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Statistical Properties of Quantum Graph Spectra

Yu. Dabaghian

Department of Physiology, Keck Center for Integrative Neuroscience,

University of California, San Francisco, California 94143-0444, USA

e-mail yura@phy.ucsf.edu

(August 15, 2006)

A general analytical approach to the statistical description of quantum

graph spectra based on the exact periodic orbit expansions of quantum levels

is discussed. The exact and approximate expressions obtained in [5] for the

probability distribution functions using the spectral hierarchy method are an-

alyzed. In addition, the mechanism of appearance of the universal statistical

properties of spectral fluctuations of quantum-chaotic systems is considered

in terms of the semiclassical theory of periodic orbits.

03.65.Sq, 05.45.+b
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I. INTRODUCTION

A quantum graph system consists of a quantum particle moving along the bonds of an

arbitrary finite graph G [1]. In the classical limit, this system generates a simple stochastic

dynamics, which is specified by the translational motion along the bonds of the graph and

stochastic scattering at its vertices with preset scattering probabilities. This dynamics has

many common features with the dynamics of usual chaotic systems [2]. For example, periodic

trajectories in such a system are isolated and their number increases exponentially with the

period. At the same time, the statistical behavior of various spectral characteristics of

sufficiently complex quantum graphs, e.g. the probability distribution of spacings sn =

kn − kn−1 between the nearest levels of the momentum was numerically shown [1] to follow

the predictions of the Random Matrix Theory (RMT) [3,4], as it is usually the case for

classically nonintegrable systems. It also turns out that a great number of problems of

classical and quantum dynamics on the graph allow exact solutions, which makes these

systems convenient models in the context of the analytical theory of “quantum chaos”. In

particular, for these systems there exist the exact periodic orbit expansions of the quantum

density of states (Gutzwiller formula) [1] along with a similar expansion for the spectral

staircase:

N(k) ≡
∞

∑

j=1

Θ (k − kj) = N̄(k) +
1

π
Im

∑

p

Ape
iL

(0)
p k, (1)

Here N̄(k) is the average number of levels in the range [0, k], L
(0)
p is the optical length of the

periodic trajectory with the index p, and Ap is a certain weight factor explicitly defined in

terms of the scattering coefficients at the graph vertices. It should be emphasized that the

existence of the explicit expansions of the global characteristics such as (1) is not equivalent

to the ultimate solution of the spectral problem, which should provide local information

about the individual levels in the form of an explicit dependence kn = k(n). An approach

for determining the quantities kn explicitly was proposed in [5], which is based on using a

finite system of r + 2 auxiliary “separators” k̂
(0)
n , k̂

(1)
n+1, ..., k̂

(r+1)
n , the first of which is the
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physical spectral sequence kn = k̂
(0)
n , and the last one is a globally defined explicit function

of n:

k̂(r+1)
n =

π

L0

(

n +
1

2

)

. (2)

The key property of these sequences is that they must satisfy the “bootstrapping” conditions

k̂(j)
n < k̂(j−1)

n < k̂
(j)
n+1, (3)

which guarantee that between every pair of the neighboring points k̂
(j)
n and k̂

(j)
n+1 (see Fig. 1)

there exists a single point k̂
(j−1)
n . In [5] it was also pointed out that due to certain analytical

properties of the spectral determinant ∆(k) = 1 +
∑

i aie
ikL(i), where L(i), are different

linear combinations for the bond lengths l1, l2, ..., lNB
, the set k̂

(j)
n can be provided by the

sequence of zeros of the j-th derivative of the function ∆(k) [5,8]. In this case, the quantity r

characterizing the degree of spectral irregularity is defined as the minimal number for which

the condition
∑

i

∣

∣ai

(

L(i)/L0

)r∣
∣ < 1 is satisfied [5].

  

 (1)

(r)

N(k)
(j)

(0)N    (k)

N    (k)

N    (k)
N    (k)

FIG. 1. Bootstrapping of spectral staircases for separating sequences k̂
(j)
n of the completely

connected four-vertex graph with r = 7. The plots N (j)(k) are vertically shifted for the sake of

clarity. It is clear that the physical spectral staircase N (0)(k) is interlaced by the staircase N (1)(k),

etc. The last staircase N (r)(k) is intersected by the Weyl average N̄(k)

In the simplest case of regular graphs when r = 0 [6,7], only one auxiliary sequence (2)

is required and various spectral characteristics can be calculated using the formula
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f (kn) =

∫ k̂
(1)
n

k̂
(1)
n−1

f(k)ρ(k)dk. (4)

As pointed out in [6,5], this case corresponds to the situation in which the straight line

with the slope L0/π, representing the Weyl average N̄(k), “pierces” the physical spectral

staircase N(k), i.e., N̄(k) intersects every stair step of N(k) at the points k̂
(1)
n .

II. STATISTICAL PROPERTIES OF THE SPECTRA OF REGULAR GRAPHS

Using the Gutzwiller formula in Eq. (4), one can derive the explicit expansions for

various spectral characteristics f
(0)
n , for example, for fluctuations δ

(0)
n = L0

π

(

kn − k̄n

)

, of the

eigenvalues kn around the Weyl average or for the distances between levels sn,m = kn+m−kn.

Such expansions have the form [6,7]

f (0)
n = f̄ (0) −

∑

p

C(0)
p cos

(

ω(0)
p n + ϕ(0)

p

)

, (5)

where the frequencies ω
(0)
p are defined via the periodic orbit lengths as, ω

(0)
p = πL

(0)
p /L0.

The first term of expansion (5) determines the average value of the quantity f
(0)
n , whereas

the following sum describes fluctuations around the average. Each frequency ω
(0)
p is an

integer combination ω
(0)
p = m

(0)
p,1Ω1 + m

(0)
p,2Ω2 + ... + m

(0)
p,NB

ΩNB
, of the quantities Ωi, which

are expressed in terms of the lengths of the graph bonds as Ωi = li/L0, and the coefficients

m
(0)
p,i indicate how many times the orbit passes along the bond li. The sum

∣

∣

∣
m

(0)
p

∣

∣

∣
= m

(0)
p,1 +

m
(0)
p,2 + ... + m

(0)
p,NB−1 specifies the total number of scattering events that the particle moving

along the trajectory p undergoes at the vertices. If Eq. (5) includes only the orbits for which

|m(0)
p | < m, we arrive at the m-th approximation to the exact value f

(0)
n [1,6].

Since the numbers Ωi satisfy the condition Ω1 +Ω2 + ...+ΩNB
= 1, only NB − 1 of these

numbers are independent. Expressing one of them, e.g., ΩNB
, in terms of the others, let us

consider the (generic) case when the numbers Ω̃i = Ωi−ΩNB
are irrational and algebraically

independent. Let us call the orbit p algebraically simple (with the notation p′) if the integer

coefficients m̃
(0)
p,i = m

(0)
p,i −m

(0)
p,NB

have no common divisors. Such orbits in general differ from
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the dynamically simple orbits that correspond to single traversals along closed sequences of

bonds during the particles motion along the graph [1,2,5–7].

The expansion (5) enables one to pass immediately to the statistical description of the

sequence f
(0)
n . Indeed, it is well known that the sequence of the remainders xn = [αn]mod 1

for any irrational number α and n = 1, 2, ..., is uniformly distributed in the interval [0, 1]

[14]. Since the arguments of the trigonometric functions appearing in series (5) are defined

modulo 2π, parsing through the values f
(0)
n yields a sequence which is statistically equivalent

to the series

f (0)
x = f̄ (0) −

∑

p

C̃(0)
p sin

(

m̃(0)
p x + ϕ(0)

p

)

, (6)

Here, C̃
(0)
p and m̃

(0)
p correspond to the coefficients of Eq. (5) in which the condition

∑

i Ωi = 1

is taken into account, and x is a set of NB − 1 independent, uniformly distributed random

variables. The distribution of the quantities δf
(0)
x in this case is obtained from the expression

P
(0)
f = 〈δ

(

f (0) − f
(0)
x

)

〉:

P
(0)
f =

∫

dkeik(f(0)
−f̄(0))

∫ 2π

0

∏

p

Λp(x)
dx

2π
(7)

where every factor Λp(~x) = e
ikC̃

(0)
p cos

“

m̃
(0)
p x+ϕ

(0)
p

”

determines the contribution to the integral

from the corresponding periodic orbit p. Thus, Eq. (7) gives the exact expression for the

distribution P
(0)
f in terms of the periodic orbit theory. It is important to point out that

the properties of the asymptotic distributions of trigonometric sums of form (6) are one of

the traditional areas of research of mathematical statistics (see, e.g., [9,10] and references

therein). In particular, it is known that separate terms (or groups of terms) of lacunary

trigonometric series of form (6) can be considered as weakly dependent random variables,

for which one can be establish a generalization of the central limit theorem, and consequently

their sum is asymptotically Gauss distributed according to

P
(0)
f =

1

σ
√

2π
e−

(δf(0))
2

2σ2 , (8)

with the variance
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σ2 =
1

2

∑

p

C̃(0)2
p =

〈

(

δf (0)
x

)2
〉

. (9)

The conclusion about the Gaussian form of the distribution of the fluctuations also appears

to be applicable to this kind of spectral characteristics expansions of most of the regular

quantum graphs (and other scaling systems), which are described by series of form (6)

with constant coefficients. A hypothesis about the Gaussian nature of the distribution the

spectral staircase fluctuations δN(k) = N(k) − N̄(k), confirmed by extensive numerical

investigations, was previously proposed in [11] as the universal “central limit theorem for

spectral fluctuations” applicable to general quantum chaotic systems. Owing to the existence

of additional explicit expansions (5) this hypothesis, corroborated by the relation with the

theory of weakly dependent random variables (trigonometric sums) can actually be extended

to a much wider set of spectral characteristics.

III. APPROXIMATE DESCRIPTION OF THE DISTRIBUTION FUNCTIONS

Since the contributions of individual orbits to the series δf
(0)
x behave as weakly depen-

dent random variables, some physical simplifications are possible in Eq. (7). Expanding the

exponentials Λp(~x), one can note that because expansion (5) is made in orthogonal harmon-

ics, most integrals of the cross terms appearing from the product of the expansions Λp(~x) in

Eq. (7). Contributions come only from the “resonant” terms for which one of the algebraic

sums of the frequencies vanishes. The amplitude of these contributions decreases rapidly

in the orders of the corresponding degrees of C
(0)
p , that are proportional to the product of

the corresponding number of scattering coefficients at graph vertices [6,7]. This argumenta-

tion can be used to simplify the integral for P
(0)
f . For example, in a simple approximation

the contributions from resonances between different algebraically simple orbits can be dis-

regarded. This is equivalent to untangling of the factors Λp′(x) corresponding to different

algebraically simple orbits, i.e., to the introducing an independent set of variables xp′ for

every algebraically simple orbit. In this case, the distribution probability is represented in

the form

6



P
(0)
f =

∫

dkeik(f(0)
−f̄(0))

∏

p′

Qp′

(

kC̃
(0)
p′

)

, (10)

where every factor

Qp′ =

∫ 2π

0

e
ik

P

ν C̃
(0)

p′ν
cos(νm̃p′xp′+ϕp)dxp′, (11)

corresponds to the algebraically simple orbit p′ and the sum with respect to ν in Eq. (11)

is calculated over orbits whose indices are multiples of m̃p. For a more crude description of

the probability distribution profile, one can disregard the resonances between any distinct

orbits, which is equivalent to the introduction of an independent phase xp for every orbit.

Under this assumption, the integral in Eq. (7) is separated into independent integrals and,

as a result, we arrive at the simple expression

P
(0)
f =

∫

dkeik(f(0)
−f̄(0))

∏

p

J0

(

kC̃(0)
p

)

, (12)

where J0(x) is the zeroth Bessel function. Distributions of form (12) appear in communi-

cation theory, for example, when analyzing the intensity of interfering telecommunication

channels, the theory of wave propagation in random media, and other fields where stochastic

signal models are used [12,13]. It is also worth noting that, in the approximation of inde-

pendent random contributions, the conditions of the Lindeberg–Feller theorem and central

limit theorem are satisfied, which establish the normal distribution law for the sum of in-

dependent random variables. For spectral expansions (6) these conditions on the variances

σ2
p =

(

C̃
(0)
p

)2

/2 of individual contributions are satisfied due to the exponential increase in

the number of periodic orbits and the uniform exponential decrease of the magnitude of the

coefficients C̃
(0)
p . As a result, in the approximation of independent random contributions,

distribution (12) has the same Gaussian form (8), with the variance σ2 =
∑

p C̃
(0)2
p /2 < ∞

as that predicted in [9,10] and [11] for the case of weakly dependent variables. Such descrip-

tion is applicable to the statistical properties of various spectral characteristics of the regular

graphs beginning with their harmonic expansions [5–7]. For example one can consider the

fluctuations δ
(0)
n = L0

π

(

kn − k̄n

)

, of levels around the average value, which have form (5)

with δ̄(0) = 0, ϕ
(0)
p = −π

2
, and the coefficients

7



C(0)
p = −2

π

A
(0)
p

ωp

sin
(ωp

2

)

, (13)

or the difference s
(0)
m,n = kn+m − kn with s̄

(0)
m,n = π

L0
m, ϕ

(0)
p = ωpm

2
and the coefficients

D(0)
p,m =

4

L0

A
(0)
p

ωp

sin
(ωp

2

)

sin
(ωpm

2

)

. (14)

Knowing the distributions of these quantities, one can describe more complex objects such

as the correlation function of fluctuations
〈

δ
(0)
n δ

(0)
n+m

〉

, autocorrelation function R2(x), and

the form factor K2(τ), given by the expression

K2 =
π

L0

∑

m

〈

e−ismnτ
〉

=
π

L0

∑

m

e
−i πm

L0
τ
F (0)

sm
(k), (15)

where F
(0)
sm (k) is the characteristic function of distributions of form (7), (10) or (12), which

are obtained from expansion (5) for sm,n with coefficients (14), and thus,

R2(x) =
π

L0

∞
∑

m=1

P (0)
sm

(x). (16)

It is important that all above distributions are closed expressions consistently describing the

spectral characteristics in terms of periodic orbit theory.

IV. SPECTRAL HIERARCHY

As mentioned above, in general quantum graphs are not regular and so for them the

spectral expansions of form (5) cannot be obtained directly. A generalization to the irreg-

ular case can be obtained by using the relationship between the two neighboring separator

systems k̂
(j)
n and k̂

(j−1)
n and by applying Eq. (4) to f(k) = k at the (j − 1)th level of the

hierarchy:

k̂(j−1)
n =

∫ k̂
(j)
n

k̂
(j)
n−1

kdN (j−1). (17)

Here, N (j)(k) corresponds to the spectral staircase of the sequence k̂
(j)
n . Bootstrapping of the

sequences k̂
(j−1)
n by k̂

(j)
n (or N (j−1)(k) by N (j)(k), see Fig. 1) means that N (j−1)

(

k̂
(j)
n

)

= n.

Substituting expansion (1) for N (j−1)
(

k̂
(j)
n

)

into Eq. (17), and using k̂
(j)
n in the form

8



k̂(j)
n =

π

L0

(

n + δ(j)
n

)

, (18)

we obtain the oscillating part of k̂
(j−1)
n in the form

δ(j−1)
n = f

(j−1)
δ −

∑

p

C(j−1)
p sin

(

ω(j−1)
p n + ϕ(j−1)

p

)

, (19)

Here, the zeroth term

f
(j−1)
δ =

1

2

(

δ(j)
n − δ

(j)
n−1

)

− 1

2

(

(δ(j)
n )2 − (δ

(j)
n−1)

2
)

, (20)

the amplitudes,

C(j−1)
p =

2

L0

A
(j−1)
p

ω
(j−1)
p

sin
ω

(j−1)
p

2

(

δ(j)
n − δ

(j)
n−1 + 1

)

, (21)

and phases ϕ
(j−1)
p = ω

(j−1)
p

(

δ
(j)
n + δ

(j)
n−1 − 1

)

/2 for every level j are functions of the fluctu-

ations δ
(j)
n and δ

(j)
n−1 at the preceding hierarchy level.

Similar expansions are easily obtained for other spectral characteristics, for example, for

s
(j−1)
n,m = k̂

(j−1)
n+m − k̂

(j−1)
n :

s(j−1)
n,m = f (j−1)

s +
2

L0

∑

p

D(j−1)
p,m cos ω(j−1)

p

(

n − m

2
ϕ(j−1)

p

)

, (22)

with the zeroth term

f (j−1)
s = s(j)

n,m +
(

s(j)
n,m − s

(j)
n,m−1

)

×
(

πm/L0 − (s(j)
n,m + s

(j)
n−1,m)/2

)

− ξ(j)
n

(

s(j)
n,m − s

(j)
n−1,m

)

, (23)

where ξ
(j)
n = (δ

(j)
n + δ

(j)
n−1)/2 and the expansion coefficients D̃

(j−1)
p,m are obtained from the

corresponding expansion for s
(j)
n,m. The equations relating the neighboring sequences can

also be considered as describing the transition of a single separating sequence f
(j)
n from one

hierarchy level to another.

V. STATISTICAL DESCRIPTION OF SPECTRAL HIERARCHY

As in the case of the regular graphs, the description of the stochastic properties of

sequences such as δ
(j)
n or s

(j)
n,m is based on the observation that parsing through the indices

9



n in the arguments of harmonic functions (19) and (22) leads to the appearance of random

variables x. The idea of finding the distribution functions for various spectral characteristics

is based on using the structural relations between the separating sequences obtained above

in order to relate the probability distributions P
(j)
f at different hierarchy levels. Beginning

with the distribution P
(r)
f at the regular level, one can determine the distribution P

(r−1)
f at

the next level and so on, ending with the last, physical level.

Pδ
(6)

Pδ
(4)

Pδ
(0)

Pδ
(2)

5
s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

−6 −4 −2  0  2  4  6

FIG. 2. Distribution of variances at the odd levels of the spectral hierarchy for the four-vertex

quantum graph with r = 7. The solid lines are the Gaussian approximations of the numerically

calculated histograms.

As an example, let us consider the behavior of the sequences δ
(j)
n . For simplicity, we

treat the fluctuations δ
(j)
n and δ

(j)
n−1 as independent random variables δ1 and δ2 distributed

according to P
(j)
δ . Correspondingly, one can write for the density P

(j−1)
δ (δ)

P
(j−1)
δ =

∫

δ
(

δ − δ(j−1)
x

)

P
(j)
δ1

P
(j)
δ2

dδ1dδ2dx. (24)

Using Eq. (19) and representing the delta functional in exponential form, we obtain

P
(j−1)
δ (δ) =

∫

dkeikδ

〈

∏

p

Λ(j−1)
p (x, δ1, δ2) dx

〉

Ω(j−1)

, (25)

Here, the factors Λ
(j)
p (x, δ1, δ2) correspond to the terms of expansion (19), which are now

explicit functions of fluctuations at preceding hierarchy levels, and 〈∗〉Ω(j) denotes averaging

over these fluctuations with the weight

Ω(j−1) (δ1, δ2, k) = e−ikf
(j−1)
δ

(δ1,δ2)P
(j)
δ (δ1)P

(j)
δ (δ2) . (26)

10



The expression (25) generalizes regular expansions (7), (10) and (12) for the single-level

hierarchy to the general expressions for j > 0, averaged over the disorder at the preceding

levels.

Ps
(0)

Ps
(3)

Ps
(2)

Ps
(1)

7 0  1  2  3  4
 0

 0.5

 1

 1.5

 2

 2.5

 5 6
 0

 0.5

 1

 1.5

 2

 2.5

FIG. 3. Development of the probability distributions for the distances between the nearest neigh-

bors s
(j)
n = k̂

(j)
n − k̂

(j)
n−1, r = 3. The maximum distance between the nearest neighbors at the j = 0

level in this case is smax = 8.68, for the regular cell size π/S0 = 2.28.

We note that the argumentation concerning the Gaussian distribution form in Section

2 [9,10] can be directly applied to the distribution of δ
(r)
x at the regular level. However, as

shown in Fig. 2, the distribution of δ
(j)
x at higher levels j > 0 is also Gaussian-like. For

other spectral characteristics, for example, s
(j)
n (see Fig. 3), the sequence of transitions of

form (25) can lead to asymmetric (non-Gaussian) distributions.

VI. DISCUSSION

The method proposed in [5] for solving the spectral problem is based on establishing the

structural relationships between the sequence of physical levels kn and the regular sequence

k̂
(r+1)
n specified as an explicit function k̂

(r+1)
n = k̂(r+1)(n). For quantum graphs, the regular

sequence is given by (2) and relation to kn is established through the system of auxiliary se-

quences k̂
(j)
n , bootstrapping kn with k̂(r+1)(n). The spectral hierarchy thus obtained consists

of the system of sequences k̂
(j)
n and transition equations (17) from k̂

(j)
n to k̂

(j−1)
n .

This approach allows not only the description of the evolution of base sequences k̂
(j)
n

from low to high hierarchy levels, but also the complete probability description of spectral

11



characteristics in the framework of periodic orbit theory including those that are not directly

described by the Gutzwiller formula. In this case, it is possible to follow the development

of the scales of spectral fluctuations, distributing disorder over the intermediate hierarchy

levels, gradually passing from less to more disordered sequences. While the base sequence

is maximally ordered, the amplitude of fluctuations in each next sequence k̂
(j)
n increases as

the index j decreases, i.e. with the approach to the physical spectrum [5]. The minimum

number of auxiliary sequences k̂
(j)
n necessary for bootstrapping k̂

(r+1)
n with k̂

(0)
n defines to the

complexity of the spectral problem with respect to the given bootstrapping method.

The above relation between the properties of the series of expansions (19) and the prop-

erties of weakly dependent random variables [9,10] reveals the physical origins of the uni-

versality of the distributions of different spectral characteristics following from the limiting

properties of the sums of such quantities. The existence of a sufficient number of transitions

between hierarchy levels of irregular systems and, correspondingly, of averaging processes

over random phases and disordered sequences k̂
(j)
n in Eq. (25) leads not only to the Gaussian

shape of the distribution of probabilities P
(0)
f [as, e.g., for δN(k) and, correspondingly for

δ
(0)
n , see [11] and Fig. 2), but also to the appearance of more complex (e.g., Wignerian, see

[3] and Fig. 3) distributions.

It is also important that determining the fluctuation probabilities in form (25) makes it

possible not only to follow the appearance of general, universal statistical relations, but also

to describe in detail the specific features of distributions P
(j)
f , which present the individual

properties of each particular system.

Work supported in part by the Sloan–Swartz Foundation.
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