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The ocean biological pump is the mechanism by which carbon and nutrients
are transported to depth. As such, the biological pump is critical in the par-
titioning of carbon dioxide between the ocean and atmosphere, and the rate
at which that carbon can be sequestered through burial in marine sediments.
How the structure and function of planktic ecosystems in the ocean govern
the strength and efficiency of the biological pump and its resilience to disrup-
tion are poorly understood. The aftermath of the impact at the Cretaceous/
Palaeogene (K/Pg) boundary provides an ideal opportunity to address
these questions as both the biological pump and marine plankton size and
diversity were fundamentally disrupted. The excellent fossil record of plank-
tic foraminifera as indicators of pelagic-biotic recovery combined with carbon
isotope records tracing biological pump behaviour, show that the recovery of
ecological traits (diversity, size and photosymbiosis) occurred much later
(approx. 4.3 Ma) than biological pump recovery (approx. 1.8 Ma). We inter-
pret this decoupling of diversity and the biological pump as an indication
that ecosystem function had sufficiently recovered to drive an effective
biological pump, at least regionally in the South Atlantic.
1. Introduction
Currently, the oceans provide about half of the global net primary production
(NPP), approximately 48.5 Pg C yr−1 [1]. The fate of most primary production
in the ocean is remineralization and rapid recycling of nutrients and CO2 in
the upper ocean [2]. On average, only 20% [3] is exported in the form of particu-
late organic matter into the ocean interior. There, approximately 97–99% [4] is
remineralized, but now spatially separated from the ocean surface and atmos-
phere. A return to the surface from the deep ocean depends on the much
slower action of ocean circulation and upwelling. A small fraction of particulate
organic matter and hence carbon also escapes the ocean-atmosphere system and
is buried in marine sediments, helping regulate atmospheric pCO2 on geological
time scales. This dynamical biogeochemical partitioning between ocean surface
and interior, particularly of carbon, is known as the marine ‘biological pump’.
This process influences not only nutrient availability and primary production,
but also atmospheric pCO2, and hence climate, among the fundamental
functions of the marine pelagic ecosystems.

The strength (magnitude) and the efficiency (remineralisation depth) of
organicmatter transfer by the biological pump is highly variable [5]. This variabil-
ity is largely a result of differences in phytoplankton, zooplankton and microbial
communities and food web structures [4,5]. For example, the proportion of large
cells within the phytoplankton community influences the flux of particulate
organic carbon (POC) [6], while the type and nature of zooplankton feeding can
lead to an increase or decrease in the sinking rate of organic matter [4].
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Understanding the controls on both primary production as
well as the efficiency of transfer of carbon to the ocean floor is
hence essential for an understanding of the regulation of
pCO2 and climate.

Model projections show marine primary production
decreasing globally due to climate change [7,8] particularly
in the tropics and the North Atlantic, though uncertainties
are high [7,9]. Environmental changes in temperature and
CO2 concentration impact the ratio of calcifiers to non-calcifiers
(potentially changing the composition and hence sinking rate
of particles), as well as the proportion and size of plankton
and grazers [10–13]. Modelling studies reveal that under pro-
jected future climate change, the decrease in phytoplankton
size exerts the largest influence on decreasing POC flux out
of the surface ocean, whereas changes in zooplankton commu-
nities are important in the subsurface ocean [14]. Assessing
these interactions is essential for understanding the critical
elements in, and the resilience of, the biological pump to per-
turbations. Observational time series are not long enough to
reject or support these projections [15]. The longer perspective
of the fossil record, however, could fill this gap as well as pro-
viding crucial information to address potential impacts of
marine extinctions, given the anthropogenic effect that
humans are having on Earth’s processes in the wake of a
potential 6th mass extinction [16,17].

As isotopically light carbon (12C) -CO2 is preferentially
taken up during primary productivity in the surface ocean,
the carbonate shells mineralized by planktic foraminifera
are relatively enriched in 13C compared to the organisms
that precipitate carbonate in the deep ocean (e.g. benthic for-
aminifera), where organic matter is remineralized releasing
12C, resulting in a vertical carbon isotope (δ13C) gradient
[18]. The greater the surface-deep δ13C difference the more
efficient the biological pump. This signal of biological
pump efficiency (which differs from strength, see [19] for
details) is recorded in the shells of foraminifera and combined
in the geological record with information on the ecological
composition of planktic ecosystems.

The Cretaceous/Palaeogene (K/Pg, 66.02 Ma) mass
extinction [20] was the most important extinction in the evol-
utionary history of modern plankton [21] and provides an
excellent opportunity to understand how a severe pertur-
bation to the planktic ecosystem affects the biological pump.
Based on interpretations of a surface to deep ocean δ13C gradi-
ent of near zero [22], it has been suggested that the extinction
led to a near complete shutdown of the biological pump, with
a recovery time of several millions of years [22–24]. However, a
lack of extinction within benthic communities, which depend
on surface-exported food supplies, challenges this interpret-
ation (see [22]). While some proxies, such as biogenic barium
[25], suggest spatial heterogeneity in productivity between
the major ocean basins and open ocean versus shelf environ-
ments, the δ13C signal is a global phenomenon [23,26].
Previous studies have focused on either the recovery of the
marine biological pump [22,24,27] or the pelagic biota
[28,29]. Few studies have tried to establish the link between
the two [30–32].

While ideally the whole ecosystem would be interrogated,
most pelagic organisms do not preserve in the fossil record
[33]. Fortunately, two important autotrophic and heterotrophic
components have excellent fossil records i.e. calcareous nanno-
plankton (haptophyte algae) and planktic foraminifera (shell-
building micro-zooplankton) that provide representative
signals of the pelagic ecosystem.Differences in rates of recovery
of the biological pump, plankton diversity and size are appar-
ent in the fossil record [30,31,34–37]. Recently, post-K/Pg
ecosystem recovery, assessed via community stability history
of nannofossils, has been linked to a return of the biological
pump in the Pacific, approximately 1.8 Myr years after the
event [31]. Here, we assess whether the marine biological
pump drove ecological changes, or, whether the recovery
of the biological pumpwas itself contingent onpelagic commu-
nity recovery (diversity, size) to fulfil their ecological function.
We explore whether ecosystem function (i.e. the contribution
of marine plankton in the regulation of the global carbon
cycle) depends on diversity to be re-established. Specifically,
we question how important diversity recoveryat higher trophic
levels is for the efficiency of the biological pump.Moreover, did
the evolution of certain traits in plankton, such as body size and
photosynthesis, drive the restoration in biological pump effi-
ciency, or do certain environmental and ecological thresholds
need to be met for these traits to be established? Here, we
focus on planktic foraminifera, which benefit from a well-
established understanding of bothmodern and paleo-diversity
and ecological preferences [38], and several methods for
documenting the evolution of body size [35,39].
2. Method
The K/Pg event is captured in Ocean Drilling Program (ODP) Site
1262, Walvis Ridge (27°11.15’ S and 1°34.620 E; electronic sup-
plementary material, figure S1). The K/Pg boundary occurs at
approximately 216.6 m composite depth (mcd), calibrated to
66.02 Ma on an astronomically tuned time scale [40]. Consistent
preservation of calcitic microfossils suggests deposition above the
carbonate compensation depth throughout the K/Pg interval [41].

Core samples were washed over a 38 µm sieve and dried in
an oven at 40°C. Planktic foraminifera species abundance
counts were made on 49 samples. Taxonomy follows the Palaeo-
cene Atlas [42] and Cretaceous chapters of Plankton stratigraphy
[43]. The summed coefficient of variation metric (∑CV), which
quantifies the level of stability, was calculated per sample for
the five designated ecogroups, clusters of species sharing similar
ecologies, following the method of [44], without the SiZer
smoother step, as in [31]. ∑CV was chosen as it is independent
of taxonomic composition. Separated sieved size fractions (elec-
tronic supplementary material, table S1) were weighed in 94
samples. Samples were weighed using an A & D semi-microba-
lance (standard deviation of 0.1 mg). The species/genera
counts were assigned to one of five ecogroup categories for the
Palaeocene and one of four categories for the Cretaceous (elec-
tronic supplementary material, table S2).

A representative split of 356 washed samples (greater than
38 µm) was analysed for foraminifera size. Size parameters of
randomly oriented foraminifers were measured using a Malvern
Mastersizer laser granulameter. The maximum diameter of the
object was chosen as the most suitable size estimator because it
is least affected by random orientation. The 90th percentile of
the maximum diameter (or D90) was used to describe these
strongly skewed distributions.
3. Results
Our data show that overall planktic foraminifera diversity
remained low compared to pre-extinction assemblages for
approximately 4.8 Myr post-extinction (figure 1b). Test size
dropped dramatically from approximately 400 to 150 µm at
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the K/Pg and small size persists throughout the studied inter-
val (figure 1e). Linked to this, the relative proportion of
particles greater than 38 µm increased indicating a higher con-
tribution of planktic foraminifera to bulk carbonate (figure 1f ).
Dividing the greater than 38 µm foraminiferal fraction further
(electronic supplementary material, table S1) shows that most
size classes contributed roughly equally to the assemblage in
the Cretaceous (approx. 5.5–15%). After the K/Pg boundary,
approximately 75% of the total foraminiferal fraction were in
the size fraction below 106 µm (figure 1g). Consequently, car-
bonate accumulation rates dropped strongly, enhanced by the
mass extinction of calcareous nannofossils, which typically
contributed 80–90% of the bulk dry weight before the extinc-
tion (figure 1h,i, respectively). However, the abundance of
small opportunistic planktic foraminifera increased
(figure 1g) and resulted in an increased contribution of fora-
minifers to bulk carbonate (figure 1j ). Between the partial
and full recovery in the marine biological pump (300 kyr to
1.8 Myr later; line 1 to 2) many of the sedimentary parameters
(% carbonate, F/N ratio and foram fraction) began to stabil-
ize. Alpha diversity increased after approximately 1.8 Ma
and approximately 4 Ma, indicating that originations
exceeded extinctions for a brief period (figure 1b). These
diversity increases were associated with minor increases in
foraminifera size (figure 1e).

The survivor and opportunistic species dominated the
initial recovery interval (approx. 100 ka). These were followed
by ‘transitional’ taxa (figure 1c) whose early representatives
were deep dwellers while descendent species migrated to sur-
face waters and/or became symbiotic. The transitional taxa
declined and were replaced by thermocline species around
1 Ma (figure 1c). A surface/symbiotic group appeared approxi-
mately 3 Myr later (figure 1c) when size spectra widened and
small taxa and individuals lost their dominance (to approx.
50%, figure 1g). The balance between the relative contribution
of the two carbonate producing groups (figure 1f,j ) returned
to pre-extinction levels also by approximately 3 Ma. ∑CV
shows a small peak (approx. 3.5 Ma) above background vari-
ation (electronic supplementary material, figure S3), which
coincides with the decline and extinction of the transitional
taxa and the early radiation of the surface/symbiotic group.
This group only became an important component of the assem-
blages approximately 4.3 Myr after the extinction, when
assemblage ecological characteristics were restored but with
completely different species. While size classes diversified,
they did not reach the overall sizes of the Cretaceous.
4. Discussion
The impact of an asteroid at the K/Pg had devastating effects
on Earth’s fauna and flora and created environmental
instability [20]. Extreme temperature changes, reduced pH,
heavy metal loading, stratification and increased nutrients
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are all thought to have played a part in the initial extinction
and dictated what organisms survived [20,32,47]. Environ-
mental conditions feedback on the diversity and abundance
of marine organisms [48–50] and thereby change the fixation
and export of carbon and utilization of nutrients.

As marine ecospace was re-created [28,36,51], rates of evol-
utionary turnoverwere far above typical background rates [34].
Small, opportunistic planktic foraminifera dominate the early
Danian [29] and a high frequency of morphological abnormal-
ities in Tunisian planktic foraminifera has been linked to severe
environmental instability [52]. Successive acmes of opportunis-
tic, eutrophic calcareous nannofossils are attributed to
high-nutrient loads [31,37], as are increases in high-nutrient,
opportunistic dinoflagellates, indicative of eutrophication in
marginal settings [53]. Blooms of neritic opportunistic dinofla-
gellates declined by the end of biozone P1a [53], approximately
50 kyr after the extinction. Planktic foraminiferal abnormalities
reduced to background levels 200 kyr after the K/Pg [52].
Disappearance of these bloom forming, high-nutrient taxa
suggests that the reduction of nutrient levels in marginal sur-
face waters predates the initial return of export productivity
observed in the open ocean (line 1, figure 1a) [22] supporting
suggestions that neritic and marginal marine environments
recover quicker (<10 kyr) than open ocean environments [54].
The microperforate group (which is similar to our opportunis-
tic/survivor group) at the shallow water impact Site M0077
[37] declined in abundance from approximately 1.2 Ma
ending near the return of the biological pump (figure 2).
However, no notable biotic change, neither in traits such as
size nor diversity, is observed in our open ocean region with
the full return of the biological pump at approximately
1.8 Ma (line 2, figure 1a). The succession of acmes of nannofos-
sil species in the Pacific [31] ends at this time (figure 2), yet, pre-
extinction nannofossil size and ecogroups are not
re-established until 3.5 Myr later, and diversity not until
10 Myr later.

Symbiosis is widespread in modern planktic foramini-
fera and allows populations to thrive in low-nutrient,
oligotrophic environments [38]. The reacquisition of photo-
symbiosis [46] in planktic foraminifera did not lead to
rapid diversification (figure 1d; electronic supplementary
material, figure S2) [30,57]. We speculate that surface
waters during the earliest recovery may have been rich in
nutrients due to lower consumption, such that this ecology
was not selected for. This speculation is supported by inde-
pendent records of calcareous nannofossils which also do
not begin to show a return to more oligotrophic taxa until
3.5 Myr later [31,37].

The contribution of the different size classes of foramini-
fera may give insight into the complexity of the food webs,
as organisms tend to eat prey approximately a tenth of their
size [58]. The equal contributions of the size classes present
before the extinction suggest a complex food web. The dra-
matic shift to smaller shell sizes after the boundary
suggests that larger organisms could not thrive [59,60], as
food web complexity reduced, perhaps as mean food size



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20210863

5
decreased and food chains shortened [20,61,62] an interpret-
ation supported by a decline and long recovery in mid food
chain predator fish, based on ichthyoliths (fossil fish teeth
and shark dermal scales) (figure 2) [55].

In contrast with the recovery of themarine biological pump,
plankton diversity and traits point to a much more drawn out
return to pre-extinction states. Ecogroups recover around
4.3 Myr after the extinction, while size and diversity do not
return to pre-extinction levels within the studied interval. Cal-
careous nannofossil diversity does not reach pre-extinction
values for more than 10 Myr [34,63] and foraminiferal size
even longer [35]. Similar long delays in diversity recovery are
also documented for calcareous red algae (approx. 6 Myr to
recover [64]), Neoselachian sharks (7 and 10 Myr [65]) and cor-
roborated by other studies showing a macrofaunal genus level
diversity lag of approximately 10 Myr [66,67].

The biological pump recovery (especially its strength) is
likely driven by aspects of the marine community which do
not fossilize, such as many microbes [68]. However, unex-
pectedly, larger size classes of organisms and specialists
appear unnecessary for the recovery of the marine biological
pump. Concurrently, the recovery of the biological pump
does not result in a recovery of diversity and pre-extinction
organism size [31]. The process of biotic recovery may be
governed by other factors, such as niche creation, which are
suggested to work on much longer time scales [36,67]. This
interpretation supports the notion that rather than there
being predefined ‘niche’ space (i.e. fixed ecological real
estate) available to be filled or vacated at times of diversifica-
tion or extinction, organisms themselves, and their
interactions, ‘construct’ the environment they inhabit [69].
In this study, we speculate that increasing diversity created
oligotrophic conditions, that in turn increased niche spaces
which selected for novel traits such as symbiosis creating
feedbacks between environment (and the biological pump)
and evolution.

5. Conclusion
The K/Pg extinction impacted the global biogeochemistry of
the oceans and marine life for millions of years. Our data
show that biotic recovery, as measured by trophic levels,
microplankton size classes, and diversity of planktic foramini-
fera occurred much later than the re-establishment of a marine
biological pump. Diversification of ecology in planktic forami-
nifers was linked to a return in the dominance of the surface
symbiotic species adapted to lower nutrient conditions.
These data suggest that a large range of nutrient conditions,
including oligotrophic conditions, is necessary for high diver-
sity independent of the marine biological pump recovery. Our
findings highlight the need to link climate projections, models
of primary production and ecology in both coastal and open
ocean environments to improve our ability to project the reper-
cussions of climate-induced extinctions or reorganization into
novel environments on marine ecosystems and their services
to people [70,71].

Data accessibility. Raw data used in this study can be found in the
supplementary information file and Pangea.
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