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A B S T R A C T

Simulating the dynamics of a nonequilibrium quantum many-body system by
computing the two-time Green’s function associated with such a system is
computationally challenging. However, we are often interested in the time di-
agonal of such a Green’s function or time-dependent physical observables that
are functions of one time. In this paper, we discuss the possibility of using
dynamic mode decomposition (DMD), a data-driven model order reduction
technique, to characterize one-time observables associated with the nonequi-
librium dynamics using snapshots computed within a small time window. The
DMD method allows us to efficiently predict long time dynamics from a lim-
ited number of trajectory samples. We demonstrate the effectiveness of DMD
on a model two-band system. We show that, in the equilibrium limit, the
DMD analysis yields results that are consistent with those produced from a
linear response analysis. In the nonequilibrium case, the extrapolated dynam-
ics produced by DMD is more accurate than a special Fourier extrapolation
scheme presented in this paper. We point out a potential pitfall of the standard
DMD method caused by insufficient spatial/momentum resolution of the dis-
cretization scheme. We show how this problem can be overcome by using a
variant of the DMD method known as higher order DMD.

c© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Simulating a quantum many-body system away from equilibrium is a challenging task. Although time-dependent
physical observables can be computed from the solution of a time-dependent Schrödinger equation with a time-
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dependent Hamiltonian, such a brute-force approach is limited to small systems defined in a small dimensional Hilbert
space. A more practical approach is to focus on the Green’s function which is a two-point correlator of the creation
and annhilation field operators defined on the Keldysh contour [1, 2]. The equation of motion satisfied by the two-time
Green’s function is a set of nonlinear integro-differential equations [3]. Evolving the Green’s function numerically on
a two-time grid is highly non-trivial, and the presence of the integral kernel in these equations makes both the memory
requirement and computational cost high if the long-time behavior of a physical observable is to be examined.

In this paper, we show how the long-term characteristics of the physical observable can be analyzed and predicted
using a model reduction technique – the dynamic mode decomposition (DMD) [4, 5, 6, 7]. The DMD method is a
practical data-driven model reduction method first proposed by Schimid [4] to analyze the dynamics of a nonlinear and
high-dimensional system. It extracts the spatial modes associated with temporal oscillations with distinct frequencies
and growth/decay rates from a few samples of the trajectory. These spatial and temporal modes obtained from the
DMD analysis of the dynamics within a limited time window can in turn be used to extrapolate and predict the
dynamics on a much longer time scale.

One of the main advantages of DMD over other dimension reduction techniques such as the principal component
analysis (PCA) [8, 9] and proper orthogonal decomposition (POD) [10, 11] is that DMD provides both the spatial
and temporal modes at the same time. Furthermore, the spatial modes obtained from the DMD analysis is often more
physical than the eigenvectors or singular vectors produced from PCA and POD.

To use DMD to predict long time behavior of certain physical observables (such as density) associated with the
evolution of a many-body system out of equilibrium, we first solve the equation of motion satisfied by the two-time
Green’s function, i.e. the Kadanoff-Baym equation within a small time window, and perform DMD analysis on the
one-time physical observables that can be obtained from the Green’s function.

Our paper is organized as follows. In section 2, we describe the model problem we use to demonstrate the
effectiveness of the DMD method and the equation of motion satisfied by the two-time Green’s function as well as
one-time physical observable in both the equilibrium and non-equilibrium regimes. The mathematical foundation of
the DMD analysis and the numerical procedure for performing such an analysis is presented in section 3. In section 4,
we point out a potential problem of the DMD caused by an insufficient resolution in the spatial (or momentum)
discretization of the state variable. We explain how this problem can be fixed by using a high-order DMD (HODMD)
analysis which can be interpreted as time-delayed embedding of a nonlinear dynamical system.

The effectiveness of the DMD and HODMD procedures are reported and discussed in section 5. In particular, we
demonstrate that, in the equilibrium limit when linear response analysis can be performed, the DMD modes obtained
from a real-time, time-dependent Hartree-Fock (TD-HF) simulation match well with the eigenvectors obtained from
solving the Bethe-Salpeter equation in the Kohn-Sham basis. This agreement also appears to hold for weakly non-
equilibrium dynamics driven by a low intensity field.

As the intensity of the driving field increases, the linear response theory does not hold. To validate DMD and
HODMD results, we compare the DMD and HODMD modes with spatial and temporal modes identified by perform-
ing a Fourier analysis of the observable trajectory and show their differences. To demonstrate that HODMD modes are
more relevant and meaningful, we compare the extrapolated trajectories produced by HODMD and a modified Fourier
scheme that tries to recover the decay rate by solving a nonlinear optimization problem. Our numerical results show
that the HODMD extrapolation is much more accurate than the Fourier extrapolation, and the HODMD procedure is
numerically more stable than the modified Fourier extrapolation scheme.

2. The model problem and the Keldyish formalism

In this work, we focus on the dynamics of a simple two-band system, which exemplifies the semiconductor driven
by an external light field [12]. The Hamiltonian consists of a time-independent component Hs that describes the many-
body interaction as well as an external time-dependent component Hext(t) that describes the light-matter coupling.

The system Hamiltonian has the form

Hs =
1
2

∑
k

(εvkc†vkcvk + εckc†ckcck) − U
∑

k

c†ckcck +
U
N

∑
k1,k2,q

c†vk1+qc†ck2−qcck2 cvk1 , (2.1)

where εvk (εck) is the band energy of the valence (conduction) band with momentum k, U is the on-site interaction
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between the two bands, and N is the number of sites in the system. The energy dispersion is given by

εvk = −(1 − cos(k)) − Eg/2
εck = (1 − cos(k)) + Eg/2,

with Eg = 1 as the band gap.
The light-matter coupling within the dipole approximation is given by

Hext(t) = E(t)
∑

k

(dkc†ckcvk + d∗kc†vkcck), (2.2)

where E(t) is a time-dependent intensity of the field, and dk is the dipole matrix element. For simplicity we set dk = 1.
(2.1) together with (2.2) describes how electrons and holes interact with each other and with a classical light field.

Although all time-dependent physical obserables can be obtained from the solution to the time-dependent Schrödinger’s
equation

i
d |Ψ(t)〉

dt
= H(t) |Ψ(t)〉 , with |Ψ(0)〉 = |Ψ0〉 , (2.3)

where H(t) = Hs + Hext(t) and Ψ0 is the initial state of the wavefunction Ψ at t = 0, the many-body nature of
(2.1) renders the full solution of (2.3) difficult. The computational complexity of the exact numerical solution grows
exponentially with the system size.

Since in most cases we are interested only in single particle physical observables, we apply the nonequilibrium
Green’s function (NEGF) approach [1] to map the dynamics of the many-body system to the two-time Greens function
Gi, j(t, t′) = −i〈TCĉi(t)ĉ

†

j (t
′)〉, where ĉi(t) and ĉ†j (t

′) are annihilation and creation operators in the Heisenberg picture,
TC is the time-ordering operator defined on the Keldysh contour C = C1 + C2 + C3 as shown in Figure 2.1, with
β = 1/kBT the inverse temperature, and 〈O(t)〉 denotes the thermodynamic ensemble average of the observable O(t)
defined as [2]

〈O(t)〉 ≡
Trace

[
TC exp

(
−i

∫
C

dt̄HC(t̄)
)
O(t̄)

]
Trace

[
TC exp

(
−i

∫
C

dt̄HC(t̄)
)] , (2.4)

where HC is used to denote Hamiltonians defined on different branches of the contour C. In particular, HC1 (t) =

HC2 (t) = H(t), and HC3 is a time independent Hamiltonian that describes the quantum many-body system in equilib-
rium.

Since the model problem we focus on in this work consists of two bands, and the Green’s function of interest is
Gc,v(t, t′), we will drop the band indices below and simply denote the Green’s function by G(t, t′).

Fig. 2.1: The Keldysh contour C = C1 + C2 + C3 in the complex (time) plane. It contains the forward branch C1, the backward branch C2 and the
imaginary (Matsubara) branch C3. We use β to denote the inverse of temperature.

It follows from the many-body perturbation theory [1] that G(t, t′) satisfies the following equation of motion[
i

d
dt
− H(t)

]
G(t, t′) = δ(t, t′) +

∫
C

Σ(t, t̄)G(t̄, t′)dt̄, (2.5)
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where H(t) is now a single-particle Hamiltonian that includes the contribution of a time-dependent driving field,
and Σ(t, t′) is the self-energy that describes the many-body interaction. Equation (2.5) is accompanied by an ajoint
equation which describes the time evolution over t′. As the Green’s function is time-ordered, and both t and t′ can
be positioned on three branches of the Keldysh contour C, we can define the following three types of subordinated
Green’s functions GM , G≷ and Ge/d. The Matsubara Green’s function GM(t, t′) limits t and t′ to be on the imaginary
axis branch of C, i.e., C3 only. The greater and lesser Green’s functions G>(t, t′) and G<(t, t′) have both t and t′ on the
real axis branches, i.e., on C1 or C2, and the mixed functions Ge(t, t′) and Gd(t, t′) allow one of the time arguments to
be on the real axis and the other to be on C3. For fermions, the greater and lesser Green’s functions G> and G< are
defined as

G>(t, t′) = −i〈ĉ(t)ĉ†(t′)〉, G<(t, t′) = i〈ĉ†(t′)ĉ(t)〉. (2.6)

The Green’s function G(t, t′) that appears in (2.5) can be expressed in terms of G>(t, t′) and G<(t, t′) as

G(t, t′) = θ(t − t′)G>(t, t′) − θ(t′ − t)G<(t, t′) (2.7)

where θ(·) is Heaviside function.
Using the Langreth rules [13], we can rewrite (2.5) and its adjoint equation in terms of equations satisfied by

the subordinated Green’s functions. These equations are coupled nonlinear integro-differential equations that are
collectively called the Kadanoff-Baym equations (KBE) [1]. They must be solved numerically. Once (2.5) and its
ajoint equation are solved, the single particle physical observables can be computed through the relation between the
density matrix and the time-diagonal part of the lesser Green’s function, ρ(t) = −iG<(t, t).

In the NEGF approach, many-body interaction is captured by the self-energy term. The exact form of the self-
energy is generally unknown and must be approximated (through, for example, many-body perturbation theory). In
this work, we will use the Hartree-Fock (HF) and the second Born (2B) approximations of the self-energy, which can
capture exciton physics and in addition, carrier scatterings respectively [14].

Due to the presence of the integral term in (2.5) and its adjoint equation, the numerical solution of these coupled
integral differential equations is nontrivial. Depending on the choice of the self-energy, the right-hand side of (2.5)
may be a nonlinear function of the two-time Green’s function G(t, t′). As a result, each time evolution step would
require solving a nonlinear system of equations. The computational complexity of solving the two-time KBE scales
as O(t3) in the worst case. This high complexity severely limits its application beyond HF approximation.

However, because the physical observable we are interested in, e.g., ρ(t), is often a function of t only, it may
be possible to use a data-driven model order reduction technique to characterize the spatial and long-time temporal
features of the dynamics satisfied by the one-time physical observable from samples of the observables sampled from
a small time window. These samples are computed from the the numerical solution of the two-time KBE.

In principle, a one-time physical observable satisfies a one-time equation of motion. For example, the dynamics
of ρ(t) generally can be described by a differential equation of the form

d
dt
ρ(t) = f [ρ(t), t], (2.8)

where f [ρ(t), t] can be a complicated nonlinear function of ρ(t) and t for which an explicit analytic form may be
difficult to write down.

For the model problem we will focus on in this work, we can write down the equation of motion for ρ explicitly.
We start from the equation of motion

i
d
dt
ρ(t) =

[
H(t), ρ(t)

]
, (2.9)

where H(t) = Ĥs + Ĥext(t) is a single particle Hamiltonian. The matrix element of density matrix is defined as the
expectation value ρcv,k = 〈c†vkcck〉. In general, (2.9) couples to the density matrix with higher particle numbers and is
not closed. We can close the equation of motion by taking the HF approximation of the interaction term and obtain

i
d
dt
ρcv,k(t) = (εvk − εck)ρcv,k(t) + ( fck − fvk)

E(t) −
U
N

∑
k′
ρcv,k′ (t)

 , (2.10)
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where fck and fvk are the occupation numbers of conduction and valence bands respectively. In the weak field limit,
fck = 0 and fvk = 1. As a result, the off-diagonal matrix element of ρ(t) decouples from the diagonal terms to yield

i
d
dt
ρcv,k(t) + (εck − εvk)ρcv,k(t) −

U
N

∑
k′
ρcv,k′ (t) = −E(t). (2.11)

When E(t) = 0 or when |E(t)| is small, the solution of (2.11) can be expressed in terms of the eigenvalues and
eigenvectors of the Hamiltonian

Hcvk,cvk′ = (εck − εvk)δkk′ −
U
N
. (2.12)

This is the Bethe-Salpeter linear response Hamiltonian [15]. We will use the eigenvalues and eigenvectors of BSE
Hamiltonian (2.12) to validate the spatial and temporal features of ρcv,k obtained from a data-driven reduced order
model to be presented below.

3. Dynamic mode decomposition

In this section, we briefly describe the basic principles of dynamic mode decomposition and the numerical proce-
dure we use to perform this decomposition.

Dynamic mode decomposition (DMD) is a data-driven dimension reduction technique that can be used to extract
important spatial and temporal features of a nonlinear dynamical system with a large number of degrees of freedom [4,
7, 16, 17]. Future states of the nonlinear system can be predicted based on the extracted modes and frequencies.

Consider a dynamical system described by a nonlinear ordinary differential equation of the form

dx(t)
dt

= f(x(t), t), t ≥ 0, (3.1)

where x(t) := [x1(t), x2(t), ..., xn(t)]T ∈ Cn is a time-dependent state variable, and f : Cn ⊗ R+ → Cn is a nonlinear
function of x and time t. The goal of DMD is to identify a set of time-independent spatial modes φ1, φ2, ... φk and a
set of frequencies ω1, ω2, ... ωk so that x(t) can be well-approximated by

x(t) ≈
r∑
`=1

β`φ`eiω`t, (3.2)

where β`’s are set of coefficients, and r is relatively small.
In practice, we do not have the trajectory x(t) before (3.1) is solved. Yet, our hope is that the most important φi’s

and ωi’s can be obtained by analyzing a small set of snapshots (or samples) of x(t) that we can solve.
The general strategy for obtaining the dynamic modes φ` and corresponding frequenciesω` is to map the trajectory

of the nonlinear dynamics to the state of an infinite-dimensional linear system that can easily be characterized via
a spectral decomposition of the linear operator that defines such a linear system. This strategy follows from the
Koopman theory [18, 19, 20] for reduced order modeling [21, 22, 23, 24].

It follows from the Koopman’s theory [18, 19] that for a dynamical system described by (3.1) the evolution of a
scalar observable g(x(t)) within a small time interval ∆t > 0 can be characterized by

g(x(t + ∆t)) = K∆tg(x(t)), (3.3)

where the infinite-dimensional linear operatorK∆t maps one function space to another, and is independent of t and the
choice of the observable function g(·). The infinite dimensional linear operatorK∆t has infinite number of eigenvalues
{λ}. The corresponding eigenfunctions ϕ(x) satisfy ϕ(x(t + ∆t)) = K∆tϕ(x(t)) = λϕ(x(t)).

In the limit of ∆t → 0, the Koopman operator defines a linear dynamical system

dg(x(t))
dt

= Kg(x(t)),

from which we can obtain approximations of g(x(t)) in terms of the eigenvalues and eigenfunction of K .
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If a set of n observable functions g j(x(t)), j = 1, 2, ..., n is contained in an invariant subspace of K∆t spanned by
r ∈ N+ eigenfunctions ϕ j1 (x), ..., ϕ jr (x) with the corresponding eigenvalues λ j1 ,...,λ jr , then there exist vectors v1, v2,
..., vr ∈ Cn, such that 

g1(x(t))
g2(x(t))

...
gn(x(t))

 =
[
v1 v2 · · · vr

] 
ϕ j1 (x(t))
ϕ j2 (x(t))

...
ϕ jr (x(t))

 . (3.4)

In particular, if g j(x(t)) is the jth component of x(t), i.e., g j(x(t)) = x j(t), we have

x(t + ∆t) =


K∆tg1(x(t))
K∆tg2(x(t))

...
K∆tgn(x(t))

 =
[
λ j1 v1 λ j2 v2 · · · λ jr vr

] 
ϕ j1 (x(t))
ϕ j2 (x(t))

...
ϕ jr (x(t))

 = Ax(t), (3.5)

where
A =

[
λ j1 v1 λ j2 v2 · · · λ jr vr

] [
v1 v2 · · · vr

]†
∈ Cn×n, (3.6)

with (·)† denoting the Moore-Penrose pseudoinverse. Hence x(t + ∆t) and x(t) can be related by A.
In practice, we do not know the Koopman operator or K∆t in advance. However, if (3.4) holds, we can obtain an

approximation of the matrix A from (3.5) by taking several uniformly sampled snapshots of x(t) with a time step ∆t.
Suppose the snapshots are taken from t j = t1 + ( j − 1)∆t, where j = 1, ...,m. We denote these snapshots by x j = x(t j).
Then we can approximate the matrix A by minimizing the difference between the left and right hand sides of (3.5) at
t j, j = 1, 2, ...,m.

To simplify notation, let us define
R(A) = AX1 − X2 (3.7)

where
X1 = (x1 x2 · · · xm−1) and X2 = (x2 x3 · · · xm) . (3.8)

The least squares solution to minA ‖R(A)‖F , where ‖ · ‖F denotes the Frobenius norm is

A = X2X†1. (3.9)

The pseudoinverse X†1 can be obtained from the singular value decomposition (SVD) [25] of X1, i.e.

X1 = UΣV∗, (3.10)

with U ∈ Cn×n, Σ ∈ Cn×m, and V ∈ Cm×m, U∗U = I and V∗V = I.
For many large-scale problems, the snapshots contained in X1 may have a low rank r � min{n,m}, i.e., the singular

values on the diagonal of Σ decay rapidly. In this case, important dynamic modes can be obtained by projecting A
into the subspace spanned by the leading right singular vectors of A.

Take
Ũ = U(:, 1 : r), Σ̃ = Σ(1 : r, 1 : r), Ṽ = V(:, 1 : r), (3.11)

then ŨΣ̃Ṽ∗ projects X1 onto an r-dimensional subspace. Substituting X1 ≈ ŨΣ̃Ṽ∗ into (3.9) yields a rank-r estimation
of A, i.e.,

Ã = Ũ∗X2ṼΣ̃−1Ũ∗Ũ = Ũ∗X2ṼΣ̃−1. (3.12)

To propagate the original system (3.1), what remains to be solved is the eigenvalue problem

ÃW = WΛ, (3.13)

where

Λ =


λ1

. . .

λr

 (3.14)
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is composed of the eigenvalues, and the columns of W give the corresponding eigenvectors. To obtain spectral modes
in the original state space of Cn, we perform the transformation

Φ = X2ṼΣ̃−1W. (3.15)

The columns of Φ are called the DMD modes. Denote

Ω =
lnΛ
∆t

=


iωDMD

1
. . .

iωDMD
r

 , ωDMD
` = −i

ln λ`
∆t

, ` = 1, ..., r, (3.16)

then the dynamics of x can be expressed as

x(t) ≈
r∑
`=1

φ` exp(iωDMD
` t)b` = Φ exp(Ωt)b. (3.17)

In the expression, the amplitude vector b := [b1, ..., br]T is taken to be the projection of initial value on to the DMD
modes as

b = Φ†x1, (3.18)

or the least squares fit of (3.17) on the sampled trajectories:

b = arg min
b̃∈Cn

m∑
j=1

‖Φ exp(Ωt j)b̃ − x j‖
2
l2 , (3.19)

where ‖ · ‖l2 denotes the standard Euclidean norm of a vector. This completes the procedures of DMD.
From the flow of DMD, it is straightforward to see that the major computational cost comes from SVD (3.10),

which is O(min(m2n,mn2)).
As mentioned in Section 1, DMD is an equation-free, data-driven method. There is no need to know about

the underlying dynamics function f(x(t), t) in (3.1). Based on the data from first few time steps, it is possible to
predict future states of the system. Moreover, it only focuses on the principal r dimensions instead of the overall n
dimensions of the state in order to reduce computational cost. As a result, the method is probably of great value for
many complicated nonlinear, or high-dimensional dynamical systems.

4. Higher order dynamic mode decomposition

The number of spatial (momentum) and temporal modes r in (3.17) is determined by the dimension of the pro-
jected Koopman operator Ã defined in (3.12), which is projected from the approximate Koopman operator (3.9) that
maps X1 to X2. When the snapshots x j are discretized on a small number of spatial or momentum grid points, the
dimension of A, and consequently the dimension of Ã may be too small to accommodate the number of spatial and
temporal modes present in the true dynamics of x(t).

This problem can possibly be resolved by using a finer spatial or momentum discretization scheme to increase
the dimension of A and Ã. However, this would inevitably increase the cost for generating the time snapshots for
performing the DMD analysis. It is not clear, a priori, how fine a spatial or momentum grid one needs to resolve all
significant spatial and temporal modes in the true dynamics satisfied by x(t).

Fortunately, this problem can be addressed by using the technique of time-delay embedding [26, 27, 28, 29] to
construct a better approximation to the Koopman operator without increasing number of spatial or momentum grid
points in x j.

The key observation used in time-delay embedding can be described as follows. Let us partition a snapshot x
discretized on a fine spatial or momentum grid as x = (xc, x f )T , where xc corresponds to a subset of x defined on a
(coarse) subset of grid points. If A is the Koopman operator that maps x(td) to x(td+1), i.e.[

xc(td+1)
x f (td+1)

]
=

[
A11 A12
A21 A22

] [
xc(td)
x f (td)

]
, (4.1)
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where A is partitioned conformally with the partition of x, then it is easy to show that

xc(td+1) = A11xc(td) +

d−2∑
j=0

A12A j
22A21xc(td− j−1) + A12Ad−1

22 x f (t1). (4.2)

If the last term in (4.2) is negligibly small, we can represent a coarsely sampled state xc(td+1) as a linear combi-
nation of time delayed states xc(td− j) for j = 0, 1, 2, ..., d − 1. If this relationship holds for all t, we can construct an
augmented Koopman operator

C̃ =


0 I 0 ... 0 0
0 0 I ... 0 0
... ... ... ... ... ...
0 0 0 ... I 0

B̃1 B̃2 B̃3 ... B̃d−1 B̃d

 , (4.3)

that maps x̃ j to x̃ j+1 where B̃1 = A12Ad−2
22 (A21 + A22), B̃ j = A12Ad− j−1

22 A21, j = 2, ..., d − 1, B̃d = A11, and

x̃ j =


x j

x j+1
...

x j+d−2
x j+d−1

 . (4.4)

An approximation to C̃ can then be obtained by solving the least squares problem

min
C̃
‖C̃X̃1 − X̃2‖F , (4.5)

where the snapshot matrices X̃1 and X̃2 are defined as

X̃1 = (x̃1 x̃2 · · · x̃m−d) , and X̃2 = (x̃2 x̃3 · · · x̃m−d+1) ,

where m is the total number of sampled snapshots of x(t).
When X̃1 is low rank, the solution to (4.5) can be approximated from a subspace defined by the singular vectors

associated with dominant singular vectors of X̃1 using the same procedure described in the previous section. This
modified procedure yields the higher order dynamic mode decomposition (HODMD) described in [30].

When each column of X̃1 consists of the concatenation of d consecutive snapshots, each spatial HODMD mode is
a vector of length nd. To reconstruct or extrapolate the trajectory of x(t) by (3.17), we take φ` to be the first n elements
of the `th spatial HODMD mode.

Because the number of rows in the snapshot matrices X̃1 and X̃2 used in HODMD can be much larger than those
in a standard DMD, the computational cost of HODMD is generally higher. Furthermore, when ∆t is relatively small,
columns of the snapshot matrix can become more linearly dependent. Although this problem can in principle be
resolved by the truncated SVD performed in (3.11), sometimes it may be difficult to choose an optimal singular value
cutoff threshold for truncation. To reduce the computational cost and the level of linear dependency among columns
of X̃1, we can increase the temporal distance between the augmented snapshots in X̃1 and X̃2. For example, we can
define them as

X̃1 =


x1 xs+1 ... xps+1
x2 xs+2 ... xps+2
...

...
...

...
xd xs+d ... xps+d

 , X̃2 =


x2 xs+2 ... xps+2
x3 xs+3 ... xps+3
...

...
...

...
xd+1 xs+d+1 ... xps+d+1

 , (4.6)

where p and s are some integers that satisfy ps + d + 1 ≤ m. A HODMD method associated with the parameters d
and s will be denoted by HODMD(d,s).
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5. Results and discussions

In this section, we give some examples on how to use DMD to extract spatial and temporal modes of the dynamics
associated with the simple two-band system defined by (2.1) when it is driven by a time-dependent field E(t) = Iδ(t)
through the light-matter interaction term (2.2). As we indicated in section 2, instead of solving the many-body problem
directly, we use a NEGF formalism to compute a single particle Green’s function by solving the KBE (2.5) and its
adjoint equation. As this is a two-band system, if we take n k-points, and evolve the system for m time steps, then the
results of Green’s function G forms an n × 2 × 2 ×m ×m matrix. From the solutions, the density matrix ρ is obtained
by ρ(·, ·, ·, t) = −iG<(·, ·, ·, t, t), which gives an n× 2× 2×m matrix. We use DMD to analyze and predict the dynamics
of ρ with the second and third indices fixed by 1 and 2, respectively. The data of ρ(k, t) can thus be seen as an n-by-m
matrix, and we denote the entries by

ρs, j = ρ(ks, t j), s = 1, ..., n, j = 1, ...,m (5.1)

for simplicity, where

ks = −π + 2(s − 1)π/n, t j = t1 + ( j − 1)∆t, s = 1, ..., n, j = 1, ...,m. (5.2)

Each snapshot can be represented as

x j = [ρ1, j, ρ2, j, ..., ρn, j]T , j = 1, ...,m, (5.3)

where T stands for the transpose of a matrix. The data matrices X1 and X2 are then constructed through (3.8).
We consider both the HF and second Born self-energies in (2.5). We also test DMD for different levels of field

intensity I. In all cases, we compare the DMD modes with spectral modes obtained from the Fourier analysis of the
density trajectory.

In the weak intensity limit, it has been shown in section 2 that we can perform a linear response analysis to obtain
the spectral modes of the dynamics by solving the Casida equation or the Bethe-Salpeter equations (BSE) for two-
particle neutral excitations. In this regime, we can compare the modes extracted by DMD with the BSE eigenvectors.
On the other hand, when E(t) is sufficiently large, linear reponse can no longer accurately capture the dynamics of the
Green’s function whereas DMD can still be performed because it is designed to analyze nonlinear dynamics.

5.1. KBE with Hatree-Fock self-energy approximation

When E(t) = 0 and the self-energy term Σ(t, t′) is chosen to be the HF approximation, which is static, the HF self-
energy term can be absorbed into the single particle Hamiltonian. As a result, the KBE reduces to time-dependent
Hartree-Fock equations. We solved this time-dependent problem by using a second-order Runge-Kutta integrator
within the time interval [0, 500], with a time step of ∆t = 0.1. Note that the time unit is defined as 1/energy unit. We
have not assign specific unit to either the time or energy. Four k-points are sampled in the Brillouin zone, i.e., n = 4.
Therefore, each snapshot of the data matrices is a vector with 4 elements.

We took the first m = 500 out of a total of N = 5000 snapshots to perform the DMD of ρ. The nonzero singular
values of the snapshot matrix X1 are plotted in Figure 5.1. We can clearly see that the first three singular values are
orders of magnitudes larger than the last singular value in this case. Consequently, we can approximate X1 by the
three leading singular values and vectors. This approximation also yields three DMD modes obtained from (3.15),
which we plot in the left panel of Figure 5.2. The frequencies associated with these DMD modes, which are obtained
from the eigenvalues of the matrix Ã defined in (3.12) are

ωDMD
1 = −0.656 − 0.008i, ωDMD

2 = −2.525 − 0.008i, ωDMD
3 = −4.803 − 0.007i. (5.4)

Due to the convention we used in (3.2), the real part of ωDMD
j corresponds to the frequency of temporal oscillation,

and the imaginary part represents the rate of exponential growth or decay of the oscillation in time. In this case, the
imaginary part of ωDMD

j should be zero. The small imaginary components in (5.4) are introduced by the numerical
error in the approximate solution to the TDHF equation.

It is well known that for TDHF, the absorption energy of the 2-band system and the corresponding exciton wave-
function can be obtained by performing a linear response analysis of the TDHF equation and solving the correspond-
ing Bethe-Salpeter (or Casida) equation, which is an eigenvalue problem. The right panel of Figure 5.2 shows the
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Fig. 5.1: Four singular values for data matrix X1 from the TDHF model.
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Fig. 5.2: left: Three DMD modes obtained from snapshots of the numerical solution of the KBE for the 2-band model problem with HF self-energy.
right: Three eigenvectors of the corresponding BSE.

magnitudes of three eigenvectors of BSE match well with those of the DMD modes shown in the left panel. The
corresponding eigenvalues are

α1 = 0.657, α2 = 2.529, α4 = 4.814, (5.5)

which match well with the DMD frequencies listed in (5.4). The small difference between αi and −real(ωDMD
i ) is

again due to the small numerical error present in the Runge-Kutta approximate solution of the TDHF equation. The
excellent agreement suggests that the DMD modes are physical, and they properly describe the underlying exciton
dynamics defined by the TDHF equation.

5.2. KBE with second Born approximation of the self-energy

In this example, the second Born approximation is used to construct the self-energy in the KBE (2.5). In addition,
we assume that the system is driven by an instantaneous pulse E(t) = Iδ(t) with I being the field amplitude. We
sample the Brillouin zone with n = 20 k-points. For testing purpose, we solve the KBE for the time interval [0, 201]
with time step ∆t = 0.1. We experimented with pulse amplitudes I = 0.001, 0.5 and 1.5 energy intensity. In each
case, we used the first m = 500 out of total N = 2010 snapshots to perform the DMD analysis. The singular values
of the snapshot matrix X1 in (3.8) for the weak (I = 0.001) and strong (I = 1.5) pulses are plotted in Figure 5.3. We
can clearly see that, in both cases, the leading 11 singular values are orders of magnitude larger than other singular
values. This is also the case for the X1 generated from I = 0.5. Consequently, in all cases, we can approximate X1 by
the leading 11 singular values and vectors.
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Fig. 5.3: Singular values of the snapshot matrix X1 from the 2B model with different pulse intensities.
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Fig. 5.4: A comparison between the DMD modes obtained from snapshots of the solution to the KBE for the 2B model with I = 0.001 (left) and
the eigenvectors of the BSE Hamiltonian (right).

When the intensity of the pulse is small, we can perform a linear response analysis of ρ(·, t) by solving a n × n
BSE eigenvalue problem. Figure 5.4 shows that the eigenvectors of the BSE Hamiltonian (with Tamm-Dancoff

approximation) associated with 11 smallest eigenvalues match well with the DMD modes computed from (3.15). The
eigenvalues of the BSE Hamiltonian also match well with the real part of ωDMD

j for j = 1, 2, ..., 11.

5.3. Comparison with Fourier Analysis
In this section, we compare DMD analysis with Fourier spectral analysis, which has traditionally been used to

identify key features of a one-dimensional trajectory x(t). In such an analysis, we perform a discrete Fourier transform
(DFT) of a uniformly sampled trajectory {x(t1), x(t2), ..., x(tN)} to obtain

f (ω`) =

N∑
j=1

x(t j)e−iω`(t j−t1),

where
ω` = 2π(` − 1)/(N∆t) + 2zπ, ` = 1, 2, ...,N, ∀z ∈ Z. (5.6)

Note that the 2zπ term is included above to match some frequencies computed from DMD that are not within the same
period. Clearly, the larger the magnitude of f (ω`), the more important ω` is for describing the dynamics exhibited by
x(t). If x(t) can be characterized by a few frequencies, | f (ω`)| will exhibit a few peaks.
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Fig. 5.5: The magnitude of f (ω`) obtained from the DFT of the polarizability associated with the TDHF simulation of a 2-band model. The real
part of the DMD frequencies are marked by dotted lines.

In Figure 5.5, we plot the magnitude of f (ω`) obtained from performing a DFT of the polarizability P(t) defined
as

P(t) =
∑

k

Tr(ρk(t)d̂k), (5.7)

where k denotes a k-point, and d̂k is a dipole matrix. In our two band model with a constant dipole matrix element
approximation, the polarization is simply the sum of the two off-diagonal elements of the density matrix. By analyzing
the polarization in the linear response regime, we can get the exciton energy and wavefunctions. The positions of the
three peaks of f (ω`) in Figure 5.5 are

ωDFT
1 = −0.654, ωDFT

2 = −2.526, ωDFT
3 = −4.813.

These frequencies match well with the real parts of the three DMD frequencies shown in (5.4). When the Fourier
analysis is applied to the polarizability obtained from the numerical solution of the KBE with a second Born ap-
proximation to the self-energy, we observe a similar match between the peak positions of | f (ω`)| and the real part of
ωDMD

j obtained from (3.13) and (3.16) as long as the pulse intensity I is relatively small. This can be clearly seen in
Figure 5.6 in which the magnitude of f (ω`) is plotted for I = 0.001. The positions of the peaks match well with the
real part of the DMD frequencies which are marked by vertical dotted lines.

In addition to frequencies, the DMD analysis also provides spatial (momentum) modes Φ associated with different
frequencies. Similar type of modes, which we will call Fourier modes, can be obtained from the Fourier analysis,
although the procedure for finding these modes is a bit cumbersome.

Instead of performing a DFT to the polarizability, we can perform a set of DFTs to ρ(ks, t) for each k-point to
obtain fs(ωDFT

` ), where ` = 1, 2, ..., r̂ if we have r̂ DFT frequencies, and s = 1, ..., n. The vector

φDFT
` =

[ f1(ωDFT
` ), f2(ωDFT

` ), ... fn(ωDFT
` )]T

‖[ f1(ωDFT
`

), f2(ωDFT
`

), ... fn(ωDFT
`

)]‖l2
, ` = 1, ..., r̂ (5.8)

defines the `th Fourier mode associated with the frequency ωDFT
` . The `th Fourier mode makes a significant contribu-

tion to ρ(t) if | fs(ωDFT
` )| is sufficiently large for some s.

Figure 5.7 shows that the first four Fourier modes obtained from the solution of the KBE with a second Born
self-energy approximation and driven by a pulse with intensity I = 0.001 match well with the corresponding DMD
modes after being scaled by a phase factor. (i.e. like eigenvectors, DMD modes are unique up to a phase scaling
factor eiθ for some phase angle θ.)
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Fig. 5.6: The magnitude of f (ω`) obtained from the DFT of the polarizability associated with the solution of the KBE with a second Born
approximation to the self energy and driven by an instantaneous field with intensity I = 0.001. The real part of the DMD frequencies are marked
by dotted lines.
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Fig. 5.7: DMD modes (left) match well with the Fourier modes (right) with matching frequencies for the two-band model driven by a field with
intensity I = 0.001.

However, when the pulse intensity increases to I = 0.5 and I = 1.5, not all frequencies identified from the Fourier
analysis can be matched with those obtained from the DMD analysis. In fact, f (ω`) cannot be characterized by a few
isolated peaks. Figure 5.8 shows that when I = 1.5, we can only match six frequencies obtained from the Fourier
analysis with those obtained from DMD (marked by blue dotted lines). These matches are not perfect.

In Figure 5.9, we compare 4 most significant modes obtained from DMD and DFT. The significance of each DFT
mode can be quantified by the height of the peak associated with the frequency of that mode. The significance of each
DMD mode can be measured by the magnitude of the corresponding expansion coefficient in the reconstruction or
extrapolation (see the next section) of the trajectory as described by (3.17).

The frequencies of the four most significant DMD modes are

ωDMD
1 = −0.581 + 0.226i, ωDMD

3 = 0.409 + 0.030i,

ωDMD
4 = 0.712 + 0.029i, ωDMD

9 = 2.935 + 0.049i.

The real parts of these frequencies which describe the oscillatory behavior of ρ(t) in real time by our convention do
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Fig. 5.8: The magnitude of f (ω`) obtained from the DFT of the polarizability for the two-band model driven by a field with intensity I = 1.5. The
DMD frequencies are marked by dotted lines. The DMD dotted lines corresponding to matching frequencies are colored in blue.
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Fig. 5.9: The four most significant modes from DMD (left) and from DFT (right) for the 2-band model driven by a field with intensity I = 1.5.

not closely match (with the exception of ωDMD
3 ) the four most significant frequencies obtained from the DFT, which

are
ωDFT

1 = 0.406, ωDFT
2 = 1.125, ωDFT

3 = 1.782, ωDFT
4 = 2.438.

Note that the real part of ωDMD
3 matches well with ωDFT

1 . For these two matching frequencies, the corresponding DMD
and Fourier modes also match well as we can see in Figure 5.9. All the other three DMD modes are different from
the other three Fourier modes. In particular, the most significant DMD mode φDMD

1 is not seen in the Fourier analysis.
The DMD mode φDMD

9 looks similar to both φDFT
3 and φDFT

4 . However, their values are clearly different at k = −π and
k = 0.

5.4. Extrapolation of the density dynamics

The discrepancy between the frequencies identified by Fourier analysis and DMD analysis raises the question
about which analysis is more useful or reliable. In the case of a low intensity driving field, we can compare the
spectral modes with the eigenvectors of the BSE problems. However, when the pulse intensity is high, we can no
longer rely on the BSE which, is validate in the linear response regime, to validate the spectral modes.
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Fig. 5.10: Comparison between the magnitude of f (ω`) and f̃ (ω`) when I = 0.5 and I = 1.5.

One way to assess the validity or quality of the spectral modes is to examine how well they can be used to
reconstruct the sampled density trajectory and extrapolate the density dynamics outside of the sampling window.

For DMD analysis, we follow (3.17) to reconstruct and extrapolate the density trajectory ρDMD at k-point ks as

ρDMD(ks, t) ≈
r∑
`=1

φDMD
` (ks) exp(iωDMD

` t)b`, s = 1, ..., n, (5.9)

where b` are obtained either from the projection of initial density onto the DMD modes as (3.18), or from performing
a linear least squares fit on the snapshots used to perform the DMD analysis as given in (3.19).

On the other hand, the Fourier analysis in the above subsection cannot be directly applied to do the extrapolation,
as the whole trajectory instead of the sampled trajectory is required there. In order to use the sampled snapshots only,
we need to first pad them with zeros before taking the discrete Fourier transform, i.e., we construct {ρ̃(ks, ·)} as

ρ̃(ks, t j) =

ρ(ks, t j), j = 1, 2, ...,m
0, j = m + 1, ...,N

(5.10)

for s = 1, ..., n, and take the discrete Fourier transform of the polarization P(t) of these trajectories.
This is equivalent to convolving the discrete Fourier transform of P(t) (5.7) with a sinc function. Such a convo-

lution broadens the high peaks in f (ω`) and introduces artifical wiggles not present in f (ω`) as can be seen in Figure
5.10 where the discrete Fourier transforms of the full polarization trajectory and the truncated and zero padded po-
larization are compared for models with driving field intensities I = 0.5 and I = 1.5. We take m = 150 and m = 50
respectively for the two cases, in order to show the comparison clearly.

Once the frequency peaks of f̃ (ω`) are identified, we denote them by ω̃DFT
` , ` = 1, 2, ..., r̃ to reconstruct an

approximate trajectory as

ρDFT(t) ≈
r̃∑
`=1

φ̃DFT
` exp(iω̃DFT

` t)c` exp(dlt), dl ≤ 0, (5.11)

where φ̃DFT
` is the DFT mode associated with ω̃DFT

` as defined in (5.8), c` and d` are parameters to be determined,
with exp(d`t) being introduced to account for the exponential decay of the dynamics. We fit the model (5.11) to the
sampled snapshots in the least-squares sense, and obtain the fitting coefficients c := (c1, ..., cr̃)T and d := (d1, ..., dr̃)T

by solving a nonlinear least squares problem.
To compare the reconstructed trajectories, we perform a renormalization so that

‖ρa(ks, t1 : tm)‖l2 = ‖ρ(ks, t1 : tm)‖l2 , s = 1, ..., n, (5.12)

where a = DMD or DFT, and ρ(ks, t) is the sampled data.
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Fig. 5.11: Comparisons of the trajectories at k = 0 when light intensity I = 0.001. The shaded parts indicate the sampled window of the original
trajectory.

Figure 5.11 shows that, when I = 0.001, ρDMD matches with ρ much better than ρDFT at k = 0. Similar results can
be obtained for other k-points. In both extrapolations, the number of sampled snapshots is m = 500, as shown by the
shaded window.

To evaluate the quality of reconstruction/extrapolation quantitatively, we introduce a metric defined in terms of the
cosine of the angles between the original KBE trajectory vector and the extrapolated trajectory vector at each k-point,
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Fig. 5.12: The cosine of the angle between the computed ρ(k, t) from KBE and extrapolated ρDMD(k, t), ρDFT(k, t) when I = 0.001.

i.e.,

ca
k =

〈ρ(k, ·), ρa(k, ·)〉
‖ρ(k, ·)‖l2‖ρa(k, ·)‖l2

, k = k1, ..., kn, (5.13)

where a is either DMD or DFT, and 〈·, ·〉 denotes the standard Euclidean inner product of two complex vectors. It is
clear that |ca

k | ∈ [0, 1]. If the reconstruction/extrapolation ρa(k, ·) fits the original trajectory ρ(k, ·) well, then |ca
k | should

be close to 1 for all k = k1, ..., kn. On the contrary, a small value of |ca
k | suggests a large deviation of ρa(k, ·) from ρ(k, ·)

at the k-point k.
Figure 5.12 shows that, when I = 0.001, |cDMD

k | is between 0.82 and 0.92 for all k-points, indicating a good
agreement between the extrapolated trajectory from DMD and the original trajectory. By contrast, |cDFT

k | is small for
most k-points, which means the extrapolation from DFT does not give good results. These are consistent with the
results in Figure 5.11.

When the pulse intensity I is increased to 0.5 or 1.5, it is observed from Figure 5.13 that the values of |cDMD
k | is

significantly lower. In both cases, |cDMD
k | is less than 0.8 for all k-points, which suggests ρDMD(k, ·) fails to capture the

features of ρ(k, ·) from the sampled trajectories. Such failure can also be clearly seen in Figure 5.14 where we plot the
magnitude of ρDMD and ρDFT at the zero k-point, and compare them with that of ρ(t). We remark that when I = 1.5,
although the values of |cDFT

k | are large for all k-points, there is still noticeable difference between ρDFT(k, ·) and ρ(k, ·)
as we can see in Figure 5.14 within the sampling window. The reason that the value of |cDFT

k | is close to 1.0 in this
case is that the inner product between ρDFT(k, t) and ρ(k, t) is largely determined by the tails of these two trajectories,
which are both nearly zero. In fact, having a |ca

k | value close to 1 is a necessary but not sufficient condition for a good
extrapolation. Nonetheless, in this case, the Fourier based extrapolation appears to do a better job in capturing the
general trend of the dynamics than the DMD based approach.

We believe the reason why DMD fails to capture the decay rate when I = 0.5 and I = 1.5 is that the stronger driving
fields introduce more spectral degrees of freedom that are not fully captured by the projected Koopman operator when
it is constructed by simply mapping the vector ρ(t) to ρ(t + ∆t). In other words, as explained in section 4, there is a
discrepancy between the dimension of the projected Koopman operator, i.e., the value of r in (3.17), and the intrinsic
number of spectral components in the dynamics of ρ(t).

As we indicated in section 4, there are two possible ways to address this problem. One is to increase the number
of k-points. But it is not clear how many k-points are needed to ensure the rank of the projected Koopman operator is
sufficiently large. In fact, we have tried to increase the number of k-points to n = 100. That does not appear to yield
significant improvement in extrapolation accuracy, but incurs a significant increase in computational and memory
cost. This is because the two-time Green’s function we need to compute by solving the KBE in order to generate the
one time snapshots have more degrees of freedom.

The other remedy is to use the HODMD algorithm to increase the dimension of the projected Koopman oper-
ator by augmenting a single snapshot with d consecutive snapshots as explained in section 4. These snapshots are
concatenated into a single vector and the DMD procedure is then applied to the augmented snapshots (4.4).

Although it may be possible to estimate the minimum number of time delays to be concatenated into a single
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Fig. 5.13: The cosine of the angle between the computed ρ(k, ·) from KBE and extrapolated ρDMD(k, ·), ρDFT(k, ·), ρDMD(5,5)(k, ·) when I = 0.5 and
I = 1.5 respectively.

Fig. 5.14: A comparison of |ρDMD(0, t)| , |ρDFT(0, t)| and |ρDMD(5,5)(0, t)| with |ρ(0, t)| for I = 0.5 and I = 1.5. The shaded area indicates the sampled
window of the trajectories.

column of a snapshot matrix analytically [27], we experimented with several values of d numerically, and found that
for the model problem we tested with I = 0.5 and I = 1.5, d = 5 is a good choice.

Furthermore, as we discussed in section 4, to reduce the computational cost of HODMD and the potential level of
linear dependency among the column vectors in the snapshot matrix, we can increase the temporal distance between
adjacent columns to yield matrices of the form (4.6). Both Figure 5.13 and Figure 5.14 show that by introducing
time delays by 5 ∆t’s and increasing the temporal distance between adjacent columns to 5 ∆t, which yields the
HODMD(5,5) scheme, we can obtain extrapolated trajectories that are nearly indistinguishable from the true trajec-
tories (obtained by solving the KBE numerically) even when the driving field intensities are increased to I = 0.5 and
I = 1.5 respectively.

Figures 5.15 and 5.16 show that with a reduced number of sampled snapshots, the extrapolated trajectories pro-
duced by HODMD(5,5) still match perfectly with the true trajectories associated with the driving field intensity I = 0.5
and I = 1.5 respectively. They are clearly better than the trajectories produced from the DFT based extrapolation,
which fails to accurately capture the decay rate of the dynamics. Moreover, the computational cost of the DFT based
extrapolation is much higher because a nonlinear least squares optimization problem needs to be solved in order to
determine the coefficients in the extrapolation model. The solution of the optimization problem depends sensitively
on the initial guess of the coefficients.

In addition, it can be clearly seen from Figure 5.16 that when I = 1.5, HODMD(5, 1) fails to extrapolate the
trajectory correctly with m = 120 snapshots. The failure is likely due to the linear dependency among columns of the
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Fig. 5.15: Comparisons of the trajectories at k = 0 when the driving intensity I = 0.5. The trajectories are reconstructed and extrapolated with
m = 340. The shaded parts demonstrate the sampled window of the original trajectory.

Fig. 5.16: Comparisons of the trajectories at k = 0 when the driving intensity I = 1.5. The trajectories are reconstructed and extrapolated with
m = 120. The shaded parts demonstrate the sampled window of the original trajectory.

Table 5.1: The four most significant frequencies from DMD and HODMD(5,5) when the driving field intensity I = 0.5 with m = 500.

1 2 3 4
ωDMD 0.727 2.804 + 0.015i 2.190 + 0.012i 3.419 + 0.019i

ωHODMD(5,5) 0.741 + 0.012i 2.208 + 0.059i 2.826 + 0.064i 3.455 + 0.073i

Table 5.2: The four most significant frequencies from DMD and HODMD(5,5) when the driving field intensity I = 1.5 with m = 500.

1 2 3 4
ωDMD −0.581 + 0.226i 0.409 + 0.030i 0.712 + 0.029i 2.935 + 0.049i

ωHODMD(5,5) 0.487 + 0.193i 0.746 + 0.245i 2.400 + 0.293i 3.046 + 0.323i

X̃1 snapshot matrix, and a less optimal singular value threshold used in the truncated SVD performed on this matrix.
To demonstrate that HODMD indeed captures the fast decay of ρ(t) than DMD, we list the DMD and HODMD(5,5)

frequencies associated with the four most significant modes in Table 5.1 for the simulation with I = 0.5, and Table 5.2
for the simulation with I = 1.5.

From these tables, we observe that, overall, the imaginary parts of ωHODMD(5,5) are much larger than those of
ωDMD. By the convention we use in (5.9), a large imaginary part corresponds to a more rapid decay of the DMD or
HODMD mode.
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Fig. 5.17: Comparisons of the root mean square errors of the extrapolated trajectories from HODMD(5,1) and HODMD(5,5), when the driving
intensity I = 0.5 and I = 1.5.

One practical question one may ask is how many snapshots (m) we need to collect in order to accurately extrapolate
the full (long-time) trajectory of ρ(t). This question is difficult to answer a priori in general. For the model problem
we examined, we experimented numerically with m values ranging from 21 to 500. For each m, we compute the root
mean square error of the extrapolated trajectory errb defined as

errb =

∑n
j=1 ‖ρ(k j, tm+1 : tN) − ρb(k j, tm+1 : tN)‖2l2

N − m

1/2

, b = HODMD(d, s). (5.14)

In Figure 5.17, we plot this error associated with both HODMD(5, 1) and HODMD(5, 5) for these m values. For
both test problems (with I = 0.5 and I = 1.5), we observe that the extrapolation error generally decreases as m
increases, which is expected. The error clearly decreases faster for HODMD(5,5) than for HODMD(5,1). Because
the time step size used in the Runge-Kutta scheme to solve the KBE is ∆t = 0.1, the true trajectory is only accurate up
to O(10−2). Therefore, approximately 200 snapshots are sufficient to produce an accurate HODMD(5,5) extrapolation
when I = 0.5. Far fewer snapshots are needed for I = 1.5. This is mainly due to the fact the dynamics has more
features in early time and quickly decays to zero as t increases.

Remark 5.1. A practical procedure that can be used to to determine the number of snapshots required to construct
a DMD or HODMD model for accurately extrapolating the dynamics of ρ(t) for large t is to first compute the values
of ρ(t) at t = t1, t2, ...tm+k for a relatively small m and k from the numerical solution of the KBEs. We can then use the
first m snapshots of ρ(t) to construct a DMD or HODMD model to predict the values of ρ(t) at t = tm+1, tm+2, ..., tm+k.
If the difference between the predicted and computed values of ρ(t) is sufficiently small, we declare the DMD or
HODMD model to be sufficiently accurate for extrapolating the dynamics of ρ(t) for large t. Otherwise, we use
the values of ρ(t) at t = t1, t2, ..., tm+k to construct another DMD or HODMD model to predict the values of ρ(t) at
t = tm+k+1, tm+k+2, ..., tm+2k and compare these values with the computed values. This procedure is repeated until the
difference between the predicted and computed values of ρ(t) becomes sufficiently small or the number of computed
snapshots exceeds a maximum limit. In the latter case, we consider the DMD or HODMD method failed, or the
problem is not suitable for using DMD or HODMD to obtain an approximate solution.

6. Conclusion

We applied DMD to study the dynamics of a one-time physical observable originated from the simulation of a
many-body system away from equilibrium through the Green’s function approach. Traditional numerical methods to
obtain the observable involve solving coupled two-time nonlinear integral differential equations, which results in high
memory requirement and large computational cost. In contrast, the data-driven DMD method only depends on a small
sampled set of the numerical solutions, and can be easily applied through truncated SVD decomposition.

Numerical results obtained from the dynamical simulation of a two-band model system show that DMD suc-
cessfully captures the major dynamical modes and frequencies of the observable when there is no or little external
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light-matter interaction. In these equilibrium or near equilibrium cases, the DMD modes are physical as can be veri-
fied by performing a linear response analysis and comparing the DMD modes with the eigenvalues and eigenvectors
of the corresponding BSE Hamiltonian. When the driving pulse intensity in the interaction term of the two-band
model is large, the standard DMD fails to accurately reconstruct or extrapolate the nonequilibrium dynamics, because
the rank of the projected Koopman operator is too small. Under this circumstance, we introduced HODMD(d, s) with
concatenated snapshots, which is derived from the augmented Koopman operator. Numerical examples show that
HODMD(d, s) perfectly solves the problem. Moreover, increasing s in HODMD(d, s) can improve the efficiency and
accuracy of the algorithm as the data matrix becomes more compact, and there is less linear dependency among the
augmented snapshots. Compared to Fourier analysis, DMD and HODMD(d, s) can perform the reconstruction and
extrapolation of the original trajectories more accurately with less computational cost.
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