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When half right is not half bad:
Hypothesis testing under conditions of uncertainty and complexity

Joshua Klayman

Center for Decision Research
Graduate School of Business, University of Chicago

Analyses of scientific reasoning, from
computer simulation (e.g., Langley et al.,
1987) to biographical analyses of famous
scientists (e.g., Tweney, 1985), often rely
on a prototypical model of the hard sciences,
especially physics. On the basis of this
prototype, scientific inquiry has usually
been modeled in terms of the discovery of
laws, like Newton’s, Boyle's or Ohm's--the
kinds of simple formulae learned in introduc-
tory science classes. Although simple, each
law explains a broad class of events or
relations. These laws have exceptions and
complications, especially in exotic conditions,
but basically, F = ma for all kinds of masses
and all kinds of forces, and PV = nRT for
all kinds of gasses in all kinds of containers.
The laws are, in principle, deterministically
correct, and, within the bounds of measure-
ment error, the data about them are con-
sistent and unambiguous.

Unfortunately, this model of science is
not a good representation of hypothesis
testing and scientific reasoning in informal
settings. In general, the subjects of everyday
reasoning (e.g., the behavior of children, the
performance of automobiles, the judgments
of editors) are not subject to simple ex-
planations. In a lawful science, even slight
discrepancies from the law are matters to be
reckoned with. With intuitive theories, half
right is not half bad: One is often pleased
with an explanatory value noticeably better
than zero, and the domain of applicability of
such theories is usually quite restricted (e.g.,
one child or one automobile). Intuitive
scientists must also deal with considerable
ambiguity in the relations between hypoth-
eses and data. Typically, the magnitude of
the measurement error is nearly the same as
the magnitude of the effects under study.
Hypotheses have ambiguous implications
about the phenomena that should or should
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not be observed, and observed data have
ambiguous implications as to how or wheth-
er a hypothesis should be revised.

The fundamental difference between the
law-based prototype of science and the task
of reasoning in daily life is the degree of
uncertainty and complexity in the environ-
ment. By uncertainty, I mean that phenom-
ena must be regarded as probabilistic, and
not subject to complete explanation or
prediction. By complexity, I mean that
phenomena arise from the simultaneous
influence of numerous and often inscrutable
contributory factors. Although I focus on
informal reasoning, many professional
scientists also face high uncertainty and
complexity, particularly in "soft" or "inex-
act" fields, like the social sciences, or in
newer, less well-established domains such as
high-temperature superconductors today.

Uncertainty and complexity have impor-
tant implications for the kinds of hypoth-
eses people form. In lawful domains, it
may be a reasonable approximation to say
that scientists search for the "true" ex-
planation. In inexact domains, no hypoth-
esis is expected to yield nearly perfect
prediction or nearly complete explanation.
Instead, the hypothesis may state that there
is an association between two things, or
that a certain factor should have a sig-
nificant effect on a behavior of interest.

The goal is not to discover the right rule
or law. The goal may instead be the
development of a theory that is "pretty
good" according to domain-specific stan-
dards, or one that is significantly better
than the previous hypothesis, or the goal
may be merely to achieve predictive ac-
curacy better than chance.

Uncertainty and complexity have parallel
effects on the process of testing hypoth-
eses. With probabilistic hypotheses, there
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are no logically determined "critical" tests,
nor any logical mandate as to how to modify
the hypothesis in response to new data.
Thus, the processes of hypothesis testing and
revision become matters of accumulation and
interpretation of evidence, and a process of
zeroing in on a hypothesis that meets the
hypothesis-tester’s goal.

There is a fairly extensive body of re-
search on the psychological processes of
hypothesis testing, and this work has pro-
duced a number of interesting findings
concerning the abilities and failings of
human hypothesis testers (see Klayman & Ha,
1987; Nisbett & Ross, 1980; Wason & John-
son-Laird, 1972). In this paper, however, 1|
focus on an area of research not usually
associated with the study of scientific rea-
soning. This research has gone under a
variety of names, but can be referred to
generically as cue learning. Cue-learning
tasks require the subject to make judgments
based on one or more cues that provide only
partial and imperfect information, and to use
feedback to try to improve the accuracy of
those judgments. Thus, cue learning cap-
tures the flavor of everyday reasoning better
than many hypothesis testing tasks.

Cue learning

The development of cue learning in the
1950’s was based on Egon Brunswik's (1956)
principle of "probabilistic functionalism,"
the principle that judgments in natural
environments must be derived from a com-
bination of multiple, imperfect cues. Thus,
the central goal of the paradigm is to study
how people learn to relate cues to judgments
in probabilistic environments. Cue-learning
tasks have three basic elements: a criterion
(something the subject must learn to predict
or estimate), cues (information from which
to make the estimate) and feedback (infor-
mation about the accuracy of the estimates
made). As in natural learning environments,
the criterion is not fully predictable from
the available cues. For example, the crite-
rion value, Y, might be determined by the
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formula Y =1/3 A +2/3 B+ C + e, where
A, B, and C are cues, and e is a number
from a random number generator.

Cue learning actually encompasses sev-
eral different kinds of learning. First,
there is the matter of "cue discovery"
(Klayman, 1988), the process of finding
valid cues to use in making predictions,
Then, given a set of cues, there is the
matter of how those cues should be com-
bined. This includes determining whether
effects are additive or multiplicative, and
the relative importance weight to give each
cue. Then, there is the task of determining
the form of the different cue-criterion
functions. For example, it may be that,
other things being equal, the criterion has
a positive linear relation to cue A, a nega-
tive linear relation to cue B, and a U-
shaped relation to C.

Cue learning captures some of the com-
plexity and uncertainty of real-life hypoth-
esis testing. The behavior of interest is a
function of a number of simultaneous fac-
tors, there is only a corelational associa-
tion between any cue and the criterion, and
all the available cues, taken together,
cannot completely predict or explain the
dependent measure. Furthermore, the
feedback one gets is ambiguous in the sense
that a discrepant finding may reveal an
inaccuracy in the model you are using, or
it may be attributable to random error; if a
change is indicated, it 1s not clear just
what the change should be. Thus, it should
perhaps be no surprise that many cue-
learning studies have found that it is
difficult for people to learn from feedback
in such situations (see Brehmer, 1980;
Klayman, in press).

Hypotheses in cue learning

During the first couple of decades of
cue-learning research, not much attention
was paid to the matter of hypotheses. Cue
learning was regarded as a process of
learning to associate certain criterion
values with certain values of each cue,
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along with some process of averaging and
interpolation. However, there is a growing
body of evidence about the crucial role that
hypotheses play in learning in complex and
uncertain environments. In this regard,
there is now an important bridge between
cue-learning research and more mainstream
research in learning and scientific reasoning.

Where do the hypotheses come from?
Except when the learning task is presented
abstractly (e.g., with cues identified only as
A, B, and C), hypotheses will of course be
derived from the learner’s knowledge and
theories about the causal structure of the
environment. World knowledge may suggest
specific functions (e.g., that the relation
between effort and performance in a task is
a positive one, with diminishing returns), or
provide more general hints (e.g., to look at
personality variables in this situation). At
the most general level, one may fall back on
general cues to causality such as temporal
and spatial proximity (see Einhorn & Ho-
garth, 1986).

On the other hand, there is also evidence
of a general default hierarchy of hypotheses
that follows a sort of principle of intuitive
parsimony. Given several cues from which
to make judgments, subjects hypothesize
mostly about how the cues ought to be
combined, and they seem to pay little atten-
tion to the matter of cue-criterion functions
(Brehmer, 1987). However, if they use the
cues to make estimates in the meantime,
they must make some assumptions about the
underlying functions, at least de facto.
Brehmer found that subjects’ responses
implied a default assumption of simple linear
cue-criterion relations. This is also the
most common initial hypothesis about the
cue-criterion function in one-cue tasks
(Brehmer, 1974). In a task involving cue
discovery, in which the set of useful cues
was not fully specified in advance (Klayman,
1988), subjects’ hypotheses were almost
exclusively in the form of "the more of this,
the more of [or the less of] that." Sub-
jects seldom expressed any hypotheses about
how much of this or how much of that, and
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there were few hypotheses about interac-
tions among cues. Responses implied a
default assumption of linear cues that
combined additively.

There is little evidence that intuitive
parsimony is a conscious strategic principle.
Rather, it can be viewed as an outcome of
the feedback-encoding process. A simple
way to encode feedback is to observe that
a change in a cue tends to be associated
with some direction of change in the cri-
terion ("this one had more achievement
motivation and did worse on the test").
This level of encoding permits cue dis-
covery, since the learner could perceive the
existence of an effect. Slightly more
complex encoding might include some infor-
mation about the magnitude of change ("...a
lot more achievement motivation and did a
little worse..."). This yields information
about the average magnitude of the rela-
tionship, but nothing about its shape. The
only way to recognize a nonlinear relation
is to keep track of the relation between
the magnitude of changes and the absolute
magnitude of the cue. For example, the
relation Y = log(X) implies that the larger
X i1s, the smaller the change in ¥ with a
given change in X. Similarly, perception of
interactions would require encoding the
relation between X, and Y as a function of
X,. Nonmonotonic functions and disordinal
interactions may be particularly hard to
learn, because even the direction of change
will be observed to vary, and the learner
may conclude that no consistent relation-
ship exists.

Evidence from a number of cue-learning
studies supports this ordering of task dif-
ficulty: People learn the identity of cues
before they learn how best to combine
them; they learn additive combinations more
easily than others; and they learn linear
relations more easily than nonlinear ones
(see Klayman, in press). Part of the dif-
ficulty may be that people simply fail to
consider hypotheses further down their
hierarchy, but it is also the case that the
more complex functions are simply more
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difficult to perceive (Brehmer, 1980). The
default hierarchy of hypotheses also inter-
acts with world knowledge. On the one
hand, some of the more complex functions,
such as nonmonotonic cues and disordinal
interactions, may be learnable if one has a
prior hypothesis to guide the encoding of
the data. On the other hand, people seem
prone to encode their world knowledge in
terms of simpler functions and combinations
as well (Klayman, in press; Sniezek, 1986).

Testing hypotheses

In the law-discovery model of reasoning,
investigators can reasonably expect to deter-
mine whether their hypotheses are right or
wrong. (At least, following Popper (1959),
you should be able to determine whether or
not your hypothesis has been falsified yet).
In cue learning, though, the goal is not to
find out if the hypothesis is wrong (because
it always is), but where it is wrong, and
how it might be fixed. Hypothesis testing
and revision is thus a process of gradual
refinement, starting with general ideas about
the types of things to consider, and moving
to more complete and specific (and hopefully
more accurate) hypotheses (see, e.g., Klay-
man, 1988; Klahr & Dunbar, 1988; Lakatos,
1978).

How then is feedback used to test hy-
potheses derived from world knowledge,
previous feedback, and default rules? Re-
search on hypothesis-testing behavior sug-
gests that hypothesis testing under condi-
tions of uncertainty and complexity is a very
difficult task. A number of these difficulties
have come under the rubric of "perseverance
of beliefs" (Ross & Lepper, 1980) or "confir-
mation bias" (Fischhoff & Beyth-Marom,
1983; Klayman & Ha, 1987). For example,
people tend to interpret ambiguous evidence
in a way that favors their current hypoth-
esis. In a probabilistic environment, feedback
is always ambiguous is that it is never clear
whether deviations from the expected are
meaningful or "just" random. People may
"immunize" their hypotheses, by accepting
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results that conform to their hypotheses,
while attributing unexpected findings to
random error more than is justified (Gor-
man, 1986). People also use a "positive test
strategy" in which attention is focused on
the ability of the current hypothesis to
predict and explain observed events, with
little consideration given to possible alter-
native hypotheses (Klayman & Ha, 1987,
1988).

The general implication of these aspects
of hypothesis testing is that subjects will
be slow to reject early hypotheses. This
need not always be the case, however. In
some situations, people seem very prone to
changing hypotheses, and may hurt them-
selves by rejecting good ones. This will
happen if learners have unrealistic expecta-
tions about how good a good hypothesis
ought to be, 1.e., if they underestimate the
impact of hidden variables and random
error. A number of studies have docu-
mented people’s tendency to underestimate
the role of chance (see Langer, 1975, for
example), especially in the absence of world
knowledge about the underlying mechanisms
(Nisbett et al., 1983). The result can be a
fickle hypothesis tester, who rejects and
replaces hypotheses on the basis of insuffi-
cient negative evidence. This pattern has
been observed in a variety of learning
studies (Brehmer, 1980; Mynatt, Doherty &
Tweney, 1978).

Hypotheses and learning from feedback

The real object of cue learning, and
learning from experience in general, is not
so much to test hypotheses, but to revise
and improve them. From the above discus-
sion, it might appear that when data meet
hypothesis, the prospects for appropriate
learning are poor. However, the use of
feedback to choose and revise hypotheses
can have different outcomes, depending on
the relation between hypotheses and incom-
ing data.

Not surprisingly, people make more ac-
curate judgments when their hypotheses are
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congruent with the data, for example, when
the cue labeled "monthly debt" is negatively
related to "credit rating" (Muchinsky and
Dudycha, 1975). One straightforward ex-
planation for this finding is that people do
not need to learn from outcome feedback if
they already have appropriate hypotheses.
However, evidence also suggests that con-
gruent hypotheses can facilitate subsequent
learning. For example, Camerer (1981) found
that subjects learned to use a multiplicative
interaction present in outcome feedback
when dimensions were labeled in a way that
suggested the interaction. (MBA students
perceived an interaction between price
changes and trade volume in predicting a
commodities market.) In contrast, subjects
who were not given feedback did not mani-
fest any such interaction in their estimates,
nor did subjects given feedback with un-
labeled cues.

Without a concrete hypothesis, subjects
face the task of learning the associations
between myriad cue values and a whole
range of criterion values. Uncertainty and
complexity make this abstraction process all
the more difficult. An appropriate hypoth-
esis can provide a useful way to organize
feedback in encoding, aggregation, and
recall. Data can be encoded as supporting
or contradicting the hypothesis, and past
experiences can be summarized in terms of a
limited number of prior hypotheses, rather
than a large number of individual feedback
data. If a basic hypothesis about a cue
seems valid, learners may then be able to
use feedback to refine their ideas about the
shape of the function and its relation to
other cues.

But what if feedback in a learning situa-
tion contradicts the expectations you bring
to it? One might expect misleading hypoth-
eses to seriously interfere with learning,
since good but counterintuitive hypotheses
may never be considered, and poor but
plausible hypotheses may persevere. Indeed,
several studies have found that tasks that
elicit inaccurate hypotheses are as hard to
learn as purely abstract ones (Miller, 1971;
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Camerer, 1981) or harder (Adelman, 1981).
On the other hand, some studies find that
the information-processing benefits of a
concrete hypothesis may even override
misleading expectations. For example,
Muchinsky and Dudycha (1975) and Sniezek
(1986) report that subjects learned meaning-
fully labelled relations better than abstract
ones even when the data seemed anomalous.
In such cases, subjects ad libbed new
hypotheses or reinterpreted the data, and
then used the new interpretations to encode
subsequent feedback. For example, some of
Sniezek’s subjects invented convoluted
meteorological theories to interpret data
suggesting that temperature increased as

one got further north of the equator.

Conclusions

People are constantly forming, testing,
and revising hypotheses about how the
world works, what will happen next, or
what the consequences of an action will be.
This informal scientific reasoning differs in
important ways from the prototype of sci-
ence as the discovery of laws. Theories
about everyday phenomena are of limited
explanatory power and scope, and data are
prone to considerable error and ambiguity.
As research on cue learning illustrates,
uncertainty and complexity in the environ-
ment affect the nature of hypotheses, the
goals of hypothesis testing, and the pro-
cesses by which data are encoded, aggre-
gated, and interpreted.

Of course, uncertainty and complexity
are encountered in the formal practice of
science as well. However, the professional
scientist is in a position to use tools such
as controlled experimentation and statistical
methods. These techniques certainly help
with the problems of testing and revising
hypotheses in a probabilistic environment.
Even informal settings sometimes permit
experimentation and quantification. Edu-
cated laypeople have a fair degree of
intuition about some basic principles of
experimentation, and they may learn and
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reason more effectively when they are able
to apply those principles (Klayman, 1988;
Nisbett et al., 1983).

On the other hand, the availability of
scientific methods does not eliminate the
difficulties of using ambiguous data to test
and revise hypotheses. The conduct of
science is seldom as neat and clear as the
law-discovery prototype, or as the resulting
published articles make it sound (see, e.g.,
Mitroff, 1974). Informal thinking plays an
important role in forming new theories and
hypotheses, choosing and evaluating research
methods, and interpreting findings. Thus,
many of the phenomena of informal reason-
ing are likely to have relevance to the
professional conduct of science as well,
especially in less exact domains.

A thorough understanding of informal
scientific reasoning is still a long way off.
However, there is some convergence in
recent work using a variety of different
paradigms: Hypothesis testing is being
viewed in a broader context, as one of the
critical steps in an interactive process of
discovery, testing, and revision of ideas
(Holland, et al., 1986; Johnson-Laird, 1983;
Klahr & Dunbar, 1988; Klayman & Ha, 1987,
Lakatos, 1978; Langley et al., 1987). The
course of this reasoning process is a func-
tion of world knowledge, prior theories,
basic processing characteristics, and infor-
mation from data. This view of hypothesis
testing 1s much more complex than earlier
models, but it is also more likely to be at
least half right.

References

Adelman, L. (1981). The influence of formal,
substantive, and contextual task proper
ties on the relative effectiveness of
different forms of feedback in multiple-
cue probability learning tasks. Organiza-
tional Behavior and Human Performance,
27, 423-442,

Brehmer, B. (1974). Hypotheses about rela-
tions between scaled variables in the
learning of probabilistic inference tasks.

242

Organizational Behavior and Human
Performance, 11, 1-27.

Brehmer, B. (1980). In one word: not from
experience. Acta Psychologica, 45, 223-
241.

Brehmer, B. (1987). Note on subjects’ hy-
potheses in multiple-cue probability
learning. Organizational Behavior and
Human Decision Processes, 40, 323-329.

Brunswik, E. (1956). Perception and the
representative design of psychological
experiments (2nd Ed.). Berkeley: Uni-
versity of California Press.

Camerer, C. (1981). The validity and utility
of expert judgment. Unpublished doc-
toral dissertation, University of Chicago,
Graduate School of Business.

Einhorn, H.J. & Hogarth, R.M. (1986).
Judging probable cause. Psychological
Bulletin, 99, 3-19.

Fischhoff, B. & Beyth-Marom, R. (1983).
Hypothesis evaluation from a Bayesian
perspective. Psychological Review, 90,
239-260.

Gorman, M. E. (1986). How the possibility
of error affects falsification on a task
that models scientific problem-solving.
British Journal of Psychology, 77, 85-96.

Holland, J. H., Holyoak, K. J., Nisbertt, R.
E., & Thagard, P. R. (1986). Induction:
Processes of inference, learning, and
discovery. Cambridge, MA: MIT Press.

Johnson-Laird, P. N. (1983). Mental models.
Cambridge, MA: Harvard University
Press.

Klahr, D. & Dunbar, K. (1988). Dual space
search during scientific reasoning.
Cognitive Psychology, 12, 1-48.

Klayman, J. (1988). Cue discovery in
probabilistic environments: Uncertainty
and experimentation. Journal of Ex-
perimental Psychology: Learning, Memo-
ry, and Cognition, 14, 317-330,

Klayman, J. (in press). On the how and
why (not) of learning from outcomes.
B. Brehmer & C. R, B. Joyce (Eds.),
Human Judgment: The Social Judgment
Theory Approach. Amsterdam: North-
Holland.

In



KLAYMAN

Klayman, J. & Ha, Y. (1987). Confirmation,
disconfirmation, and information in hypo-
thesis testing. Psychological Review, 94,
211-228.

Klayman, J. & Ha, Y. (1988). Hypothesis
testing in rule discovery: Strategy and
structure (Working Paper No.133). Chica-
go: University of Chicago, Graduate
School of Business, Center for Decision
Research.

Lakatos, 1. (1978). The methodology of
scientific research programmes. London:
Cambridge University Press.

Langer, E. J. (1975). The illusion of con-
trol. Journal of Personality and Social
Psychology, 32, 311-328.

Langley, P., Simon, H. A., Bradshaw, G. L., &
Zytkow, J. M. (1987). Scientific dis-
covery: Computational explorations of
the creative processes. Cambridge, MA:
MIT Press.

Miller, P.McC. (1971). Do labels mislead? A
multiple cue study, within the framework
of Brunswick’s probabilistic functional-
ism. Organizational Behavior and Human
Performance, 6, 480-500.

Mitroff, 1. (1974). The subjective side of
science. Amsterdam: Elsevier.

Muchinsky, P.M. & Dudycha, A.L. (1975).
Human inference behavior in abstract and
meaningful environments. Organizational
Behavior and Human Performance, 13,
377-391.

Mynatt, C.R., Doherty, M.E. & Tweney, R.D.
(1978). Consequences of confirmation and
disconfirmation in a simulated research
environment. Quarterly Journal of Ex-
perimental Psychology, 30, 395-406.

Nisbett, R. E., Krantz, D. H., Jepson, C., &

243

Kunda, Z. (1983). The use of statistical
heuristics in everyday inductive reason-
ing. Psychological Review, 90, 339-363.

Nisbett, R. E. & Ross, L. (1980). Human
inference: Strategies and shortcomings of
social judgment. Englewood Cliffs, NJ:
Prentice-Hall.

Popper, K. R. (1959). The logic of scien-
tific discovery. New York: Basic Books.

Ross, L. & Lepper, M.R. (1980). The per-
severance of beliefs: Empirical and
normative considerations. In R.A., Shwe-
der (Ed.), Fallible Judgment in Behavior-
al Research: New Directions for Method -
ology of Social and Behavioral Science
(Vol 4, pp. 17-36). San Francisco: Jos-
sey-Bass.

Sniezek, J.A. (1986). The role of variable
cue labels in cue probability learning
tasks. Organizational Behavior and
Human Decision Processes, 38, 141-161.

Tweney, R. D. (1985). Faraday’s discovery
of induction: A cognitive approach. In
D. Gooding & F. James (Eds.), Faraday
rediscovered (pp. 159-209). London:
MacMillan.

Wason, P.C. & Johnson-Laird, P.N. (1972).
Psychology of Reasoning. Structure and
Content. London: Batsford.

Preparation of this article was supported by
grant SES-8706101 from the Decision, Risk,
and Management Science program of the
National Science Foundation. Thanks to
Jackie Gnepp and to my colleagues at the
Center for Decision Research for their
helpful comments.



	cogsci_1988_237-243



