
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Performance and Power Optimization for Multi-core Systems using Multi-level Scaling

Permalink
https://escholarship.org/uc/item/3777j1rd

Author
Almatouq, Munirah

Publication Date
2019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3777j1rd
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Performance and Power Optimization for Multi-core Systems using Multi-level Scaling

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Munirah Almatouq

Dissertation Committee:
Professor Jean-Luc Gaudiot, Chair

Professor Nader Bagherzadeh
Professor Alexandru Nicolau

2019

c© 2019 Munirah Almatouq

DEDICATION

To my parents, who taught me to dream big
To my husband and children

Without their love and support I could never achieved my dreams

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

LIST OF ALGORITHMS vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION x

1 Introduction 1
1.1 Power Management Techniques . 2
1.2 Goals and Contributions . 4
1.3 Dissertation Organization . 5

2 Related Work 7
2.1 DVFS . 7
2.2 Resource Scaling . 8
2.3 Core Scaling . 9

3 Optimization Methodology 11
3.1 Problem Formulation . 12
3.2 Configuration Sampling . 18
3.3 Response Approximation . 21

3.3.1 First Order Polynomial . 22
3.3.2 Second Order Polynomial . 22
3.3.3 Radial Basis Functions . 24

3.4 Radial Basis Function Networks . 27
3.5 Optimization . 28

4 Genetic Algorithm 31
4.1 GA for Chip-wide Configuration . 35

4.1.1 Chromosome Representation . 35
4.1.2 Population Initialization . 35

iii

4.1.3 Selection . 36
4.1.4 Crossover . 37
4.1.5 Mutation . 38
4.1.6 Replacement and Termination Criteria 38

4.2 GA for Per-core configuration . 39
4.2.1 Chromosome Representation . 39
4.2.2 Crossover . 40
4.2.3 Mutation . 41

4.3 Elitism . 42
4.4 Parameters . 42

5 Evaluation Methodology 43
5.1 Gem5 . 44
5.2 McPAT . 46
5.3 Benchmarks . 47
5.4 Matlab . 48
5.5 GA . 50
5.6 Summary . 50

6 Runtime System Overhead 52
6.1 Configuration Sampling . 52
6.2 Core Scaling . 53
6.3 Memory Scaling . 53
6.4 Micro-architecture reconfiguration . 54
6.5 Optimization . 55

7 Experimental Results 56
7.1 Isolated Scaling . 56
7.2 Response Surface Model . 58
7.3 Chip-wide Configuration . 60
7.4 Pre-core Configuration . 63

8 Conclusions and Future Work 67

Bibliography 70

iv

LIST OF FIGURES

Page

1.1 Microprocessor trend data, from [1] . 2

3.1 Multi-core architecture with the adjustable knobs in each core. 12
3.2 Optimization Methodology consists of three stages : Configuration Sampling,

Surface Fitting, and Optimization . 17
3.3 Sample points for the Full Factorial (left), and Fractional Factorial (right)

designs. from [3] . 18
3.4 Radial Basis Function Network . 27

4.1 Flow chart showing the evolution process of genetic algorithm. 34
4.2 Chip-wide configuration chromosome representation. 35
4.3 Example of Initial Population . 36
4.4 Chip-wide configuration one-point crossover operator. 37
4.5 Chip-wide configuration mutation operator. 38
4.6 Per-core Configuration Chromosome Representation. 39
4.7 Per-core configuration Crossover Operator 40
4.8 Per-core Configuration Mutation Operator. 41

5.1 Basic steps for creating a RBFN . 48
5.2 Evaluation methodology showing different simulators and applications used

to evaluate the proposed system . 51

7.1 Comparing different power management techniques in terms of (a) improve-
ment in Execution time and (b) improvement in Energy consumption 57

7.2 RBFN accuracy measured as percent error between the predicted and real
values of response function . 59

7.3 Comparing improvement in Execution time and improvement in Energy con-
sumption using (a) GA perf and (b) GA energy 62

7.4 Comparing improvement in Execution time and improvement in Energy con-
sumption using GA optimizing both . 63

7.5 Comparing chip-wide and per-core configuration in terms of (a) improvement
in IPC and (b) improvement in Energy consumption 64

7.6 Comparing chip-wide and per-core configuration for each core for the 10 core
workload in terms of (a) improvement in IPC and (b) improvement in Energy
consumption . 66

v

LIST OF TABLES

Page

3.1 Configuration factors and corresponding values 13
3.2 Taguchi L16(215) design . 20
3.3 Full Factorial design . 21

5.1 Parameters of the Simulated System . 45
5.2 Parsec Workloads and the Input Set . 47
5.3 GA Parameters . 50

7.1 Baseline Configuration . 60

vi

List of Algorithms

Page
1 Pseudo-code of the proposed GA based optimization 33

vii

ACKNOWLEDGMENTS

It is a pleasure to express my gratitude towards my adviser, Professor Jean-Luc Gaudiot
for all his help and patience. His knowledge, integrity, and dedication have inspired me
throughout my graduate studies. Many thanks to my committee members, Professor Nader
Bagherzadeh and Professor Alexandru Nicolau, for dedicating the time and effort to evaluate
my work. It has been an honor to meet and work with them.

I wouldn’t be here without the help and support of my family. Thank you Dad for keeping
me motivated, for steering me in the right direction, for believing in me, for taking time to
talk for hours about my future, and for always being there for me. Thank you Mom for
all your prayers and guidance and for helping me with my little ones. I express my deepest
gratitude to my husband, Naser Alsanafi for always being there for me. His unconditional
love and constant support helped me to be strong.

Many thanks for Lulwah Alhubail, my dearest friend. It is hard to think of anything that
she did not help me with. She encouraged and supported me in research. Shoug alsubaihi,
thank you for all the advise, for many intellectual discussions and the ideas that came out
of them, and for the unforgettable memories. In addition, I extend my thanks to all my
colleagues in the PArallel Systems & Computer Architecture Lab (PASCAL).

I would also like to thank those who provided the financial support for my graduate studies.
I have been supported by generous grants Kuwait University.

viii

CURRICULUM VITAE

Munirah Almatouq

EDUCATION

Doctor of Philosophy in Computer Engineering 2019
University of California, Irvine Irvine, CA

Masters of Science in Computer Engineering 2008
Kuwait University Kuwait

Bachelor of Science in Computer Engineering 2005
Kuwait University Kuwait

EXPERIENCE

Computer Engineer 2008–2010
Kuwait Investment Authority Kuwait

Computer Engineer 2005–2007
Kuwait University Kuwait

TEACHING EXPERIENCE

Faculty Member 2010–2013
Public Authority for Applied Education and Training Kuwait

HONORS AND AWARDS

Scholarship to pursue Ph.D. in Computer Engineering 2013
Kuwait Univesity Kuwait

Listed in the list of students with honor 2001–2005
Kuwait Univesity Kuwait

Listed in the honorary deans list 2001–2005
Kuwait Univesity Kuwait

ix

ABSTRACT OF THE DISSERTATION

Performance and Power Optimization for Multi-core Systems using Multi-level Scaling

By

Munirah Almatouq

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2019

Professor Jean-Luc Gaudiot, Chair

Integrating more cores per chip to increase the performance of processors has been trending

for the past decade. However, this trend cannot be sustained because the reduction in power

consumption per core has slowed down while the power budget per chip has not increased.

Modern processor chips are becoming so power constrained to the point that not all their

devices can be powered at once - this is often referred to as dark silicon. To maximize

performance within these power constraints, the system must carefully select the set of

resources to be used.

To solve this problem, several power management techniques such as Dynamic Voltage/Frequency

Scaling (DVFS), core scaling, and resource scaling have been the subject of active research

and have proven to be effective. However, most of these solutions are sub-optimal because

they explore only one layer of the architecture. Although considering one layer reduces the

complexity of the technique, it limits the exploitation of potential improvement in perfor-

mance and energy consumption.

The problem is an order of magnitude more complex for power constrained multi-core archi-

tectures. We need power management systems that can take advantage of different scaling

techniques. Many studies have been conducted on scaling with the sole objective of per-

formance improvement. Nevertheless, few of them have considered both performance and

x

energy consumption in the optimization process.

This dissertation proposes an optimization technique that balances performance and en-

ergy consumption by applying a joint control of core, resource and frequency scaling. This

system finds the optimal configuration for a given application and accordingly adapts the

architecture configuration.

The proposed technique consists of three stages: configuration sampling, response surface

models to approximate performance and energy consumption, and online optimization us-

ing a genetic algorithm (GA). To evaluate the system, experiments were conducted on a

simulated 12 core architecture. Our experiments have shown that the performance could

improve by 15% on average while achieving energy savings of up to 26%. Using a per-core

configuration improves the performance by 25% on average and reduces the energy by 18%.

xi

Chapter 1

Introduction

The birth of multi-core architectures was a result of the increasing power requirements of

single-core architectures due to the rapid progression of speed and complexity. Moore’s Law

[41], which refers to the trend of doubling the number of transistors on a chip every 18

months, has been a key factor in the evolution of the microprocessor. With the discon-

tinuation of Dennard scaling [12] (see Figure. 1.1), which led to sharp increases in power

densities, powering all transistors simultaneously while keeping the chip temperature in the

safe operating range is becoming quite difficult.

We are now at a point where performance and energy consumption are tightly coupled.

Studies have shown that future multi-core systems will be able to power on less than 80% of

their transistors in the near future, and less than 50% in the long term [14]. This problem

requires the system to intelligently select the set of resources that maximizes the performance

within the given power budget at all times. The introduction of multi-core architectures

brought new challenges to the optimization of performance and energy consumption.

A variety of methods exist to manage power in modern systems. The basic idea of these

techniques is to have some scalability in one level of the architecture resources and then

1

Figure 1.1: Microprocessor trend data, from [1]

dynamically adapt the resource configuration to match different applications demands. Some

examples of scalable resources: the voltage/frequency level, the number of active cores, the

cache size, the number of execution units, and the size of the queues buffers and registers.

The role of the scaling algorithm is to make the decision how much to scale each salable

resource to optimize the performance of the running application.

1.1 Power Management Techniques

Dynamic voltage/frequency scaling (DVFS) [21] has been widely used to trade performance

with power. In DVFS the processor (or parts of it) is run at a less-than-maximum frequency

in order to conserve power. DVFS can be implemented at different granularities, at a coarse

grain we have chip-wide DVFS, and at a finer grain, we have per-core DVFS. However, the

2

efficiency of DVFS is decreasing because of the shift to processors with low voltage margins

(near-threshold computing). Besides, when implementing DVFS in large-scale multi-core

systems, the large number of dynamically scalable voltage domains makes it less cost effective.

Another power management mechanism is core level gating [32], where the core voltage

domain is gated to save power. Power gating technique is applied on the circuit level where

the power supply is cut on parts of the circuit. This is implemented using the sleep transistor.

One limitation of gating is the latency of turning the circuit back on ”wake-up” [37][19]

In addition, a number of power management approaches dynamically scale micro-architecture

resources of each core to adapt to application requirements [45]. Other approaches consider

cache adaptations to optimize power consumption [40].

Scaling those resources is challenging because there is no defined relationship between perfor-

mance or energy consumption and the amount of each resource. For example, reducing the

number of cores to half does not necessarily reduce the performance or energy by half, and

may result in very different performance and energy consumption for different applications.

For the scaling algorithm to be effective it should have some insight about the application

behavior.

Each of these scaling techniques has its strengths which makes it useful for specific appli-

cations or platforms, but each of them has its limitations which makes it less useful for

other applications or platforms. While many of these mechanisms have been researched in

isolation, integrating them is necessary to achieve a potentially significant reduction in en-

ergy consumption. This integration can lead to a great increase in the complexity of the

optimization algorithms.

Power management techniques can be implemented in various ways it can be static or dy-

namic, coarse-grained or fine-grained, the control can be global or distributed, and the

technique can be reactive or predictive.

3

1.2 Goals and Contributions

The ultimate goal of this dissertation is to understand the effectiveness of combining different

scaling techniques in improving the performance and reducing the energy consumption of

multi-core systems.

This work explores the problem of optimizing both performance and energy consumption of

multi-core systems. This is done by applying dynamic scaling techniques at multiple levels of

the architecture including core, resource, and voltage/frequency level. Implementing scaling

at multiple levels makes the configuration search space multidimensional and complex to

navigate. The objective is to create a framework to manage the interplay of the scaling at

different levels.

In this research, I propose an online optimization technique that scales the multi-core to the

specific requirements of the running application. However, the challenge is how to determine

the optimal architecture configuration at any given time. The approach of training, response

surface modeling (RSM) and optimization is widely used for design space exploration (DSE)

for processor customization and power optimization at design time [35][43][58]. The proposed

technique relies on sampling techniques, surface fitting approximation function, and heuristic

optimization to find the best configuration. Sampling is used to characterize the behavior of

applications by applying different configurations. Then, a response surface model is built to

approximate the application characteristics. This model is used in the optimization stage.

The configuration can be either a chip-wide where all the cores are uniformly scaled (homoge-

neous configuration) or a per-core configuration where each care has a different configuration

(heterogeneous configuration).

Overall, I make the following contributions in this research:

4

• Develop a system that manages and controls the interplay of different power manage-

ment techniques.

• Develop a system that considers both performance and energy consumption.

• Develop a multi-technique approach, combining sampling, approximation and multi-

objective optimization, to explore the reconfiguration search space.

• implement a multi-objective optimizer based on genetic algorithm to explore the chip-

wide reconfiguration search space.

• implement a multi-objective optimizer based on genetic algorithm to explore the per-

core reconfiguration search space.

• Evaluate the proposed system on a simulated multi-core processor and show that our

integrated approach achieves optimized performance while saving energy.

• Compare the effectiveness of applying a per-core configuration to a chip-wide configu-

ration.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. chapter 2 discusses the existing power

management techniques. This chapter presents the related work for each level of scaling

and the some of research that integrated multiple scaling techniques. Chapter 3 states the

problem formulation and presents the optimization methodology. This chapter explains

the details of the different stages of the proposed methodology. The implementation of

the optimization algorithm is discussed in Chapter 4. It explains the general dynamics

of genetic algorithm and the specifics of its operators. Chapter 5 presents the evaluation

methodology including benchmarks, performance and power simulation, the response surface

5

model implementation, and the experimentation setup. Chapter 6 describes the overhead

of the proposed system including the optimization and reconfiguration overhead. Chapter 7

discusses the different experiments that were conducted to evaluated the proposed system

for both the chip-wide configuration and the per-core configuration. Finally, Chapter 8

concludes this work and discusses future work.

6

Chapter 2

Related Work

2.1 DVFS

Several studies have been conducted on DVFS for power management. Isci et al. [21] de-

veloped different policies for global multi-core power management considering prioritization

and throughput. Sharkey et al. [49] implemented coarse-grained chip-wide DVFS with fine-

grained per-core fetch throttling and explored tradeoffs between local and global control.

Bergamaschi et al. [5] compared per-core against chip-wide approaches and discrete versus

continuous algorithms. Liu et al. [36] defines an approach to maximize the performance

under a system-wide power cap considering both CPU and memory DVFS. Ravi et al. [48]

proposed an integrated power gating and DVFS within the core while considering the power

consumed by each node in the clock tree hierarchy. Jayaseelan et al. [23] proposed a hybrid

local-global thermal management approach for multi-core systems that use global DVFS

across all the cores then locally tune the performance of each core individually through

architectural adaptations. Li et al. [32] considered two levels of scaling, changing the num-

ber of active cores and applying DVFS to maximize performance under a power constraint.

7

Eyerman et al. [15] evaluated the potential of applying fine-grain DVFS and proposed a

fine-grained DVFS mechanism. Kim et al. [25] also, demonstrated the benefit of per-core

DVFS for embedded processors. Teodorescu et al. [52] developed a variation-aware power

management DVFS algorithms to maximize throughput at a given power budget. they used

linear programming to find the best voltage and frequency levels for each of the cores in the

multi-core system. Rangan et al. [47] proposed a thread migration technique where threads

that require different V/F levels for power-efficient operations, are migrated to the cores

that can provide an appropriate performance level instead of changing the V/F of the cores.

One disadvantage of DVFS is that it can be less effective as processors shift to lower voltage

margins (near-threshold computing).

2.2 Resource Scaling

A number of researches have focused on resource scaling techniques that adapt the resource

of the core(s) to the application. Kontorinis et al. [27] proposed a table-driven adaptive

resource scaling technique to guarantee that the peak power consumption of a processor is

far lower than the sum of all core blocks. Iyer et al. [22] used a run-time profiling to opti-

mize the configuration based on detecting the parts of the running application which have

good potential for energy savings. Albonesi et al. [4] proposed using adaptive processing to

dynamically tune major microprocessor resources by disabling underutilized hardware to im-

prove performance or power efficiency. Dubach et al. [13] used a control mechanism based on

a predictive model for micro-architectural adaptation. The model controls the adaptability

by monitoring the behaviour of the application in different phases. Lee et al. [29] proposed

a framework that is able to analyze the performance and power characteristics of adaptive

micro-architectures. Huang et al. [20] propose a positional approach that uses program

subroutines as the granularity for reconfiguration. Hu et al. [19] scheme for management

8

of multiple configurable units, utilizing the inherent capabilities of dynamic optimization

systems. Hotspot are used for phase detection and adaptation. Petrica et al. [45] proposed

a general-purpose multi-core architecture that dynamically adapts to varying and stringent

power budgets. The micro-architecture includes reconfigurable horizontal lanes through the

pipeline that allow adapting individual cores to the running application. Bitirgen et al.

[8] developed a framework that manages multiple shared resources using machine learning.

Meng et al.[38] described a global optimization power management framework for multi-core

architectures that applies a greedy algorithm to examine the search-space and find operat-

ing points that offer good power/performance compromises. Gibson et al. [17] presented

Forward flow, a scalable core design for power-constrained multi-core leveraging a modular

instruction window. Forward flow represents inter-instruction dependencies via a linked list

of forward pointers.

2.3 Core Scaling

Core scaling is another widely used power management technique. Some studies have been

developed to determine when to shut down cores. Liu et al. [34] addressed the problem of

minimizing the power dissipation of many-core systems under performance constraints by

exploiting per-core DVFS with core scaling. Ghasemi et al.[16] developed a technique that

simultaneously and uniformly scales the resources that are associated with each core and the

number of operating cores to maximize the performance of power-constrained multi-core.

Vega et al. [55] presented PAMPA a measurement-based evaluation of power management

policies available in modern multi-core systems such as DVFS, core folding, and per-core

power gating. It proposed coordination of the power management activities in the system

to improve the robustness. Lee et al.[31] considered power-constrained GPUs and optimized

the number of operating cores, the voltages and frequencies of cores, on-chip interconnects

9

and caches according to the application characteristics. Lee et al.[30] analyzed the effect of

applying per-core power gating and DVFS on the throughput of power-constrained multi-core

processors running applications with limited parallelism.

Jha et al. [24] presented an integrated power management that used Pareto-optimal per-

core configurations, followed by global utility-based power allocation to reallocate power to

the cores/threads. Micolet et al. [39] studied the potential for dynamic reconfiguration of

multi-core processors at runtime using linear regression model to decide the number of cores

to fuse at runtime to optimize for performance.

Our work differs from prior work in that it combines core scaling, resource scaling and DVFS

in one optimization problem. For a given application, the goal is to find the best combination

of the number of cores, resources in each core and voltage/frequency level while considering

both the overall system performance and energy consumption. Previous studies have only

considered overall system either performance or energy consumption.

10

Chapter 3

Optimization Methodology

The targeted multi-core architecture, as shown in Fig.3.1, has a number of adjustable knobs

and the setting of these knobs define a unique configuration which represents a distinct power-

performance trade-off. Hence, the role of the scaling algorithm is essential to determine the

optimal configuration. The knobs that are considered for scaling can be classified into three

levels: the core level, the resource level, and the Voltage/Frequency (V/F) level. Finding

the optimal configuration can become a complex task as the number of cores and number of

scalable resources increases and as the configuration need to be found fast.

Moreover, Adjusting these knobs is a challenge since there is no clear relationship or formula

between performance or energy and the scale of each knob. Different configurations exhibit

different behaviors in terms of performance and energy consumption. For an application

that has a high thread level parallelism, using more cores can improve performance. On the

contrary, for an application that has a high instruction level parallelism, using more resources

can improve performance. In addition, for a specific application two different configurations

with the same performance can consume different amounts of energy and vice versa. To find

the optimal configuration the scaling algorithm must search through a wide rage of possible

11

Figure 3.1: Multi-core architecture with the adjustable knobs in each core.

configurations.

3.1 Problem Formulation

The objective of the proposed optimization is to determine the number of cores, the scale of

resources in each core and, the V/F level that maximizes the performance while consuming

the least energy possible. The search space of this problem is multidimensional with local

optima, and heuristic algorithms are known to be efficient in searching such complex spaces.

Evolutionary Algorithms [18] refers to a group of heuristic methods that use mechanisms of

biological evolution. They differ from other heuristics by selecting the fittest individuals in a

population for reproduction and applying crossover and mutation to produce offspring. The

fittest individuals evolve to next generations.

This optimization problem has two types of variables, factors (inputs) and responses (out-

puts). The factors are the variables that determine the configuration of the system while the

responses are the measured output values of the system. In this work, a number of factors

12

Table 3.1: Configuration factors and corresponding values

Level Factors Values

Architecture Number of cores 8, 10, 12

L2 cache size (MB) 4, 8

Cache L1-I cache size (KB) 16, 32

L1-D cache size (KB) 16, 32

TLB size 16, 32

LQ entries 16, 32

SQ entries 16, 32

ROB entries 32, 64

IQ entries 32, 64

Core Int ALU 2, 4

FP ALU 1, 2

Int Mult 1, 2

FP Multi 1, 2

SIMD 1, 2

Int Reg 128, 256

FP Reg 128, 256

Voltage, Frequency F/V (GHz/ V) 2.7/0.85,

3.2/0.9,

3.6/0.95

are considered. The factors vary from core, resource, and V/F level (see Table 3.1) and two

responses the performance which can be either execution time or throughput and the energy

consumption. The problem formulation is as follows.

Inputs:

• A set of Applications A = {a1, a2, . . . , am}

• A set of the number of cores C = {c1, c2, . . . , cn}

13

• A set of the resource combinations R = {r1, r2, . . . , rs}

• A set of the Voltage/Frequency levels

V = {v1, v2, . . . , vp}

Responces:

• Execution Time function: T1(ai, cj, rk, vl) which evaluates the execution time of running

application ai using cj cores, each with rk resources at voltage/frequency level vl.

• Throughput function: T2(ai, cj, rk, vl) which evaluates the throughput of running ap-

plication ai using cj cores, each with rk resources at voltage/frequency level vl.

• Energy consumption function: E(ai, cj, rk, vl) which evaluates the energy of running

application ai using cj cores, each with rk resources at voltage/frequency level vl.

Objective: In the case of a single objective optimization problem, the fitness of a solution

can be easily determined by the value of the objective function. For our problem there are

a variety of single objectives that can be considered:

• Maximize Throughput T2().

• Minimize Execution Eime T1().

• Minimize Energy Consumption E().

However, this is a multi-objective optimization problem that considers both the overall

performance (execution time/throughput) and energy consumption of a solution. Hence, a

weighted fitness function f is used to combine both objectives.

f = wT̄ + (1− w)Ē;w = [0, 1] (3.1)

14

where T̄ and Ē are normalized to the best values reached. w is a weight value that determines

the importance of each of the objective functions.

w



= 0 f = Ē

< 0.5 Ē is more important than T̄

= 0.5 Ē is as important as T̄

> 0.5 T̄ is more important than Ē

= 1 f = T̄

The optimization of such objectives using traditional optimization methods directly to these

functions is unfeasible. The reason is that simulation-based objective functions are often

discontinuous and non-differentiable. Another obstacle of optimization based on simula-

tion is the high computational cost simulations. Simulating a single configuration can take

several hours or even days. Response surface model(or surrogate models) [53] offer a less

expensive solution to handle these unmanageable functions. When using surrogate mod-

els, the optimization of the original objective is replaced by optimizing the computationally

less expensive surrogate function. Surrogate models are used to approximate both response

functions.

• Execution Time function: T̂1(ai, cj, rk, vl) which estimates the execution time of run-

ning application ai using cj cores, each with rk resources at voltage/frequency level

vl.

• Throughput function: T̂2(ai, cj, rk, vl) which estimates the throughput of running ap-

plication ai using cj cores, each with rk resources at voltage/frequency level vl.

• Energy consumption function: Ê(ai, cj, rk, vl) which estimates the energy of running

application ai using cj cores, each with rk resources at voltage/frequency level vl.

15

The optimization process works by first examining the application behavior and then re-

configure the architecture to accommodate its requirements. To find the best configuration

for a specific application, this process is implemented in three stages. First, configuration

sampling, second performance and energy approximation, then optimization. These stages

are discussed in details in section 3.2, section 3.3 and section 3.5 respectively.

Fig. 3.2 shows the different stages of the optimization process. The system starts with an

application running on the multi-core processor. To characterize the application behavior,

different configuration samples are applied and for each sample, the performance and energy

consumption are recorded. Sampling techniques define a way to select sample points in the

search space with the objective of maximizing the amount of information captured. Next,

a surrogate model is constructed using the data obtained by sampling the search space to

estimate the response functions. Finally, using the surrogate functions, the optimization

algorithm determines the configuration that optimizes both performance and energy con-

sumption and reconfigures the multi-core accordingly.

To find the optimal configuration for any application, it is important to understand the

application characteristics and the way it behaves under different configurations. In the

sampling stage, the behavior of the application and its hardware resource needs are recorded

by changing the configuration and executing the application for periods of time with different

configurations. Each application is profiled offline where it runs for a period of time under

each sample configuration and its performance and energy consumption is stored. The col-

lected data samples are used to build a response surface model that estimates the application

characteristics.

16

Figure 3.2: Optimization Methodology consists of three stages : Configuration Sampling,
Surface Fitting, and Optimization

17

Figure 3.3: Sample points for the Full Factorial (left), and Fractional Factorial (right) de-
signs. from [3]

3.2 Configuration Sampling

There are a number of aspects of the sampling process that affect the accuracy of the resulting

response surface model. The first variable is the length of the sample, which is the amount of

time the application run with a specific configuration. Another critical variable is the number

of sample points or the number of configuration to sample. Both variables are important

because they affect the accuracy of the response surface model and the time it takes to profile

each application.

The most straightforward approach for sampling is the full factorial design, where all com-

binations of the factors are sampled and their effect on the response variables is measured.

The advantage of the full factorial design is that it gives the most accurate response surface

model because it captures both the individual effects of each factor and the interactions be-

tween the factors. However, for a large number of factors, the full factorial design will need

18

a huge number of samples. Moreover, the interaction of some factors does not significantly

affect the response variables, hence it can be omitted. In addition when using simulation,

the number of sample configurations per application is limited by the simulation time.

There are a number of alternative sampling methods used to reduce the cost of the sampling

stage. One method is the Fractional Factorial design [57] which, consists of a subset of

the full factorial design. This design method is based on the sparsity-of-effect principle [56]

which refers to the idea that a system is usually dominated by the single factor effects and

two-factor interactions, and a higher order interaction such as three-factor interactions are

very rare. This means only a few effects in a factorial design are significant and should

be considered. Fig 3.3 shows the sample points of a full factorial design and a fractional

factorial design for 3 factors.

Taguchi Orthogonal Array (OA) design is a type of fractional factorial design. It is a highly

fractional orthogonal design. It considers a selected subset of combinations of multiple

factors at multiple levels. Taguchi (OA) is balanced to ensure that all levels of all factors

are considered equally. For this reason, the factors can be evaluated independently of each

other.

The targeted system has two types of factors, 2-level factors and 3-level factors (see Table

3.1). For sampling the 2-level factors (cache and resources), we used Taguchi L16(215) design.

This design consists of 15 factors at 2 levels each. Resulting in 16 configurations (see Table

3.2).

Then we used a full factorial design for the 3-level factors (number of cores, V/F level).

Resulting in (32) = 9 configurations, see table 3.3. To get all possible combinations, the

overall number of samples is 16 ∗ 9 = 144 samples.

In the configuration sampling stage, an application ai runs for short intervals that have the

same number of operations for fairness, typically corresponding to 40- to 100- million instruc-

19

Table 3.2: Taguchi L16(215) design

L2 L1-I L1-D TLB IntALU IntMult FPALU FPMult SIMD LQ SQ ROB IQ IntReg FPReg

4 16 16 16 4 2 2 2 2 32 16 32 32 128 256

8 16 16 16 2 1 1 2 2 32 32 64 64 128 128

4 32 16 16 2 2 2 1 1 32 32 64 32 256 128

8 32 16 16 4 1 1 1 1 32 16 32 64 256 256

4 16 32 16 4 1 2 1 2 16 32 32 64 256 128

8 16 32 16 2 2 1 1 2 16 16 64 32 256 256

4 32 32 16 2 1 2 2 1 16 16 64 64 128 256

8 32 32 16 4 2 1 2 1 16 32 32 32 128 128

4 16 16 32 4 2 1 2 1 16 16 64 64 256 128

8 16 16 32 2 1 2 2 1 16 32 32 32 256 256

4 32 16 32 2 2 1 1 2 16 32 32 64 128 256

8 32 16 32 4 1 2 1 2 16 16 64 32 128 128

4 16 32 32 4 1 1 1 1 32 32 64 32 128 256

8 16 32 32 2 2 2 1 1 32 16 32 64 128 128

4 32 32 32 2 1 1 2 2 32 16 32 32 256 128

8 32 32 32 4 2 2 2 2 32 32 64 64 256 256

tions depending on a benchmark and its runtime. Each interval has a different configuration

(cj, rk, vl).

After the execution of each sample interval, the execution time t and energy e consumption

responses are obtained to build the response surface model.

Having selected the sampling technique and sampled the data, the next step is to build

an approximation model and a fitting methodology. The next section describes in detail

different surrogate modeling techniques.

20

Table 3.3: Full Factorial design

Cores V/F

8 2.7/0.85

8 3.2/0.9

8 3.6/0.95

10 2.7/0.85

10 3.2/0.9

10 3.6/0.95

12 2.7/0.85

12 3.2/0.9

12 3.6/0.95

3.3 Response Approximation

Due to the absence of accurate models or functions that evaluate the performance and energy

consumption of the multi-core system while considering all the factors we are scaling in this

study, we instead use a response surface model to get a computationally inexpensive approx-

imation of the response functions. Response surface models are inexpensive approximations

of computationally expensive functions that we need to be optimized. In the proposed ap-

proach, each application is characterized by sampling a number of factor combinations and

measuring the system response at each sample point. The main objective of using a response

surface model is to construct a response function from a small subset of function evaluations.

The two functions that need to be approximated are T (ai, cj, rk, vl)and E(ai, cj, rk, vl) . The

next subsections explain various response surfaces models.

21

3.3.1 First Order Polynomial

The first order polynomial or linear function is the simplest and least time-consuming re-

sponse surface model. In this model, the response function can be described as

ŷ = β0 + β1x1 + β2x2 + β3x3

It is used to efficiently optimize linear functions with linear constraints. Polynomial response

surface model assumes a linear relation between the factors and the responses. In our case,

the distribution of the data was more complex.

3.3.2 Second Order Polynomial

Low-order polynomial are also popular response surface models widely used in scientific areas

because of its simplicity. [9]. In this model the response function can be described as

f(x) = ŷ + ε

where f(x) is the response, ŷ is the model value, and ε is the error. A second order polynomial

surrogate function is described

ŷ = β0 +
k∑

i=1

βixi +
k∑

i=1

k∑
j<i

βijxixj +
k∑

i=1

βiix
2
i

For three factors this can be expand to

ŷ = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + β11x
2
1 + β22x

2
2 + β33x

2
3

Assuming that the number of sample point is n, the system can be described as

22

Y = βX

where Y is a 1 by n column vector of the measured responses, X is a matrix of the factor

values, and β is the vector of the coefficients.

Y =



y1

y2

y3

y4

˙

˙

˙

yn−2

yn−1

yn



β =



β0

β1

β2

β3

β11

β22

β33

β12

β13

β23



23

X =



1 x11 x21 x31 x211 x221 x231 x11x21 x11x31 x21x31

1 x12 x22 x32 x212 x222 x232 x12x22 x12x32 x22x32

1 x13 x23 x33 x213 x223 x233 x13x23 x13x33 x23x33

1 x14 x24 x34 x214 x224 x234 x14x24 x14x34 x24x34

˙

˙

˙

1 x1n−2 x2n−2 x3n−2 x21n−2
x22n−2

x23n−2
x1n−2x2n−2 x1n−2x3n−2 x2n−2x3n−2

1 x1n−1 x2n−1 x3n−1 x21n−1
x22n−1

x23n−1
x1n−1x2n−1 x1n−1x3n−1 x2n−1x3n−1

1 x1n x2n x3n x21n x22n x23n x1nx2n x1nx3n x2nx3n


The first and second order polynomial functions require a large number of data points.

Moreover, the approximated values are not necessarily equal to the actual values at the

sampling points (non-interpolating). In general, Radial Basis Functions (RBFs) present a

powerful solution to the problem of scattered data fitting, where some samples are given as

data points, and we want to approximate the response at new points [42].

3.3.3 Radial Basis Functions

Radial basis function is an interpolating model that uses a combination of radially symmetric

functions [10]. The radial basis function value depends on the Euclidean distance from the

center c. This method works in an d dimensional Euclidean space Rd. Assuming that

there are n sample points in this space x1, x2, , xninR
d for which the response function

f(x1), f(x2), , f(xn) are known. This function is unknown except at those n points. In this

model the response function can be described as

24

ŷ =
n∑

i=1

λiφ(||x− xi||), x ∈ Rd

Where

• xi are the sample points, at which the value of y is known.

• x is the point at which the approximated value ŷ will be calculated.

• φ is a univariate, normally continuous function in this case radial basis function

• ||.|| is the Euclidean distance between two d-dimensional points.

• λi are the coefficients of the response function.

Radial basis functions are simply a class of functions. Generally they could be employed in

linear or nonlinear models.

Assuming that the number of sample point is n, the system can be described as

y1(x1) = λ1φ(||x1 − x1||) + λ2φ(||x1 − x2||) + λ3φ(||x1 − x3||) + · · ·+ λnφ(||x1 − xn||)

y2(x2) = λ1φ(||x2 − x1||) + λ2φ(||x2 − x2||) + λ3φ(||x2 − x3||) + · · ·+ λnφ(||x2 − xn||)

y3(x3) = λ1φ(||x3 − x1||) + λ2φ(||x3 − x2||) + λ3φ(||x3 − x3||) + · · ·+ λnφ(||x3 − xn||)

.

.

.

yn(xn) = λ1φ(||xn − x1||) + λ2φ(||xn − x2||) + λ3φ(||xn − x3||) + · · ·+ λnφ(||xn − xn||)

25

where each equation represents the response of one sample : yn(xn)

Y = λΦ

Y =



y1

y2

y3

˙

˙

˙

yn



λ =



λ1

λ2

λ3

˙

˙

˙

λn



Φ =



Φ11 Φ12 . . . Φ1n

Φ21 Φ22 . . . Φ2n

˙

˙

˙

Φn1 Φn2 . . . Φnn



26

t

∑

Inputs Bases

Weights

Sum

.

.

.

.

.

.

X1

X2

Xn

W1

W2

Wn

F

Figure 3.4: Radial Basis Function Network

3.4 Radial Basis Function Networks

Radial Basis Functions (RBFs) present a powerful solution to the problem of scattered data

fitting, where some samples are given as data points and we want to approximate the response

at new points [42].

The sampled data points represents an underlying behavior and we want to model this

function. RBF networks can learn to approximate the underlying behavior using many

Gaussian activation function. An RBF network is similar to a 2-layer neural network, see

Fig. 3.4. RBF networks consists of three layers: input layer, hidden layer and output layer.

In the input layer each neuron corresponds to a factor. Hidden layer has a number of neurons.

Each neuron has a radial basis function. The output layer is a weighted sum of outputs from

the hidden layer.

Our work incorporates RBF networks to approximate both T (ai, cj, rk, vl) and E(ai, cj, rk, vl).

27

3.5 Optimization

The goal of the optimization is to find the global best solution of a nonlinear function,

which is a difficult task especially with the existence of multiple local optima. Generally,

optimization applies mathematics to find the best set of variables to optimize an objective

function. A problem with m variables x0, x1, ..., xm−1 where xi ∈ {0, ..., k − 1} will have a

search space with km possible solutions. The fitness is a measure of how good the solution

according to the objective function. The solution is evaluated by applying the objective

function.

Figure 3.5a shows a search space for a single variable optimization problem, where the X-axis

is the value of the single variable and the Y-axis is the fitness of this solution. As the number

of variables increases the search space will have more dimensions see Figure 3.5b.

The optimization algorithm is a method for exploring the search space to find the highest

or lowest point of the objective function. In the case of search spaces that are multidimen-

sional, searching through and evaluating the huge number of variable combinations become

infeasible.

Optimization algorithms can be classified into deterministic and non-deterministic approaches.

Deterministic optimization includes all the algorithms that use a mathematical approach to

find the optimal solution, this refers to mathematical programming. This approach follows

a single path in the search space which starts at a sub-optimal solution and ends at the best

solution. A non-deterministic algorithm is different from the deterministic in its ability to fol-

low more than one path in the search space at random. Deterministic algorithms will always

lead the same solution, for complex search space, this might be extremely time-consuming.

Heuristic algorithms are non-deterministic algorithms known to be effective in searching

complex and unknown spaces. The computational cost of heuristic algorithms can be man-

28

(a) One dimensional search space for a maximization optimization. points A and C represent local
optima. The ball show the movement from low fitness value high fitness. Borrowed from [2]

(b) Two dimensional search space for a maximization optimization. Borrowed from [2]

29

aged by trading the solution accuracy. Heuristic algorithms can be single solution based

or population based algorithms. Single solution heuristics work on exploiting the current

solution. On the other hand population based heuristics work on exploring the search space.

Evolutionary algorithms are population based heuristics that were inspired by the mecha-

nisms of biological evolution. The genetic algorithm [26] is a widely used heuristic algorithm

that has a good balance of exploitation and exploration. This algorithm reflects the pro-

cess of natural selection where the fittest individuals are selected for reproduction in order

to produce offspring of the next generation. The next chapter discusses the details of the

genetic algorithm.

Using the approximation functions generated from the previous stage, the optimization algo-

rithm determines the configuration that minimizes the objective function f . Since the search

space of this problem is large and complex and heuristic algorithms are known to be effective

in searching such spaces, we use Genetic Algorithm to find the optimal configuration.

30

Chapter 4

Genetic Algorithm

Genetic Algorithm is a heuristic algorithm that uses the mechanics of natural selection and

genetics to navigate search spaces. GA uses probabilistic transition not, deterministic rules.

It is a population-based search technique that starts with a population of solutions. In GA,

each solution is represented as a chromosome that has a fitness value. The fitness value is

a measure of how good is a solution according to the objective(s). By applying operations

such as selection, crossover, and mutation the solution that is fitter gets better chances to

reproduce.

Selection is the process of choosing the mating candidates for the crossover. Selection is gen-

erally based on the idea that chromosomes with higher fitness values have a higher probability

of contributing one or more children in the next generation. Two widely used implementa-

tions of fitness proportionate selection are the roulette wheel selection and the tournament

selection.

After selection, crossover involves the exchange of genetic material between selected chro-

mosomes (parents), to create new chromosomes (children). Various forms of this operator

can be implemented such as one-point crossover, multi-point crossover, uniform crossover.

31

The mutation operator in its purest form makes small, random changes to a chromosome.

It is used to maintain and introduce diversity in the population. The implementation of the

mutation depends on the chromosome representation. Some of the generic implementations

of mutation are random resetting mutation, swap mutation, scramble mutation, and inversion

mutation.

The replacement policy determines which chromosomes are to be moved to the next gener-

ation. It is crucial as it should ensure that the fitter chromosomes have better chances of

moving to the next generation. The age based replacement policy is based on the premise

that chromosomes are allowed in the population for a finite number of generation, after that,

replaced no matter how good its fitness is. On the other hand, a fitness based replacement

is based on the idea that children tend to replace the least fit individuals in the population.

The selection of the individuals to be replaced may be done using one of the selection policies.

Some GAs employ elitism. It means the current fittest member(s) of the population is always

propagated to the next generation. Elitism ensures that the best chromosome of the current

population would not be replaced.

The termination criteria determine when the GA ends. Generally, GA progresses very fast

with better solutions in the first generations, but this tends to saturate in the later stages

where GA converges. GA can be terminated by one of the following events: when there has

been no improvement in the population for a specific number of iterations, when it reaches

the maximum number of generations or when the objective function value has reached a

pre-defined value. The general process of GA is shown in Figure.4.1 and a pseudo-code of

the proposed GA based optimization is shown in Algorithm 1

This work considered two approaches to reconfigure the multi-core system. The first ap-

proach is a chip-wide configuration where a uniform configuration is applied across all cores

(homogeneous configuration). The other reconfiguration approach is the per-core config-

32

Algorithm 1 Pseudo-code of the proposed GA based optimization

1: //Initialize generation 1
2: generation = 1
3: Population = Initialize Population
4: //Termination criteria
5: while generation ≤ max generation do
6: EVALUATE(Population)
7: Children = {}
8: while size(Children) < size(Population) do
9: if rand() ≤ CrossoverRate then

10: {Patent1, Parent2} = SELECT (Population)
11: {child1, child2} = CROSSOVER(Patent1, Parent2)
12: else
13: child1 = Parent1
14: child2 = Parent2
15: end if
16: {child1, child2} = MUTATE(child1, child2)
17: Children = ADD(child1, child2)
18: end while
19: EVALUATE(Children)
20: Population = TOURNAMENT SELECTION(Population+ Children)
21: end while

33

Figure 4.1: Flow chart showing the evolution process of genetic algorithm.

uration where each core has a different set of resources. Two adaptations of GA were

implemented, one for each reconfiguration approach.

34

L2 L1-I L1-D TLB LQ SQ ROB IQ Int
ALU

FP
ALU

Int
Mult

FP
Mult SIMD Int

Reg
FP

Reg F/V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Factor

#Core

16 17

Figure 4.2: Chip-wide configuration chromosome representation.

4.1 GA for Chip-wide Configuration

In a chip-wide scaling, the factors are scaled uniformly in all cores. One configuration is

applied to all the active cores in the system.

4.1.1 Chromosome Representation

Each chromosome represents a configuration for the multi-core system. In a chip-wide con-

figuration, all the active core have the same resource configuration and the same V/F level.

The chromosome is represented as an array of factors that determine the configuration of the

system see Figure4.2. The first gene (Factor[1]) of the chromosome represents the number of

active cores. The other genes (Factor[2] to Factor[16]) represent the resource configuration

of all of the active cores and one gene (Factor[17]) represent the chip-wide V/F level.

4.1.2 Population Initialization

The population is a subset of solutions in the search space. It consists of a set of chromosomes.

The population should be diverse to avoid premature convergence. The population is usually

defined as a two dimensional array of [chromosome size][size population], see Figure4.3 . The

initial population of GA is created randomly.

35

8

4

32

32

16

32

32

64

32

4

1

2

2

1

256

128
3.6/
0.95

8

4

16

32

16

32

32

32

32

4

1

2

2

2

256

128
3.2/
0.9

10

8

32

16

16

32

16

64

32

2

1

1

2

1

128

256
3.6/
0.95

12

4

16

32

16

32

32

32

32

4

1

2

2

1

256

256
3.2/
0.9

8

8

32

16

16

32

32

64

64

2

1

1

1

1

128

128
2.7/
0.85

. . . .

12

4

16

32

16

16

32

32

64

2

2

1

1

2

128

128

3.6/
0.95

Figure 4.3: Example of Initial Population

4.1.3 Selection

To apply the crossover, two chromosomes (parents) have to be selected from the population.

In this implementation, a tournament selection policy is used. A set of n (tournament

selection size) chromosomes is chosen randomly from the population. From the n randomly

selected chromosome, the one with the highest fitness is selected as the first parent. This

process is repeated to select the second parent. The selected parents produce two children

through the crossover.

36

8 4 32 32 16 32 32 64 32 4 1 2 2 1 256 128

12 4 16 32 16 16 32 32 64 2 2 1 1 2 128 128

One-pointParent 1

Child1

Child2

Parent 1 configuration array

Parent 2

3.2/
0.9

3.6/
0.95

Parent 2 configuration array

8 4 32 32 16 32 32 64 64 2 2 1 1 2 128 128 3.6/
0.95

12 4 16 32 16 16 32 32 32 4 1 2 2 1 256 128 3.2/
0.9

Figure 4.4: Chip-wide configuration one-point crossover operator.

4.1.4 Crossover

The crossover operator is performed on the selected parents to produce the new solutions

that will be part of the next generation. The objective of the crossover operator is to exploit

the search space. Crossover works by mixing the genes of the parents to create new solutions.

For this operator to work, the resulting chromosome should represent a valid configuration.

The crossover operator can be implemented in various ways. In this work, a one-point

crossover is applied to the selected parents according to a crossover rate to generate two

children, see Fig.4.4. A random point in the chromosome is selected, then the first part is

copied from parent 1 to child 1 while the second part is copied from parent 2. Similarly, the

first part is copied from parent 2 to child 2 while the second part is copied from parent 1.

37

8 4 32 32 16 32 32 64 64 2 2 1 1 2 128 128 3.6/
0.95

10 4 32 32 32 16 32 32 64 2 2 2 1 2 256 128 3.6/
0.95

Figure 4.5: Chip-wide configuration mutation operator.

4.1.5 Mutation

The main objective of the mutation operator is to explore new areas in the search space. It

introduces some diversity into the population to avoid the algorithm to be stuck in local-

optima. The mutation operator makes a small random change to a chromosome. After a

child is produced from the crossover operator, mutation is applied with a very low probability

on each factor of the children chromosome. An example is shown in Fig. 4.5, the factors that

were mutated are the number of active cores, TLB size, LQ entries, ROB size, the number

of integer multipliers and the integer register file size by randomly resetting their values.

4.1.6 Replacement and Termination Criteria

This reproduction process is repeated until the number of children chromosomes is equal to

the population size. Then tournament selections is used on the combined current population

and children population to generate the new population for the next generation.

The evolution process is repeated until the maximum number of generations is reached and

the solution with the best fitness is returned.

38

1
2
3
4
5
6
7
8
9

10

12
11

13
14
15
16

Factor/Core
L2

L1-I
L1-D
TLB
LQ
SQ

ROB
IQ

Int ALU
FP ALU

FP Mult
Int Mult

SIMD
Int Reg
FP Reg

F/V

1
L2

L1-I
L1-D
TLB
LQ
SQ

ROB
IQ

Int ALU
FP ALU

FP Mult
Int Mult

SIMD
Int Reg
FP Reg

F/V

4
L2

L1-I
L1-D
TLB
LQ
SQ

ROB
IQ

Int ALU
FP ALU

FP Mult
Int Mult

SIMD
Int Reg
FP Reg

F/V

n
L2

L1-I
L1-D
TLB
LQ
SQ

ROB
IQ

Int ALU
FP ALU

FP Mult
Int Mult

SIMD
Int Reg
FP Reg

F/V

2
L2

L1-I
L1-D
TLB
LQ
SQ

ROB
IQ

Int ALU
FP ALU

FP Mult
Int Mult

SIMD
Int Reg
FP Reg

F/V

3 ...
...
...
...
...
...
...
...
...
...
...

...

...

...

...

...

...

Figure 4.6: Per-core Configuration Chromosome Representation.

4.2 GA for Per-core configuration

In a Per-core scaling each core has a different configuration.

4.2.1 Chromosome Representation

Each chromosome represents a configuration for the multi-core system. In a per-core config-

uration, each core have its own resource configuration and the V/F level. The chromosome

is represented as a m by n matrix where m is the number of configurable factors for a single

core and n is the number of cores. Each column of this matrix represents the configuration

of the corresponding core, see Fig.4.6.

39

One-point
P

a
re

n
t

1
P

a
re

n
t

2

1
2
3
4
5
6
7
8
9

10

12
11

13
14
15
16

Factor/Core
4

16
16
16
16
16
64
32
2
2

2
1

2
128
128

3.6/0.95

1
8

32
32
32
16
16
64
64
2
2

1
2

1
256
256

2.7/0.85

4
8

32
16
16
32
16
32
32
4
1

2
1

1
256
128

3.2/0.9

2
8

16
32
16
32
16
32
64
4
1

1
2

1
256
128

3.2/0.9

3
8

32
16
32
16
16
32
32
4
2

2
2

2
256
128

3.6/0.95

6
4

32
32
32
32
16
64
32
2
2

1
2

1
128
256

3.2/0.9

8
32
16
16
32
32
32
64
2
1

2
2

2
128
256

2.7/0.85

4
32
32
16
32
16
32
64
4
2

2
2

1
256
128

3.2/0.9

5 7 8

1
2
3
4
5
6
7
8
9

10

12
11

13
14
15
16

Factor/Core
8

16
32
32
32
32
32
64
4
2

1
1

1
256
256

3.2/0.9

1
8

16
32
16
16
16
32
64
2
1

2
1

2
256
128

3.6/0.95

4
4

16
16
16
32
16
32
32
2
2

1
1

2
128
256

3.2/0.9

2
4

16
16
32
16
32
64
32
4
1

2
1

1
128
128

2.7/.085

3
4

32
32
16
32
32
64
64
2
1

2
2

2
128
256

3.6/0.95

6
8

16
16
32
16
32
32
32
4
2

1
1

2
256
128

2.7/0.85

4
32
16
32
16
32
32
32
4
2

1
2

2
128
256

3.2/0.9

4
16
16
16
32
32
64
32
2
1

1
1

2
128
256

2.7/0.85

5 7 8

C
h

ild
 1

C
h

ild
 2

1
2
3
4
5
6
7
8
9

10

12
11

13
14
15
16

Factor/Core
8

16
32
32
32
32
32
64
4
2

1
1

1
256
256

3.2/0.9

1
8

16
32
16
16
16
32
64
2
1

2
1

2
256
128

3.6/0.95

4
8

32
16
32
16
16
32
32
4
2

2
2

2
256
128

3.6/0.95

6
4

16
16
16
32
16
32
32
2
2

1
1

2
128
256

3.2/0.9

2
4

16
16
32
16
32
64
32
4
1

2
1

1
128
128

2.7/.085

3
4

32
32
32
32
16
64
32
2
2

1
2

1
128
256

3.2/0.9

8
32
16
16
32
32
32
64
2
1

2
2

2
128
256

2.7/0.85

4
32
32
16
32
16
32
64
4
2

2
2

1
256
128

3.2/0.9

5 7 8

Factor/Core
4

16
16
16
16
16
64
32
2
2

2
1

2
128
128

3.6/0.95

1
8

32
32
32
16
16
64
64
2
2

1
2

1
256
256

2.7/0.85

4
4

32
32
16
32
32
64
64
2
1

2
2

2
128
256

3.6/0.95

6
8

32
16
16
32
16
32
32
4
1

2
1

1
256
128

3.2/0.9

2
8

16
32
16
32
16
32
64
4
1

1
2

1
256
128

3.2/0.9

3
8

16
16
32
16
32
32
32
4
2

1
1

2
256
128

2.7/0.85

4
32
16
32
16
32
32
32
4
2

1
2

2
128
256

3.2/0.9

4
16
16
16
32
32
64
32
2
1

1
1

2
128
256

2.7/0.85

5 7 8
1
2
3
4
5
6
7
8
9

10

12
11

13
14
15
16

Figure 4.7: Per-core configuration Crossover Operator

4.2.2 Crossover

The selection step is implemented in a similar manner to the chip wide configuration. After

the two parents are selected a one-point crossover is applied, see Fig.4.7. A random point is

selected, then the first child is created by coping the first set of columns from parent 1 and

the second set of columns from parent 2. Similarly, the first set of columns is copied from

parent 2 to child 2 while the second set of columns is copied from parent 1.

40

1
2
3
4
5
6
7
8
9

10

12
11

13
14
15
16

Factor/Core
4

16
16
16
16
16
64
32
2
2

2
1

2
128
128

3.6/0.95

1
8

32
32
32
16
16
64
64
2
2

1
2

1
256
256

2.7/0.85

4
8

32
16
16
32
16
32
32
4
1

2
1

1
256
128

3.2/0.9

2
8

16
32
16
32
16
32
64
4
1

1
2

1
256
128

3.2/0.9

3
8

32
16
32
16
16
32
32
4
2

2
2

2
256
128

3.6/0.95

6
4

32
32
32
32
16
64
32
2
2

1
2

1
128
256

3.2/0.9

8
32
16
16
32
32
32
64
2
1

2
2

2
128
256

2.7/0.85

4
32
32
16
32
16
32
64
4
2

2
2

1
256
128

3.2/0.9

5 7 8

1
2
3
4
5
6
7
8
9

10

12
11

13
14
15
16

Factor/Core
4

16
16
16
32
16
64
32
2
2

2
1

2
128
128

3.6/0.95

1
8

32
32
32
16
16
64
64
2
2

1
2

1
256
256

2.7/0.85

4
8

32
16
16
32
16
32
32
4
2

2
1

1
256
128

3.2/0.9

2
8

16
32
32
32
16
32
64
4
1

1
2

1
256
128

3.2/0.9

3
8

32
16
32
16
16
32
32
4
2

2
2

2
256
128

2.7/0.85

6
4

32
32
32
32
16
64
32
2
2

1
1

1
128
256

3.2/0.9

8
32
16
16
32
32
32
64
2
1

2
2

2
128
256

2.7/0.85

4
32
32
16
32
16
64
64
4
2

2
2

1
128
128

3.2/0.9

5 7 8

Figure 4.8: Per-core Configuration Mutation Operator.

4.2.3 Mutation

The mutation operator makes a small random change to a chromosome. After a child is

produced from the crossover operator, mutation is applied with a very low probability on

each factor of the children chromosome. An example is shown in Fig. 4.8, the factors that

were mutated are the LQ entries of core1, number of FP ALUs of core2, TLB size of core3,

V/F level of core5, number of Int multipliers of core6, ROB size, and Int register file size of

core8.

41

4.3 Elitism

Elitism is implemented by copying the best solution found so far into the next genera-

tion. This will improve the algorithm performance by ensuring that no time is wasted

re-discovering previously discarded solutions. Without elitism the crossover and mutation

operators will likely change the best solution and it will not be present in the new generation.

4.4 Parameters

There are a number of parameters that can affect the performance and execution time

of GA. First, the crossover rate which determine how often the crossover operator will be

performed. Crossover is made in a way that new chromosomes, are created by mixing genetic

material from good chromosomes and the new chromosomes could be better than the old

ones. However, it is good to leave some chromosomes from the current population survive

to next generation with out change.

Another parameter is the mutation rate which determine how often parts of chromosome will

be mutated. If there is no mutation, offspring will be copied without any change to the next

generation. If mutation is performed, part of chromosome is changed. Although, mutation

is applied to prevent local-optima, it should not occur very often, because then the GA will

change to a random search.

Population size is the number of chromosomes in one generation. If there are too few

chromosomes, only a small part of search space will be explored. On the other hand, it is

not useful to increase population size, because it will slow the GA. It is a trade off between

speed and accuracy.

42

Chapter 5

Evaluation Methodology

The proposed scaling technique require a lot of hardware modifications to support the re-

configuration process. Every scalable resource in the micro-architecture needs to have the

ability to be scaled. This can be implement by physical gating mechanisms which include

adding sleep transistors to power down each part of the scaled resources. Moreover, a logical

correctness mechanisms should be implemented to ensure proper operation when resources

are scaled. Due to the required modification to the hardware, evaluating the proposed opti-

mization on a real system is not applicable and simulation is more suitable.

In order to evaluate the proposed optimization framework, a full-system simulator, Gem5

[7] was used to simulate a 12 core multi-core system and model the performance function.

Mcpat [33], power modeling framework ,was used to model the power consumption (both

static and dynamic)

43

5.1 Gem5

Gem5 is an open source simulation tool that combines features from the M5 Simulator [15]

and the General Execution-driven Multiprocessor Simulator (GEMS) Toolset [16]. It can be

used to simulate most commercial ISAs, including ARM, ALPHA and x86, with full system

features. Also, it incorporates Ruby, which can be used to simulate the memory hierarchy

including cache coherence protocols and Garnet which models the interconnect to build a

customized NoC topologies.

Gem5 has an object oriented design. The main object is the SimObject. All the major

components of gem5 are SimObjects, including cores, caches, NoCs, pipelines, and memory

controllers. Every SimObject is represented by two classes, one in Python and one in C++.

The C++ class defines the performance critical functions of the modeled component, such

as the state, behavior, and performance-critical simulation model. On the other hand, the

Python class contains the parameters and specifications.

Gem5 offer two simulation modes. The first mode is the System call Emulation (SE). It

can run single applications and uses a simplified address translation model. In this mode

there is no scheduling and system calls are emulated through the host operating system. SE

simulation is very fast, usually used for testing the basic functionality. The second simulation

mode is the Full System (FS). This mode simulates a full system model including caches,

interrupts, exceptions, fault handlers, and an operating system.

Gem5 provides a number of CPU models each simulate different level of details in memory

access and instruction execution. The simplest model is the AtomicSimple which is a single

IPC CPU. TimingSimple model has a more detailed memory model, it uses functions to send

cache requests and handle responses. .The InOrder model implements more detail than the

simple models, using abstractions for pipeline components, such as ALU, FPU, and Branch

Predictor. O3CPU models an Out-of-Order CPU Including the five stages of the pipeline.

44

Table 5.1: Parameters of the Simulated System

Parameter Values

Cores 12 OoO

fetch/issue/retire 4/4/4

Technology 32nm

Coherence Protocol MOESI

NoC topology Crossbar switch

V/F 0.9V/3.2GHz

L2 cache 8 GB, 16-way

L1-D, L1-I cache 32KB, 4-way

LQ, SQ, TLB 32 entries

Int ALU/ FP ALU 4/2 units

Int multiplier, FP multiplier, SIMD 2 units

Int Register file, FP Register file 256 entries

ROB, IQ 64 entries

There are two memory system models, the classic memory system and the Ruby memory

system. The classic model is a fast and easily configurable memory system, while the Ruby

model is used to accurately simulate cache memory systems and a variety of cache coherence

protocols including MSI, MESI, MOESI, AMDs hammer.

With the wide variety of capabilities and components in gem5, it provides between speed,

flexibility, and accuracy, where the simulation speed increases with the use of less detailed

models, and the accuracy increases with the use of more detailed models.

To evaluate the proposed online system, we used the full system mode and ruby memory

system to simulate a 12 core processor, see Table 5.1 for more detail.

45

5.2 McPAT

Multi-core Power, Area, and Timing (McPAT) is an integrated power, area, and timing

modeling framework for multi-threaded and multi-core processors. McPAT includes models

for the basic components of a multi-core, including in-order and out-of-order processor cores,

networks-on-chip, shared caches, integrated memory controllers, and multiple-domain clock-

ing. At the circuit and technology levels, McPAT supports area, dynamic, short-circuit, and

leakage power modeling, for CMOS, SOI, and double-gate transistors. McPAT has a XML

interface to make it compatible with different performance simulators. The XML configu-

ration file specifies the level of configuration details. It also provides default values of the

architectural parameters. The xml file has to contain all components that are considered for

power consumption.

For each component McPAT determine:

• Area (mm2): The area of the component.

• Peak Dynamic (W): Power of maximum switching activity.

• Subthreshold Leakage (W): Even though the transistor is logically turned OFF, there

is a non-zero leakage current through the channel.

• Subthreshold Leakage with power gating (W): The subthreshold leakage with a tech-

nique to reduce the power consumption.

• Gate Leakage (W): Is the current leaking through the gate terminal, and varies greatly

with the state of the device.

• Runtime Dynamic (W): The power for charging and discharging the capacitor when

the circuit switches state.

46

Table 5.2: Parsec Workloads and the Input Set

Program Application Domain Problem Size

Blackscholes Finalcial Analysis 16,384 options

Bodytrack Computer Vision 2 frames, 2,000 particles

Canneal Engineering 200,000 elements

Dedup Enterprise Storage 31 MB data

Facesim Animation 1 frame, 372,126 tetrahedra

Ferret Similarity Search 64 queries, 13,787 images

Fluidanimate Animation 5 frames, 100,000 particles

Freqmine Data Mining 500,000 transactions

Streamcluster Data Mining 8,192 points per block, 1 block

Swaptions Financial Analysis 32 swaptions, 10,000 simulations

x264 Media Processing 32 frames, 640 x 360 pixels

The only coding needed was creating a script to parse the information from gem5 to McPAT.

The script reads the parameters and statistics from gem5 configuration and result files, and

generate a McPAT configuration file from the McPAT template file.

5.3 Benchmarks

PARSEC (The Princeton Application Repository for Shared-Memory Computers)[6] is one of

the popular benchmark suites for parallel programming. It provides a variety of applications

selected from several application domains to cover different areas in parallel programming.

In this work 8 out of the 13 application were tested (see Table 5.2)

47

Figure 5.1: Basic steps for creating a RBFN

5.4 Matlab

MATrix LABoratory (Matlab) is a multi-paradigm numerical computing environment and

proprietary programming language developed by MathWorks. MATLAB is widely used in

all areas of applied mathematics, research, and in the industry. It is a great tool for solving

algebraic and differential equations and for numerical integration. It is also, a program-

ming language, and is one of the easiest programming languages for writing mathematical

programs. MATLAB has some tool boxes useful for signal processing, image processing,

optimization.

Deep Learning Toolbox [54] (formerly Neural Network Toolbox) is a framework for designing

and implementing deep neural networks. It provides different neural networks to perform

classification and regression on data. It has a graphical interface that is used to visualize

activations, edit network architectures, and monitor training progress. In this work this

toolbox was used to build the RBFN for the response functions fitting.

RBFN can be designed using two different functions. The first function is newrbe(). This

48

function creates radial basis networks with as many neurons as there are inputs in the training

data. The second function is newrb().This function iteratively creates a radial basis network

one neuron at a time. Neurons are added to the network until the sum-squared error falls

beneath an error goal or a maximum number of neurons has been reached. Typically, Newrb

result in fewer neurons than newrbe

After creating the network, network training can be done using one of the training functions.

Some of the most widely used functions are

• traingd: a network training function that updates weight and bias values according to

gradient descent.

• traingdm: a network training function that updates weight and bias values according

to gradient descent with momentum. It is generally faster than traingd

• Traingdx: a network training function that updates weight and bias values according

to gradient descent momentum and an adaptive learning rate. It has faster training

time than traingd

• trainrp: is a network training function that updates weight and bias values according

to the resilient backpropagation algorithm (Rprop). It has a fast convergence and

minimal storage requirements.

• Trainlm: is a network training function that updates weight and bias values according

to Levenberg-Marquardt optimization. It is the fastest backpropagation algorithm but

it does require more memory than other algorithms. This function was used in the

RBFN

There are several parameters associated with training process such as learning rate, error

goal, and epochs which specifies the number of iterations.

49

Table 5.3: GA Parameters

Parameter Values

Population size 32

Crossover Rate 0.8

Mutation Rate 0.5

Max Generations 25

Once the RBFN is trained and tested the response approximation function is created us-

ing genFunction() which generates a complete stand-alone function for simulating a neural

network including all settings, weight and bias values, module functions, and calculations in

one file. The resulted function is called by the GA evaluation stage.

5.5 GA

The Genetic Algorithm was written in C++. A number of GA parameter values were tested

to find the best GA parameters (see Table 5.3).

5.6 Summary

To put it all together, the proposed system consists of three stages: sampling stage, surface

fitting stage, and optimization stage. This system was evaluated on a simulated multi-core.

Gem5 simulator was used to simulate the architecture and give the performance readings.

McPAT was used for the energy consumption modeling. During the sampling, an application

runs for several sampling intervals, and each interval has a dierent combination of factors.

The applications that were tested are from PARSEC benchmark suite. A fractional factorial

design was used to define the sampling points. Once both the performance and energy

consumption responses are measured, a performance and power approximation functions are

50

Figure 5.2: Evaluation methodology showing different simulators and applications used to
evaluate the proposed system

created using RBFN on the sampled data points. Finally, using the approximation functions,

the GA determines the combination of factors that optimizes the overall performance and

energy consumption. The system operates with this conguration for the remainder execution

time. Figure 5.2 shows the evaluation methodology.

51

Chapter 6

Runtime System Overhead

The overhead of proposed system is distributed on the different stages as follow:

6.1 Configuration Sampling

The configuration sampling is done off-line due to long cycle-level simulation time. For the

sampling, 144 sample configurations were applied for a defined execution interval of the

benchmarks. The number of sampled configuration is constrained by the simulation time

limitation but it can be more when using real hardware.

To change from one configuration to the other we gradually turn on more resources to go

from small scale to larger scale to avoid the cost of scaling down resources (i.e., flushing

cache and core pipelines) as much as possible.

52

6.2 Core Scaling

Power-gating techniques proposed to reduce leakage power and to implement microproces-

sor deep sleep states, such as C6. Intel Core i7 microprocessors implement power-gating

transistors to shut off idle cores [28]. To change the number of cores, the runtime system

informs the thread scheduler so that it can change the number of running software threads.

We assume it takes a few µ seconds to switch threads between cores [51].

6.3 Memory Scaling

Memory components can be either set-associative memories such as L2, L1-I, L1-D, and

BTB or fully-associative memories such as ROB, TLB, IQ, and LSQ. Dynamic memory

scaling techniques have been widely used in commercial processors to reduce leakage power

consumption at runtime [74]. For set-associative memories it is possible to shut down a subset

of arrays that compose a set. This reduces the leakage power consumption, but it does not

affect the dynamic power. This is because it does not reduce the switching capacitance of

accessed arrays

For fully-associative usually are designed using content-addressable memory (CAM) and

some combinational circuits. It is possible to shut down a subset of total entries to reduce

leakage power consumption without impacting the critical path delay [44]. Large fully-

associative memory component can have multiple CAM arrays that are connected in a hier-

archical way. In this case, disabling a subset of CAM arrays can also reduce dynamic power

consumption

Caches are designed in a way that their size can be easily adapted for different architectures.

The cache structure is typically composed of multiple arrays and each array is equipped with

53

a local power-gating device that can turn it on/off independently [46]. In the case of cache

scale down, the cache controller writes back all the dirty cache lines to the main memory

and then tern off the cache arrays that were scaled the cache size. This is done by scanning

all the cache lines in the cache arrays that are to be turned off.

• For cache lines with modified state (M), the cache controller writes back the data to

the main memory and updates the line state to invalid (I).

• For cache lines with exclusive (E) state, the cache controller just updates the line state

to (I).

• For cache lines with shared (S) state, the cache controller sends an invalidation request

to all the sharing processes and waits to get invalidation acknowledgements. Then, the

the data is written back to the main memory and the lines are updated to (I).

6.4 Micro-architecture reconfiguration

Power gating can be implemented at a fine grain [11], where each standard cell has a sleep

transistor, or at a coarse grain, where clusters of gates in the same voltage domain have an

array of sleep transistors distributed in a ring or grid style [50]. Fine-grained sleep transistor

usually lead to higher area overhead.

To scale down micro-architecture resources in a core, First, wait for any unresolved cache

misses to be serviced. Second, wait for all the instructions existing in the IQ and ROB to

be executed. Then we shut down parts of the resources of the cores using the power-gating

technique.

For scaling the V/F, We assume the availability of on-die voltage regulation to enable fast

chip wide DVFS with a range between 2.7 GHz at 0.85 V to 3.6 GHz at 0.95 V.

54

6.5 Optimization

The computational cost of the optimization process is composed of two parts: surface fitting

model and GA. For surface fitting model we used RBF. Its overhead can be substantially

reduced by developing optimized RBF code.

The GA has a complexity of

O
(
P ∗G ∗O(Fit) ∗

(
CR ∗O(C) +MR ∗O(M)

))

,where P is the population size, G is the number of generations, CR is the crossover rate

and MR is the mutation rate, O(Fit) is the complexity of the fitness function, O(C) is the

complexity of the crossover operator and O(M) is the complexity of the mutation operator.

55

Chapter 7

Experimental Results

7.1 Isolated Scaling

To evaluate our approach, we first tested each of the alternative power management schemes

separately. Our results showed that each application require a distinct processor configura-

tion to maximize performance and a distinct configuration to minimize energy consumption.

The amount of parallelism in an application plays a key role in determining the best con-

figuration. For some applications, using more cores leads to higher performance than using

more resources per core. For other applications, using more resources leads to leads to

higher performance than using more cores. Secondly, different applications exhibit different

performance and power trade-offs.

Figure.7.1 shows the average improvement in execution time and energy consumption of the

different benchmarks using DVFS, core scaling and resource scaling. To test each technique

in isolation we scaled only the factors that correspond to that technique and fixed the other

factors, then took the average of improvements.

56

(a) Improvement in Execution time

(b) Improvement in Energy consumption

Figure 7.1: Comparing different power management techniques in terms of (a) improvement
in Execution time and (b) improvement in Energy consumption

57

The results show a variation of cases. Our first observation is that DVFS gives the best

improvement in execution time for most of the applications but it leads to the least improve-

ment in energy consumption. Core scaling beats resource scaling for Blackscholes, Canneal,

Freqmine, and Streamcluster in terms of improving the execution time. However, resource

scaling outperforms it in terms of energy consumption for the same set of benchmarks ex-

cept for Blackscholes. On the other hand, for Bodytrack, Dedup, Fluidanimate and x264,

resource scaling results in higher improvement in execution time but less saving in energy

consumption than core scaling. In the case of Blackscholes core scaling beats resource scaling

in both execution time and energy consumption. It can be concluded that there is no one

power management method that works best for all benchmarks for both performance and

energy consumption.

Using DVFS alone, energy consumption can be reduced by 16% and performance can be

improved by 24% on average. On the other hand, core scaling reduces energy consumption

by 25% on average and improves performance by 16%. In addition, resource scaling reduces

energy consumption by 21% and performance improves by 15% on average.

7.2 Response Surface Model

The error of the RBNF for approximating the execution time and energy consumption for

each application is provided in Figure 7.2. On average the error is less than 1% in both

directions, meaning that responses are both overestimated and underestimated.

58

(a) Blackscholes

(b) Bodytrack

(c) Canneal

(d) Dedup

(e) Fluidanimate

(f) Freqmine

(g) Steamcluster

(h) x264

Figure 7.2: RBFN accuracy measured as percent error between the predicted and real values
of response function

59

Table 7.1: Baseline Configuration

Level Factors Values

Architecture Number of cores 8

L2 cache size (MB) 8

Cache L1-I cache size (KB) 32

L1-D cache size (KB) 32

TLB size 32

LQ entries 32

SQ entries 32

ROB entries 64

IQ entries 64

Core Int ALU 4

FP ALU 2

Int Mult 2

FP Multi 2

SIMD 2

Int Reg 256

FP Reg 256

Voltage, Frequency F/V (GHz/ V) 3.2/0.9

7.3 Chip-wide Configuration

The main benefit of our approach is that it allows different power management techniques

to be combined to optimize both performance and energy consumption. We implemented

the GA under three different objectives; GA with the objective of optimizing execution time

only (GA perf), GA with the objective of optimizing energy consumption only(GA energy)

and GA optimizing both (GA Both).

Figure.7.3 compares the improvement in energy consumption and execution time of the

benchmarks using GA performance and GA energy. The improvement is based on comparing

the best configurations of the final generation of GA to the baseline configuration shown in

table 7.1.

60

For most of the benchmarks optimizing the execution time only leads to a reduction in

energy consumption. In those cases the energy is saved because of a faster execution time.

On the other hand, some benchmarks (i.e., Fluidanimate, and Freqmine) exhibit an increase

in energy consumption of at most 30% when optimizing for execution time.

Similarly, optimizing energy consumption in most cases leads to an execution time improve-

ment due to the faster execution time. Nevertheless, GA EC cannot reach the best solution

in terms of performance because it aims to find the configuration with the least energy

consumed without considering its execution time. In some cases (i.e., Streamcluster), the

configuration with the least energy consumption happens to be the one with the shortest

execution time as well.

Some applications have higher potential for improvement, particularly because they spend

most of their execution time with few running threads. On the other hand, other applications

are good examples of applications with little or no margin for improvement because they

run several CPU-intensive threads most of the time.

When optimizing the two objectives simultaneously, the GA explores the search space to

find the configuration that balances out the trade-off between execution time and energy

consumption. Our results in Figure 7.4 show that in all cases there is an improvement in

both execution time and energy consumption. On average, GA that optimizes both execution

time and energy consumption, achieve performance improvement of 15% and energy savings

of 26%.

61

(a) GA perf

(b) GA energy

Figure 7.3: Comparing improvement in Execution time and improvement in Energy con-
sumption using (a) GA perf and (b) GA energy

62

Figure 7.4: Comparing improvement in Execution time and improvement in Energy con-
sumption using GA optimizing both

7.4 Pre-core Configuration

To evaluate the per-core configuration to a chip-wide configuration, we construct 3 multi-

program workloads composed of PARSEC benchmarks, one for 8 core configuration, one for

10 core configuration and one for 12 core configuration. Each core runs one application. In

this case the number of cores is fixed (not scaled) but each core will have a different config-

uration according to the application it is running. The system performance is the aggregate

throughput achieved by all cores in the system. The system energy is the summation of

the energy consumption of all cores in the system.The improvement of both chip-wide and

per-core configuration is based on comparing the best configurations of the final generation

of GA to the baseline.

Figure.7.5 compares the improvement in energy consumption and performance of the 3 work-

63

(a) Improvement in Performance (IPC)

(b) Improvement in Energy consumption

Figure 7.5: Comparing chip-wide and per-core configuration in terms of (a) improvement in
IPC and (b) improvement in Energy consumption

64

loads using chip-wide and Per-core configuration. The first observation is that per-core

configuration always result in more improvement than chip-wide configuration. That is be-

cause it allows for more flexibility when scaling so that each core will have a more tailored

configuration to its workload.

The results show two types of trends. Figure 7.5a shows that as the number of cores increases

the improvement in the system performance increases for both chip-wide configuration and

per-core configuration. In addition the increase in improvement of the per-core configuration

over the chip-wide configuration also grow with the number of cores.

Figure 7.5b shows that as the number of cores increases the improvement in the system

energy consumption decreases for both chip-wide configuration and per-core configuration.

In addition the increase in improvement of the per-core configuration over the chip-wide

configuration is minimal due to the increase of leakage energy with the increase of the

number of cores.

Figure 7.6 shows the comparison between chip-wide and per-core configurations at the core

level for a 10-core workload. For some cores (1,2, and 5) the chip-wide configuration improves

the core IPC but it leads to consuming more energy. For other cores (7 and 10), the energy

consumption was reduced at the cost of the performance. In chip-wide configuration, the

multi-objective GA searches for a uniform configuration that optimizes both the overall

system IPC and energy consumption but this would not insure that all the cores will achieve

improvement in both performance and energy consumption.

In the case of per-core configuration, the GA has more freedom to search for a configuration

that is tailored to the specific workload of each core. The results in Figure 7.6 show that all

the cores achieved an improvement in both performance and energy consumption.

65

(a) Improvement in Performance (IPC)

(b) Improvement in Energy consumption

Figure 7.6: Comparing chip-wide and per-core configuration for each core for the 10 core
workload in terms of (a) improvement in IPC and (b) improvement in Energy consumption

66

Chapter 8

Conclusions and Future Work

The problem of Dark Silicon limits the number of devices that can be simultaneously ac-

tive in a multicore system. In other words, the portion of a chip that can be turned on

at any given point is limited due to the chip power constraints and heat dissipation. We

have demonstrated that there is a clear need for algorithms that control the interplay be-

tween different power management techniques as power is increasingly constrained. We have

shown the limitations of isolated power management techniques in exploring the reconfigu-

ration search space because considering a single granularity of the architecture may lead to

sub-optimal solutions. In addition, reconfiguring with the sole objective of improving the

performance can lead to consuming even more power than needed.

We have studied the effectiveness of combining different scaling techniques in improving the

performance and reducing the energy consumption of multicore systems. We have achieved

our other objective to show the importance of considering both systems performance and

energy consumption when selecting the optimal reconfiguration. To achieve these goals,

we have devised a multi-technique approach which integrates scaling techniques at multiple

granularities to explore new potentials for improvement in performance and energy consump-

67

tion. First, we developed a methodology for characterizing the application behavior using

sampling and response surface model. Then, these models can be used in a Genetic Al-

gorithm based multi-objective optimization algorithm to explore the reconfiguration search

space.

For evaluation, experiments were conducted on a simulated 12 core architecture. First,

the different scaling techniques were evaluated independently for multiple benchmarks to

optimize performance and energy consumption. We concluded that there is no one power

management method that works best for all benchmarks for both performance and energy

consumption. The second experiment consisted in applying the chip-wide reconfiguration.

Our experiments have shown that the performance could improve by 15% on average while

achieving energy savings of up to 26%. Finally using a per-core configuration improves the

performance by 25% on average and reduces the energy by 18%.

The work presented in this dissertation can be extended in a number of ways:

• Our work has focused on multi-threaded workloads from PARSEC benchmark suite.

However, a variety of workloads is available for our simulation infrastructure. This

study can be extended to include workloads from a variety of industry or open-source

standards, such as shared memory and communication bases workloads.

• Another extension could be the use of a method other than sampling to characterize

the application. One option is to monitor different metrics and activities like queues

utilization, miss rates, and issue rates to make reconfiguration decisions.

• Our multi-objective optimization is based on genetic algorithms. We use the weighted

sum approach for the fitness function. We could instead test other ways to imple-

ment the multi-objective optimization such as Strength Pareto Evolutionary Algorithm

SPEA . Also, a possible extension to this work is to investigate alternative heuristic al-

gorithms. For example, simulated annealing (SA), Particle swarm optimization (PSO)

68

and Differential Evolution (DE). Finally, we can apply a similar methodology on het-

erogeneous CPU-GPU architectures where cores can be scaled differently.

69

Bibliography

[1] 42 Years of Microprocessor Trend Data. https://www.karlrupp.net/2018/02/

42-years-of-microprocessor-trend-data/.

[2] Fitness landscape. https://en.wikipedia.org/wiki/Fitness_landscape.

[3] Reducing a 3 factor full factorial design to a half frac-
tion design. https://www.researchgate.net/figure/

Reducing-a-3-factor-full-factorial-design-to-a-half-fraction-design_

fig4_256117633.

[4] D. H. Albonesi, R. Balasubramonian, S. Dropsbo, S. Dwarkadas, E. G. Friedman, M. C.
Huang, V. Kursun, G. Magklis, M. L. Scott, G. Semeraro, et al. Dynamically tuning
processor resources with adaptive processing. Computer, 36(12):49–58, 2003.

[5] R. Bergamaschi, G. Han, A. Buyuktosunoglu, H. Patel, I. Nair, G. Dittmann,
G. Janssen, N. Dhanwada, Z. Hu, P. Bose, et al. Exploring power management in
multi-core systems. In Proceedings of the 2008 Asia and South Pacific Design Automa-
tion Conference, pages 708–713. IEEE Computer Society Press, 2008.

[6] C. Bienia and K. Li. Parsec 2.0: A new benchmark suite for chip-multiprocessors. In
Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation,
volume 2011, 2009.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1–7, 2011.

[8] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated management of multiple inter-
acting resources in chip multiprocessors: A machine learning approach. In Proceedings
of the 41st annual IEEE/ACM International Symposium on Microarchitecture, pages
318–329. IEEE Computer Society, 2008.

[9] G. E. Box and N. R. Draper. Empirical model-building and response surfaces. John
Wiley & Sons, 1987.

[10] M. D. Buhmann. Radial basis functions: theory and implementations, volume 12. Cam-
bridge university press, 2003.

70

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://en.wikipedia.org/wiki/Fitness_landscape
https://www.researchgate.net/figure/Reducing-a-3-factor-full-factorial-design-to-a-half-fraction-design_fig4_256117633
https://www.researchgate.net/figure/Reducing-a-3-factor-full-factorial-design-to-a-half-fraction-design_fig4_256117633
https://www.researchgate.net/figure/Reducing-a-3-factor-full-factorial-design-to-a-half-fraction-design_fig4_256117633

[11] D.-S. Chiou, D.-C. Juan, Y.-T. Chen, and S.-C. Chang. Fine-grained sleep transistor
sizing algorithm for leakage power minimization. In Proceedings of the 44th annual
Design Automation Conference, pages 81–86. ACM, 2007.

[12] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design
of ion-implanted mosfet’s with very small physical dimensions. IEEE Journal of Solid-
State Circuits, 9(5):256–268, 1974.

[13] C. Dubach, T. M. Jones, E. V. Bonilla, and M. F. O’Boyle. A predictive model for
dynamic microarchitectural adaptivity control. In Proceedings of the 2010 43rd An-
nual IEEE/ACM International Symposium on Microarchitecture, pages 485–496. IEEE
Computer Society, 2010.

[14] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark silicon
and the end of multicore scaling. IEEE Micro, 32(3):122–134, 2012.

[15] S. Eyerman and L. Eeckhout. Fine-grained dvfs using on-chip regulators. ACM Trans-
actions on Architecture and Code Optimization (TACO), 8(1):1, 2011.

[16] H. R. Ghasemi and N. S. Kim. Rcs: runtime resource and core scaling for power-
constrained multi-core processors. In Proceedings of the 23rd international conference
on Parallel architectures and compilation, pages 251–262. ACM, 2014.

[17] D. Gibson and D. A. Wood. Forwardflow: a scalable core for power-constrained cmps.
In ACM SIGARCH Computer Architecture News, volume 38, pages 14–25. ACM, 2010.

[18] J. H. Holland. Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. MIT press, 1992.

[19] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose. Mi-
croarchitectural techniques for power gating of execution units. In Proceedings of the
2004 international symposium on Low power electronics and design, pages 32–37. ACM,
2004.

[20] M. C. Huang, J. Renau, and J. Torrellas. Positional adaptation of processors: ap-
plication to energy reduction. In 30th Annual International Symposium on Computer
Architecture, 2003. Proceedings., pages 157–168. IEEE, 2003.

[21] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. An analysis of
efficient multi-core global power management policies: Maximizing performance for a
given power budget. In Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM
International Symposium on, pages 347–358. IEEE, 2006.

[22] A. Iyer and D. Marculescu. Microarchitecture-level power management. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 10(3):230–239, 2002.

[23] R. Jayaseelan and T. Mitra. A hybrid local-global approach for multi-core thermal
management. In Proceedings of the 2009 International Conference on Computer-Aided
Design, pages 314–320. ACM, 2009.

71

[24] S. S. Jha, W. Heirman, A. Falcón, T. E. Carlson, K. Van Craeynest, J. Tubella,
A. González, and L. Eeckhout. Chrysso: An integrated power manager for constrained
many-core processors. In Proceedings of the 12th ACM International Conference on
Computing Frontiers, page 19. ACM, 2015.

[25] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks. System level analysis of fast, per-core
dvfs using on-chip switching regulators. In 2008 IEEE 14th International Symposium
on High Performance Computer Architecture, pages 123–134. IEEE, 2008.

[26] A. Konak, D. W. Coit, and A. E. Smith. Multi-objective optimization using genetic
algorithms: A tutorial. Reliability Engineering & System Safety, 91(9):992–1007, 2006.

[27] V. Kontorinis, A. Shayan, D. M. Tullsen, and R. Kumar. Reducing peak power with
a table-driven adaptive processor core. In Proceedings of the 42nd annual IEEE/ACM
international symposium on microarchitecture, pages 189–200. ACM, 2009.

[28] R. Kumar and G. Hinton. A family of 45nm ia processors. In 2009 IEEE International
Solid-State Circuits Conference-Digest of Technical Papers, pages 58–59. IEEE, 2009.

[29] B. C. Lee and D. Brooks. Efficiency trends and limits from comprehensive microarchi-
tectural adaptivity. ACM SIGARCH computer architecture news, 36(1):36–47, 2008.

[30] J. Lee and N. S. Kim. Optimizing throughput of power-and thermal-constrained multi-
core processors using dvfs and per-core power-gating. In Design Automation Conference,
2009. DAC’09. 46th ACM/IEEE, pages 47–50. IEEE, 2009.

[31] J. Lee, V. Sathisha, M. Schulte, K. Compton, and N. S. Kim. Improving throughput of
power-constrained gpus using dynamic voltage/frequency and core scaling. In Parallel
Architectures and Compilation Techniques (PACT), 2011 International Conference on,
pages 111–120. IEEE, 2011.

[32] J. Li and J. F. Martinez. Dynamic power-performance adaptation of parallel computa-
tion on chip multiprocessors. In High-Performance Computer Architecture, 2006. The
Twelfth International Symposium on, pages 77–87. IEEE, 2006.

[33] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. Mcpat:
an integrated power, area, and timing modeling framework for multicore and manycore
architectures. In Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM Inter-
national Symposium on, pages 469–480. IEEE, 2009.

[34] B. Liu, M. H. Foroozannejad, S. Ghiasi, and B. M. Baas. Optimizing power of many-
core systems by exploiting dynamic voltage, frequency and core scaling. In Circuits and
Systems (MWSCAS), 2015 IEEE 58th International Midwest Symposium on, pages 1–4.
IEEE, 2015.

[35] H.-Y. Liu and L. P. Carloni. On learning-based methods for design-space exploration
with high-level synthesis. In Proceedings of the 50th annual design automation confer-
ence, page 50. ACM, 2013.

72

[36] Y. Liu, G. Cox, Q. Deng, S. C. Draper, and R. Bianchini. Fastcap: An efficient and fair
algorithm for power capping in many-core systems. In Performance Analysis of Systems
and Software (ISPASS), 2016 IEEE International Symposium on, pages 57–68. IEEE,
2016.

[37] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram. Guarded power gating
in a multi-core setting. In International Symposium on Computer Architecture, pages
198–210. Springer, 2010.

[38] K. Meng, R. Joseph, R. P. Dick, and L. Shang. Multi-optimization power management
for chip multiprocessors. In Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, pages 177–186. ACM, 2008.

[39] P.-J. Micolet, A. Smith, and C. Dubach. A study of dynamic phase adaptation using
a dynamic multicore processor. ACM Transactions on Embedded Computing Systems
(TECS), 16(5s):121, 2017.

[40] S. Mittal, Y. Cao, and Z. Zhang. Master: A multicore cache energy-saving technique
using dynamic cache reconfiguration. IEEE Transactions on very large scale integration
(VLSI) systems, 22(8):1653–1665, 2014.

[41] G. E. Moore. Cramming more components onto integrated circuits, electronics maga-
zine, 1965.

[42] J. MüLler, C. A. Shoemaker, and R. Piché. So-mi: A surrogate model algorithm for
computationally expensive nonlinear mixed-integer black-box global optimization prob-
lems. Computers & Operations Research, 40(5):1383–1400, 2013.

[43] G. Palermo, C. Silvano, and V. Zaccaria. Respir: a response surface-based pareto
iterative refinement for application-specific design space exploration. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 28(12):1816–1829, 2009.

[44] I. Park, C. L. Ooi, and T. Vijaykumar. Reducing design complexity of the load/store
queue. In Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture, page 411. IEEE Computer Society, 2003.

[45] P. Petrica, A. M. Izraelevitz, D. H. Albonesi, and C. A. Shoemaker. Flicker: A dynam-
ically adaptive architecture for power limited multicore systems. In ACM SIGARCH
computer architecture news, volume 41, pages 13–23. ACM, 2013.

[46] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. Vijaykumar. Gated-v dd: a circuit
technique to reduce leakage in deep-submicron cache memories. In Proceedings of the
2000 international symposium on Low power electronics and design, pages 90–95. ACM,
2000.

[47] K. K. Rangan, G.-Y. Wei, and D. Brooks. Thread motion: fine-grained power man-
agement for multi-core systems. In ACM SIGARCH Computer Architecture News, vol-
ume 37, pages 302–313. ACM, 2009.

73

[48] G. S. Ravi and M. H. Lipasti. Charstar: Clock hierarchy aware resource scaling in tiled
architectures. ACM SIGARCH Computer Architecture News, 45(2):147–160, 2017.

[49] J. Sharkey, A. Buyuktosunoglu, and P. Bose. Evaluating design tradeoffs in on-chip
power management for cmps. In Low Power Electronics and Design (ISLPED), 2007
ACM/IEEE International Symposium on, pages 44–49. IEEE, 2007.

[50] K. Shi and D. Howard. Sleep transistor design and implementation-simple concepts
yet challenges to be optimum. In 2006 International Symposium on VLSI Design,
Automation and Test, pages 1–4. IEEE, 2006.

[51] R. Strong, J. Mudigonda, J. C. Mogul, N. Binkert, and D. Tullsen. Fast switching of
threads between cores. ACM SIGOPS Operating Systems Review, 43(2):35–45, 2009.

[52] R. Teodorescu and J. Torrellas. Variation-aware application scheduling and power man-
agement for chip multiprocessors. In ACM SIGARCH computer architecture news,
volume 36, pages 363–374. IEEE Computer Society, 2008.

[53] R. Unal, R. Lepsch, and M. McMillin. Response surface model building and multi-
disciplinary optimization using d-optimal designs. In 7th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, page 4759, 1998.

[54] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural networks for matlab. In
Proceedings of the 23rd ACM international conference on Multimedia, pages 689–692.
ACM, 2015.

[55] A. Vega, A. Buyuktosunoglu, H. Hanson, P. Bose, and S. Ramani. Crank it up or
dial it down: coordinated multiprocessor frequency and folding control. In Proceedings
of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, pages
210–221. ACM, 2013.

[56] D. Wei, Z. Cui, and J. Chen. Uncertainty quantification using polynomial chaos expan-
sion with points of monomial cubature rules. Computers & Structures, 86(23-24):2102–
2108, 2008.

[57] C. J. Wu and M. S. Hamada. Experiments: planning, analysis, and optimization, volume
552. John Wiley & Sons, 2011.

[58] S. Xydis, G. Palermo, V. Zaccaria, and C. Silvano. Spirit: spectral-aware pareto itera-
tive refinement optimization for supervised high-level synthesis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 34(1):155–159, 2015.

74

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Power Management Techniques
	Goals and Contributions
	Dissertation Organization

	Related Work
	DVFS
	Resource Scaling
	Core Scaling

	Optimization Methodology
	Problem Formulation
	Configuration Sampling
	Response Approximation
	First Order Polynomial
	Second Order Polynomial
	Radial Basis Functions

	Radial Basis Function Networks
	Optimization

	Genetic Algorithm
	GA for Chip-wide Configuration
	Chromosome Representation
	Population Initialization
	Selection
	Crossover
	Mutation
	Replacement and Termination Criteria

	GA for Per-core configuration
	Chromosome Representation
	Crossover
	Mutation

	Elitism
	Parameters

	Evaluation Methodology
	Gem5
	McPAT
	Benchmarks
	Matlab
	GA
	Summary

	Runtime System Overhead
	Configuration Sampling
	Core Scaling
	Memory Scaling
	Micro-architecture reconfiguration
	Optimization

	Experimental Results
	Isolated Scaling
	 Response Surface Model
	Chip-wide Configuration
	Pre-core Configuration

	Conclusions and Future Work
	Bibliography

