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Abstract
The nonlinear Muskingum model is a leading method for hydrologic routing. The efficiency of
the nonlinear Muskingum model for routing of hydrograph outflow has been improved in
recent years. This study introduces four Muskingum models with improved, generalized,
nonlinear storage equations. The proposed models provide more degrees of freedom in fitting
observed hydraulic data than other corresponding nonlinear Muskingum models and they have
better predictive skill for river flow than other nonlinear Muskingum models. The accuracy of
the proposed Muskingum models is herein demonstrated with examples.

Keywords Hydrologic routingmethod . NonlinearMuskingum . Outflow hydrograph . Storage
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1 Introduction

Floods are hazards that cause substantial losses worldwide. Flood control measures include
riverine modifications, flood zoning, reservoir storage, flood forecasting, and prioritizing flood
prone areas according to projects and flood sensitivity index maps. Flood routing is an
important tool of flood forecasting (Singh and Scarlatos 1987; Tewolde and Smithers 2006).
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Flood routing methods can be divided into two main groups (1) hydraulic and (2)
hydrological methods. The first method employs unsteady flow equations. High accuracy of
flood estimation is an advantage of this method. On the other hand, hydraulic routing requires
detailed and extensive information related to the geometry and other riverine characteristics
and implies a substantial computational burden (Samani and Shamsipour 2004). In contrast,
hydrological routing relies on the continuity and storage equations applied to a river reach. The
Muskingum model is one of the hydrological routing methods which used for the first time for
flood control in Muskingum River in Ohio, United States by McCarthy (1938).

Calibration and prediction are two steps in the application of the Muskingum method (Das
2004). In the first step the parameters of the Muskingum model are determined with applica-
tion of observed data from the inflow and outflow hydrographs. In the second step the outflow
hydrograph is obtained based on the inflow hydrograph and the Muskingum routing equations.
There are linear and nonlinear variants of the Muskingum method. Yoon and Padmanabhan
(1993) indicated a nonlinear Muskingum model is pertinent for flood routing whenever a
nonlinear relation between storage, inflow, and outflow exits.

Several authors have reported nonlinear formulations of the Muskingum model. The first
(NL1), second (NL2), third (NL3), and fourth (NL4) formulations of the nonlinear Muskin-
gum model were respectively introduced by Chow (1959), Gill (1978), Easa (2014), and
Bozorg-Haddad et al. (2015a). The main difference between these models concerns the
parameterization of the storage equation. The number of parameters in the storage equations
in the NL1, NL2, NL3, and NL4 models are three, three, four, and seven, respectively. The
degrees of freedom of the NL4 model exceeds those of other models, which improves its
predictive skill of observed flows based on performance criteria such as the sum of the squared
deviations (SSD), the sum of the absolute value of the deviations (SAD), and difference
between the peak of routed and actual flows (DPO) relative to the predictive skill of other
routing methods.

The parameters of the nonlinear Muskingum models can be estimated by various tech-
niques. The first of these estimates the parameters based on mathematical fitting algorithms
such as the segmental-Least squares (S-LSQ) (Gill 1978), the nonlinear-Least squares (N-
LSQ) (Yoon and Padmanabhan 1993), the Broyden Fletcher Goldfarb Shannon BFGS (Geem
2006), the Lagrange multiplier (LM) (Das 2004), the Nelder-Mead simplex (NMS) (Barati
2011), the Generalized Reduced Gradient (GRG) search (Barati 2013 and Hamedi et al. 2014).
Globally optimal estimates is a key advantage of these methods (Geem 2011), provided that
the initial guess of the optimal solutions are close enough to the global optimal solutions
(Geem 2011).

The second class estimates the parameters relying on phenomenon-pattern algorithms.
Those include pattern search (PS) (Tung 1985), the genetic algorithm (GA) (Mohan 1997),
harmony search (HS) (Kim et al. 2001), particle swarm optimization (PSO) (Chu and Chang
2009), parameter-setting-free HS (PSF-HS) (Geem 2011), differential evolution (DE) (Xu et al.
2012), simulated annealing (SA) and shuffled frog leaping algorithm (SFLA) (Orouji et al.
2013), the modified honey bee mating optimization (MHBMO) (Niazkar and Afzali 2015), the
hybrid of bat algorithm and particle swarm optimization (HBSA) (Ehteram et al. 2018), and
Improved bat algorithm (IBA) (Farzin et al. 2018). These methods reach the global optimal
solutions by means of a random search, although they are beset by the slow convergence to
global optima by the computationally intensive nature of random search (Barati 2013).

A third class estimates the parameters with combination of the first and second class, such
as hybrid GA and NMS (GA-NMS) (Barati 2013), GA and GRG (GA-GRG) (Easa 2013), HS
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with BFGS (HS-BFGS) (Karahan et al. 2013), and SFLA combination with NMS (SFLA-
NMS) (Bozorg-Haddad et al. 2015b). Among these parameter-estimation methods those in the
third class (i.e., combination methods) appear to be the most efficient in solving parameter
estimation with the nonlinear Muskingum models (Easa 2014; Karahan et al. 2013; Barati
2013; Bozorg-Haddad et al. 2015b).

Most researchers have focused on improving the calculation of the storage equation in the
nonlinear Muskingum model. Several researches have focused recently on altering the struc-
ture of the storage equation of the nonlinear Muskingum model with the aim of introducing
greater flexibility in fitting observed hydrograph data. These efforts intended to improve the
predictive skill of the nonlinear Muskingum routing model. Four types of nonlinear storage
equations have been reported. This study introduces four new nonlinear Muskingum models
that generalize structure of the previously proposed nonlinear storage equations. The next
sections describe the new nonlinear Muskingummodels with applications to three case studies.

2 Nonlinear Muskingum Models Equations

McCarthy (1938) proposed continuity and storage equations for flood routing. The continuity
equation is:

dS
dt

≈
ΔS
Δt

¼ I−O ð1Þ

In this equation, t denotes time, S, I, and O represent storage volume, inflow, and outflow in a
river reach, respectively. The storage equation is as follows:

S ¼ K XI þ 1−Xð ÞO½ � ð2Þ

Where K is a time-storage factor for a reach of river, X denotes the weight given to the inflow
and outflow in the routing. It ranges between 0 and 0.3 for rivers (Mohan 1997; Geem 2006).
The two parameters (K and X) must be determined. These parameters are obtained from
observed inflow and outflow data in a river reach (Yoon and Padmanabhan 1993).

Chow (1959) proposed Eqs. (3) through (6) for the NL1 model relating the water depth (y)
to inflow (I), outflow (O), and storage (S) in a river reach:

I ¼ ayn ð3Þ

O ¼ ayn ð4Þ

Sin ¼ bym ð5Þ

Sout ¼ bym ð6Þ
in which a, b, m, and n are model coefficients to be estimated. Sin and Sout denote respectively
the storage at the upstream and downstream sections of a river reach. Equations (3)-(6) are
combined to yield that the following expressions:
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Sin ¼ b
I
a

� �m=n

ð7Þ

Sout ¼ b
O
a

� �m=n

ð8Þ

Chow (1959) introduced the Muskingum model NL1 described by Eq. (10) assuming S is
calculated with Eq. (9):

S ¼ XSin þ 1−Xð ÞSout ð9Þ

S ¼ K X Iα þ 1−Xð ÞOα½ � ð10Þ
In Eq. (10) K ¼ b

aα and α ¼ m
n . Chow (1959) reported that the value of a for uniform flow in

rectangular channels equals 0.6 with n and m respectively being equal to 5.3 and 1. In natural
channels the value of a exceeds 0.6.

Gill (1978) applied a parameter β to Eq. (2) to create the model NL2, given by Eq. (11):

S ¼ K XI þ 1−Xð ÞO½ �β ð11Þ
β is a parameter for considering the effects of non-linearity between weighted flow and storage
volume.

Easa (2014) introduced the Muskingum model NL3 described by Eq. (12):

S ¼ K X Iα þ 1−Xð ÞOα½ �β ð12Þ

in which α and K are given by α ¼ m
n and K ¼ b

aα
� �β

, respectively.

Bozorg-Haddad et al. (2015a) rewrote Sin and Sout as follows:

Sin ¼ b
I
a1

� �m=n1 ð13Þ

Sout ¼ b
O
a2

� �m=n2 ð14Þ

in which a1 and n1 represent the flow-depth profile at the upstream section of a river reach, and
a2 and n2 represent the flow-depth profile at the downstream section of the river reach.
Equation (15) describes the nonlinear model NL4:

S ¼ K X C1Iα1ð Þ þ 1−Xð Þ C2Oα2ð Þ½ �β ð15Þ
where

K ¼ bβ;α1 ¼ m
n1

;α2 ¼ m
n2

;C1 ¼ 1

a1

� � m
n1

" #β

andC2 ¼ 1

a2

� � m
n2

" #β

ð16Þ
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The NL4 model becomes the Muskingum model NL3 when C1 =C2 = 1, and α1 =α2. The
Muskingum model NL4 has seven parameters (C2, C1, β, α2, α1, X, K) and, thus, more degrees
of freedom than the other nonlinear Muskingum models.

3 Generalized Nonlinear Muskingum Models’ Storage Equations

Nonlinear Muskingum models assume the volume of storage in the ith time interval depends
only on Sin and Sout at the ith time interval. The calculation of the storage volume at the ith time
interval by the models NL1, NL2, NL3, and NL4 requires inflow and outflow values at the ith

time interval, and one must estimate 3, 3, 4, and 7 parameters for the aforementioned models,
respectively.

There is some dependence between the storages at the ith and i + 1st time intervals. For this
reason, this study considers the interdependence of Sin at the ith and i + 1st time intervals to
construct generalized nonlinear Muskingum models seeking to improve the accuracy of the
calculated storage and outflow hydrograph. These modified nonlinear Muskingum models are
called the generalized NL1 model (GNL1), generalized NL2 model (GNL2), generalized NL3
model (GNL3), and generalized NL4 model (GNL4).

The GNL1 model writes storage in the routing reach at the time i, Si, as a weighted
combination of the storage at the upstream and downstream sections of the reach as follows:

Si ¼ X 1Sin;i þ X 2Sin;iþ1 þ 1−X 1−X 2ð ÞSout;i ð17Þ
where:

Sin;i ¼ b
I i
a

� �m=n

ð18Þ

Sin;iþ1 ¼ b
I iþ1

a

� �m=n

ð19Þ

Sout;i ¼ b
Oi

a

� �m=n

ð20Þ

Substituting Eqs. (18)-(20) into Eq. (17) yields the GNL1 model:

Si ¼ K X 1Iαi þ X 2Iαiþ1 þ 1−X 1−X 2ð ÞOα
i

� �
GNL1ð Þ ð21Þ

X1 and X2 are weighting factors reflecting the importance of the inflows in the ith and i + 1th
time intervals, respectively. Calculation of Si for the GNL1model requires the values of Ii, Ii + 1,
Oi and four parameters.

The storage equations of the GNL2, GNL3, and GNL4 models are respectively given by
Eqs. (22), (23), and (24):

Si ¼ K X 1I i þ X 2I iþ1 þ 1−X 1−X 2ð ÞOi½ �β GNL2ð Þ ð22Þ
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Si ¼ K X 1Iαi þ X 2Iαiþ1 þ 1−X 1−X 2ð ÞOα
i

� �β
GNL3ð Þ ð23Þ

Si ¼ K X 1 C1I
α1
ið Þ þ X 2 C1I

α1
iþ1

� �þ 1−X 1−X 2ð Þ C2O
α2
ið Þ� �β

GNL4ð Þ ð24Þ

The storage volumes calculated with the GNL2, GNL3, and GNL4 models at the ith and i + 1st
time intervals with Eqs. (22), (23), and (24), respectively, requires Ii, Ii + 1, Oi and estimation of
four, five and eight parameters in the GNL2, GNL3, and GNL4 models, respectively.

4 Estimation of the Generalized Nonlinear Muskingum Models
Parameters

Simulation and optimization processes are applied to estimate the parameters of the proposed
generalized nonlinear Muskingum models. The next sections present the simulation and
optimization processes.

5 Simulation Process of the Generalized Nonlinear Muskingum Models

This study employs the flood-routing method of Tung (1985) to simulate the flood
routing with the generalized nonlinear Muskingum models. This method was applied
by Geem (2006). The observed inflow data, calculated outflow data, and calculated

storage at the ith time interval are denoted by Ii, Ôi, and Si, respectively, where i = 0,
1, …, I indicates the simulation time intervals. The steps of GNL1 model are as
follows (similar steps apply to the other three generalized nonlinear Muskingum
models).

Step 1: Estimate the hydrologic parameters (K, X1, X2, and α).
Step 2: Calculate the initial storage (S0) with using Eq. (25) which assumes that the initial

outflow equals the initial inflow (Ô0 ¼ I0):

Si ¼ K X 1Iα0 þ X 2Iα1 þ 1−X 1−X 2ð ÞÔ̂α
0

h i
i ¼ 0 ð25Þ

Step 3: Calculate the rate of change in the storage volume at the ith time interval, (ΔSi
Δt ) with

Eq. (26):

ΔSi
Δt

¼ I i−
1

1−X 1−X 2ð Þ
� 	

Si
K

� �
−

X 1

1−X 1−X 2ð Þ
� 	

I iα−
X 2

1−X 1−X 2ð Þ
� 	

I iþ1
α


 �1
α

i ¼ 0; 1;…; I−1 ð26Þ
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Step 4: Calculate the storage at the ith time interval, (Si), with Eq. (27):

Si ¼ Si−1 þΔt
ΔSi−1
Δt

� �
i ¼ 1; 2;…; I ð27Þ

Step 5: Calculate the river-reach outflow at the ith time interval, (Ôi) with Eq. (28):

Ô̂i ¼ 1

1−X 1−X 2ð Þ
� 	

Si
K

� �
−

X 1

1−X 1−X 2ð Þ
� 	

I iα−
X 2

1−X 1−X 2ð Þ
� 	

I iþ1
α


 �1
α

i ¼ 1; 2;…; I

ð28Þ
In previous studies the application of Ii − 1 was more common than Ii in Eq. (28).

Step 6: Repeat steps (3) to (5) until the completing the simulation.

Equation (29) was chosen as the objective function to estimate the parameters of the four
generalized nonlinear Muskingum models.

Min:SSD ¼ ∑
N

i¼1
Oi−Ô̂i
� �2

i ¼ 0; 1; 2;…; I ð29Þ

where SSD is sum of the square deviations between the observed and calculated outflow at the
ith time interval, and Oi is the observed outflow at the ith time interval. Other objective
functions herein considered minimize the sum of the absolute deviations (SAD) between the
observed and calculated outflow at the ith time interval, or minimize the difference between the
routed and observed peak (DPO) stream flow. These are given by:

SAD ¼ ∑
I

i¼1
jOi−Ô̂ij i ¼ 0; 1; 2;…; I ð30Þ

DPO ¼ jOP−Ô̂Pj ð31Þ
where OP is the value of peak in the observed outflow; and ÔP is the value of peak in the
routed outflow. Thus, the SSD is the main objective function in parameter estimation of the
generalized nonlinear Muskingum models, and the SAD and DPO are alternative objective
functions whose minima are also found.

Equation (32) calculated the absolute deviation (AD) between the observed and calculated
outflows for ith time interval.

AD ¼ jOi−Ô̂ij ð32Þ

6 Optimization Algorithm

This study implements a hybrid SFLA-NMS method introduced by Bozorg-Haddad et al.
(2015b) for the parameters estimation of all models. The SFLA-NMS method involves two
stages. The first stage of the SFLA calculates the parameters that are applied to the nonlinear

Generalized Storage Equations for Flood Routing with Nonlinear Muskingum... 2683



Muskingum models. The optimal parameters are estimated with the nonlinear Muskingum
model in the second stage relying of the predictions made by the nonlinear Muskingum model
in stage one.

7 Results and Discussions of the Generalized Nonlinear Muskingum
Models

The proposed models were applied with three different case studies (smooth single peak
hydrograph, real routing example, and multi modal example). Some features of the routing
examples are: (1) considering nonlinear relationship between S and [XI + (1-X) O] in all three
case studies, (2) using the different nonlinear Muskingum models based on the previous
studies, and (3) comparison of the proposed models’ performances with the previous results
obtained from these examples.

8 Case Study 1: Smooth Single-Peak Hydrograph

The inflow and outflow hydrographs of Wilson (1974) were applied as a first case
study, in which the number of time steps, I, and the duration of the simulation time
step, Δt, equal 21 and 6 h, respectively. This case study is experimental example and
is used extensively in the literature as a benchmark problem. Figure 1 depicts a
comparison between the observed and calculated hydrographs with the models: (a)
GNL1, (b) GNL2, (c) GNL3 and (d) GNL4 from the first case study. In this
Figure the calculated hydrographs of nonlinear model are also presented. Results
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Fig. 1 Comparison of the observed and calculated hydrographs with the different models: a GNL1 and NL1, b
GNL2 and NL2, c GNL3 and NL3, and d GNL4 and NL4 in the first case study
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show the calculated hydrograph with the proposed models has a good accordance with
the observed hydrograph.

Table 1 lists the values of the objective functions (SSD, SAD, and DPO) obtained
with the nonlinear Muskingum (Bozorg-Haddad et al. 2015b), and the generalized
nonlinear Muskingum models (this study). According to Table 1, the values of the
SSD and SAD in the GNL1 model are, respectively, 25 and 10% lower (better) than
those of the NL1 model (the GNL1 model has lower accuracy than the NL1 model
with respect to DPO). The SSD value obtained with the GNL2 Model is 8% lower
(better) than that of the NL2 model (the GNL2 model has less accurate than the NL2

Table 1 Comparison of the optimal values of the SSD, SAD, and DPO calculated with the different models for
the first case study

Model K X1 X2 α α1 α2 β C1 C2 SSD SAD DPO

NL1 0.46 0.229 – 1.50 – – – – – 245.58 60.69 0.55
GNL1 0.70 0.409 −0.154 1.43 – – – – – 183.34 54.84 1.05
NL2 0.52 0.287 – – – – 1.865 – – 36.77 23.47 0.90
GNL2 0.70 0.349 0.021 – – – 1.800 – – 34.01 23.55 1.04
NL3 0.83 0.296 – 0.43 – – 4.079 – – 7.67 10.31 0.31
GNL3 0.91 0.322 −0.024 0.45 – – 3.863 – – 7.41 10.31 0.31
NL4 0.48 0.0833 – – 0.70 0.425 3.822 0.619 0.735 5.44 6.69 0.05
GNL4 0.79 0.024 0.005 – 0.80 0.371 4.371 1.00 1.00 4.81 6.52 0.03
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Fig. 2 Comparison of the AD values calculated with different models: a NL1 and GNL1, b NL2 and GNL2, c
NL3 and GNL3, and d NL4 and GNL4 in the first case study

Generalized Storage Equations for Flood Routing with Nonlinear Muskingum... 2685



model with respect to the SAD and DPO). The values of the SSD, SAD, and DPO of
the GNL3 model are respectively, 3, 7, and 27% lower (better) than those of the NL3
model, and the values of the SSD, SAD and DPO of the GNL4 model are, respec-
tively, 11, 2, and 40% lower (better) than those of the NL4 model. Results show the
GNL4 model produced the best values of the objective functions. By increasing the
degrees of freedom in the model the objective functions were reduced, a desirable
trait.

The absolute deviation (AD) was determined between the observed and calculated
outflows is depicted in Fig. 2 for ith time interval. Figure 2 displays the superior
fitting capacity of the generalized nonlinear Muskingum models compared to that
those of the corresponding nonlinear Muskingum models (NL1, NL2, NL3, NL4).
Based on Fig. 2 the generalized nonlinear Muskingum models estimates the AD
values more accurately than those of the corresponding nonlinear Muskingum models.
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Fig. 3 Comparison of the observed and calculated hydrographs with the different models: a GNL1 and NL1, b
GNL2 and NL2, c GNL3 and NL3, and d GNL4 and NL4 in the second case study

Table 2 Comparison of the optimal values of the SSD, SAD, and DPO calculated with the different models for
the second case study

Model K X1 X2 α α1 α2 β C1 C2 SSD SAD DPO

NL1 0.52 0.347 – 1.30 – – – – – 55,548 839 97
GNL1 2.14 0.415 −0.091 0.34 – – – – – 49,559 773 109
NL2 0.08 0.415 – – – – 1.59 – – 34,789 793 90
GNL2 0.69 0.465 −0.046 – – – 1.52 – – 33,911 759 87
NL3 0.44 0.404 – 1.20 – – 1.33 – – 32,299 743 76
GNL3 0.64 0.465 0.052 0.587 – – 1.35 – – 30,090 716 72
NL4 0.60 0.609 – – 1.056 1.16 1.40 1.00 1.00 30,894 732 73
GNL4 1.56 0.656 −0.091 – 0.99 1.13 1.37 1.04 0.621 28,853 705 73
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9 Case Study 2: Non-smooth Single-Peak Hydrograph

The second case study is about a 1960 flood in the Wye River in the United
Kingdom (1 [Natural Environment Research Council (NERC), 1975]. This reach
concerned was treated as a single reach despite its considerable length (O’Donnell
et al. 1988). The 69.75-km reach of the RiverWye from Erwood to Belmont has no
tributaries and very small lateral inflow (Karahan et al. 2013). This case study
features I = 33 and Δt = 6 h. The comparison of the observed and calculated
hydrographs with the generalized nonlinear Muskingum models and nonlinear Mus-
kingum models of this case study is depicted in Fig. 3, which shows the calculated
hydrographs with the generalized nonlinear Muskingum models are in good agreement
with the observed hydrograph.

Table 2 lists the values of the objective functions obtained with the different
models. It is clear that the use of the generalized nonlinear Muskingum models
improves the fit to the observed outflows than to the corresponding nonlinear Mus-
kingum models. The values of the SSD obtained with the GNL1, GNL2, GNL3 and
GNL4 models are 11, 3, 7, and 7% lower than those calculated with the NL1, NL2,
NL3 and NL4 models, respectively. Also, the value of the SAD of the GNL1 model is
8% lower (better) than that of the NL1 model (the GNL1 has lower accuracy than the
NL1 model with respect to the DPO). The values of the SAD and DPO of the GNL2
model are respectively, 4 and 3% lower (better) than those from the NL2 model.
Moreover, the values of the SAD and DPO from the GNL3 model are 4 and 5%
lower (better) than those calculated with the NL3 model, respectively. The calculated
SAD value of the GNL2 model is 4%lower (better) than that of the NL4 model (DPO
estimates with the GNL4 and NL4 models are almost equal). In addition, it is evident
from Table 2 the GNL4 model exhibits the best (smallest) values of the objective
functions in the second case study.
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Fig. 4 Comparison of the AD values calculated with different models: a NL1 and GNL1, b NL2 and GNL2, c
NL3 and GNL3 and d NL4, and GNL4 in the second case study
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The generalized nonlinear Muskingum models’ ability to fit the data better than the
corresponding nonlinear Muskingum models is illustrated with a comparison between
the AD values calculated with different models: (a) NL1 and GNL1, (b) NL2 and
GNL2, (c) NL3 and GNL3 and (d) NL4 and GNL4 displayed in Fig. 4. These values
demonstrate that the generalized nonlinear Muskingum models achieved better data
fitting than the corresponding nonlinear Muskingum models.

10 Case Study 3: Multiple-Peak Hydrograph

The third case study is a flood hydrograph with multiple peak introduced by
Viessman and Lewis (2003). This case study employs I = 23 and Δt = 1 h. The input
hydrographs of the inflow and outflow are shown in Fig. 5. Figure 5 depicts a
comparison between the observed and calculated hydrographs by the models: (a)
GNL1, (b) GNL2, (c) GNL3 and (d) GNL4 in the third case study. In this
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Fig. 5 Comparison of the observed and calculated hydrographs with the different models: a GNL1 and NL1, b
GNL2 and NL2, c GNL3 and NL3, and d GNL4 and NL4 in the third case study

Table 3 Comparison of the optimal values of the SSD, SAD, and DPO calculated with the different models for
the third case study

Model K X1 X2 α α1 α2 β C1 C2 SSD SAD DPO

NL1 0.070 0.153 – 1.46 – – – – – 74,307 1042 55
GNL1 1.922 0.519 −0.277 1.25 – – – – – 55,338 929 23
NL2 0.077 0.167 – – – – 1.45 – – 73,399 1037 56
GNL2 2.218 0.544 −0.272 – – – 1.23 – – 56,670 953 25
NL3 0.077 0.167 – 0.92 – – 1.57 – – 73,379 1033 56
GNL3 0.326 0.525 −0.277 1.23 – – 1.02 – – 55,331 930 23
NL4 0.007 5*E-6 – – 3.12 1.42 1.00 1.00 1.00 69,861 934 51
GNL4 0.473 0.063 −0.033 – 1.80 1.18 1.004 0.083 0.874 52,469 890 10
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Figure the calculated hydrographs of nonlinear model are also presented. As shown,
the calculated hydrographs have a good accordance with the observed hydrograph.

A comparison of the values of the objective functions obtained from corresponding
original and generalized models in this case study is presented in Table 3, where it is
read that the objective functions calculated with the generalized models are better than
those calculated with the corresponding original models.

The AD values calculated with the two set of models (i.e., original nonlinear and general-
ized nonlinear) are shown in Fig. 6. Results demonstrate the generalized models achieved
better data fitting than the corresponding original models.

11 Concluding Remarks

This study introduced the generalized nonlinear Muskingum models with more pa-
rameters than previous nonlinear storage equations. The generalized models involve a
more complex calibration process than the corresponding nonlinear Muskingum
models. Yet, the further complexity is compensated by a significant improvement in
the quality of flood routing. A hybrid estimation method can decrease the further
complexity of the model calibration. Based on this study, the SFLA-NMS method can
be successfully used to estimate optimal parameter values with different generalized
nonlinear Muskingum models. The performances of the generalized nonlinear Mus-
kingum models were compared with those of the corresponding nonlinear Muskingum
models by means of three case studies. A comparison of the calculated results
demonstrated that overall superior data-fitting capacity of the generalized nonlinear
Muskingum models for flood routing relative to the original nonlinear Muskingum
models.
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Fig. 6 Comparison of the AD values calculated with different models: a NL1 and GNL1, b NL2 and GNL2, c
NL3 and GNL3, and d NL4 and GNL4 in the third case study
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