ 1
z1−ε

for δ sufficiently small. On the other hand, by choosing δ possibly even smaller, we can always make
Γ\Ox

1
|x− y|2−ε

dH1(y) < 1
2


Ox

1
|x− y|2−ε

dH1(y).

(ii) To estimate |∇I(x)|, we first compute

∇I(x) = (ε− 2)

Γ

x− y
|x− y|4−ε

dH1(y).

By the above estimates, it is not hard to see that, in order to bound
Ox

x− y
|x− y|4−ε

dH1(y)
,
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it suffices to look at  1

−1

z dy

(y2 + z2) 4−ε
2

and
 1

−1

|y| dy
(y2 + z2) 4−ε

2
.

A similar computation as above yields 1

−1

z dy

(y2 + z2) 4−ε
2
,

 1

−1

|y| dy
(y2 + z2) 4−ε

2
∼ 1
z2−ε .

Again by choosing δ small enough, we can always make
Γ\Ox

x− y
|x− y|4−ε

dH1(y)
 < 1

2


Ox

x− y
|x− y|4−ε

dH1(y)
.

(iii) Since

∆∇1−εH(x) = (ε− 2)2

Γ

1
|x− y|4−ε

dH1(y) + h̃ε(x),

where h̃ε ∈ C∞, the estimate for ∆∇1−εH follows in an analogous way. Combining everything together, it
is clear that

d1−ε(x)∇1−εH(x) ∼ 1,
d2−ε(x)|∇∇1−εH(x)| ∼ 1,

d3−ε(x)|∆∇1−εH(x)| ∼ 1

hold for all x ∈ Uδ. The fact that ∇1−εH ∈ BC2,1−ε
π (Q2 \Γ ) follows from these estimates and the definition

of weighted BCk-spaces.

(iv) As in Lemma 3.10, direct computations show that

∆αε(H) = αε(H)3|∇1−εH|2

6|∇∇1−εH|2 − 2∇1−εH∆∇1−εH


− 2αε(H)3∇1−εH∆∇1−εH + |∇∇1−εH|2


.

Again as in Lemma 3.10, we only need to estimate

6|∇∇1−εH|2 − 2∇1−εH∆∇1−εH

∼

3


Γ

x− y
|x− y|4−ε

dH1(y)
2 − 

Γ

1
|x− y|4−ε

dH1(y)

Γ

1
|x− y|2−ε

dH1(y)

.

To estimate the right hand side, as in (i)–(iii), it suffices to look at x ∈ Uδ and y ∈ Ox. We need a more
precise estimate than those in (i)–(iii), i.e.

3


Ox

x− y
|x− y|4−ε

dH1(y)
2 − 

Ox

1
|x− y|4−ε

dH1(y)


Ox

1
|x− y|2−ε

dH1(y)

= 3
 s
−s

z dy

(y2 + z2) 4−ε
2
J(y)

2
+ 3
 s
−s

y dy

(y2 + z2) 4−ε
2
J(y)

2

−
 s
−s

1
(y2 + z2) 2−ε

2
J(y) dy

 s
−s

1
(y2 + z2) 4−ε

2
J(y) dy,

where J(y) ∈ (K(1− µ),K(1 + µ)) for some K,µ > 0. µ is independent of x and can be chosen arbitrarily
small by first shrinking Ox, or equivalently s, and then Uδ. Therefore, for each µ0, by shrinking Ox and Uδ,
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we have that

3


Ox

x− y
|x− y|4−ε

dH1(y)
2 − 

Ox

1
|x− y|4−ε

dH1(y)


Ox

1
|x− y|2−ε

dH1(y)

≤ 2K0


(3 + µ0)

 s
0

z dy

(y2 + z2) 4−ε
2

2
+ 2µ(3 + µ0)

 s
0

y dy

(y2 + z2) 4−ε
2

2

−
 s

0

dy

(y2 + z2) 2−ε
2

 s
0

dy

(y2 + z2) 4−ε
2


= 2K0

z4−2ε


(3 + µ0)

 s
z

0

dy

(y2 + 1) 4−ε
2

2
+ 2µ(3 + µ0)

 s
z

0

y dy

(y2 + 1) 4−ε
2

2

−
 s
z

0

dy

(y2 + 1) 2−ε
2

 s
z

0

dy

(y2 + 1) 4−ε
2


and

3


Ox

x− y
|x− y|4−ε

dH1(y)
2 − 

Ox

1
|x− y|4−ε

dH1(y)


Ox

1
|x− y|2−ε

dH1(y)

≥ K0


(3− µ0)

 s
−s

z dy

(y2 + z2) 4−ε
2

2
−
 s
−s

dy

(y2 + z2) 2−ε
2

 s
−s

dy

(y2 + z2) 4−ε
2


= 2K0

z4−2ε


(3− µ0)

 s
z

0

dy

(y2 + 1) 4−ε
2

2
−
 s
z

0

dy

(y2 + 1) 2−ε
2

 s
z

0

dy

(y2 + 1) 4−ε
2


for some K0 > 0. Recall that µ, and thus 2µ(3 +µ0), can be made arbitrarily small, and note that once Ox,
i.e. s, is fixed, s/z can be made arbitrarily large by further shrinking Uδ. Therefore, we have

d4−2ε

3


Ox

x− y
|x− y|4−ε

dH1(y)
2 +

−


Ox

1
|x− y|4−ε

dH1(y)


Ox

1
|x− y|2−ε

dH1(y)

∼ 1,

as long as

3
 ∞

0

dy

(y2 + 1) 4−ε
2
−
 ∞

0

dy

(y2 + 1) 2−ε
2
̸= 0. (3.12)

One verifies that

3
 ∞

0

dy

(y2 + 1) 4−ε
2
−
 ∞

0

dy

(y2 + 1) 2−ε
2

= 3
2B


1
2 ,

3− ε
2


− 1

2B


1
2 ,

1− ε
2


,

where B(p, q) =
 1

0 x
p−1(1−x)q−1 dx is the Beta function. The right hand side equals zero iff ε = 1/2. Thus,

we conclude that for all ε ̸= 1/2

sign(1− 2ε)d2ε∆αε(H) ∼ 1

in a sufficiently small δ-tubular neighborhood Uδ of Γ . �

Recall that RΓ denotes the set of all functions that are constants in each connected component of Q2 \Γ .
Now, combining Lemma 3.16, Proposition 3.17, and an argument analogous to the one used in the one
dimensional case, we obtain the following proposition.

Proposition 3.18. Let 1 < p <∞ and ε satisfy (3.1) or (3.2). Then, for each w ∈ E 1
p
, the operator

A (w) ∈MRp(W 2,ϑ
p,π (Q2 \ Γ ), Lϑ+2ε

p,π (Q2 \ Γ )).
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Proof. As in the proof for Proposition 3.13, we put h = sign(1− 2ε) logαε(H). Easy computations showαε(H)
1

2−2ε∇h
 ∼ d2ε−1 d

dx
αε(H)

 ∼ 1,

and

αε(H)
2ε

2−2ε div(αε(H)∇h) ∼ sign(1− 2ε)d2ε∆αε(H) ∼ 1,

near Γ . Then the rest of the proof follows in the same way as that for Proposition 3.13. �

The following theorem concerning the local wellposedness of Eq. (2.1) in two space dimensions follows.

Theorem 3.19. Assume that one of the following conditions holds

ε ∈ (0, 1
2 ) ∪ ( 1

2 , 1), ϑ ≤ −2 and p > max{ 4
ε ,−

2+2ε
ϑ } or

ε ∈ (1− 1
2p , 1), ϑ = −2ε, and p > max{ 6

ε ,
13
2 }.

Suppose that H is a linear combination of characteristic functions of disjoint C3-domains Ωi in Q̊2. Let
Γ = ∪i ∂Ωi. Given any u0 = H + w0 with

w0 ∈W
2−2/p,ϑ+ 2ε

p
p,π (Q2 \ Γ ).

Eq. (2.1) has a unique solution

u ∈ Lp(J,W 2,ϑ
p,π (Q2 \ Γ )) ∩H1

p (J, Lϑ+2ε
p,π (Q2 \ Γ ))⊕ RΓ

for some J := [0, T ] with T = T (u0) > 0. Moreover,

u ∈ C

J,W

2−2/p,ϑ+ 2ε
p

p,π (Q2 \ Γ )

⊕ RΓ .

4. Global existence

In this section, we focus on the case (3.2)

ϑ = −2ε, p > max


2N + 2
ε

,
4N + 5

2


, ε > 1− 1

2p
and prove global existence of the solutions to (2.1) to initial data close enough to an equilibrium. Note that
(3.2) implies the necessary condition ε > 1/2 in the sequel, and this is why only (3.2) is considered in this
section.

In [11, Proposition 6], the first author proves that characteristic functions of smooth domains Ω are
stationary solutions for (2.1). While in that article, the submanifold Γ = ∂Ω is required to be smooth, lower
regularity, e.g. C3-regularity, suffices.

Proposition 4.1. Linear combinations of characteristic functions of disjoint C3-domains Ωi in Q̊N are
stationary solutions to (2.1).

We define

P : W 2,−2ε
p,π (QN \ Γ )→ Lp,π(QN \ Γ ) : u → div

 1
1 + |∇1−ε(H + u)|2∇u


,

where H = χΩ for some C3-domain Ω ⊂ Q̊N . The discussions in the previous section (cf. (3.11)) show that

P ∈ Cω(W 2,−2ε
p,π (QN \ Γ ), Lp,π(QN \ Γ )).
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Let

Aαεu := div(αε∇u), αε := 1
1 + |∇1−εH|2

.

Note that αε ∼ d2−2ε. Denote the Fréchet derivative of P at 0 by ∂P (0). Then an easy computation shows
that ∂P (0) = Aαε . Consider the following abstract linear equation.

∂tu−Aαεu = 0 in QN × (0,∞),
u periodic,
u(0) = u0 in QN .

(4.1)

We can associate with Aαε a form operator a with D(a) = H̊1
αε,π(Q

N \ Γ ), defined by

a(u, v) =


QN
αε(∇u|∇v) dx,

for u, v ∈ D(a). Here H̊1
αε,π(Q

N \ Γ ) is the closure of Dπ(QN \ Γ ), where Dπ(QN \ Γ ) = φ∗D(M), with
respect to the norm ∥ · ∥αε ,

∥u∥αε = (∥u∥22 + ∥
√
αε∇u∥22)1/2

with ∥ · ∥2 being the norm of L2,π(QN \ Γ ).

Lemma 4.2. (i) The embedding D(a) ↩→ L2,π(QN \ Γ ) is compact.
(ii) Any function u ∈ D(a) admits a trace γΓ (u) = 0 a.e. on Γ .
(iii) It holds that

∥u∥2 ≤ C∥
√
αε∇u∥2, u ∈ D(a),

where ∥ · ∥2 is the norm of L2,π(QN \ Γ ).

Proof. (i) Since αε ∼ d2−2ε and ε > 1/2, there exists an q > 1 such that
QN\Γ

1
αqε(x) dx <∞.

Then one has that |∇u| ∈W 1
1+s,π(QN \ Γ ) for some small enough s > 0 since

QN\Γ
|∇u|1+s dx ≤


QN\Γ


αε(x)
αε(x)

1+s

|∇u|1+s dx

≤


QN\Γ

αε(x)−
1+s
1−s dx

 1−s
2


QN\Γ
αε(x)|∇u(x)|2 dx

 1+s
2

<∞ (4.2)

provided that 1+s
1−s < q, which is always possible for a small enough s. This shows that u ∈W 1

1+s,π(QN \Γ ).
The claim therefore follows from the compactness part of Sobolev embedding theorem. This is obvious for
N = 1. For N = 2, it follows observing that 2 < (1 + s)∗ = N(1+s)

N−1−s is valid as long as N < 2 1+s
1−s . The latter

is always the case for N = 2.

(ii) Inequality (4.2) implies that on each component Ωi of QN \ Γ ,

D(a) ↩→W 1
1+s(Ωi)

for some s > 0 small. By the well known trace theorem,

γΓ ∈ L

W 1

1+s(Ωi),W
1− 1

1+s
1+s (∂Ωi)


.
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Therefore the trace operator is well-defined on D(a) and

γΓ ∈ L

D(a),W 1− 1

1+s
1+s (∂Ωi)


(4.3)

on each connected component of QN \ Γ . By the density of Dπ(QN \ Γ ) in D(a), we can take a sequence
(uk)k∈N ⊂ Dπ(QN \ Γ ) converging to u in D(a). Since γΓ (uk) = 0, we conclude from (4.3) that γΓ (u) = 0
as well.

(iii) Given any u ∈ D(a), it follows from (4.2) that u ∈ W 1
1+s,π(QN \ Γ ) with s small enough, and by

the trace lemma, we have γΓ (u) = 0. So we can apply the Poincaré inequality for W 1
1+s,π(QN \ Γ ) on each

connected component of QN \ Γ to u, which yields

∥u∥L1+s,π(QN\Γ) ≤ C∥∇u∥L1+s,π(QN\Γ).

In view of the embedding W 1
1+s,π(QN \ Γ ) ↩→ L2,π(QN \ Γ ) and (4.2), it holds that

∥u∥2 ≤ C∥u∥W 1
1+s,π(QN\Γ) ≤ C∥∇u∥L1+s,π(QN\Γ) ≤ C∥

√
αε∇u∥2. �

Proposition 4.3. a is continuous and D(a)-coercive. More precisely,

(i) (Continuity) there exists some constant C such that for all u, v ∈ D(a)

|a(u, v)| ≤ C∥u∥D(a)∥v∥D(a).

(ii) (D(a)-Coercivity) There is some C such that for any u ∈ D(a)

Re(a(u, u)) ≥ C∥u∥2D(a).

Proof. (i)

|a(u, v)| =


QN
αε(∇u|∇v) dx


=


QN
|(
√
αε∇u|

√
αε∇v)| dx

≤ ∥u∥D(a)∥v∥D(a).

The last step follows from Hölder inequality and |(a|b)| ≤ |a| |b|.

(ii) It is a direct consequence of Lemma 4.2(iii) that

Re(a(u, u)) = a(u, v) =


QN
αε|∇u|2 dx ≥ C∥u∥D(a). �

Proposition 4.3 shows that a with D(a) is densely defined, sectorial and closed on L2,π(QN \ Γ ). By [15,
Theorems VI.2.1, IX.1.24], we can find an associated operator T such that−T generates a strongly continuous
analytic semigroup of contractions on L2,π(QN \ Γ ), i.e. satisfying ∥e−tT ∥L(L2,π(QN\Γ)) ≤ 1 for all t ≥ 0. Its
domain is given by

D(T ) :=

u ∈ D(a) : ∃!v ∈ L2,π(QN \ Γ ) s.t. a(u, φ) = ⟨v, φ⟩, ∀φ ∈ D(a)


and Tu = v; D(T ) is a core of a. The operator T is unique in the sense that there exists only one operator
satisfying

a(u, v) = ⟨Tu, v⟩, u ∈ D(T ), v ∈ D(a).
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We have proved that

W 2,−2ε
2,π (QN \ Γ ) d↩→D(a) d↩→W 1

1+s,π(QN \ Γ ).

Here W 1
1+s,π(QN \ Γ ) is the closure of Dπ(QN \ Γ ) in W 1

1+s,π(QN \ Γ ). Then we can uniquely extend Aαε ,
which is originally defined on W 2,−2ε

2,π (QN \ Γ ) as in Section 3, to W 1
1+s,π(QN \ Γ ). Now Aαε can be defined

on W 1
1+s,π(QN \ Γ ) by

⟨Aαεu, v⟩ = −a(u, v), u ∈W 1
1+s,π(QN \ Γ ), v ∈ Dπ(QN \ Γ )

and Aαε ∈ L(W 1
1+s,π(QN \ Γ ), (W 1

1+s,π(QN \ Γ ))′). Restricted onto D(a) and by a density argument, this
yields that for any u, v ∈ D(a)

⟨Aαεu, v⟩ = −a(u, v),

and thus

|⟨Aαεu, v⟩| ≤ C∥u∥D(a)∥v∥D(a),

which implies that Aαε ∈ L(D(a), (D(a))′). Since it holds that

Aαε ∈ L(W 2,−2ε
2,π (QN \ Γ ), L2,π(QN \ Γ ))

supported by Lemmas 2.3 and 2.5, we further have that, for any u ∈W 2,−2ε
2,π (QN \ Γ ) and v ∈ D(a),

|a(u, v)| = |⟨Aαεu, v⟩| ≤ ∥Aαεu∥2∥v∥2 ≤ C∥u∥2,2;−2ε∥v∥2.

It is known that a function u ∈ D(T ) iff u ∈ D(a) and

|a(u, v)| ≤ C∥v∥2, v ∈ D(a).

Therefore, we conclude that

T = Aαε |D(T ) and W 2,−2ε
2,π (QN \ Γ ) ⊂ D(T ).

On the other hand, choosing w = 0 in Proposition 3.13 yields

Aαε ∈MRp(W
2,−2ε
2,π (QN \ Γ ), L2,π(QN \ Γ )), 1 < p <∞.

It is well known, see e.g. [19, Proposition 1.2], that this implies the existence of some ω ≥ 0 such that

ω + Aαε ∈ Lis(W 2,−2ε
2,π (QN \ Γ ), L2,π(QN \ Γ )) ∩ S(L2,π(QN \ Γ ))

with spectral angle φω+Aαε < π/2.
Due to well-known results of semigroup theory, we know that for the same ω as above

ω + Aαε ∈ Lis(D(T ), L2,π(QN \ Γ )),

from which we infer right away that

D(T ) .= W 2,−2ε
2,π (QN \ Γ ).

By standard real analysis knowledge, we know that u ∈ D(a) implies the validity of (|u| − 1)+sign u ∈ D(a)
and that

∇

(|u| − 1)+sign u


=

∇u, |u| > 1;
0, |u| ≤ 1.
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Here it is understood that

sign u :=

u/|u|, u ̸= 0;
0, u = 0.

Now it is clear that

Re

a(u, (|u| − 1)+sign u)


≥ 0.

By [17, Theorem 2.7], the semigroup {e−tAαε}t≥0 is L∞-contractive, or more precisely,

∥e−tAαεu∥∞ ≤ ∥u∥∞, t ≥ 0, u ∈ L2,π(QN \ Γ ) ∩ L∞,π(QN \ Γ ).

We can then follow a well-known argument, see [8, Chapter 1.4], to prove that for each 1 < p < ∞,
{e−tAαε }t≥0 can be extended to a strongly continuous analytic semigroup of contractions on Lp,π(QN \ Γ ).
Then we can determine the domain for this semigroup by the same argument used previously for the
semigroup on L2,π(QN \ Γ ). In sum, we can prove the following assertion.

Lemma 4.4. −Aαε generates a strongly continuous analytic semigroup of contractions on Lp,π(QN \Γ ) with
domain W 2,−2ε

p,π (QN \ Γ ) for all 1 < p <∞.

Now we apply the form operator method to the operator Aαε − ω for some sufficiently small positive ω.
By Lemma 4.2(iii), we infer that Proposition 4.3 still holds true for Aαε − ω with ω small. Then we can
follow the above argument step by step and prove the same contraction semigroup property for Aαε − ω as
in Lemma 4.4. This immediately gives a spectral bound for Aαε .

Lemma 4.5. sup


Re(µ) : µ ∈ σ(−Aαε)

< 0.

The (exponential) asymptotic stability of the stationary solutionH now follows from well-known linearized
stability results.

Theorem 4.6. Assume that QN = [−1, 1)N with N = 1, 2 and

ε ∈


1− 1
2p , 1


, p > max


2N + 2

ε
,

4N + 5
2


.

Suppose that Γ is a C3-submanifold in Q̊N . Let H be a component-wise constant function on QN \Γ . Then

H is a stationary solution to (2.1) and attracts all solutions which are initially W 2− 2
p ,

2ε(1−p)
p

p,π (QN \ Γ ) close
to H.

More precisely, if the initial datum satisfies

u0 = H + w0 with w0 ∈W
2− 2

p ,
2ε(1−p)
p

p,π (QN \ Γ )

and ∥w0∥2− 2
p ,p;

2ε(1−p)
p

sufficiently small, then the solution u to (2.1) converges to H exponentially fast in

W
2− 2

p ,
2ε(1−p)
p

p,π (QN \ Γ )-topology, in particular, in C1(QN )-topology.
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http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref4
http://arxiv.org/1405.3821
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref6
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref7
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref8
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref9
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref10
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref11
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref12
http://arxiv.org/1603.03401
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref14
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref15
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref16
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref17
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref18
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref19
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref20
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref21
http://arxiv.org/1506.07018
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref23
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref24
http://refhub.elsevier.com/S0362-546X(16)30275-9/sbref25

	Wellposedness of a nonlocal nonlinear diffusion equation of image processing
	Introduction
	Notations

	Maximal  Lp -regularity in a weighted  Lp -framework
	Transforming the problem onto the torus
	Periodic weighted function spaces
	Maximal regularity of type  Lp 

	Local well-posedness of the nonlinear model
	One dimensional case
	Two dimensional case

	Global existence
	References




