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A GENERALIZATION OF STIMULUS SAMPLING THEORY

by

Richard C. Atkinson:!

The phrase "Stimulus Sampling Theory" is used to describe

various formulations of the basic theory first set forth by Estes [1950]

and Estes and Burke [1953]. In this paper we shall restrict our

attention to a particular set of axioms for Stimulus Sampling Theory;

namely, the axioms given by Suppes and Atkinson [1960; Chapter 1]. The

exact way in which these axioms deviate from the original Estes version

is discussed by Suppes and Atkinson and will not be re-examined here;

however, it should be emphasized that there is no deviation in basic ideas.

The purpose of this paper is to introduce what we consider to

be a natural generalization of the axioms. The change leads to a set

of axioms which, for special cases, is equivalent to the axioms in

Suppes and Atkinson. The reason for introducing this modification is

to provide a context in which such experimental variables as reward

magnitude and motivation can be viewed as determiners of behavior.

Further, some experimental results on multiple response problems have a

natural interpretation in terms of the ideas presented in this paper.

We begin by stating the axioms for the two-response case

since it is the simplest; the generalization to multiple responses will

be examined later. As customary, the responses are denoted Al and A
Z

'

and three reinforcing events EO' E
l

and EZ are specified.

On leave of absence from University of California, Los Angeles.
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The first group of axioms deals with the conditioning of stimuli, the

second group with the sampling of stimuli, and the third with responses.

Conditioning Axioms

Cl. Associated with each stimulus element i is ~positive integer s ..
1

C2. At the start of trial n stimulus element i is in conditioning

state where j ; 0, 1, 2,

C3· If stimulus element i is sampled on trial n and is in

conditioning state K. ,then with probability
J,n -- ---

1 - e ~ reinforcing

~ is not effective and no change occurs in the conditioning state.

When the reinforcing event is effective (~.~. ~probability e) then

the conditioning state

(a)

(c)

changes to Kj+l if E
l

occurs (however, if in K
si,n

then E£ change occurs),

changes to K. 1 if E
2

occurs (however, if in K
J- --- O,n

then E£ change occurs) ,

remains unchanged :!!. EO occurSD

c4. Stimulus elements which ~ not sampled 9E:. ~ trial do not change

their conditioning state 9E:.~ trial.

C5. ~ probability e is independent of~ trial number and the

preceding pattern of events.
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Sampling Axioms

Sl. Exactly ~ stimulus element is sampled on~ trial.

S2. Given ~~ £!:. elements available for sampling on ~ trial,

the probability £!:. sampling ~ particular element ~ independent of the

trial number and ~ preceding pattern of events.

Response Axiom

j/s .•
l

andiIf stimulus elementRl. ~ in conditioning state K
j

, n

the element is sampled, ~~ probability of ~ Al response is

These axioms are formally identical to those given by Suppes

and Atkinson [1960] when s = 1
i

for all elements. For this case methods

of estimating the number of elements (N) and the conditioning parameter e

have been worked out and many applications to empirical data are available.

When s. > 1 for some elements, then interesting .and rather
l

surprising predictions occur. We now proceed to examine this case. In

much of the discussion we shall restrict ourselves to the one-element

model (N = 1). There are no mathematical problems in extending the

analysis to the multi-element case but notation becomes extremely

complex. Further, a consideration of the one-element case is adequate

for illustrating the basic ideas,
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Ifoncontingent reinforcement. We begin with the simple non-

of events El and E
2

are constant over trials; i.e.,

contingent situation where E 'so are not permitted and the probability

1peE ) = rr > -
l,n - 2

We may prove from our axioms that the se'luence of random variables which

take the conditioning states as values is a Markov chain. This means,

among other things, that a transition matrix P = [Po .]
lJ

may be

constructed where p .. = P(K
j

+lIK. ). The learning process islJ ,nl,n

completely characterized by these transition probabilities and the

initial probability distribution on the conditioning states.

By Axiom C3, it is obvious that

Ps s = 1 - 8 + 8rr,
p "" 8(1 - rr)s, s-l

p, '+1 "" err
l,l

(1) p, . "" 1 - e i of- 0) S
l,l

Pi, i-l "" e(l - rr)

"" err

"" 1 - e + eel - rr)

Next define as the probability of being in state j on trial n+l,

given that on trial 1 we were in state i. Moreover, if the appropriate

limit exists and is independent of i, we set
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The Markov chain defined by (1) is irreducible and aperiodic; for such

a finite-state chain it is well known that the limiting ~uantities u
j

exist. For our particular case

1 - :n:wheJ;'e a =
:n:

s-j s-j+l
a - a

1
s+l

- a

1
s + 1

for

for

a f. 1

a = 1

By the Response Axiom Rl we have that the asymptotic probability

of an Al response in the noncontingent situation is

s
lim P(AI ) = P(Al ) = L .J. u

n ,... 00 J n j=O s j

(4) 1for :n:f.-2

for 1
:n:=2'

For :n: = ~ the prediction of P(Al ) is ~ for all values

of s. However for :n: f. ~ the asymptotic prediction depends on s.
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) as a function of rt.



however as s increases., the prediction

greater than n. In fact by inspection

lim prAll = 1 for 1 Vn>2'
s .... '"

- 7 -

Figure 1 presents prAll as a function of n; the parameter on each

curve is the value of s. For s equal to 1 we have prAll = n ;

for prAll becomes increasingly

of (4) it is obvious that

Suppes and Atkinson [1960, Chapter 10] report data for a non-

contingent experiment where n = .6. The independent variable was the

amount of money won or lost on each trial when the subject was correct

(A E
l"n l)n

or A E )
2,n 2,n or incorrect (A E

2,n l,n
or k E

2
).

1.} n J n

For subjects in Group Z, no money was won or lost; for Group F five cents

was won when the subject was correct and the same amount lost when

incorrect; ·for Group T ten cents was won or lost. The obtained

proportions of Al responses at asymptote (trials 141-240) were .593

(Group Z), .644 (Group F) and .690 (Group T). If we were to estimate s

for the one-element model from this data alone we would find that s

is approximately 1.0 for Group Z, 2.3 for Group F, and 3.3 for Group T.

Comparable results can be obtained for other reinforcement schedules.

For example, consider a contingent situation where E 'so are not

permitted and let P(El,n!Al,n) = 1t and P(El ,n IA2,n) = 1t2 · For
1

this case if
1t

2 1 then prAll approaches 1 as
1 + 1t2

> 2' s
- nl

becomes large. For example, if

is .67, .71, .75•. 79, ••• for s = 1, 2, 3. 4,
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For this experiment the estimated value of s increased as

a function of the monetary payoff. In terms of the elementary process

the amount of change in response probability on a given trial is

dependent on the monetary payoff. For example, in the one-element

model if P(Al,n) = 0, an El occurs, and conditioning is effective

then P(A
I

1) = ~. Thus, the isolated effect of a single reinforce-
,n+ s

ment is a function of the payoff. 2I Of course, these ideas apply

directly to experimental situations where different amounts of money

can be won or lost from trial to trial; more detailed notions con-

cerning the relations of 8 and s to monetary value will depend on

this type of investigation.

These results on the one-element model can be extended to the

multi-element case and thereby permit prAll to take any value in

the interval [rt, 1). It should be noted that for N > 1 and any set

of values for s. (i = 1, ••• , N) we have a chain of infinite order
l

in the sequence of response random variables; the same statement holds

for N = 1 and s > 1. However, for the special case where N = s = 1,

the sequence of response random variables is a first-order Markov chain

(see Suppes and Atkinson [1960] for a discusSion of this point).

An inspection of the entire set of data suggests that both
and s increase as a function of monetary payoffs.

8
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We shall not examine the multi-element problem but instead

turn to some sequential results for the one-element noncontingent model.

We present only a few to illustrate the method of proof and have

selected those quantities which are useful in making pseudomaximum-

likelihood estimates of e and s. The reader is referred to Suppes

and Atkinson [1960, Chapter 2] for a discussion of appropriate estimation

procedures.

Consider first P(A [E A ) .
l,n+l l,n l,n

considerations and Axiom Rl we have that

P(A E Al,n)l,n+l l,n

= L: P(A K 1 E A K.).. l,n+l j,n+ l,n l,n ~,n
~,J

By elementary probability

= L P(A [K. ) P(K. IE A K. ) P(E ) P(A [K. ) P(K ).. l,n+l J,n+l J,n+l l,n l,n ~,n l,n l,n ~,n i,n
~, J

However, by Axiom C3 wehave·that

P(A E A )
l,n+l l,n l,n

s-l [=2=.. i+l e
i=O s

rt :!:. P(K. ) + rt P(K )
S l,n Sjn

s-l .
= ert L ~ P(K. )

S i=o. S l,n

s-l
+ rt L

i=O
+rtp(K )- s, n
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Note, however, that lim P(K. ) = uin-'-7CO l,n
and by (3) we have

) 8:n: )lim peAl 1 El Al = --s [peAl - u ] + :n:[V2 - u ] + :n:u
n ..,-.+ 00 ) n+ , n J n s s s

where V
2

s

=L
i=O

and can be easily calculated. Thus

lim peAl llEl Al ) = peAl ) (~ [peAl) - u ] + V2)
J n+ J n ,n 1 s sn .... oo

Other asymptotic predictions useful for estimating parameters may be

obtained by similar arguments and are given below:

lim peAl llE2 A2 )
1

(P(A
l

) - V
2

8 - P(A
2
)Jl= P(A2 )

+ - [u
n .--) 00 J n+ } n } n s 0

lim peAl llE2 Al )
V

2 8
=

peAl)
- -, n+ } n } n sn .... oo

lim peAl llEl A2 )
1 (; P(A

2
) + peAl) - V2)= P(A2 ),n+ J n ,n

n~co

lim peAl llEl ) = peAl)
8 - u )+ - (1,n+ ,D s sn .... oo

lim peAl llE2 ) = peAl)
8 - u ]- - [1,n+ ,u s 0n .... oo

lim peAl llA )
1

{" - PIA,:
8(1 - 2:n:)

_":"}=
peAl),n+ 1, n sn .... oo

lim peAl llA2 )
1 { 'b'I'-'1 8(1-2:n:)

PI",I}= P(A
2

) P(Al )-V2 + s,n+ ,ll sn .... oo
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Mean learning curves, Expressions for mean learning curves

generally can be obtained but the computations are often quite tedious.

Consequently we shall not examine this topic in detail except to present

results for the one-element noncontingent model when n = 1 and

for Vi = 0, I, ... J s.

For s = 1, the transition matrix P = [Pij] is

and pn is

1

o I
1

1

8

1

o

o

1-8

o

1 1

Further, define as the probability of being in conditioning

state j at the start of trial n (given a uniform distribution on

trial 1). Then

Gordon Bower has derived many results for the case where s = 2

and P(Kl,l) = 1 and is applying the model to paired-associate

learning data (see forthcoming technical report).
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But by Axiom R1

(n) 1 n 1
P(A1,n) = u1 = 1 - 2 (1 - 8) -

Next consider the case where there are three conditioning states; i.e.,

where s = 2. The transition matrix is

2

1

o

2

1

8

o

1

o

1-8

8

o

o

o

1-8

and pn
is

2 1 0

2 1 0 0

1 1-(1-8) n (1_8)n 0

0 1_(1_8)n~ n8(1_8)n-1 n8(1_8)n-1 (1_8)n

Then
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Aod by Axiom R1

peA ) = u(o) + ~ u(o) = 1 _ ~ (1_8)0-1 _ ~ (0-1) 8(1_8)0-2
1,0 2 2 1 2 0

for 0 ~ 3. P(A1,2) = ~ + I 8 and of course P(A1 ,l) =~. For s = 3,

the traosition matrix is

3 2 1 0

3 1 0 0 0

2 8 1-8 0 0

1 0 8 1-8 0

0 0 0 8 1-8

aod pO is

3 2 1 0

3 1 0 0 0

2 1_(1_8)0 (1_8)0 0 0

1 1_(1_8)0_ 08(1_8)n-1 n8(1_8)0-1 (1_8)n 0

0 1_(1_8)0_ n8(1_8)0-1 (0) 82 (1_8)0-2 ( )0-1 (1_8)n08 1-82
-CO> 82 (h8)n-2

2
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Then

u(n)= u(l)+ u(l) [1_(1_8)n-l] + u(l) [1_(1_8)n-l _ (n-l) e(1_e)n-2]
332 1

+ u~l)[l_(l_e)n-l_ (n-l) 8(1_8)n-2 _ (n;l) 82 (1_e)n-3]

And by Axiom Rl

1 (n)
+ - u

3 1

1 ( )n-l 1 ( ) ( )n-2 1 (n-l) 82(1_8)n-3= 1 - -2 1-8 - -4 n-l ·8 1-8 12 2

for n > 4. P(A
l

) = 220 , P(A
2

) = 20 + -41 8, and
..'In ,n 2

P(A
3

, n) = {2 + ~ 8 + 1~ (1-8) (1 + e). We shall not pursue the general

case, although it is obvious that

() ( ) n-l ( ) ( )n-2 (n-l) S-l( )n-sP A = 1 - c 1-8 - c n-l 8 1-8 -' .. - c 8 1.-8
1, n 1 2 s s-l

where 1
O<c'<2-'

J -

Thus, the value of s affects not only the rate of learning but

also the form of the learning curve. With s = 1 we have the standard

exponential growth function, but as s becomes large the form of the curve

becomes j-shaped.
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Multiple Responses. We now examine the case where there are

r responses (AI' ... ,A
r

) and r+l reinforcing events (Eo,El , ... , Er )·

For the multiple response case it is necessary to restate axioms C2, C3

and Rl more generally.

C2' • At the start of trial n stimulus element i is in conditioning

state < k_ k
.l,n 2,n

k >
r,n

where k. ~ 0, 1, '" , si
J, n

and

C3'. If ~ulus element i is sampled ~~ n and is :!E:. condiHoning

state < k
l

... k >, then with probability l-S the reinforcing _event
--- ,n r,n ----

is not effective and no change occurs in the conditioning state. When

the reinforcing event is effective (Le. with probability S)

(a) E
.e, n

(.e f 0) occurs, then k ~ k + 1
.e,n+l .e,n

and

~ and only ~ sf.~ other k' s takes a decrement of 10

The probability (for j f .e)

k. /(s.- k.e )JJn 1 ,n

that k. 1 ~ k. - 1
J,n+~ J.,n

is

EO,n occurs, then the conditioning state remains

unchanged.

and the element ~ sampled, then t~ probability of response

Rl' . If stimulus element i ~ :!E:. conditioning~ <k
l ,n

A
j

is

k >
r,n

k. /s ..J,n l
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For r = 2 these axioms are equivalent to the axioms given at

the outset of this paper. The only reason for introducing the earlier

version was to make the presentation of the two-response case more,

accessible.

We now apply the axioms to a noncontingent reinforcement,

procedure reported by Gardner [1957]· Three responses (AI' A2 , A
3

)

are available to the subject and three reinforcing events (El , E2, E
3

)

are employed. On each trial one of the reinforcing events occurs;

L e., P(Ei , n) = "i where :n:l + "2 + :n:
3

= L Again, we consider only

the one-element case, but there are no mathematical problems in extending

this analysis to multiple elements; the only difficulty is that notation

and computations can become very involved.

First consider the case where s = 1. There are three condition-

ing states <1,00>, <010> and <001> . These states form a Markov

chain whose transition matrix can be obtained from Axiom C3' and is as

follows:

<100> < 010> < 001>

<100 > 1-8+8:n:
l 8:n:2 8:n:

3

<010 > 8:n:
l 1-8+8:n:

2
8:n:

3

<001 > 8:n:
l 8"2 1-8+8"3
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Define u
ijk

(i, j, k = I, 0) analogous to (2). Then by Axiom Rl'

For s = 2, the conditioning states are < 200>, <110>,

<101>, <020>, <011>, <002> and the transition matrix is as follows:

<200 > <no> <101> <020> <011> <002>

<200 > l-S+Sn
l

S'J( Sn
32

<110> 1 1
Sn

l
l-S 2' sn3

Sn
2 2' sn3

<101 > 1 S l-S
1 sn

3
Sn

l 2' n2 2' Sn2

< 020 > Sn
l

1-S+Sn
2

sn
3

<011> 1 1 Sn
2

l-S sn
32' Snl 2' Sn1

<002 > Sn
l

Sn
2

1-s+sn
3

It can be shown that

2
n

2
/Au200 = n/A u020 =

2

u
llO

= nln/A uon n2n/A

n1n/A
2ulOl = u002 = n/A

where A
2 2 2

= n
l

+ n
2 + n

3
+ n

1
n
2

+ n
l

n
3

+ n
2

n
3

,
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By Axiom Rl'

P(A
1

)
1 + u

101
] = 11

1
[11

1
+! (1-1I

1
)]/A= u200 + 2" [ullO 2

(6) P(A
2

)
1 + U

On
] = 11

2
[11

2
1

(1.11
2

)] / A= u020 + 2" [ullO
+ -

2

P(A
3

)
1 + U

Oll
] = 11

3
[11

3
+ ! (1-11

3
) ]/A= u002 + 2" [u101 2

For s = 3 there are 10 conditioning states and the transition matrix

is as follows:

<300> <210> <201> <120> <Ill> <030> <021> <102> <012> <003>

< 300> 1-8+811
1

811
2 811'3

<210> 1-8
1

811
2

2
811

1 '3 8113 :3 8113

<201> 811
1

1
1-8

2
811

3
'3 8112 :3 8112

<120> 811
1

1-8
2

811
2

1:3 8113 :3 8113

<Ill> 1 1 1
1-8

1 1 1
2" 8111 2" 8111

- 811 2" 8112 - 811 2" 811
32 2 2 3

<030> 81!1 1-8+811
2 81!3

<021>
1 2

1-8'3 81!1 :3 81!1 811
2 81!3

<102> 811
1

2
1-8

1 811
3:3 81!2 :3 8112

<012 >
2

81!1 811
2

1
1-8

3
'3 8111

811
3

<003> 81!1 8112 1-8+81!3



And by Axiom RI'

(7)

peAl)
2 + u 1 1. [ + u

102
]= u

300
+ 3 [u210 201.1 + '3 ul20 + Uno

P(A
2

)
2 + u

021
]

I + u
IH

+ u
012

]= u + 3 [u120 +3 [u2l0030

The analysis may be extended to any value of s. For r responses

the number of conditioning states will be (r+s-l). fHowever, or our
s

examination of the Gardner data a comparison of pred.:!.ctions for s equal

to 1, 2, and 3 will. be suff:i.c:i.ent.

Gardner actually reports several experiments, but we shall

consider only the data of Experiment 1. Six groups were run. Two groups

employed responses Al and A
2

The groups were denoted (70-30)

and reinforcing events

and (60,-40); the first number indicstes

val.ue of :rl2 "1 and the third. the value of

for these groups are given by (5) for s

to 2, and by (7) for s equal to 3.

the value of 1'., and the sec,ond the vaLue of l·,rt. Asymptotic predictions

for these groups are given by (4). The other groups involved three

(60,-30.-10); the first number indicates the va:J.ue of rt
l

, the second the

rt
3

• Asymptotic predlctions

equal to 1, by (6) for s equal
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The predicted values for s equal to 1 and 2 are presented

in Table 1 along with Gardner's observed proportions on trails 286-450.

TABLE 1

PREDICTED AND OBSERVED ASYMPTOTIC PROPORTIONS FOR THE GARDNER DATA

peAl) P(A
2

) P(A
3

)

Predicted Predicted Predicted
Group Obs. Obs'. Obs.

s=l s=2 s=l s=2 s=l s=2

60-40 .618 .600 .631 .382 .400 .369 --- --- ---

60-30-10 .684 .600 .658 .235 .300 .267 .081 .100 .075

60-20-20 .676 .600 .667 .162 .200 .166 .162 .200 .166

70-30 .721 ·700 ·753 .279 .300 .279 --- --,- _._-
70-20-10 .798 ·700 ·773 .129 .200 .156 .073 .100 .071

70-15-15 .802 ·700 .800 .099 .150 .100 .099 .150 .100
.

Over-all, the predictions for s = 2 give a fairly good account of the

data. However, for comparable experimental procedures and equipment,

one would hope that the number of response alternatives would not affect

the estimated value of s. Unfortunately this invariance,in s is not

perfectly reflected in these data. For example, the predicted value of

peAl) for s = 2 is slightly low for the two-response groups and
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somewhat high for the three-response groups, Of course, this could be a

statistical artifact, and a satisfactory answer would depend on a more

detailed analysis of the sequential data,

There are several general comments to be made concerning these

predictions, First of all, for s greater than 1 the predicted value

of peAl) in the (70-30) group is l.esB than the predicted value of

peAl) for groups (70-15-15) and (70--20 ...10); similarly, the predicted

value of peAl) for the (60-40) group is less than peAl) for groups

(60_20-20) and (60-30-10). This result holds in general for the

noncontingent reinforcement model.: if the A
l

response is reinforced

with some specified probability greater than 12" then for a fixed s

greater than 1, the prediction for peA,) increases as a function of
~

the number of alternative responses. Further, peAl) approaches 1 as

s becomes large, independent of the number of alternative responses,

Another result can be established for the three-response

noncontingent model, Let 11: >l 11:
2 :::: ~3' and define 5 = 11 - 11

3
,

1 2 ' 2

Then we can prove for fixed values of 111
and s (where s > 1) that

peAl) increases as 5 approaches O.

We shall not go further in our analysis of these axioms; our

purpose in this paper has been simply to display the modified set of

axioms and outline some of the grosser implications, Currently we are

carrying out a detailed evaluation of the axioms with regard to several

sets of data; future explorations of the ideas presented in this paper will

depend on the success of these analyses.
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