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Abstract

A great deal of behavioral evidence suggests that infants can
use distributional statistics to learn speech sound categories.
Recently, a number of computational approaches have demon-
strated the feasibility of statistical learning by showing that the
distributional statistics of linguistically-relevant acoustic cues
can be learned in an unsupervised way. However, speakers
and listeners use a large number of acoustic cues to distinguish
phonetic categories, and it is not clear how multiple cues are
combined during perception. We propose a model of speech
sound category acquisition that learns the distributions of mul-
tiple cues that lie along the same dimension and combines
them. We demonstrate that the model is able to account for
trading relations between cues (an indicator of the size of the
effect of each cue) for word-initial voicing contrasts in English.

Keywords: speech perception; speech development; mixture
of Gaussians; cue integration; statistical learning.

Introduction

The sound systems of human languages vary greatly. One of

the first steps in language acquisition is for infants to deter-

mine the sound structure of their native language. In a given

language, phonetically-relevant acoustic cues are distributed

such that they tend to cluster into categories. For example,

voice-onset time (VOT; the delay between the opening of the

vocal tract and the onset of vocal energy) values in English

tend to cluster into voiced and voiceless categories, near 0

and 50 ms, respectively (Lisker & Abramson, 1964). Thus,

the distributional statistics of this cue contains information

about the voicing categories of English.

Previous work has demonstrated that infants can track

these distributional statistics and use this information to learn

categories (Maye, Werker, & Gerken, 2002). Recently, re-

searchers have begun to use computational models to under-

stand this process more deeply. These models have been used

to describe how learning unfolds over development and leads

to stable speech sound categories.

One way to model this process is to represent each phonetic

category (such as voiced or voiceless) as a Gaussian distri-

bution, providing us with a representation that corresponds

to the frequency distribution of an acoustic cue. McMurray,

Aslin, and Toscano (in press) present a model that uses this

approach. Figure 1A shows how the model might represent

the VOT distribution of English. It contains two categories,

one centered at the mean of the voiced VOT values and the

other centered at the mean of the voiceless values. The model

learns the number of categories in the input and their statis-

tical distributions, reflecting the developmental trajectory of

speech category formation in the process. This demonstrates

that unsupervised statistical learning mechanisms are able to

describe how infants can acquire these categories.

However, many critical aspects of this process have yet to

be addressed. In particular, acoustic analyses have revealed

that most phonemic distinctions are marked by multiple cues.

Lisker (1978) cites that there are at least 16 acoustic cues that

distinguish voiced and voiceless sounds in word-medial po-

sition in English. Existing models of statistical learning and

speech sound category acquisition are insufficient to describe

how listeners learn multiple cue distributions and integrate

these cues when perceiving speech. These challenges are also

not limited to understanding speech development and percep-

tion. Similar difficulties would be encountered when trying

to combine multiple features in other domains as well.

Can statistical learning approaches be extended to capture

listeners’ use of multiple acoustic cues? How could this prob-

lem be instantiated in a model of speech sound categoriza-

tion? One way would be to present each cue along a separate

dimension, as in Figure 1B, leading to n-dimensional cate-

gories, where n is the number of cues to be learned. This type

of model has the advantage of allowing us to fully represent

the acoustic space. However, it can also lead to computational

complexity (representing a 16-dimensional category for the

cues to voicing), and it would present the learner with a sparse

space from which to extract the categories, since many of the

possible combinations of cues would never be heard.

An alternative approach would be to weight and combine

sets of cues that lie along the same phonetic dimension, as

shown in Figure 1C. Cues to voicing, for example, are not

orthogonal; they each indicate the same category structure:

voiced or voiceless for English. Indeed, they are similar to

visual cues to depth that observers integrate during percep-

tion to determine the three-dimensional structure of objects

(Jacobs, 2002). Thus, it is possible to integrate them into a

single phonological dimension upon which the relevant cat-

egories can be learned. This approach reduces the computa-

tional complexity of the problem, and it can be expanded to

account for a large number of acoustic cues.

This paper seeks to address several questions about how

sets of multiple cues can be learned:
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• Can we base a statistical learning model of speech sound
categories on a weighted combination of cues or will only

a full (multi-dimensional) model work?

• Can such a model account for the available data?

• What does this tell us about cue integration principles?

We present two models and simulations designed to an-

swer these questions. The models are mixtures of Gaussians

(MOGs) that have been used previously to model the acqui-

sition of a single acoustic cue (McMurray, Aslin, & Toscano,

in press) andmultiple cues along orthogonal dimensions (Val-

labha, McClelland, Pons, Werker, & Amano, 2007). Here, we

will examine how these types of models can be used to learn

a set of cues along a single sub-phonemic dimension.

Models

We contrast two models of speech sound categorization that

attempt to demonstrate how listeners can learn and combine

Figure 1: (A) VOT distribution of English represented by two

Gaussian distributions corresponding to voiced (lighter color)

and voiceless (darker) categories. The gray bars show the

likelihood of VOT values obtained from the acoustic mea-

surements in Allen and Miller (1999). (B) A representation

of categories along two cue dimensions. (C) Integration of

multiple cues into a single dimension.

multiple acoustic cues. The two models differ in how they

combine information from multiple cues. The cue weight-

ing model weights cues and sums the weighted estimates

provided by each cue, reducing them to a single dimension

(whose distribution is learned by another MOG). The multi-

dimensional model instead uses a set of two-dimensional

Gaussians to track the combined distribution of cue-values,

representing all possible combinations of cues.

Cue weighting model

Architecture The model consists of several mixtures of

Gaussian distributions. Each MOG contains a series of K

Gaussians along a particular acoustic dimension. Each Gaus-

sian represents a potential phonetic category. Since the

number of categories is not known beforehand and must be

learned over development, the mixture contains more Gaus-

sians than it needs. One problem with MOG models is deter-

mining the correct number of Gaussians. To solve this prob-

lem, each Gaussian contains a frequency parameter, φ, corre-
sponding to its prior probability. The model can then reduce

the φ-values of categories that are not needed.
The likelihood of a particular value along that cue dimen-

sion, for each Gaussian (i) is defined by the posterior of that

Gaussian times its φ-value:

Gi(x) = φi
1

√

2πσ2i

exp

(

(x−µ2i )

2σ2i

)

(1)

where µ is the mean of the distribution and σ is the standard
deviation. The sum of the probabilities for each Gaussian in

the mixture determines the likelihood of a cue value:

M(x) =
K

∑
i

Gi(x) (2)

For example, if a MOG represents the voicing categories

for English along the VOT dimension, it would contain two

Gaussians (K=2)− one corresponding to the voiced category
(µ=0, σ=10) and one corresponding to the voiceless category
(µ=50, σ=20) with equal prior probabilities. The likelihood of
a 0 ms VOT would be the sum of the relatively high probabil-

ity for the voiced category and the relatively low probability

for the voiceless category. The likelihood of a 20 ms VOT, in

contrast, would be the sum of the low probabilities from both

categories. Thus, the category structure of this model would

match the structure of the VOT categories for English.

The model contains a MOG for each acoustic cue and an

additional MOG for representing the categories based on the

combination of the cues for the phonetic distinction being

learned.

Learning The model learns the category structure of an

acoustic cue by adjusting the parameters of the Gaussians in

the mixture for that cue. Learning is accomplished via maxi-

mum likelihood estimation by stochastic gradient descent.

As mentioned above, the mixture represents the likelihood

of a particular cue value given a set of parameters (µ, σ, and
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φ). Since learning is iterative and we assume there are no pri-
ors on the parameters, Bayes’ theorem says that the mixture

also represents the likelihood of a set of parameters given a

particular cue value. We can therefore use gradient descent

to update the parameters of each Gaussian given a particu-

lar data point. Gradient descent updates the Gaussians by the

derivative of the likelihood function, (2), with respect to each

parameter (See McMurray, Horst, Toscano, and Samuelson

(in press) for the learning rules used in the model).

Learning proceeds by presenting the model with individual

cue values, calculating the change in each parameter value,

and updating the parameters. The φ values are normalized so
they sum to one and reflect the likelihood of each category.

The model uses winner-take-all competition so that φ is
only changed for the Gaussian that has the highest likelihood.

This solves the problem mentioned above of not knowing the

number of categories a priori. Competition is necessary for

the model to determine the correct number of categories along

each dimension (McMurray, Aslin, & Toscano, in press). In

addition, this is psychologically plausible, since a particular

input corresponds to only a single category, and learning only

needs to occur for that category.

Figure 2: (A) More reliable categories (solid lines) with a

high overall σ. The line in the center represents the approxi-
mate overallσ. (B) Less reliable categories with a lower over-
all σ. (C) Schematic diagram of the cue weighting model.

Cue weighting and integration In order to implement cue

integration in the model, this learning procedure is applied

to multiple MOGs representing different acoustic cues for a

given phonetic contrast. Cue integration occurs by weighing

the input along each dimension and summing the weighted

cue values, which serve as input to a separate MOG that lies

along a dimension corresponding to the phonetic distinction

being learned. This MOG is also trained and produces a set

of speech categories that contain information from multiple

cues. The individual MOGs for each cue are only used to

compute the weights and inputs to the combined MOG.

As with the parameters of the Gaussians, cue weights are

computed on the basis of the distributional statistics of the

input. Cues with a higher reliability receive a greater weight.

This approach is similar to a Kalman filter (Kalman, 1960;

Jacobs, 2002), which computes reliability for the individual

cues and then uses a linear combination rule to integrate data

from each source:

x=
n

∑
i

wixi (3)

where x is the estimate based on the combined input, xi is the

estimate for a particular cue (i), wi is the weight for that cue,

and n is the number of cues. In a Kalman filter, weights are

determined by the formula

wi =

1

σ2i
n

∑
j

1

σ2j

(4)

where σ2 is the variance of the distribution along a particular
cue dimension. Thus, cues that are more reliable (i.e. those

with a smaller variance) will have larger weights.

This measure of reliability has been used previously to

model sensory integration given unimodal cue distributions

along a common dimension (Jacobs, 2002). For the types

of distributions we are examining here, however, the over-

all variance cannot be used, since each cue contains multiple

Gaussians. A single variance estimate does not adequately

describe a dimension that is distributed in this way, since a

high variance could be achieved by a mixture of two narrow

Gaussians in which the means are far apart (highly reliable,

Figure 2A) and a low variance could be achieved by a mix-

ture of two broad Gaussians that are highly overlapping (un-

reliable, Figure 2B). Thus, we developed a new estimate of

cue reliability that can be used to determine the weight of a

multimodal distribution:

g=

(

K

∑
n

K

∑
m

φmφn (µm−µn)
2

σmσn

)

/2 (5)

This equation takes into account the variance of each dis-

tribution along a dimension, as well as the means and prior

probabilities for each distribution. It calculates the reliability

of a particular cue dimension by summing all pairwise com-

parisons between the Gaussians along that dimension (m and
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n refer to particular Gaussians; K refers to the total number

of Gaussians along that cue dimension). Pairs of Gaussians

that are close together do not contribute much to g, since the

difference between their µs is minimal. Similarly, pairs of

Gaussians with high σ values do not contribute as much as
pairs with low σs, and low frequency (φ) Gaussians do not
contribute much to g. This results in a measure of overall re-

liability of a dimension analogous to d′. (6) normalizes the

reliability estimates to compute the weight for each cue:

wi =
gi
n

∑
j

g j

(6)

Simulation procedure For a single run of the model, train-

ing data is generated by randomly sampling from distribu-

tions corresponding to the speech categories of interest. The

model is initialized by randomly setting µ for K Gaussians

to a value in the range of the data to be learned. σ is set to
a constant value for each Gaussian, and φ is set to 1/K. On
each trial, the model is presented with individual exemplars

to each MOG representing an acoustic cue, and the param-

eters of each Gaussian are updated using the learning rules

and competition described above. Next, the cue dimensions

are weighted, and the input along each dimension is normal-

ized relative to the parameters of the Gaussians along that

dimension. A new input is computed using the input to the

individual cues and their weights. The MOG representing the

combined percept receives this as input, and learning occurs

along this dimension. Figure 2C shows the basic organiza-

tion of a model that integrates two cues to voicing, VOT and

vowel length (VL).

After training, the model is tested on its categorization of

stimuli varying along each acoustic dimension. From this, we

can see how it uses multiple cues by measuring trading rela-

tions, differences in categorization depending on the values

of the cues.

Multi-dimensional model

Architecture The multi-dimensional model uses the same

basic MOG framework as the cue weightingmodel. However,

rather than representing each cue along a separate dimension

and combining them, this model consists of a mixture of n-

dimensional Gaussians. For the simulations presented here, a

two-dimensional MOG is used. The likelihood of a particular

set of cue values for each Gaussian is defined by

Gi(x) = φi

(

1

2π|Σi|1/2
exp
(

−
1

2
(x−µi)

⊤Σ−1
i (x−µi)

)

)

(7)

where Σ is the covariance matrix for the two cues. Other pa-
rameters are the same as those in (1) for each cue. As in the

cue weighting model, the overall likelihood of a set of cue

values is defined by (2). Figure 1B shows how this model

might represent categories defined by two cues.

Learning and simulation procedure Learning and test-

ing follow the same basic procedure as in the cue weighting

model. On each trail, a pair of cue values is given as input

and the parameters of the MOG are updated.

Simulations

Simulation 1: Two cues

The first simulation involved a trading relation between two

acoustic cues and was designed to determine whether the cue

weighting or multi-dimensionalmodel better accounts for cue

integration in speech along a single phonetic dimension.

The cue weighting model contained three MOGs: one

for representing VOT, one for vowel length (VL), and one

for representing overall voicing based on both cues. The

multi-dimensional model contained a single two-dimensional

MOG, with one dimension for VOT and one for VL. 50 mod-

els of each type were run in the simulation.

Training The models were trained on VOT and VL val-

ues randomly sampled from distributions based on the acous-

tic measurements from Allen and Miller (1999) for VL and

Lisker and Abramson (1964) for VOT. The models were run

for a sufficient amount of time for them to settle on a stable

set of categories. A total of 70,000 trials were run for the cue

weighting model, and 200,000 trials were run for the multi-

dimensionalmodel. For the correlation between the cues used

by the multi-dimensional model, the value from the Allen &

Miller dataset was used. Table 1 shows the means and stan-

dard deviations of the distributions used to generate the train-

ing data. Models that overgeneralized, that is, those that had

only a single category after training for any of the MOGs (as

determined by the number of Gaussians with φ-values greater
than 0.1) were excluded from analysis.

Testing Each model was tested on the VOT and VL values

used with human listeners in McMurray, Clayards, Tanen-

haus, and Aslin (submitted): nine VOT steps (from 0 to 40

ms) and two VL values (125 and 225 ms). The /b/ and

/p/ categories were identified by finding the Gaussians with

the highest posterior probabilities for the best /b/ exemplar

(VOT=0ms; VL=225ms) and the best /p/ exemplar (VOT=40

ms; VL=125 ms) in either the combined MOG for the cue

weighting model or the two-dimensional MOG in the multi-

dimensional model. These two Gaussians were used to com-

pute the likelihood of a /p/ response for each stimulus with the

Table 1: Descriptive statistics of distributions used to gener-

ate training data. Means and standard deviations are in ms for

VOT and VL and Hz for F1.

Voiced Voiceless

VOT VL F1 VOT VL F1

Mean 0 188 260 50 170 300

SD 5 45 10 10 44 10
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Figure 3: (A) Data from human listeners from a picture iden-

tification task with stimuli varying in VOT and VL. (B) Data

from the cue weighting model. (C) Data from the multi-

dimensional model.

Luce choice rule. This produced a response corresponding to

the proportion of /p/ responses obtained for human listeners.

Results Figure 3A shows behavioral data from human lis-

teners from McMurray et al. (submitted), displaying propor-

tion of /p/ responses as a function of VOT and VL. A moder-

ate shift of the VOT category boundary of about 5 ms for

the two different VL conditions can be seen. Figures 3B

and 3C show the results from the simulations with the cue

weighting and multi-dimensional models, respectively. The

results from the cue weighting model show a similar-sized

shift in the VOT boundary to the human data, but the multi-

dimensional model shows no observable shift in the predicted

direction. The RMS difference between the human data and

cue weighting models is 0.141, and between the human data

and multi-dimensional models is 0.183.

The results of the simulations indicate that the cue weight-

ing model provides a better fit to human listeners’ catego-

rization. The multi-dimensional model did not show the pre-

dicted VL effect, suggesting that it did not use this less dis-

criminable cue and instead relied on VOT for categorization.1

Simulation 2: Three cues

The second set of simulations was designed to determine if

the cue weighting model could also account for changes in

the size of trading relations depending on the value of addi-

tional acoustic cues in the signal. Toscano and McMurray

(in preparation) found that the size of the trading relation be-

tween VOT and VL was dependent on whether a third cue to

voicing, F1 at voicing onset, was ambiguous or informative.

In natural speech, this cue covaries with VOT, reducing the

apparent size of the VOT/VL trading relation. Toscano and

McMurray (in preparation) examined this in human listeners

using synthetic speech that contained formant onsets that ei-

ther covaried with VOT (similar to natural speech) or were

held constant at an ambiguous value. This simulation will

look at whether the cue weighting model produces a corre-

sponding change in the size of the trading relation.

50 models with four MOGs (VOT, VL, F1, and a combined

MOG), were trained and their categorizationwas tested for F1

values that covaried with VOT or were held constant.

Training VOT, VL, and F1 values were randomly sampled

from the distributions in Table 1. F1 values were estimated

from acoustic measurements of the stimuli in Toscano and

McMurray (in preparation). Each model was run for 90,000

trials. Other parameters were identical to Simulation 1.

Testing The testing procedure was the same as in Simula-

tion 1, except that the model was presented with three acous-

tic cues. The model was tested under two conditions. In one

condition (constant), F1 values were held constant at 280 Hz.

In the second condition (covaried), F1 values covaried with

VOT in 10 Hz increments from 240 to 320 Hz.

Results Figure 4A shows the results for human listeners’

from Toscano and McMurray (in preparation) and Figure 4B

shows the results from the cue weighting model. The model

shows a reduced trading relation between VOT and VL when

F1 covaries with VOT, replicating the basic effect observed

with human listeners. These results indicate that the cue

weighting model was able to account for the difference in the

size of the trading relation observed in the human data.

General Discussion

The results of these simulations suggest that the cue weight-

ing model and the reliability metric used here provide a rea-

sonable account of listeners’ performance. They also suggest

that a full model of the entire acoustic space may not be nec-

essary, and, in fact, may not correctly represent the weights

that listeners assign to acoustic cues. Further, these simula-

1In both models, Gaussians tended to not overlap significantly.
This led to a negligible VL effect in the multi-dimensional model.
Because Gaussians could be separated along both cue dimensions,
the model could approximate the close means of the VL data without
having overlapping categories. In contrast, VL means in the cue
weighting model were further apart than the means in the data, since
the model could only reduce overlap for those Gaussians along that
dimension. This produced a larger VL effect than we would expect
based on the cue weighting metric alone.
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Figure 4: Identification responses for three cues to voicing

for either covaried or constant F1 values. (A) Data for human

listeners from Toscano and McMurray (in preparation). (B)

Data from the cue weighting model from Simulation 2.

tions suggest that the information needed to weight cues is

available in the statistics of the input − information that in-
fants already use to discover the category structure of individ-

ual acoustic cues.

A multi-dimensional space may be used to map acoustic

information onto speech categories at other levels of process-

ing. Indeed, this approach seems particularly useful for com-

bining cues across orthogonal dimensions, such as manner,

place and voicing for consonants, or frontness and backness

for vowels (see Vallabha et al. (2007) for simulations with

a three-dimensional MOG learning vowel spaces). However,

this would not be needed if listeners only had to learn pho-

netic features rather than phoneme-like units and could base

perception on these features. Note also that the cue weight-

ing model may not be able to successfully combine cues if

the within-category correlations between the cues are highly

different (since it does not track these correlations). However,

we know of no set of acoustic cues for which this is the case.

The advantage of the weighting and integration approach

lies in the fact that a large number of acoustic cues can be

combined into a simpler representation. For a distinction

such as word-medial voicing, in which there are at least 16

cues that contain the same phonetic category structure, it may

be difficult to learn the distributions of categories in a 16-

dimensional space. By combining cues into a single dimen-

sion, this reduces the computational difficultly of learning

speech sound categories.

The cue weighting model presented here extends the sta-

tistical learning framework to explain how the distributions

and weights of multiple cues can be learned over develop-

ment. Also, the reliability metric used here provides a gen-

eral method for weighting a multimodal distribution. This ap-

proach may be useful for understanding other types of feature

combination as well.
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