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EPIGRAPH

Be careful to leave your sons well instructed rather than rich,

for the hopes of the instructed are better than the wealth of the ignorant.

—Epictetus
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emotional support and stoic-at-heart philosophy to help me manage my work and

myself. To my brother, Sebastian Metti, for providing me with such intellectual

stimulation and encouragement to recognize my greater potential in my career and

my personal life. To Christine Kwong, the support you have given me during this

final year of graduate school is immeasurable; I cannot thank you enough for all

of the time and effort that you dedicated to help me reach my goals.

xvi



VITA and PUBLICATIONS

2008 B. A. in Applied Mathematics, University of California, San
Diego

2008-2010 M. A. in Applied Mathematics, University of California, San
Diego

2010-2013 Ph. D. in Mathematics, University of California, San Diego

2010-2013 Graduate Teaching Assistant, University of California, San
Diego

2011-Present Analytics Architect, Premlo Care Intuitive, Del Mar

2011-2012 Student Leader, UCSD MathStorm Consulting Group, La
Jolla

2012-Present Senior Statistician, Petco Animal Supplies, San Diego

PUBLICATIONS

R. E. Bank, M. S. Metti, An error analysis for some higher order space-time moving
finite element methods, manuscript in preparation.

R. E. Bank, M. S. Metti, Generalized time integration schemes for space-time
moving finite elements, manuscript in preparation.

xvii



ABSTRACT OF THE DISSERTATION

Analysis of Some Higher Order Space-Time Moving Finite Element
Methods

by

Maximilian Sloan Metti

Doctor of Philosophy in Mathematics

University of California, San Diego, 2013

Professor Randolph E. Bank, Chair

This is a study of an application of finite element methods designed for

convection-dominated, time-dependent partial differential equations. Specifically,

this work analyzes finite element discretizations that employ moving meshes in or-

der to solve linear differential equations over space-time domains. These methods

can lead to significant savings in computation costs for problems having solutions

that develop steep moving fronts, as moving meshes have the ability to track these

fronts continuously with a high concentration of nodes; this flexibility allows for

much larger time steps than standard tensor product finite elements, while main-

taining high resolution of fine structures that sweep through the spatial domain.

The main results are a priori and a posteriori error bounds for some moving
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finite element methods of high order and general time-stepping schemes. These

finite element methods follow a method of lines approach for propagating the solu-

tion in time, though the error analysis places a strong emphasis on the properties

inherited by the finite element aspects of the discrete problem. Another focus of

this work is to determine practical and efficient schemes for adaptive meshing and

mesh motion. As a result of this research, a solver has been written in C++ that

is applicable to time-dependent linear convection-diffusion-reaction equations with

a single dimension for the spatial.
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Computing accurate solutions to convection-dominated partial differential

equations using standard finite element methods can be computationally expensive,

and sometimes prohibitively so. Consequently, the use of adaptive methods can

lead to great savings in computation time and maintain accuracy of the computed

solution ([17],[19],[9],[57]). It is often the case that regions in which the solution to a

partial differential equation (PDE) is rough or rapidly changing are relatively small

compared to the overall domain and adaptive methods leverage this fact by focusing

more computational effort by placing a higher concentration of the degrees of

freedom in these regions and avoiding “over-solving” where the solution is smooth

[19]. Effectively, adaptive methods are designed to automate the process of finding

a finite element space that is well-suited to solving a given differential equation. For

elliptic problems, many adaptive methods can be described as some combination of

three basic adaptive processes ([9],[45],[17]): h-methods locally refine or coarsen an

existing mesh [9]; r-methods move the nodes in an existing mesh [20]; and p-methods

locally raise and lower the order of an approximation [11]. Typically, adaptive

methods are iterative procedures, where an approximate solution is computed and

then used to find a better suited approximation space to the differential equation,

which is in turn used find a more accurate approximate solution and the process

repeats. In this thesis, adaptive methods for space-time problems are explored in

which approximate solutions to the PDE are computed using a moving mesh.

1.1 Discretization of time-dependent problems

To start, we introduce two common approaches for solving time-dependent

problems and then discuss how adaptive methods can be applied to these ap-

proaches. The first approach is the method of lines approach. In this approach,

one discretizes the spatial domain using a standard finite element triangulation,

which gives a system of ordinary differential equations (ODEs) that is equal in

length to the number of degrees of freedom assigned to the spatial discretization.

Then, numerical time integration techniques are used to advance the system in

time [44]. The method of lines naturally separates the discretization of space and
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time, which can be convenient for error analysis.

A second approach is the direct discretization of the space-time domain

that treats the time dimension as an additional spatial dimension. Therefore, one

discretizes the space-time domain as a higher-dimensional spatial domain. The

software package for solving elliptic equations PLTMG [16] uses this approach

to discretize Burger’s equation, for example. The direct discretization approach

consequently falls into the framework of finite element methods for autonomous

differential equations for which there is extensive research; books [7] and [52] are

useful references.

The benefits of the method of lines approach is that it allows a solution to

be computed rather quickly, as we are essentially solving a system of ODEs, which

means that the computational complexity is proportional to the number of time

steps, given a fixed spatial discretization. In the case of one-step time integration

schemes, the system of ODEs effectively breaks up into m disjoint problems that

must be solved sequentially.

This is in contrast to the space-time discretization approach, which requires

computing the solution over the entire space-time domain simultaneously; this

leads to a much larger linear system to solve than the method of lines. The benefit

of a direct discretization of the space-time domain, however, is that the resulting

methods readily live within a pure finite element framework, unlike the method of

lines, which means that finite element theory can be readily applied.

Finite element theory provides a convenient framework for proving quasi-

optimal error bounds for the computed solution. To describe what quasi-optimal

error bounds are, let u be the solution to some differential equation and uh be

a computed solution living in a finite element space, Vph. Then, the computed

solution uh is quasi-optimal if there exists a norm ||| · ||| in which the error u − uh
satisfies the symmetric error estimate

|||u− uh||| ≤ C inf
v∈Vp

h

|||u− v|||. (1.1)

This is an a priori error bound and is commonly sought for elliptic problems, but

we can choose an energy norm that is also capable of measuring error introduced

by the time discretization ([37],[38],[18],[40]). Quasi-optimality of uh in the sense
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of (1.1) tells us that the computed solution is comparable to the best possible

solution in the finite element space Vph when measured in the energy semi-norm

||| · |||.
This thesis studies adaptive techniques for solving time-dependent prob-

lems. For direct space-time discretizations, the h, p, and r methods are naturally

extended to the space-time mesh in the obvious way. To improve the performance

of method of lines approaches, it is possible to apply the aforementioned adaptive

methods to the discretizations of the spatial domain and employ adaptive time

stepping to improve efficiency in the time discretization ([47],[33]). Additionally,

periodic re-meshing is an option that can help track the region where the solu-

tion is rough in order to make this approach viable in instances where this region

moves. Unfortunately, if the convection velocity in the differential equation is

large, steep moving fronts may develop in the solution and very short time steps

may be required to maintained a desired level of accuracy ([44],[57]). In order to

avoid these short time steps, a moving mesh can be used to continuously track this

moving region. The use of moving meshes for these purposes have been studied

and tested on a variety of problems ([57],[55],[12],[13],[14],[28],[29],[50],[56],[65])

and demonstrated great success for some convection dominated problems. The

adaptive methods studied in this thesis are designed to make use moving meshes

and efficiently compute accurate solutions to differential equations that potentially

have large convection velocities.

1.2 Moving finite elements

As suggested above, moving finite element methods follow a method of lines

approach and are designed to efficiently and accurately solve convection-dominated

problems, where standard finite element methods often lead to computational in-

efficiencies [57]. As regions where the solution is rough can shift in time-dependent

problems, standard finite element methods require short time steps to track this

behavior. In the case of hyperbolic problems, this is characterized by Courant-

Friedrichs-Levy conditions, where the Courant number must be bounded to ensure
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stability [44]. (The Courant number is defined by |b|∆t/∆x, where b represents the

convection velocity, ∆t is the length of the time step, and ∆x is the maximum di-

ameter of the spatial elements.) For convection-diffusion problems, the time step

constraint is even stronger as the Courant number must be proportional to the

diameter of the spatial elements.

In contrast, moving finite element methods are designed to track these

moving regions with continuously moving nodes in order to preserve fine struc-

tures that are characteristic of solutions to convection-dominated problems, such

as steep moving fronts, and this feature provides the flexibility for taking signifi-

cantly longer time steps when performed properly ([57], [55], [28], [56]). Here, the

word “properly” is rather ambiguous and often refers to aligning the mesh motion

with the motion of the structures formed in the solution. There are many different

approaches to generating this mesh motion, and each approach warrants its own

moving finite element method.

1.2.1 A history of moving finite element methods

Moving finite elements were initially proposed by Miller and Miller in ([57],

[55]) and have been analyzed and implemented in the context of linear and non-

linear problems. The initial schemes for computing solutions on moving meshes

created a discrete problem where the PDE and the motion of the mesh nodes

were computed simultaneously via residual minimization techniques. However,

this approach inherently led to singularities such as node entanglement — when

trajectories of the spatial nodes cross each other — and a “parallelism singularity,”

which arises from a non-uniqueness of the mesh parameterization [12]. In an effort

to avoid these singularities, spring functions and viscosity functions were added

as penalty terms to ensure shape regularity of the moving mesh and improve the

conditioning of the discrete system. Numerous schemes to determine the motion

of the mesh nodes have been proposed ([57], [55], [28], [56], [50]) that often add

regularization terms, as mentioned above, or sophisticated variational formulations

to avoid these singularities and enforce some desired behavior of the mesh motion.

The success of the meshing scheme appears to depend greatly on the compatibil-
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ity of the mesh motion with the behavior of the solution to the PDE, with some

methods proving to be more robust than others. The book by Baines [12] serves

as an excellent overview of moving finite element analysis and provides practical

methods for computing moving finite element solutions, including an algorithm for

finding “moving best fits” which decouples finding the solution to the PDE from

determining the mesh motion by an iteratively adaptive process. One technique

that provides greater flexibility for moving finite elements is the “graph massage”

[50], which employs (discontinuous) re-meshing at discrete time steps to add and

remove nodes in the mesh and avoid element tangling.

1.2.2 Error analysis of moving finite elements

The first error analysis of moving finite element methods is given in Dupont

[37] and a symmetric error bound of the form (1.1) is proven for the semi-discrete

formulation. To prove the quasi-optimality of moving finite element methods, a

mesh-dependent energy (semi-) norm is typically defined, which follows the idea

originally proposed by Dupont [37]. Symmetric error bounds are proven for lin-

ear moving finite elements by Bank and Santos in ([18],[65]) and by Dupont and

Mogultay [40]. Some symmetric error estimates for mixed methods that use moving

meshes are proven in [53].

The a priori bound for more general moving finite elements presented in

this thesis are based on arguments from ([18],[65],[40]). In addition, a posteriori

error estimates are provided in the current analysis to determine the convergence

of the finite element solution to the true solution of the PDE. These a posteriori

error estimates are derived from the quasi-optimality of the finite element solution

and the approximation properties of the tensor product finite element space.

In this thesis, moving finite element methods are applied to linear parabolic

PDEs. In the case of nonlinear equations, iterative methods using linearization

techniques are often used and, thus, the error analysis may be applied to the

linearized system, where additional errors coming from the nonlinear solver are

bounded by some regularity conditions placed on the nonlinear terms [38]. The

moving finite element space in this work is viewed as the tensor product of C0
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finite element spaces over the spatial domain with a potentially discontinuous finite

element discretization of the time domain. This allows us to analyze these space-

time methods in the context of finite element error analysis and prove quasi-optimal

a priori error bounds.

The elements of this discretization are the tensor product of isoparametric

elements in space with an isoparametric element in time. For example, in two

dimensions, this gives space-time elements that are curvilinear prisms with flat

triangular faces at the beginning and end of a time step and the curved trapezoidal

faces connecting them that correspond to the motion of the mesh in time. Minimal

assumptions on the mesh motion are assumed to ensure that the error analysis can

be readily applied to a wide variety of methods for determining mesh motion.

Time stepping methods

As moving finite elements follow a method of lines approach, the finite

differencing scheme chosen to advance the solution in time plays a crucial role

in determining the efficacy of the method. We restrict our attention to one-step

time integration schemes, due to the nature of the finite element spaces described

in this thesis. An important point that must be addressed by any discretization

following the method of lines is that the semi-discrete formulation of the PDEs

is often a stiff systems of ODEs [4] and, therefore, it is necessary to use stable

time stepping methods ([68],[54]). Stable methods are necessary because they

guarantee that the behavior of the finite element solution matches that of the true

solution and avoid divergence and numerically-induced oscillations of the computed

solution in time. Unfortunately, only time stepping methods that correspond to

polynomial differentiation allow these moving mesh methods to correspond exactly

to a finite element space, whereas other time stepping methods may be stable and

more efficient, but only produce an approximation of the finite element solution.

The tradeoff here is the symmetric quasi-optimal error bound for computational

efficiency and stability. For quadratic moving finite elements, the TR-BDF2 time

stepping scheme, proposed in [23], is considered as an example and an error analysis

is provided. Following the error analysis of numerical ODE methods, the error of
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the method must now be bounded by additional terms corresponding to truncation

error of the time stepping method.

1.3 Layout of the thesis

The remainder of this thesis is organized as follows. In chapter 2, the

partial differential equation that we use in this analysis is introduced, along with

various formulations relevant to our study. One development in this chapter is

a variational formulation that incorporates a time dependent parametrization of

the spatial domain, which naturally fits into the framework of moving meshes.

Chapter 3 contains a description of the tensor product moving finite element mesh,

the construction of the proposed finite element space via a family of isoparametric

maps, and some shape regularity assumptions for the moving mesh. This chapter

describes finite element spaces that consist of piecewise tensor product polynomials

of arbitrary order, whereas previous research has been restricted to the linear case.

One benefit of these higher order finite element spaces is that they provide greater

flexibility in the motion of the nodes in the mesh, as these nodes can now follow

nonlinear trajectories and hence can align better with the motion of the structures

of the solution to the PDE. Norms and notation are established in chapter 4, along

with some preliminary results relating these norms to the PDE. Also in chapter

4, we present a detailed analysis of the approximation properties of the finite

element space; this provides the error analysis for the finite element space as an

approximating subspace of the true solution space of the differential equation. The

results in section 4.2 are independent of the PDE under consideration.

In chapter 5, the content of chapters 2–4 are brought together in a proposed

space-time moving finite element method. This method outlines a strategy for

computing a finite element approximation to the solution of the PDE introduced in

chaper 2 that employs the finite element space described and analyzed in chapters

3 and 4. This finite element method is the natural extension of those proposed

in ([18],[65],[40]). The main result of this chapter is a symmetric error estimate

for a certain class of moving finite element methods that is a generalization of the
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error bounds found in the aforementioned trio of error analyses ([18],[65],[40]). An

even broader extension of this method is described in chapter 6 that permits more

general time integration schemes and, consequently, results in greater flexibility

for using more stable time discretizations. This flexibility ultimately comes at the

cost of sacrificing the symmetric error bound, where the error of the finite element

solution must now be bounded by approximation errors introduced by the new

time discretization scheme.

Chapter 7 is focused on some practical aspects of these moving finite element

methods that are not necessarily addressed by the theoretical analysis provided

in the preceding chapters. Namely, experiments are conducted to evaluate the

benefits of using moving finite elements compared to static tensor product finite

elements. Some modifications to the methods discussed in chapters 5 and 6 are

explored, in addition to a scheme that incorporates adaptive meshing based on

derivative recovery techniques. As a final experiment, we attempt to employ our

moving finite element solver on Burger’s equation, which is a simple nonlinear PDE

that generates a sharp boundary layer in its solution, which sweeps through the

spatial domain. This problem was also used in experiments by Miller and Miller

in [57].

Chapter 1, in part, is in preparation for submission for publication of this

material. Bank, Randolph E. The dissertation author is the primary investigator

and author of this material.
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This chapter is an introduction to the time-dependent linear convection-

diffusion-reaction equation. This space-time equation contains a combination of

hyperbolic and parabolic operators and is used to determine the behavior of phys-

ical systems that transport particles or quantities influenced by forces of diffusion,

convection, and potentially some chemical reaction. The differential equation is

given by

ut −∇ · (a∇u) + b · ∇u+ cu = f

and is a linear approximation of many complicated dynamical systems and is exten-

sively used for computational experiments and numerical simulations for problems

such as the heat transfer [7], wave propagation and fluid dynamics ([52],[44]), mod-

eling meteorological phenomena [61], aerosol dynamics [41], and metal melting [27].

Due to the large variety of application, this equation and its steady state equation

(when ut ≡ 0) has been studied in the context of multiscale methods [49], discon-

tinuous Galerkin and interior penalty methods [39], stabilized finite elements, the

method of characteristics [48], upwind differencing [25], adaptive meshing, as well

as moving finite elements ([18],[40],[65],[53]). There are several ways of formulat-

ing this problem and each formulation presented in this chapter is insightful or

beneficial to our study in some way.

We begin by establishing some basic notation that is used throughout the

remainder of this thesis. The spatial domain of the differential equation is denoted

by Ω and is assumed to be a compact subset of IRd, where d = 1, 2, or 3, and the

boundary of Ω is represented by ∂Ω. The time domain is a finite interval, (0, T ],

and the space-time domain is therefore given by F ≡ Ω × (0, T ]. Applications of

moving finite elements to problems with moving boundaries have been explored by

Baines et al. [13] with some satisfying results; however, we restrict our attention

to autonomous spatial domains. The space of square integrable functions on Ω

is denoted by L2(Ω) (and likewise L2(∂Ω) represents the space of functions that

are square integrable on ∂Ω). The space of functions in L2(Ω) that have up to k

derivatives that are also square integrable is represented by Hk(Ω).
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2.1 The strong formulation of the linear

convection-diffusion-reaction equation

The formulation given below is a physically intuitive description of the

linear convection-diffusion-reaction equation and serves as a simple and accessible

introduction to this initial value problem. Let u0 be a given initial condition for the

solution on F and let n denote the outward unit normal vector to the boundary ∂Ω.

This formulation is the strong formulation, as it has stronger regularity constraints

for the solution than the other presented formulations.

Formulation 1. Let a, b, c, and f be smooth and bounded functions defined on F
such that there exist constants ā > 0 and c̄ ≥ 0 with a ≥ ā and c ≥ c̄, and let g be

piecewise continuous on ∂Ω. Find u such that

ut −∇ · (a∇u) + b · ∇u+ cu = f, in F , (2.1)

a∇u · n = g, on ∂Ω× (0, T ], (2.2)

u(x, 0) = u0(x), for x in Ω. (2.3)

Formulation 1 has a direct physical interpretation. The function a deter-

mines the amount of diffusion acting upon the solution u, which is assumed to be

nontrivial as the value of a ≥ ā > 0. For many methods that apply to pure trans-

port (convection) problems — cases when a ≡ 0 — a small amount of artificial

diffusion is introduced to stabilize the numerical method, resulting in a singularly

perturbed equation. If a numerical method is unstable, then the computed solution

can potentially exhibit large oscillations that are uncharacteristic of the true solu-

tion to the differential equation. Essentially, added diffusion dampens numerically

induced oscillatory behavior in the computed solution by “smearing” steep shock

layers that may be present in the solution over larger areas so that the discretiza-

tion scheme can detect these regions of rapid change properly ([51],[69]). Upon

inspection, upwind differencing schemes and methods of characteristics also lead

to an artificially enlarged diffusion term ([34],[48]), and this is also the underlying

concept behind streamline diffusion methods. In the case of moving finite elements,

a small amount of diffusion can prevent a phenomenon called “manifold fold over”
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[28] or “element folding” [12] that leads to degenerate finite element spaces and,

ultimately, singular linear systems that would otherwise describe the unique finite

element solution. As such, only the case of a strictly positive diffusion coefficient

is considered.

The convection velocity, b, is a term of significant interest in this problem;

it can lead to difficulties in the analysis and serves as the primary motivation for

using moving finite element methods. When the convection velocity is significantly

greater than the diffusion quantity, the solution of the equation may develop steep

shock layers that sweep through the spatial domain. These shock layers refer to a

narrow region in the spatial domain where the solution, u, undergoes a dramatic

change in value and these regions of rapid change generally propagate through the

spatial domain. In the limiting case where a ≡ 0, this shock layer can be discon-

tinuous ([64],[28]), leading to an ill conditioned problem and a small amount of

artificial diffusion is introduced, as discussed above. In general, accurately captur-

ing the fine structures near these shock layers can be computationally expensive

[57], often requiring very short time steps. We shall see that aligning the mesh

motion with the convection velocity may permit significantly larger time steps in

solving the differential equation numerically, while still preserving accuracy of the

solution in the shock layer. This strategy of following the convection velocity has

been studied in previous research ([18], [40],[65]) and is the motivation for up-

wind differencing methods [35], the method of characteristics [48], flux splitting

methods, and the Lagrangian approach for solving convection dominated problems

[30].

The function c is the reaction term and describes how the value of the

solution influences its own evolution in time. The assumption that c is nonnegative

could be relaxed to where c is only required to bounded; however, this leads to

unstable growth of the solution and is, therefore, not considered. The term f

on the right hand side in (2.1) is the source function, which describes external

forces that may be acting upon the solution. In the case of the heat equation, this

could be some heat source that is independent of the temperature, represented by

u. The boundary condition is determined by g in equation (2.2). In formulation
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1, the function g describes a Neumann (or natural) boundary condition, as the

gradient of the solution, ∇u, is constrained. If the equation (2.2) were replaced by

the boundary condition

u = gD on ∂Ω× (0, T ], (2.4)

we would have a Dirichlet (or essential) boundary condition. Potentially, a Neu-

mann boundary condition could be imposed on a subset of the boundary and a

Dirichlet boundary could be imposed on the rest, giving a mixed boundary condi-

tion. For convenience, a Neumann boundary condition is assumed as the boundary

condition does not play a significant role in this error analysis. Our results still

hold with only minor changes to their arguments when other boundary conditions

are imposed.

An unfortunate aspect of formulation 1 is that the solution u is required to

be twice differentiable with respect to the spatial variables. By using techniques of

variational calculus, this regularity assumption can be relaxed and the differential

equation can be posed in the variational (or weak) form.

2.2 A variational formulation

In order to relax the regularity constraint that u is twice differentiable

in space, the differential equations are imposed weakly in space but strongly in

time. To do this, the equations in formulation 1 are multiplied by a test function,

integrated over the spatial domain Ω, and the divergence theorem is applied to the

diffusion term. Using the boundary condition (2.2), the differential equation (2.1)

becomes∫
Ω

ut(x, t)χ(x, t) + a(x, t)∇u(x, t) · ∇χ(x) + b(x, t) · ∇u(x, t)χ(x)

+ c(x, t)u(x, t)χ(x, t) dx =

∫
Ω

f(x, t)χ(x) dx+

∫
∂Ω

g(s)χ(s) ds, (2.5)

for 0 < t ≤ T , where χ is an arbitrary test function living in H1(Ω). This weakly

imposes equations (2.1) and (2.2) on Ω.

Define V to be the set of all functions, u, with domain F such that u(t) ∈
H1(Ω) and ut(t) ∈ L2(Ω) for 0 ≤ t ≤ T . This function space serves as the trial



15

space for the variational form of the differential equation and H1(Ω) shall be the

test space. Since equation (2.5) is imposed at all times t in the time domain and

V
∣∣
t

= H1(Ω), we see that the test space is the same as the trial space restricted to

a time slice. The constraint that ut(t) ∈ L2(Ω) for all t ensures that the equation

(2.5) is well-posed and “ties” together this equation throughout the time-domain.

As the differential equation is imposed weakly in space and strongly in

time, it is natural to analyze the differential operators of the spatial variables

independently from the time derivative. Let v and χ live in H1(Ω) and define the

time dependent bilinear functional

A0(v, χ; t) ≡
∫

Ω

a(x, t)∇v(x, t)·∇χ(x)+b(x, t)·∇v(x, t) χ(x)+c(x, t)v(x, t)χ(x) dx.

(2.6)

This bilinear functional is simply notation for the spatial terms on the left side of

(2.5). When the convection velocity b is identically zero, the bilinear form A0 is

symmetric, positive semi-definite, bounded, and coercive, which will be useful in

proving the existence and uniqueness of the solution for the discrete variational

formulation. On the other hand, when b is large relative to the other coefficient

functions in (2.6), this no longer hold and will result in requiring smaller time steps

in the discrete formulations. The method of characteristics is based on reducing

the asymmetry introduced by the convection velocity via a “re-alignment” of the

time derivative with the characteristics of the hyperbolic differential operator, ut+

b · ∇u. A similar approach can be taken with moving meshes, without some of the

difficulties that arise from the misalignment of the characteristic trajectories and

the spatial mesh at the distinct time steps. The usual inner-products on Ω and

∂Ω are given by

(f, χ) =

∫
Ω

f(x)χ(x) dx and 〈g, χ〉 =

∫
∂Ω

g(s)χ(s) ds.

The variational formulation is formally given as follows.

Formulation 2. Let a, b, c, and f be smooth and bounded functions on F satis-

fying a ≥ ā > 0 and c ≥ c̄ ≥ 0, and let g(t) be integrable on the ∂Ω for 0 < t ≤ T .

Find u in V such that for all χ in H1(Ω) and 0 < t ≤ T ,(
ut(·, t), χ

)
+A0

(
u, χ; t

)
=
(
f(·, t), χ

)
+
〈
g(·, t), χ

〉
, (2.7)
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and when t = 0

(
u(·, 0), χ

)
=
(
u0, χ

)
.

In this formulation, it has been noted that the differential equations are

imposed weakly in space, but for all times in the time domain. Another varia-

tional formulation might take the test functions to be defined on the space-time

domain, F , and then integrate over space and time. Some versions of this type of

method have been studied in previous research ([65], [18]), though no symmetric

error estimates have been found as far as we know. In such methods, the time

domain is partitioned and the differential equation is solved on each time parti-

tion sequentially, which is an intermediate approach between the method of lines

and a space-time variational formulation; penalty terms are used to enforce con-

tinuity between the time partitions as the time basis functions are restricted to

their respective time partitions. Ultimately, this leads to the loss of a symmet-

ric error estimate due to the presence of penalty terms. Formulation 2, however,

is compatible with a method of lines approach, which has been traditionally em-

ployed for moving mesh schemes. As noted before, the method of lines approach

does not correspond a variational formulation in space-time and consequently may

lead to non-symmetric error estimates for some choices of time-stepping schemes,

as we show in chapters 5 and 6. In section 5.2, there is a discussion comparing

formulations with the equations imposed weakly and strongly in time.

2.2.1 A variational formulation with non-autonomous do-

main parametrization

Consider the time dependent bilinear form given in (2.6). Due to the con-

vection term b, the bilinear form, A0, is not positive semi-definite, symmetric, or

coercive, which presents difficulty in proving estimates for stability and consistency.

Furthermore, convection dominated problems tend to have high computational cost

to solve accurately ([57], [58]), as small times steps are needed to track the motion

of refined structures in the solution, such as a steep moving front. Moving meshes

are specifically designed to alleviate these issues in a manner similar to that to that



17

of the method of characteristics; the prominent distinction between moving finite

elements and the methods of characteristics is that the methods of characteristics

do not typically have the nodes of the spatial mesh follow the characteristic tra-

jectories along which the time derivative is re-aligned. In this section, we describe

a variational formulation with a non-autonomous parametrization of the spatial

domain and study its effects on formulation 2.

Let x : F → Ω be a continuous map from the space-time domain to the

spatial domain such that x(Ω, t) = Ω for all t in (0, T ]. By varying t, the maps

{x(·, t)}t form a set of time-dependent parametrizations of Ω. From this perspec-

tive, x(·, t) is a map from Ω to some manifold living on Ω. This framework has

been used to analyze some of the singularities that may arise from this manifold

folding over, which corresponds to a non-injective parametrization of the spatial

domain. These singularities are discussed in ([28],[29], [12], [57], [57], [65], [18]),

and later in this paper.

Following a Lagrangian approach — as well as the method of characteristics

approach — the map x can represent a family of particle trajectories. To define

these particle trajectories, fix a base point, (y, s), in the domain, F . The trajectory

passing through (y, s) is denoted by x(y, s; t), where t is the parameter that is varied

to trace out the path of x. It is useful to think of these trajectories as the flow

lines of some ordinary differential equation: let (y, s) ∈ F and define x(t) by the

ordinary differential equation,

d

dt
x(y, s; t) = τ(x(y, s; t), t), and x(y, s; s) = y, (2.8)

where τ : F → IRd+1 is some integrable vector-valued function on F , though not

necessarily continuous. In order to keep x(y, s; t) in Ω for all t, the vector function

τ(·, t) must be satisfy the boundary condition

τ(x, t) · n = 0 (2.9)

for all x on ∂Ω and t in (0, T ], where n is the outward normal on the boundary

of the domain. This boundary condition ensures that the flow lines x(y, s; t) stay

inside the spatial domain for all times t. Given a base point (y, s) in F , these

flow lines map the line segment (0, T ] to a time dependent trajectory in F . For
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simplicity, this trajectory is assumed to be a local parametrization, meaning that

the base point of x(t) is assumed to be at the point (x, t) in F , unless otherwise

explicitly noted. For shorthand, the dependence on the base point is suppressed

and we denote x(t) = x(y, s; t)
∣∣y=x
s=t

and xt(t) = d
dt
x(y, s; t)

∣∣y=x
s=t

= τ(x, t). (The

notation xt and τ are used interchangeably, as they represent the same quantity.)

Assuming that the convection velocity b is orthogonal to the outward normal on

the boundary of the domain, taking τ = b in (2.8) recovers the particle trajec-

tories chosen by the method of characteristics and can be an effective choice for

mesh parametrization, as we show in section 4.1.2 and chapter 5. Due to this

connection with the method of characteristics, the trajectories, x(t), are referred

to as the characteristic trajectories. Note that the choice τ ≡ 0 implies a static

parametrization and straight-line characteristic trajectories.

Let u ∈ V . Using the chain rule, the derivative along the characteristic

trajectories is given by

d

dt

[
u
(
x(t), t

)]
= xt(t) · ∇u(x(t), t) + ut(x(t), t).

Let ∂τ represent the differential operator given above; that is,

∂τu(x, t) ≡ xt(t) · ∇u(x, t) + ut(x, t).

This differential operator is called the characteristic derivative and allows the

differential equation (2.1) to be rewritten as

∂τu−∇ · (a∇u) + (b− xt) · ∇u+ cu = f. (2.10)

Intuitively, this formulation flows the points in the spatial domain along the char-

acteristic trajectories, allowing the convection velocity term to be absorbed into

this flow. The motion of the spatial points is described by the time derivative of

this parametrization, xt. As mentioned before, choosing xt = b corresponds to an

“ideal” method of characteristics, fully canceling the convection velocity. Fully dis-

crete formulations only permit piecewise polynomial flow lines and, consequently,

only an approximation xt ≈ b can be computed for general b, to approximately

align the characteristic trajectories with the flow of the convection term. On the
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other hand, if xt ≡ 0, the spatial parametrization is autonomous and the varia-

tional formulation given in formulation 2 is recovered — note that when xt ≡ 0,

the characteristic derivative satisfies ∂τu = ut.

The spatial bilinear form associated with equation (2.10) is given by

Aτ (u, χ; t) ≡
∫

Ω

a(x, t)∇u(x, t) · ∇χ(x) + (b(x, t)− xt(t)) · ∇u(x, t) χ(x)

+ c(x, t)u(x, t)χ(x) dx,

where the subscript τ is used to indicate the mesh motion. As one can see, choosing

xt ≈ b (or xt = b) will reduce (or nullify) the effect of the convection term in Aτ ,
leading to a more symmetric functional in the sense that

|Aτ (u, χ; t)−Aτ (χ, u; t)| ≤ ||b(t)− xt(t)||∞||u||1||χ||1,

where || · ||1 is taken to be the usual norm for H1(Ω) and || · ||∞ is the essential

supremum over Ω.

Using the time-dependent parametrization for Ω, the variational character-

istic formulation is given.

Formulation 3. Let a, b, c, and f be smooth and bounded functions on F satis-

fying a ≥ ā > 0 and c ≥ c̄ ≥ 0, let g(t) be in L2(∂Ω), and let τ(t) : F → IRd live

in L2(Ω) and be orthogonal to the outward normal vector on the domain boundary

for 0 < t ≤ T . Find u in V such that for all χ in H1(Ω) and 0 < t ≤ T ,(
∂τu(t), χ

)
+Aτ

(
u, χ; t

)
=
(
f(t), χ

)
+
〈
g(t), χ

〉
, (2.11)

and when t = 0

(
u(·, 0), χ

)
=
(
u0, χ

)
.

Note that the vector field that determines the spatial motion, τ in (2.8),

is only required to be integrable and orthogonal to the outward normal of the

domain boundary, as in (2.9), so that the mesh motion does not “flow out” of

the domain. This means that there are many possible choices for how to evolve

the spatial parametrization. Formulation 3 does not restrict the choice of spatial
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parametrization beyond these regularity assumptions; as such, this formulation

encompasses many possibilities for the choice of characteristics. Upon discretizing

the spatial domain, the characteristic trajectories, xt, determine the mesh motion,

which justifies the ambiguity of the characteristic function in formulation 3. This

formulation permits general characteristic functions so that the error analysis of

its discretized formulation is general enough to apply to many mesh motion strate-

gies. Often, the mesh motion is determined by imposing additional differential

equations that determine the mesh motion according to some conservation law or

physical phenomenon ([13],[14]), or residual minimization ([12],[18],[65]). These

approaches for mesh selection conform to a discrete version of the problem for-

mulation 3, in addition to other constraints that may be used to determine the

spatial parametrization. Some mesh motion schemes require the use of penalty

functions or stability terms to ensure shape regularity and desired behavior of the

moving mesh ([57],[57], [56]); some of these penalty functions can be “hidden” in

the source terms for our purposes. In such a case, the source function in equation

(2.11) may depend on the mesh motion as well, f(x, t) = f(x, xt, t). Some schemes

for mesh moving inherently introduce nonlinear terms into the differential equa-

tion ([28],[29],[50]), which means that our analysis does not directly apply to these

methods, though one of our numerical experiments in chapter 7 show satisfactory

performance on a simple nonlinear equation. Shape regularity will be discussed in

depth in section 3.3, but mesh selection will be assumed to satisfy the constraints

of formulation 3 a priori without modification.

Formulation 3 follows the semi-variational form of formulation 2 as it im-

poses the differential equation weakly in space, though strongly in time. The key

difference between formulations 2 and 3 is that the new formulation allows the

convection term to be absorbed into the characteristic derivative. The result is a

formulation that can effectively improve the conditioning of convection dominated

problems. Discretized versions of formulation 3 are given in chapters 5 and 6,

where sufficient conditions for the well-posedness of these discretized problems are

provided.

Chapter 2, in part, is in preparation for submission for publication of this
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material. Bank, Randolph E. The dissertation author is the primary investigator

and author of this material.



Chapter 3

A Space-Time Tensor Finite

Element Space
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Finite element methods fall under the category of Galerkin methods, where

the solution space, V , is approximated by some finite dimensional subspace. This

finite dimensional subspace is the mechanism that discretizes formulations 2 and 3,

and consequently plays a large role in determining properties of the finite element

method used to define the finite element solution to a differential equation. The

description of a finite element space is essentially an explanation of where degrees

of freedom are allocated in the discretized problem. In many cases, degrees of

freedom are used to determine the mesh on which the finite element basis functions

are defined and to define the basis functions of the finite element space on the

reference element(s).

For elliptic equations, there is a vast amount of research describing and

analyzing finite element spaces used to discretize differential equations. For prob-

lems of a single dimension, the finite element mesh typically consists of a partition

of the domain; for two-dimensional problems, the finite element mesh is often a

triangulation of the domain; and for three-dimensional problems, a basic mesh

could be a union of tetrahedral elements. Another common meshing strategy for

problems with more than a single dimension employs tensor-product elements,

where the elements in this mesh are rectangles or rectangular prisms. A benefit of

tensor-product finite elements is that each dimension of the domain is discretized

independently and the cross-terms of the tensor-product provide additional degrees

of freedom that allow for more flexible finite element spaces [7]. Other types of ele-

ments that are commonly used are serendipity elements, which are tensor-product

elements without degrees of freedom on the interior of the mesh elements to im-

prove the computation efficiency of the finite element method while maintaining

inter-element continuity of the finite element functions [6]. Other meshing schemes

involve more general polygon elements than triangles and boxes, as in ([42],[70]).

In addition to describing the mesh and its associated elements, the finite

element space cannot be fully constructed without understanding the basis func-

tions. In most applications, piecewise polynomial basis functions are defined over

the mesh to generate the finite element space, though general polygon elements

lead to examples of finite element spaces that have non-polynomial finite element
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basis functions [70]. Variations in the different types of the basis functions often

correspond to the inter-element continuity of the finite element functions — dis-

continuous Galerkin methods, for example, do not require finite element functions

to be continuous [8] and benefit from the resulting efficiency of adaptive meshing

(these methods are commonly applied to parabolic and hyperbolic equations too,

as in [63] and [39]), whereas some discretization schemes involve a finite element

space where derivatives of the finite element functions are required to be contin-

uous up to some order [26]. Other types of basis functions differ in the degree of

the polynomial basis functions used to generate the mesh ([67],[11]). Typically,

these spaces are constructed by defining basis functions on a reference element

and using isoparametric maps to send these basis functions onto the degrees of

freedom in finite element mesh. Other alternatives to constructing finite element

spaces in this way exist: for example, the partition of unity finite element method

[10], element-free Galerkin methods [24], and other methods ([71],[46]) are mesh-

less, meaning that only information regarding the location of the nodes in the

domain is required. These methods permit more general finite element spaces and

are well-suited to adaptive methods; however, the use of isoparametric maps can

simplify the construction of the finite element basis functions and the linear system

corresponding to the discrete formulation of the partial differential equation.

So far, the finite element spaces discussed pertain only to elliptic equations,

which means that these discretizations do not consider the dimension of time. The

topic of this dissertation is a class of finite element methods for space-time differ-

ential equations and we accordingly must consider meshes for space-time domains.

The most straightforward meshes for space-time domains can be attained by treat-

ing the time variable as an additional spatial variable, leading to discrete problems

where the approximate solution is computed over the entire space-time domain at

once. This permits solvers and software designed for elliptic partial differential

equations, like the software package PLTMG [16], to compute solutions for time-

dependent problems without special treatment of the time variable. One difficulty

with this approach is that adaptive time-stepping methods cannot be employed,

as it becomes a complicated task to adjust the resolution of the time discretization
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without affecting the spatial discretization. More specific to our purposes, this

approach is not readily compatible with formulations 2 and 3, as it imposes the

differential equation weakly in time. Since equation (2.11) in formulaton 3 (and

equation (2.7) for formulaton 2, respectively) is required to hold for all t, the time

discretization must be independent of the spatial discretization. Thus, a tensor-

product finite element space is used, where the discretization is a tensor-product

of spatial discretizations and a time discretization. As discussed in chapter 5, this

space-time tensor finite element space is easily adapted to fit a method of lines ap-

proach to solving the discretized problem. Many finite element methods employing

a method of lines approach can be interpreted in terms of this sort of finite element

space; the description of the linear case of this finite element space is outlined in

([18],[65]) for space-time moving finite elements.

In this chapter, we follow ([18],[65]) in describing a tensor-product finite

element space that is built on the space-time domain, F , where the finite element

space in this dissertation permits higher order basis functions and more flexible

mesh motion. Furthermore, we discuss the construction of the finite element space

via the isoparametric and its potential degeneracies. Discussion regarding the ap-

proximation properties of such finite element spaces are provided in the next chap-

ter; discussion of the proposed methods for solving the discrete equation are given

in chapters 5 and 6. Discussion for finding appropriate finite element spaces for a

given problem are presented in chapter 7, along with the numerical experiments.

3.1 The description of a moving finite element

mesh

We begin by describing a moving mesh that is built on the space-time

domain. As mentioned above, this mesh is the tensor-product of spatial meshes

with a time partition. The result is an isoparametric finite element space comprised

of continuous piecewise polynomials in space tensored with piecewise polynomials

in time on the reference element. This provides a simple means to allow for mesh

motion, as the time discretization will be chosen to be independent of the spatial
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discretization. Another important feature of the finite element functions is that

they are permitted to have discontinuities at discrete time nodes, which was first

introduced to moving finite element methods in [50].

This section is concerned with the description of the finite element mesh;

the isoparametric maps and finite element functions are described in the next sec-

tion. The finite element space is denoted by Vph, where the superscript p describes

the order of the tensored piecewise polynomial finite element functions and the

subscript h denotes the relative size of the maximum space-time diameter of an

element in the discretization to the size of F .

3.1.1 The time and space discretizations

To construct the finite element space Vph, it is helpful to first describe the

associated mesh, which is denoted by T ph . Partition the time domain into m disjoint

intervals, where the endpoints of the partitions are given by {ti} and satisfy

0 = t0 < t1 < . . . < tm = T,

with ∆ti ≡ ti− ti−1 for i = 1, . . . ,m. Throughout this document, the index i shall

be assumed to run over the time partitions, 1 ≤ i ≤ m, unless otherwise noted.

This organizes the space-time domain F into space-time partitions, denoted by

Fi ≡ Ω × (ti−1, ti], and the corresponding finite element space on Fi is Vph,i, with

mesh T ph,i. Within each of these partitions, the finite element functions will be

required to be continuous; however, continuity is not assumed between partitions.

This allows for discontinuous changes in the mesh at the discrete nodes of the time

partitions. This idea was originally investigated by Kuprat [50] and referred to as

graph massaging. These discontinuous changes in the mesh have been implemented

and are proven to be a very efficient tool for maintaining shape regular meshes

([28],[29],[18]).

What is special about the methods studied in this thesis is that the nodes

of the finite element mesh are permitted continuously shift in time throughout

the time partitions. Such methods have been analyzed in ([18], [65], [40]), though

attention was restricted to the case of linear finite element spaces in these papers.
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Now, this is generalized to higher-order polynomial mesh motion. To represent

this mathematically, fix t in (ti−1, ti] and choose some triangulation of the spatial

domain Ω with nodes at {x(i)
k (t)}, with 1 ≤ k ≤ Ni. Since the finite element space

is the tensor product of degree p polynomials, each node x
(i)
k (t) is allowed to be a

polynomial of at most degree p, mapping from (ti−1, ti] to Ω. By tracking the time

variable (x
(i)
k (t), t) : (ti−1, ti] → Fi, the nodes x

(i)
k (t) trace out the characteristic

trajectories of the finite element mesh within the time partition. At any time t in

the partition (ti−1, ti], the spatial nodes x
(i)
k (t) are required to define a triangulation

of the spatial domain and this triangulation is denoted by T ph (t).

3.1.2 Example in one spatial dimension (d=1)

To visualize a partition of T ph , consider the case of d = 1 and p = 2. This

corresponds to a problem with one spatial dimension and choosing a finite element

space that is the tensor product of piecewise quadratic polynomials. Let Ω = [0, 1]

and fix t in (ti−1, ti]. Let T 2
h (t) have nodes {x(i)

k (t)} such that

0 ≡ x
(i)
0 (t) < x

(i)
1 (t) < . . . < x

(i)
Ni

(t) ≡ 1

for ti−1 < t ≤ ti. Denote ∆x
(i)
k (t) ≡ x

(i)
k (t)−x(i)

k−1(t) and suppose that 0 < ∆xmin ≤
∆x

(i)
k (t) ≤ ∆x for k = 1, . . . , Ni. The resulting mesh is a tessellation of Fi with

quadratically moving space nodes, and figure 3.1 depicts an example of a time

partition. In this figure, the solid and dashed horizontal lines correspond to the

spatial discretizations at a particular time slice, where a time slice refers to the

spatial domain at some fixed point in time. Other time partitions are discretized

analogously and the complete mesh on F would look like meshes similar to figure

3.1 stacked upon one another, potentially with node discontinuities between the

time partitions.

3.1.3 Mesh discontinuities

At this point, the mesh associated with a partition of the finite element

space, Vph,i, has been discussed in detail. Now, consider what happens between

the time partitions. Recall that there is no continuity requirement of T ph (t) at
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Figure 3.1: An example space-time mesh T ph,i on a partition with d = 1 and p = 2.
The filled circles represent the space-time “hat” basis functions; hollow circles
correspond to basis functions that are the product of a “bump” basis function.

the discrete time nodes. These discontinuities in the mesh provide for the periodic

addition, deletion, and relocation of the spatial nodes at the beginning of each time

partition [50]. Furthermore, the motion of the space nodes can lead to elements

that tangle or degenerate in time and, thus, these periodic reconfigurations of

the mesh allow for more robust finite element spaces ([50],[28],[29]). This can

occur when a set of spatial nodes converge or cross each other — even if the

nodes move too close together, the shape regularity assumptions may be violated.

Discontinuous mesh adaptation serves as a means of avoiding such degeneration

of elements. A discussion on the tradeoff between moving the mesh to offset the

convection term and constraining the motion to maintain shape regularity is given

in section 3.3, where these reconfigurations of the mesh are a rather invaluable

tool.

3.1.4 The reference elements

The mesh T ph is constructed by a family of isoparametric maps from a

reference element to the domain F . We now describe the reference elements for

cases d = 1, 2, 3. The most striking feature of the reference element stems from the

fact that Vph is the tensor product of finite element spaces on Ω and a finite element

space on (0, T ]. As a result, the space-time reference element is the Cartesian

product of the spatial reference element and the time reference element. Since the

shape of the spatial reference element depends on the dimension, d, of the spatial

domain Ω, the cases d = 1, 2, and 3 are considered separately.
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For d = 1, the elements in T ph are curvilinear trapezoids with flat parallel

edges corresponding to the beginning and end of the time partitions, and curved

edges representing the moving space nodes — recall that these edges are polynomial

curves of degree p. The associated space-time reference element is the Cartesian

product of the reference element in space with the reference element in time: eref =

[0, 1] × [0, 1]. Moreover, the space-time basis functions are given by the tensor

products of the degree p polynomial spatial basis functions on [0, 1] and the degree

p polynomial temporal basis functions on [0, 1]. This implies that there are (p+1)2

degrees of freedom associated with the reference element. Furthermore, since a

tensor product is used to define the space-time basis functions, the degrees of

freedom on the reference element are aligned into time slices that are orthogonal

to the time direction (the degrees of freedom are represented by the filled and

empty circles in figure 3.1 and their alignment into time slices is emphasized by

the dashed line).

When d = 2, the elements are curvilinear triangular prisms. The flat tri-

angular parallel edges mark the beginning and end of a time partition, and the

curved edges correspond to the space nodes moving along polynomial trajectories

of degree p. The reference element for the spatial discretization is the unit triangle

with (p+ 1)(p+ 2)/2 degrees of freedom and the reference element in time is still

the unit interval [0, 1] with p + 1 degrees of freedom; therefore, the space-time

reference element is a wedge-like shape, which is defined by the Cartesian product

of the spatial and temporal reference elements,

eref = {(x1, x2) ∈ IR2 |x1, x2 ≥ 0, x1 + x2 ≤ 1} × [0, 1],

and has (p+1)×(p+1)(p+2)/2 degrees of freedom. The space-time basis functions

are the tensor product of the degree p polynomial basis functions in space, on the

unit triangle, and the degree p polynomial basis functions in time on the unit

interval. As in the case when d = 1, the degrees of freedom are organized into

time slices on the reference element. Figure 3.2 illustrates how eref looks for linear

elements, p = 1, with two spatial dimensions, d = 2.
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Figure 3.2: An illustration of eref with degrees of freedom shown when d = 2 and
p = 1.

The final case is when d = 3 and the reference element is four-dimensional.

Accordingly, we enjoy the opportunity to creatively describe its shape. A suitable

description is that the elements in this space are curvilinear tetrahedral hyper-

prisms, which one could imagine as a tetrahedron that morphs continuously in time.

Remember that the nodes’ movements in time are described by polynomial paths

of degree p. For linear elements, the evolution of an element would would appear

as a tetrahedron steadily morphing into a new tetrahedron, whereas higher-order

elements are allowed to have several intermediate phases. The space-time reference

element is the Cartesian product of the unit tetrahedron — the spatial reference

element — with the unit interval reference element for time. In set notation,

the reference element is represented by eref = {(x1, x2, x3) ∈ IR3 |x1, x2, x3 ≥
0, x1 +x2 +x3 ≤ 1}×[0, 1]. The spatial reference element has (p+1)(p+2)(p+3)/6

degrees of freedom and the time reference element has p + 1 degrees of freedom;

consequently, the space-time element eref has (p+1)×(p+1)(p+2)(p+3)/6 degrees

of freedom. The space-time basis functions are the tensor product of the degree

p polynomial basis functions in space and time, just as in the previous cases. In

the case when d = 3, it remains true that the nodes are organized into time slices,

although this property is not as obvious in four dimensions. To recover this idea,

project one spatial dimension onto the other two and observe that this transforms

the unit tetrahedron into the unit triangle, which is the spatial reference element

when d = 2, where the nodes are organized into time slices. Repeating this process

for each spatial dimension shows that the degrees of freedom occur in time slices

as in the previous cases. This property is also be reflected in the discussion of the
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isoparametric maps from eref to an element in the mesh.

3.2 The isoparametric map

An isoparametric map in the context of this dissertation is a map from the

reference element, eref , to an element e in the mesh. Analyzing the isoparametric

maps is a crucial component to understanding finite element spaces built on mov-

ing meshes since isoparametric maps are used both in the construction of the finite

element functions and the mesh T ph . They contain information regarding proper-

ties of the finite element functions, the shape regularity of the mesh, and, more

specific to the purposes of this paper, the motion of the mesh in time. The term

‘isoparametric’ is a reference to the fact that the map is constructed by mapping

the degrees of freedom in eref to the degrees of freedom of e in T ph .

Isoparametric maps are tools that we use to parameterize the space-time

variables on a given element in the mesh by a set of variables on a reference element,

which is common to all of the elements in the mesh. This is convenient for defining

and performing calculations involving finite element functions in an element-wise

fashion, which is ultimately the approach taken to solve for the finite element

solution of the partial differential equation. To start, an example isoparametric

map is constructed in the case of a one-dimensional spatial domain, d = 1, and

the extension to higher dimensional cases follows.

3.2.1 Example in one spatial dimension (d=1)

To define functions in the finite element space Vph, the degrees of freedom

and the associated basis functions on the reference element must be discussed.

Since the finite element space is a tensor product of finite element spaces on the

spatial domain and the time domain, the degrees of freedom in space and time

can be discussed independent of one another. Let eref = sref × [0, 1] denote the

reference element as the Cartesian product of the spatial reference element, sref ,

and the temporal reference element, [0, 1] and let element e ∈ T ph,i for some fixed i.

Let {t̂j} for j = 0, 1, . . . , p denote the degrees of freedom on the time
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reference element such that

0 = t̂0 < t̂1 < . . . < t̂p ≤ 1.

For the spatial degrees of freedom, analogous notation is used: the degrees of

freedom in sref are typically chosen to be uniformly distributed as x̂k = k/p, for

k = 0, 1, . . . , p. As a result, the degrees of freedom are uniformly distributed in

parallel time slices on the reference element.

To parameterize the variables (x, t) on element e in the ith mesh partition,

T ph,i, the isoparametric maps are used. Let
{

(xk(ti,j), ti,j)
}

represent the degrees

of freedom on an element e that have the associated isoparametric maps {ι(j,k)},
with 0 ≤ j, k ≤ p. Note that the degrees of freedom on the element e must

be given in parallel time slices, as on the reference element. This ensures that

the finite element space for fixed t is a standard finite element space on Ω. The

parameterization using the isoparametric maps then takes the form[
x

t

]
=

p∑
j,k=0

ι(j,k)(x̂, t̂)

[
xk(ti,j)

ti,j

]
, (3.1)

which parameterizes the (x, t)-space in the mesh by the (x̂, t̂)-space on the reference

element using the isoparametric maps as basis functions.

We now construct the isoparametric maps. Let β̂j(t̂) be the temporal basis

function associated with the jth degree of freedom on the time reference element

[0,1] and σ̂k(x̂) be the spatial basis function associated with the kth degree of

freedom on sref such that

β̂j(t̂) =


∏p

`=1
` 6=j

t̂−t̂`
t̂j−t̂`

when t̂ ∈ [0, 1],

0 when t̂ 6 ∈ [0, 1],

and

σ̂k(x̂) =


∏p

j=1
j 6=k

x̂−x̂j
x̂k−x̂j

when x̂ ∈ sref ,

0 when x̂ 6 ∈ sref .

As the finite element space Vph is a tensor product of spatial and temporal finite

element spaces, the isoparametric basis functions on the reference element are given
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by

ι(j,k)(x̂, t̂) = β̂j(t̂)σ̂k(x̂),

for j, k = 0, . . . , p. Accordingly, the polynomial β̂j(t̂)σ̂k(x̂) is of degree p in t̂ and in

x̂, and takes a value of one at (x̂k, t̂j) and is zero at the other degrees of freedom.

If p = 1 and d = 1, these are just the usual bilinear element basis functions that

are used on rectangular grids for two-dimensional elliptic problems.

Writing the parameterization (3.1) in terms of the basis functions on the

reference element, we have[
x

t

]
=

p∑
j,k=0

β̂j(t̂)σ̂k(x̂)

[
xk(ti,j)

ti,j

]

=

p∑
j=0

β̂j(t̂)

[
(1− x̂)x0(ti,j) + x̂ xp(ti,j)

ti,j

]
,

where we used
∑p

k=0 σ̂k(x̂`)xk(ti,j) = x`(ti,j) for the spatial component and∑p
k=0 σ̂k(x̂) = 1 for the time component. We define the polynomial trajectories of

the spatial nodes by the Lagrangian time basis functions

xk(t̂) ≡
p∑
j=0

β̂j(t̂)xk(t̂),

for ti−1 < t ≤ ti. Thus, the kth spatial node in element e is parametrized on the

reference element by xk(t̂). Summing over j = 0, . . . , p, this gives[
x

t

]
=

[
(1− x̂)x0(t̂) + x̂ xp(t̂)

(1− t̂)ti−1 + t̂ ti

]
. (3.2)

As a result, the time component of the isoparametric map is given by the

affine map

te(t̂) ≡ (1− t̂)ti−1 + t̂ ti = ti−1 + t̂∆ti (3.3)

for 0 ≤ t̂ ≤ 1. Note that this map is completely independent of the spatial

variables; the subscript e in the notation of the map is only needed to provide

information of the time partition in which e is located. Since the spatial nodes

move in time, the spatial component of the isoparametric map does in fact depend

on time. Fix t̂ in [0, 1], then the spatial component of the isoparametric map is

xe(x̂, t̂) ≡ (1− x̂)x0(t̂) + x̂ xp(t̂) = x0(t̂) + x̂∆xe(t̂). (3.4)
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with x̂ in sref . For t = ti−1 + t̂∆ti, this is an affine map from sref to e(t) in the

mesh at time t.

Mesh motion

Fixing x̂ in sref and varying t̂ in [0, 1], the space map xe(x̂, t̂) traces out the

characteristic trajectories of the mesh. Since the spatial nodes live in the (x, t)-

space corresponding to F , their trajectories are typically parameterized by t instead

of t̂: we write xk(t) as shorthand for xk(t
−1
e (t)). Furthermore, the spatial nodes

xk(t) are polynomials of degree at most p, which implies that all characteristic

trajectories are polynomial paths of degree at most p in the space-time partition Fi.
These trajectories are denoted by x(t) and can be aligned with the characteristics

of the solution to the hyperbolic operator ut + b · ∇u by choosing dx/dt ≈ b.

Accordingly, they can be chosen to mitigate the effects of large convection velocity.

Invertibility of the isoparametric map

The inverse of the isoparametric map from eref to e in the partition T ph,i is

given by

t−1
e (t) =

t− ti−1

∆ti

and

x−1
e (x, t) =

x− xk−1(t)

∆xk(t)
,

for t in [ti−1, ti] and x in e(t) = [xk−1(t), xk(t)]. Since the inverse of the spatial com-

ponent, xe, is an affine transformation in space, it holds for fixed t that the finite

element space Vph(t) is a standard finite element space of piecewise polynomials of

degree at most p defined over Ω. This is in contrast to other discretization schemes

where the space and time dimensions are discretized indiscriminately. That sort of

scheme leads to the inverse of the spatial map, x−1
e , to be a rational function in its

spatial variable and is not naturally compatible with the method of lines approach

used for moving finite elements. This property of the proposed finite element space

justifies analyzing finite element functions on a time slice — for example, φ(t) in
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Vph(t) — in a way that is consistent with the study of finite element methods for

elliptic problems. Note that ∆ti > 0 and ∆xk(t) > 0 is always required for the

finite element space to be well-defined.

The degrees of freedom and basis functions on the mesh

To define the basis functions of the finite element space, the basis functions

on the reference element are composed with the inverse of the isoparametric maps.

Fix 1 ≤ i ≤ m. For 0 ≤ j ≤ p, 0 ≤ k ≤ Ni, and e in T ph,i, the basis functions for

node (xk(ti,j), ti,j) are given by

βi,j(t) ≡ β̂j

(
t− ti−1

∆ti

)
,

and

σk(x, t) ≡
∑

(ê,`)∈Ξ(xk(t))

σ̂` ◦ x−1
ê (x, t), (3.5)

where Ξ(xk(t)) is the set of all elements and indices, (ê, `), such that the node

xk(t) = xê(x̂`, t). The set Ξ(xk(t)) is a singleton when xk(t) is an interior node of

the element e(t). When p = 1, there are no interior nodes and each xk(ti,j), there-

fore, corresponds to a hat function with support on two neighboring elements.

Note that the discontinuities in the time finite element space simplify the basis

functions {βi,j}, whereas the inter-element continuity in the spatial variable re-

quires a summation to define the appropriate basis functions when |Ξ(xk(t)| ≥ 1.

Also, for fixed t, we see that the basis functions {σk(t)}Ni
k=0 form the basis for a

finite element discretization of H1(Ω). As usual, a finite element function φ is

determined by its values at the degrees of freedom in the mesh. Suppose at the

degrees of freedom that φ takes the value φ
(
xk(ti,j), ti,j

)
= φ

(k)
i,j for 0 ≤ j ≤ p,

0 ≤ k ≤ Ni, and 1 ≤ i ≤ m. Then, the function φ is given by

φ(x, t) =
m∑
i=1

p∑
j=0

Ni∑
k=0

βi,j(t)σk(x, t)φ
(k)
i,j .
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Since the time discretization is independent of the spatial discretization, the sum-

mation can be reordered as

φ(x, t) =
∑

1≤i≤m
0≤j≤p

βi,j(t)

(
Ni∑
k=0

σk(x, t)φ
(k)
i,j

)
≡
∑

1≤i≤m
0≤j≤p

βi,j(t)φi,j(x, t),

which shows directly that φ(t) belongs to Vph(t), which is a typical finite element

space on Ω.

Due to the time dependence of the spatial basis function, the time derivative

of φ is not generally a polynomial of degree p − 1. Instead of using the time

derivative in these finite element functions, the characteristic trajectories, x(t), are

used to define the characteristic derivative. Set x̂ to be the spatial coordinate in

the reference element that corresponds to the characteristic trajectory x(t), passing

through the point (x, t) in F ; then, we have x(t) = xe(x̂, t) when x ∈ e(t). From

the definition of the basis functions (3.5), we have σk(x(t), t) =
∑

(ê,`)∈Ξ(xk(t)) σ̂`(x̂),

which gives
d

dt
σk(x(t), t) =

d

dt

∑
(ê,`)∈Ξ(xk(t))

σ̂`(x̂) = 0.

Thus, we define the characteristic derivative of φ to be

∂τφ(x, t) ≡ d

dt
φ(x(t), t) =

∑
1≤i≤m
0≤j≤p

[
d

dt
βi,j(t)

]
φi,j(x(t), t). (3.6)

This corresponds to taking the time derivative on the reference element eref instead

of on the domain F . In terms of the space and time derivative, the characteristic

derivative is given by the chain rule as

∂τφ(x, t) = xt(t)φx(x, t) + φt(x, t).

Note that ∂τφ(t) ∈ Vph(t) and recall that the characteristic derivative is also denoted

by a subscript as φτ = ∂τφ.

Mesh discontinuities

Since there is no continuity requirement of the mesh between time parti-

tions, the spatial elements between partitions do not necessarily align, which leads



37

to discontinuous finite element functions at the discrete time partitions ti. For a

discontinuous function φ in Vph, denote the jump at t = ti by

[φ](ti) = lim
δ→0+

(
φ(ti + δ)− φ(ti − δ)

)
≡ φ(ti+)− φ(ti−).

In order to uniquely define φ in Vph, take φ(ti) to be φ(ti−). Moreover, require for

all χ in Vph(ti+) that

([φ](ti), χ) = 0. (3.7)

This enforces φ(ti+) to be the L2-projection of φ(ti−) onto T ph (ti+), which is weakly

imposing the continuity of the finite element functions at the mesh discontinuities.

As a practical note, the requirement of [φ](ti) to be orthogonal to the mesh is

convenient for the purposes of analysis. In chapter 7, interpolation is tested as an

alternative for defining φ(ti+).

The Jacobian matrix of the isoparametric map

Combining (3.2)–(3.4), denote the space-time isoparametric map from eref

to e by

ιe(x̂, t̂) ≡

[
xe(x̂, t̂)

te(t̂)

]
=

[
x

t

]
.

Denote the space-time derivative byDx,t so that the Jacobian matrix of the isopara-

metric map is given by

Dx,tιe(x̂, t̂) =

[
∆xe(t) ∆ti

d
dt
xe(t)

0 ∆ti

]
,

where t = te(t̂). As noted in ([18], [65]), the Jacobian matrix describes the element

e in the mesh. The diagonal of Dx,tιe(t) gives information regarding the spatial and

time discretization independently: the term ∆xe(t) gives the size of spatial element

e(t) in T ph (t) and ∆ti is the length of the time step. The off-diagonal terms in the

Jacobian matrix describe the space-time interaction of the isoparametric map. The

value of 0 in the lower left component demonstrates that the time discretization

is independent of the spatial variables, which implies that the spatial nodes are

aligned into time slices. As discussed above, the term d
dt
xe(t) describes the motion



38

of the spatial nodes in time. Accordingly, the shape regularity of the mesh in

space and in time can be maintained separately by constraining the diagonal of

the Jacobian matrix Dx,tιe, and the mesh motion can be controlled by the non-zero

off-diagonal term.

3.2.2 The isoparametric map in higher dimensions

In the case of higher dimensions, when d = 2 or 3, the time component of

the isoparametric map remains the same, though the spatial component becomes

an affine map:

xe(x̂, t) = Je(t)x̂+ Se(t), (3.8)

where Je(t) is now a d × d matrix and Se(t) is a d-vector. Note that this map is

defined for x̂ in sref , which is the unit triangle when d = 2 and the unit tetrahedron

when d = 3. Both terms Je(t) and Se(t) are polynomials of degree p in time and

are respectively analogous to ∆xk(t) and xk−1(t) in the d = 1 case.

The finite element functions are defined as when d = 1, with the only

difference being that there are more degrees of freedom in space; there are now

sd,p = 1
d!

∏d
i=1(p + i) spatial degrees of freedom on the reference element, denoted

by {x̂k}
sd,p
k=1. The degrees of freedom on the time reference element are again defined

by and order partitioning of the unit interval, 0 = t̂0 < . . . < t̂p ≤ 1, and the spatial

degrees of freedom are uniformly distributed on the spatial reference element. The

degrees of freedom are mapped to the mesh via the isoparametric maps: for 0 ≤
j ≤ p and 0 ≤ k ≤ Ni, (

xk(ti,j), ti,j
)

= ιe(x̂`, t̂j),

for some 0 ≤ ` ≤ p and e in T ph,i, i = 1, . . . ,m.

The basis functions in time are unchanged for d > 1, but the spatial basis

functions are constructed on a higher dimensional reference element. As a result,

the spatial basis function at the point (xk(ti,j), ti,j) is defined as in (3.5), except the

set Ξ(xk(ti,j)) is now more complex to define explicitly in the presence of shared

element edges and faces. Details of the basis functions and space-time elements

for the linear case (p = 1) are given in detail in ([18], [65]) and generalize to

higher-order finite element spaces in a straightforward manner.
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As in the d = 1 case, the finite element functions are taken to be linear

combinations of the tensor products of the spatial and temporal basis functions.

For a function φ in Vph, suppose φ(xk(ti,j), ti,j) = φ
(k)
i,j . Then, the space-time basis

representation of φ is

φ(x, t) =
m∑
i=1

p∑
j=0

Ni∑
k=0

βi,j(t)σk(x, t)φ
(k)
i,j

=
∑

1≤i≤m
0≤j≤p

βi,j(t)

(
Ni∑
k=0

σk(x, t)φ
(k)
i,j

)
=
∑

1≤i≤m
0≤j≤p

βi,j(t)φ(x, t).

As before, the finite element function φ(x, t) is generally a polynomial of degree

2p, due to cross-terms in the tensor product; however, φ(x(t), t) is a polynomial of

degree p with respect to t, as this is moving along the characteristics of the finite

element mesh. For d = 2 and 3, the characteristic derivative of φ is given by

∂τφ = xt(t) · ∇φ+ φt. (3.9)

The Jacobian matrix Dx,tιe is a (d + 1) × (d + 1) block triangular matrix

given by

Dx,tιe(x̂, t̂) =

[
Je(t) ∆ti

d
dt
xe(t)

0 ∆ti

]
,

where again, we write t = te(t̂). Now, the time derivative of the spatial map,

d
dt
xe(t), is a vector function of d components describing the motion of the mesh

nodes in Ω ⊂ IRd. The spatial Jacobian matrix, Je(t), still describes the spatial

element, e(t) in T ph (t), at time t and the absolute value of the determinant De(t) ≡
| detJe(t)| is proportional to the size of the element e(t). In order to avoid colliding

spatial nodes and collapsing elements, it is required that De(t) > 0 for all t in the

time partition of element e. Finite element meshes that have positive De(t) for all

elements at all times are called non-degenerate and are the only types of meshes

considered in this analysis.
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3.3 Shape regularity of the finite element space

The shape regularity assumptions for moving meshes can be sorted into

two parts: the space and time shape regularity, which take the usual form for a

d-dimensional and a 1-dimensional domain, respectively, and the space-time shape

regularity. The space-time shape regularity is often more evasive to describe and

enforce; however, the constraints set into place in this section fit quite naturally

into the error analysis, validating our choice. Additionally, the space-time shape

regularity assumptions in this dissertation imply the space-time shape regularity

assumptions used in the error analyses for the linear finite elements ([18],[65],[40]).

The space and time shape regularity are briefly defined and then the space-time

regularity, corresponding to the mesh motion, is introduced.

3.3.1 Shape regularity in space and time

Since the finite element space is a tensor product of spatial finite element

spaces and a discontinuous finite element space in time, the space and time meshes

must have a set of separate shape regularity assumptions. The shape regularity

constraints in space are analogous to those of a standard finite element space on a

d-dimensional domain and the shape regularity in the time dimension follows from

the standard requirements for a 1-dimensional finite element space.

We emphasize that for all t in (0, T ], the spatial mesh T ph (t) is a typical

finite element triangulation of Ω. Thus, for all t in the time domain, we assume

that T ph (t) is a quasi-uniform mesh and that it satisfies a prescribed set of shape

regularity assumptions. The assumptions we use come directly from Brenner and

Scott [7]. Let Be(t) represent the largest possible ball inscribed inside of an element

e(t) in T ph (t). Then, we assume that there exist positive constants ∆x < 1 and δ

such that

diam e(t) ≤ ∆x diam Ω, (3.10)

and

diam Be(t) ≥ δ diam e(t), (3.11)
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for all e in the mesh T ph . The inequality (3.10) bounds the maximum element

diameter in space and (3.11) is equivalent to a least angle criterion, which is needed

to ensure that approximation properties on the element level can be uniformly

estimated. Note that (3.11) automatically implies that the discretization of Ω is

non-degenerate, meaning De(t) > 0 for all e(t) in T ph (t). (In a degenerate element

e(t), the ball Be(t) has a null diameter.) For quasi-uniformity, a minimum element

size is also assumed; there must exist a positive constant ∆xmin such that

diam e(t) ≥ ∆xmin diam Ω

for each e(t) in T ph (t). These shape regularity assumptions can be imposed by

controlling the eigenvalues of the Jacobian of the spatial component of the isopara-

metric maps.

For the quasi-uniformity of the time discretization, assume there exist a

maximum time step size, ∆t, and minimum step size, ∆tmin, such that the bound

0 < ∆tminT ≤ ∆ti ≤ ∆tT, (3.12)

is satisfied for each time partition, i = 1, . . . ,m. Note that controlling ∆ti enforces

constraints on the time component of the Jacobian of the isoparametric map. These

restrictions ensure that the mesh is locally quasi-uniform in space directions and

the time direction, although quasi-uniformity is not implied globally nor in general

space-time directions.

3.3.2 Restrictions on the mesh motion (shape regularity in

space-time)

In order to understand the approximation properties of the finite element

space, further assumptions must be made beyond quasi-uniformity in space and

quasi-uniformity in time. Specifically, the element deformation in time must be

controlled. This is essentially imposing a space-time shape regularity constraint

for these moving tensor elements. It is important, however that the mesh motion

xt is not directly bounded, as this would limit the extent to which the mesh could

align with the convection term ([57],[55],[18]). As in subsection 3.3.1, the Jacobian
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matrix of the isoparametric map, Dx,tιe, is used to impose shape regularity; in

this case, the mesh regularity assumptions can be interpreted as constraining the

off-diagonal block of the Jacobian matrix.

Fix e to be an element in T ph,i and ti−1 ≤ t ≤ ti. Then, the Jacobian matrix

at time t can be represented as

Je(t) =
(
Re(t) + ∆tiHe(t)

)
Je(ti−1+) (3.13)

for some orthogonal rotation matrix, Re(t), and evolution matrix, He(t). The

matrix Re + ∆tiHe is constrained to have polynomial entries of degree at most p

throughout the time partition. As the name suggests, the matrix Re(t) describes

the element rotation in time, and the evolution matrix describes the deformation

of the shape of the element. If an element is merely translated in time, without

rotation or changing shape, then the Jacobian matrix, Je(t), remains unchanged

and the shift vector Se(t) in (3.8) varies in time.

Let ρ(·) represent the spectral radius norm for d×d matrices. For space-time

regularity, it is assumed that the evolution matrix He has a uniformly bounded

spectral radius throughout the time step; namely, there exists some positive con-

stant µ that does not depend on e or t such that

ρ
(
He(t)

)
≤ µ. (3.14)

This can be interpreted as bounding the relative change in shape and size of the

element over time.

Notice that if the mesh motion, xt, is large due solely to rapid spatial

translation of the element, then the shift vector, Se(t) in (3.8), is nonzero and the

Jacobian matrix of the spatial map is constant, Je(t) = Je(ti−1+). If the mesh ve-

locity is large due to a perfect rotation of the element, then Je(t) = Re(t)Je(ti−1+).

In both cases, the shape and size of the element does not change and, hence, the

evolution matrix is zero. This indicates that elements may translate or rotate

and still maintain perfect shape regularity, whereas elements that deform through-

out the time partition do not possess such regularity. An example of an ideally

evolving mesh could take place on a circular domain with a uniform clockwise or

counterclockwise flow. In this case, the elements could flow perfectly with the
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Figure 3.3: A twisting element with d = 2 and p = 1 plotted at discrete time
slices. The spatial nodes are labeled and their linear trajectories are represented
by the dashed lines and superimposed on each time slice. From the time t = 0 to
t = 1, the element seems to merely rotate; however, due to the linear paths traced
out by the spatial nodes, the element degenerates when t = 1/2.

convection term, nullifying the hyperbolic effects of the differential equation, with

ρ(He(t)) = 0 for all elements e in the mesh and t in the time domain.

Unfortunately, in the case of rotating elements, this is an oversimplification

since the rotation matrix Re(t) cannot perfectly preserve orthogonality when its

entries are polynomials; this implies that there is inherently some deformation that

must take place (He 6= 0) to allow the element to rotate while preserving degree

p polynomial trajectories of the spatial nodes. This deformation of the element

corresponds to twisting the element rather that rotating it. An example of this

twisting leading to a nearly degenerate element is depicted in figure 3.3. Note that

higher order mesh motion — larger p — is very useful in offsetting this “twist”

effect.

The shape regularity assumption (3.14), therefore, serves as a constraint

on the off-diagonal term of the Jacobian matrix, Dx,tιe, though this constraint

does not penalize mesh motion; it only constrains the amount of shape and size

deformation that an element can undergo within a time partition. In Carlson
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and Miller [28], is was noted that adaptive time stepping schemes always chose

smaller time steps when spatial nodes slip into shock layers or exit the domain at

a boundary. In both cases, the relative size of the element shrinks rapidly. The

smaller time steps indicate that the error in the computed solution is larger at

these times, which agrees with the conjecture that the mesh regularity may be

compromised when the spatial nodes shrink or grow quickly (relative to their sizes

at the beginning of the time partition).

Assuming a non-degenerate finite element space and the space-time shape

regularity bound (3.14), it follows that

ρ
(
Je(t)J −1

e (ti−1+)
)

= ρ
(
Re(t) + ∆tiHe(t)

)
≤ 1 + µ∆ti (3.15)

and, for c̃µ,d = [(1 + µ∆ti)
d − 1]/∆ti = O(1) and ∆ti ≤ 1/2c̃µ,d,

(1− c̃µ,d∆ti) ≤ (1− µ∆ti)
d ≤ De(t)
De(ti−1+)

= det
(
Je(t)J −1

e (ti−1+)
)
≤ (1 + µ∆ti)

d ≤ (1 + c̃µ,d∆ti), (3.16)

since Re is an orthogonal matrix. Inequalities (3.15) and (3.16) will provide the

necessary bounds for proving the results of chapter 4, which establish the subspace

approximation properties of finite element spaces built on moving meshes.

Consequences of shape regularity

The restriction that T ph is non-degenerate is a minimal shape regularity as-

sumption and additional constraints on the blocks of Dx,tιe can be used to enforce

stronger shape regularity assumptions for the mesh. Selectively imposing these

additional shape regularity assumptions outlined above leads to better approxi-

mation properties of the finite element space and improves error estimates for the

finite element solutions found by the methods in chapters 5 and 6. The efficacy of

these regularity assumptions is validated in the numerical results of chapter 7.

Chapter 3, in part, is in preparation for submission for publication of this

material. Bank, Randolph E. The dissertation author is the primary investigator

and author of this material.
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This chapter establishes the relationships of shape regularity of the mesh

and the approximation properties of the finite element space. Since we are con-

sidering tensor product finite elements, these approximation properties are well

understood in the absence of moving nodes [7]; some preliminary results must be

proven to handle the motion of the mesh before providing analysis of the moving

finite elements. We begin by introducing the relevant notation for the space-time

domain and the finite element space. Then, shift functions are introduced to facil-

itate the analysis of the moving finite element space. These functions serve as an

isomorphism between finite element spaces with moving meshes and static meshes,

meaning the meshes do not move in time. Finally, some approximation properties

of the space-time moving finite element space are proven. It is important to note

that these approximation properties solely depend on the mesh and basis functions

of the finite element space; they are independent of the differential equation and the

methods used to solve the differential equation. Ultimately, these approximation

properties can be used to provide a posteriori error estimates, which are useful

for understanding the convergence rate of a finite element method and defining

adaptive meshing schemes.

4.1 Norms and Notation

In this section, norms and semi-norms over the spatial domain and time

domain are defined. These norms are then employed together to define norms over

the space-time domain. Some of the semi-norms defined in this section depend

on the discretizations of the spatial domain. These dependencies signify that the

error of the finite element solution can be reduced by carefully selecting the finite

element space to be an appropriate fit for the given differential equation.

4.1.1 Space Norms

Multi-index notation is used to represent spatial derivatives, although time

and characteristic derivatives do not follow this convention in order to emphasize

the property that the finite element functions are the tensor products of polyno-
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mials in space and polynomials time. Thus, for α = (α1, . . . , αd) ≥ 0, the α spatial

derivative of some function v is denoted

Dα
xv(x1, . . . , xd) ≡

∂α1

∂x1
α1
· · · ∂

αd

∂xdαd
v(x1, . . . , xd).

In this notation, denote |α| =
∑d

i=1 αi and α! =
∏d

i=1 αi!.

Let v be a function in Hk(Ω), where k is some non-negative integer. Then,

the Hk(Ω) semi-norm and norm are given by

|v|k =

∑
|α|=k

(Dα
xv,D

α
xv)

1/2

and

||v||k =

∑
|α|≤k

(Dα
xv,D

α
xv)

1/2

.

Note that H0(Ω) = L2(Ω) and, accordingly, || · ||0 is referred to as the L2-norm.

The dual to the H1(Ω)-norm is indirectly used in this analysis as well;

a mesh-dependent version of this norm is introduced, as originally proposed by

Dupont in [37]. For v in L2(Ω), define the semi-norm

||v||(−1,Vp
h(t)) = sup

χ∈Vp
h(t)

χ 6=0

|(v, χ)|
||χ||1

.

While this is a semi-norm on V , its restriction to the finite element space is truly a

norm. Furthermore, since Vph(t) is a subset of H1(Ω), note that ||v||(−1,Vp
h(t)) ≤ ||v||−1

for all v in L2(Ω) and t in (0, T ]. Here || · ||−1 takes on the standard definition of

the dual H1(Ω)-norm:

||v||−1 = sup
χ∈H1(Ω)
χ 6=0

|(v, χ)|
||χ||1

.

We also take || · ||∞ to measure the maximum value of a function over Ω.

For a bounded function v on Ω,

||v||∞ ≡ max
x∈Ω
|v|.
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4.1.2 Bounding the bilinear form

Using these norms, we have lemma 1 for bounding the bilinear form. An

important note here is that improved alignment of the convection and mesh ve-

locities lead to sharper bounds. This suggests that aligning the mesh motion with

the convection velocity reduces the bounding constant — ultimately improving the

stiffness of the differential equation and allowing for larger time steps. Hence, the

method of characteristics, where xt = b, can be an effective choice for achieving

nearly optimal error bounds.

Lemma 1. Suppose there exists a constant κ > 0 such that the mesh motion

satisfies

||b− xt||∞ ≤ κ. (4.1)

Then, given functions u, v ∈ H1(Ω), there exist positive constants CA and C ′A,κ

such that

Aτ (u, u; t) ≥ CA||u||21 − C ′A,κ||u||20 (4.2)

and, furthermore, the bilinear form is bounded,

Aτ (u, v; t) ≤ CA,κ||u||1||v||1. (4.3)

Proof. Since a ≥ ā > 0 and c ≥ c̄ ≥ 0, we can use (4.1) to get

Aτ (u, u; t) =
(
a(t)∇u,∇u

)
+
(
(b(t)− xt(t)) · ∇u, u

)
+
(
c(t)u, u

)
≥ ā||∇u||20 − ||b− xt||∞||∇u||0||u||0 + c̄||u||20

≥ (ā− δ)|u|21 +
(
c̄− κ

4δ

)
||u||20, (4.4)

where δ is an arbitrary positive constant. Choose δ to be small, say δ = ā/2, to

show that there exist constants CA = ā/2 > 0 and C ′A,κ = CA+κ/2ā− c̄ such that

Aτ (u, u; t) ≥ CA||u||21 − C ′A,κ||u||20. (4.5)

For the upper bound, we use (4.1) to show

Aτ (u, v; t) ≤ ||a||∞||∇u||0||∇v||0 +κ||∇u||0||v||0 + ||c||∞||u||0||v||0 ≤ CA,κ||u||1||v||1, (4.6)

where CA,κ = 2 (max {||a||∞, ||c||∞}+ κ). This proves the lemma.
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Assuming that the mesh motion is sufficiently aligned with the convection

velocity, coercivity of A follows: from (4.5) and δ = ā/2, if κ < 2āc̄, then

Aτ (u, u) ≥ min{ā/2, c̄− κ/2ā}||u||21. (4.7)

While this result is not directly used in the error analysis, it indicates that choosing

mesh motion where b−xt is small leads to a more well-conditioned stiffness matrix,

providing more flexibility in the maximum permissible time steps.

Recall that the shape regularity constraint (3.14) bounds the amount of

shape and size distortion that an element undergoes within a time partition. This

is important as it affects the condition number of the finite element mass matrix,

as discussed in section 5.3. However, the results in this section demonstrate that

the choice for small b − xt will lead to a better conditioned stiffness matrix in

the linear system. In many practical cases where the convection velocity is “well

behaved,” aligning the mesh velocity with the convection does not compromise

the shape regularity of the mesh and the most care must be taken to ensure mesh

regularity when elements flow into or out of the domain boundary or slip into shock

layers. The former case is typically not an issue when the convection velocity is

divergence free or orthogonal to the outward normal of the spatial boundary, as

in (2.9). The effects of the tradeoff between aligning the convection and mesh

velocities and preserving space-time shape regularity in the mesh are examined in

the numerical results section.

4.1.3 Time norms

We now focus on the time norms used in this analysis. For a function v

defined on the time interval (0, T ], the L2(0, T ]-norm is

||v||L2(0,T ] =

[∫ T

0

v2(t) dt

]1/2

.

Ultimately, moving finite element methods in this dissertation use time stepping

methods to propagate the solution in time. Accordingly, it is useful to define a

discretized version of || · ||L2(0,T ]; this is analogous to how || · ||(−1,Vp
h(t)) is a discretized

version of || · ||−1. To discretize the norm over the time domain, we first note that
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time stepping methods have a natural correspondence to quadrature rules, where

the collocation points of the time stepping method are chosen to coincide with

the knots of some corresponding quadrature rule. Let Q̂ represent a reference

quadrature rule, defined over the time reference element [0, 1], with knots given by

{t̂j}pj=1. It is required that the knots of the Q̂ satisfy

0 < t̂1 < . . . < t̂p ≤ 1, (4.8)

and that the weights {wj} are all positive for j = 1, . . . , p. For convenience, let

t̂0 = 0 be coincident with a degree of freedom on the reference element. Note that

this knot may not be used in the reference quadrature rule.

From Q̂, it is possible to define a composite quadrature rule over the time

partitions; let v be in L2(0, T ] and set

Qi(v) ≡
p∑
j=1

wjv(ti−1 + t̂j∆ti) ≈
1

∆ti

∫ ti

ti−1

v(t) dt

so that, summing over i, for 1 ≤ i ≤ m, gives

Q(v) ≡
m∑
i=1

∆tiQi(v) ≈
∫ T

0

v(t) dt. (4.9)

A reference quadrature rule has order of exactness q when any polynomial

of degree at most q is integrated exactly: let r(t) be an arbitrary polynomial of

degree q, then

Q̂(r) =

∫ 1

0

r(t̂) dt̂,

if Q̂ has order of exactness q. It is obvious that any interpolatory quadrature

rule has order of exactness at least p, where an interpolatory quadrature rule is

defined to satisfy Q̂(f) =
∫ 1

0
If(t̂) dt̂ for the interpolant, I, of degree p with

nodes at {t̂j}pj=0. From the order of exactness, we use Taylor’s theorem to find

a representation of the quadrature error. Taylor’s theorem states that any f in

Cq+1[0, 1] satisfies

f(t̂) =

q∑
k=0

1

k!
f (k)(0)t̂k +

1

q!

∫ 1

0

f (q+1)(ζ)(t̂− ζ)q+ dζ
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for t̂ in [0, 1], where (t̂− ζ)+ ≡ max{0, t̂− ζ} and f (k) represents the kth derivative

of f . As a result, we integrate with respect to t̂ and subtract Q̂(f) to get∫ 1

0

f(t̂) dt̂− Q̂(f) =

∫ 1

0

f (q+1)(ζ)KQ̂,q(t̂, ζ) dζ, (4.10)

where

KQ̂,q(ζ) ≡
∫ 1

0

(t̂− ζ)q+ dt̂− Q̂
(
(· − ζ)q+

)
.

This is a restatement of the Peano kernel theorem and shows that the quadrature

error can be bounded by the norm f (q+1) multiplied by the kernel function, KQ̂,q,

that can be bounded independently of f . We use the Cauchy-Schwarz inequality

to show ∫ 1

0

f(t̂) dt̂− Q̂(f) ≤ CQ̂,q

{∫ 1

0

[
f (q+1)(ζ)

]2
dζ

}1/2

. (4.11)

In this bound, the constant CQ̂,q =
√∫ 1

0
KQ̂,q(ζ) dζ.

The order of exactness of a reference quadrature rule can be used to deter-

mine how well integration is approximated by using the composite rule Q. To see

this, suppose Q̂ has order of exactness q and denote f̂i(t̂) = f(ti−1 + t̂∆ti)∫ ti

ti−1

f(t) dt−∆tiQi(f) = ∆ti

[∫ 1

0

f̂i(t̂) dt̂− Q̂(f̂i)

]
≤ CQ̂,q∆ti

{∫ 1

0

[
f̂

(q+1)
i (t̂)

]2

dt̂

}1/2

= CQ̂,q∆t
q
i

{∫ ti

ti−1

[
f (q+1)(t)

]2
dt

}1/2

.

Summing over the time partitions, and assuming quasi-uniformity of the time

partition (3.12), we have for any f in Cq+1(0, T ]∫ T

0

f(t) dt−Q(f) ≤ CT,Q̂,q∆t
q

{∫ T

0

[
f (q+1)(t)

]2
dt

}1/2

= CT,Q̂,q∆t
q||f (q+1)||L2(0,T ].

(4.12)

4.1.4 Collocation nodes

As mentioned before, the knots of the composite quadrature rule correspond

to the collocation points of some time-stepping method; these collocation nodes
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will be used to determine the space-time finite element method and are denoted

as

ti,j ≡ ti−1 + t̂j∆ti,

for i = 1, . . . ,m and j = 1, . . . , p. It is also convenient to denote the limiting value

ti,0 ≡ ti−1+ , in the sense that v(ti,0) = v(ti−1+) = limδ→0+ v(ti−1 + δ). This will be

useful in referencing the “initial value” of v on the ith time partition.

4.1.5 The energy norm

For measuring functions in V , we use a space-time semi-norm that depends

on both the mesh and quadrature rule associated with the finite element method.

The energy semi-norm that is used for functions v in V is defined as

|||v|||2(Vp
h,Q) ≡ max

1≤i≤m
1≤j≤p

||v(ti,j)||20 +Q
(
||vτ (·)||2(−1,Vp

h(·)) + ||v(·)||21
)
. (4.13)

This energy semi-norm will be used to measure the error of finite element approx-

imations to functions in V . Additionally, the semi-norm is defined continuously

over the spatial domain, Ω, and discretely over the time domain, (0, T ], which

corresponds to the fact that the finite element solution is determined by a method

of lines approach. As with the semi-norm || · ||(−1,Vp
h(t)), this energy semi-norm re-

stricted to the finite element space is again a true norm. Furthermore, this energy

semi-norm can be thought of as a discretized version of the space-time norm given

by

max
0<t≤T

||v(t)||20 +

∫ T

0

(
||vτ (t)||2−1 + ||v(t)||21

)
dt > 0,

for nonzero v in V . When the mesh and quadrature rule are assumed to be known,

the subscript is dropped, and we write ||| · |||(Vp
h,Q) = ||| · |||.

4.2 Preliminary results for moving finite element

spaces

The purpose of this section is to demonstrate the approximation properties

of the moving finite element space Vph. Due to the moving nodes in the discretiza-
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tion, it is tricky to prove these approximation properties directly. Therefore, we

set up a framework for shifting the moving finite element space to a static finite

element space, which is just a standard tensor product finite element space. We

first prove some technical lemmas so that our task is reduced to demonstrating

approximation properties of these standard tensor product finite element spaces,

which are well understood from elementary finite element analysis [7].

4.2.1 Shifting finite element functions

Let φ be a function in the finite element space Vph(t) for some t in the

time partition (ti−1, ti]. We shift φ onto the mesh of Vph(ti−1+), at the beginning

of the time partition, by replacing the basis functions for Vph(t) with with their

corresponding basis functions in Vph(ti−1+), while preserving the basis coefficients.

Formally, one can define the shift of φ element-wise to be function composition

φ̃(x̃) ≡ φ ◦ xe
(
x−1
e (x̃, ti−1+), t

)
(4.14)

for x̃ in element e(ti−1+). It follows from the definition of the spatial map (3.8)

that a characteristic trajectory,

x(t) = xe
(
x−1
e (x̃, ti−1+), t

)
= Je(t)J −1

e (ti−1+)
[
x̃− Se(ti−1+)

]
+ Se(t),

is affine in space and a polynomial of degree p in time. Moreover, these trajectories

are injective when the mesh is non-degenerate, indicating that these mesh trajec-

tories do not tangle. Using the mesh characteristics as given above, it is useful to

conceptualize φ̃ as

φ̃(x(ti−1+), t) = φ(x(t), t), (4.15)

so that the shift of a function is merely re-parametrization of φ onto a non-moving

mesh.

Using the basis functions defined in (3.5), it is straightforward to verify that

φ̃ ∈ Vph(ti−1+). Let x̃ ∈ e(ti−1+). Then, we see that φ̃ is a linear combination of the
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basis functions of Vph(ti−1+),

φ̃(x̃) = φ ◦ xe
(
x−1
e (x̃, ti−1+), t

)
=

Ni∑
k=0

φkσk

(
xe
(
x−1
e (x̃, ti−1+), t

)
, t
)

=

Ni∑
k=0

φk
∑

(ê,`)∈Ξ(xk(t))

σ̂` ◦ x−1
ê

(
xe
(
x−1
e (x̃, ti−1+), t

)
, t
)

=

Ni∑
k=0

φk
∑

(ê,`)∈Ξ(xk(ti−1+ ))

σ̂` ◦ x−1
ê (x̃, ti−1+)

=

Ni∑
k=0

φkσk(x̃, ti−1+), (4.16)

where we used the fact that Ξ(xk(t)) = Ξ(xk(ti−1+)), since xk(t) is just a time

parametrization of the kth spatial node.

Hence, if we shift φ(t) onto the mesh T ph (ti−1+) by

φ̃(x̃, t) = φ(x(t), t)

for all t in (ti−1, ti], then the resulting shift will live in Vph(ti−1+) for all t in the time

partition, i = 1, . . . ,m. Thus, the shift actually lives in a finite element space with

static nodes that do not move and we see that non-degenerate finite element spaces

are isomorphic to basic space-time tensor elements. Using the shape regularity

assumption (3.14), the following technical lemma is proven. Loosely speaking, this

lemma shows that the shift of a function is an O(∆ti) perturbation over the spatial

domain in the L2(Ω) and H1(Ω) norms.

Lemma 2 (Shift Lemma). Let φ, χ ∈ Vph(t) and φ̃, χ̃ ∈ Vph(ti−1+) represent a

pair of finite element functions and their shifts, respectively, on a non-degenerate

mesh partition T ph,i that satisfies (3.14) for each element in the partition. If ∆ti ≤
1/2c̃µ,d, as defined in (3.16), then∣∣∣(φ, χ)− (φ̃, χ̃)∣∣∣ ≤ c̃µ,d∆ti

∣∣∣∣φ̃∣∣∣∣2
0

+
∣∣∣∣χ̃∣∣∣∣2

0

2
, (4.17)∣∣∣(φ, χ)− (φ̃, χ̃)∣∣∣ ≤ c̃µ,d

∣∣∣∣∆tiφ̃∣∣∣∣20 +
∣∣∣∣χ̃∣∣∣∣2

0

2
, (4.18)
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and there exists a positive constant Cµ,d such that∣∣∣∣∣∣∣φ∣∣∣∣2
0
−
∣∣∣∣φ̃∣∣∣∣2

0

∣∣∣ ≤ Cµ,d∆ti
∣∣∣∣φ̃∣∣∣∣2

0
, (4.19)∣∣∣∣∣∣∣φ∣∣∣∣2

1
−
∣∣∣∣φ̃∣∣∣∣2

1

∣∣∣ ≤ Cµ,d∆ti
∣∣∣∣φ̃∣∣∣∣2

1
. (4.20)

The restriction ∆ti ≤ 1/2c̃µ,d is slightly stricter than necessary in this case

because we only require 1 − c̃µ,d∆ti > 0. Nevertheless, choosing ∆ti ≤ 1/2c̃µ,d

provides a practical means for avoiding “over-stepping” in time, which could lead

to poor regularity of the mesh — or even degenerate meshes.

Proof. The basic mechanism that drives this proof is an element-wise change of

variables

x = xe
(
x−1
e (x̃, ti−1+), t

)
(4.21)

and the fact that the shape regularity (3.14) implies inequalities (3.15) and (3.16),

as shown above. This change of variables is well-defined since the mesh is non-

degenerate and gives∫
e(t)

φ(x)χ(x) dx =

∫
e(ti−1+ )

φ̃(x̃)χ̃(x̃)
De(t)
De(ti−1+)

dx̃,

which leads to∣∣∣∣∣
∫
e(t)

φ(x)χ(x) dx−
∫
e(ti−1+ )

φ̃(x̃)χ̃(x̃) dx̃

∣∣∣∣∣
=

∣∣∣∣∣
∫
e(ti−1+ )

φ̃(x̃)χ̃(x̃)

(
1− De(t)
De(ti−1+)

)
dx̃

∣∣∣∣∣
≤
∣∣∣∣1− De(t)

De(ti−1+)

∣∣∣∣
√∫

e(ti−1+ )

φ̃2(x̃) dx̃

∫
e(ti−1+ )

χ̃2(x̃) dx̃. (4.22)

Since ∆ti ≤ 1/2c̃µ,d, we use bound (3.16) to show

0 < 1− c̃µ,d∆ti ≤ (1− µ∆ti)
d ≤ De(t)
De(ti−1+)

≤ (1 + µ∆ti)
d ≤ 1 + c̃µ,d∆ti, (4.23)

for each element e in the mesh partition. Combining (4.22), (4.23), and summing
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of the elements in the partition, one recovers∣∣∣(φ, χ)− (φ̃, χ̃)
∣∣∣ ≤ ∑

e∈T p
h,i

∣∣∣∣1− De(t)
De(ti−1+)

∣∣∣∣
√∫

e(ti−1+ )

φ̃2(x̃) dx̃

∫
e(ti−1+ )

χ̃2(x̃) dx̃

≤ c̃µ,d∆ti
∑
e∈T p

h,i

√∫
e(ti−1+ )

φ̃2(x̃) dx̃

∫
e(ti−1+ )

χ̃2(x̃) dx̃.

Now, we make use of the identity that for scalars a and b,

2ab ≤ a2 + b2.

By setting α = 1 and α = ∆ti,

α

√∫
e(ti−1+ )

φ̃2(x̃) dx̃

∫
e(ti−1+ )

χ̃2(x̃) dx̃ ≤

∫
e(ti−1+ )

(
αφ̃(x̃)

)2
dx̃+

∫
e(ti−1+ )

χ̃2(x̃) dx̃

2
,

and we get bounds (4.17) and (4.18), respectively. From the bound (4.17), the

bound on the L2(Ω) norm difference (4.19) is an immediate consequence of choosing

χ = φ.

For bound (4.20), the difference is split into a few easily bounded terms.

We have ∣∣∣∣∣∣∣φ∣∣∣∣2
1
−
∣∣∣∣φ̃∣∣∣∣2

1

∣∣∣ ≤ ∣∣∣∣∣∣∣∇φ∣∣∣∣2
0
−
∣∣∣∣∇φ̃∣∣∣∣2

0

∣∣∣+
∣∣∣∣∣∣∣φ∣∣∣∣2

0
−
∣∣∣∣φ̃∣∣∣∣2

0

∣∣∣, (4.24)

where the second term is bounded immediately by (4.19). The first term can be

broken down even further by shifting the gradient ∇φ, as follows:∣∣∣∣∣∣∣∇φ∣∣∣∣2
0
−
∣∣∣∣∇φ̃∣∣∣∣2

0

∣∣∣ ≤ ∣∣∣∣∣∣∣∇φ∣∣∣∣2
0
−
∣∣∣∣∇̃φ∣∣∣∣2

0

∣∣∣+
∣∣∣∣∣∣∣∇φ̃∣∣∣∣2

0
−
∣∣∣∣∇̃φ∣∣∣∣2

0

∣∣∣, (4.25)

for which the first term is bounded by applying (4.19) to the function ∇φ. There-

fore, all that remains is to bound the difference
∣∣||∇φ̃||20 − ||∇̃φ||20∣∣. Note that

∇̃φ = (∇φ) ◦ xe
(
x−1
e (x, ti−1+), t

)
,

whereas

∇φ̃ = ∇
(
φ ◦ xe

(
x−1
e (·, ti−1+), t

))
=
[
Je(t)J −1

e (ti−1+)
]T ∇̃φ.

Since bound (3.14) holds on every element, it follows that∣∣∣∣∣∣∣∇φ̃∣∣∣∣2
0
−
∣∣∣∣∇̃φ∣∣∣∣2

0

∣∣∣ ≤ µ∆ti
∣∣∣∣∇̃φ∣∣∣∣2

0
.
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Applying this bound to (4.24) yields∣∣∣∣∣∣∣∇φ∣∣∣∣2
0
−
∣∣∣∣∇φ̃∣∣∣∣2

0

∣∣∣ ≤ (µ+ c̃µ,d)∆ti
∣∣∣∣∇̃φ∣∣∣∣2

0
≤ 2(µ+ c̃µ,d)∆ti

∣∣∣∣∇φ̃∣∣∣∣2
0
, (4.26)

where ∆ti ≤ 1/2c̃µ,d was used to get∣∣∣∣∇̃φ∣∣∣∣2
0
≤ 1

1− c̃µ,d∆ti
||∇φ̃|| ≤ 2||∇φ̃||.

From (4.24)–(4.26), we recover∣∣∣∣∣∣∣φ∣∣∣∣2
1
−
∣∣∣∣φ̃∣∣∣∣2

1

∣∣∣ ≤ 2(µ+ c̃µ,d)∆ti
∣∣∣∣∇φ̃∣∣∣∣2

0
+ c̃µ,d∆ti

∣∣∣∣φ̃∣∣∣∣2
0
≤ 2(µ+ c̃µ,d)∆ti

∣∣∣∣φ̃∣∣∣∣2
1
.

This provides the desired result, and concludes the proof by taking Cµ,d = 2(µ +

c̃µ,d).

4.2.2 The shifted characteristic derivative

For static finite element spaces, the characteristic derivative is simply the

derivative with respect to time, as xt ≡ 0. Consequently, it follows that shift-

ing the characteristic derivative of a moving finite element function results in the

time derivative of the shifted finite element function. This notion is summarized

by the following lemma, which is a result concerning the commutativity of the

characteristic derivative and the shift operator.

Lemma 3. Let u ∈ V. Then, it holds for all (x̃, t) in F that

(∂̃τu)(x̃, t) =
d

dt
ũ(x̃, t).

Proof. This is shown directly from the definitions of the characteristic derivative

(3.6) and shift operation (4.14). Let x(t) denote the characteristic trajectory start-

ing at x̃ = x(ti−1+). Hence,

(∂̃τu)(x̃, t) = (∂̃τu)(x(ti−1+), t) = (∂τu)(x(t), t)

=
d

dt

[
u(x(t), t)

]
=

d

dt

(
ũ(x(ti−1+), t) =

d

dt
ũ(x̃, t).
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4.3 Approximation properties of the moving fi-

nite element space

In this section, the finite element interpolant is defined and used to find

bounds for the best finite element approximation for a given function with domain

F . Namely, given a function u on F that possesses sufficient regularity and a shape

regular finite element mesh, it is proven that

inf
χ∈Vp

h

|||u− χ||| ≤ C(∆xp + ∆tp)|u|∗,

where the semi-norm, | · |∗, is defined below. In effect, this shows that the order of

a finite element space determines the convergence rate of the best finite element

approximation with respect to mesh refinement.

4.3.1 Defining the finite element interpolant

For an element e in the mesh partition T ph,i and time t in (ti−1, ti], let Ipe(t)
denote the spatial element interpolant on e(t) with nodes at the degrees of freedom.

The interpolant of a function v on e(t) is then given by

Ipe(t)v(x) ≡
sd,p∑
k=0

σ̂k(x
−1
e (x, t))v(xk),

where σ̂k represents the basis function corresponding to the kth degree of freedom,

x̂k, on the reference element, with k = 0, . . . , sd,p. Using these element interpolants,

the finite element interpolant for Vph(t) is given by

IpVh(t)v(x) ≡
∑
e∈T p

h,i

Ipe(t)v(x)
∣∣
e(t)
,

for v : Ω→ IR.

Due to the potential discontinuities between the time partitions, we must

be careful in defining the space-time interpolant as the interpolant must satisfy

the jump orthogonality condition,(
[Iphv(ti)], χ

)
= 0,
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for all χ in Vph(ti+). Define the L2-projection Pi : L2(Ω)→ Vph(ti+) such that(
Piv(ti), χ

)
= (v(ti−), χ),

for all χ in Vph(ti+), where v ∈ L2(Ω). Then for v on F , we use the spatial

interpolants, the collocation nodes of the quadrature rule described in (4.9), and

the projection, Pi, to define the space-time finite element interpolant. Let βi,j(t)

represent the time basis function corresponding to collocation node ti,j. Then, the

finite element interpolant is defined as

Iphv(x, t) ≡
m∑
i=1

{
βi,0(t)Pi−1

[
IpVh(ti−1− )v(x, ti−1)

]
+

p∑
j=1

βi,j(t)IpVh(ti,j)v(x, ti,j)

}
.

While the projection at the discrete time partition nodes has no effect on func-

tions that are independent of spatial variables, we incorporate it into a pseudo-

interpolant over the time partition for convenience:

KpQ,iv(t) = βi,0(t)Pi−1v(ti−1−) +

p∑
j=1

βi,j(t)v(ti,j),

whereas the true interpolant over the time partition, which does not use the pro-

jection operator, is denoted by

IpQ,iv(t) =

p∑
j=0

βi,j(t)v(ti,j).

Note that the difference between the pseudo-interpolant and the true interpolant

is limited to the first time basis function on the time partition:

(IpQ,i −K
p
Q,i)v(t) = βi,0(t)

[
IpVh(ti−1+ )v(ti−1)− Pi−1IpVh(ti−1+ )v(ti−1)

]
. (4.27)

Thus, the finite element interpolant can be represented by

Iphv(x, t) =
m∑
i=1

KpQ,i
(
IpVh(t)v(x, t)

)∣∣∣
[ti−1,ti]

.

It is the goal of this section to bound
∣∣∣∣∣∣u− Iphu∣∣∣∣∣∣, where the energy semi-norm is

defined in (4.13). Note for moving finite elements, the time and space interpolants

do not commute; we have the interpolation composition KpQ,i
(
IpVh(t)v

)
(x, t) ∈ Vph,i,
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whereas IpVh(t̃)

(
KpQ,iv

)
(x, t) is in the non-moving tensor space Vph(t̃)⊗ (ti−1, ti] for

all t in the time partition.

Since the interpolants do not commute, we employ the shift functions to

remove the time dependence of the spatial interpolant. From (4.16), the shift of

the spatial interpolant satisfies(
ĨpVh(t)v

)
(x̃, t) = IpVh(ti−1+ )ṽ(x̃, t) ∈ Vph(ti−1+)

for ti−1 ≤ t ≤ ti, which gives

(
Ĩphv
)
(x̃, t) = KpQ,i

(
ĨpVh(t)v

)
(x̃, t) = KpQ,i

(
IpVh(ti−1+ )ṽ

)
(x̃, t)

= IpVh(ti−1+ )

(
KpQ,iṽ

)
(x̃, t), (4.28)

where we use the fact that the shifted spatial interpolation operator IpVh(ti−1+ )

does not depend on time and, accordingly, commutes with the time interpolation

operator.

4.3.2 Interpolation error bounds for the finite element

spaces

The interpolation error bounds proven in Brenner and Scott [7] are used

in our interpolation error analysis to provide standard results for the finite ele-

ment spaces Vph(t) on Ω. Constraints (3.10) and (3.11) are used to bound the

interpolation error, (1− IpVh(t))u for all t in (0, T ], in lemma 4 below.

Lemma 4. Suppose Vph(t) corresponds to a mesh such that (3.10) and (3.11) are

satisfied for some 1 ≥ ∆x > 0, δ > 0, and some t in (ti−1, ti]. Then for p ≥ 1,

there exists a positive constant Cδ,d,p such that, for all u in Hp+1(Ω),∣∣∣∣u− IpVh(t)u
∣∣∣∣
k
≤ Cδ,d,p∆x

p−k+1|u|p+1.

Proof. As described in section 3.2, the finite element space Vph(t) is constructed us-

ing affine equivalent elements and the shape regularity constraints (3.10) and (3.11)

demonstrate that the element interpolation operators Ipe(t) are uniformly bounded

for all e(t) in T ph (t), c.f. Brenner and Scott [7]. Since we are using Lagrange basis
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functions on the reference element to define the finite element functions, we need

2(p+1) > d. This is satisfied by p ≥ 1 for d = 1, 2, 3, and so the spatial interpolant

IpVh(t) and the finite element space Vph(t) satisfy the hypothesis of theorem 4.4.20

in [7], which implies the desired result.

Finite element interpolation error

As a result of the shape regularity estimates (3.10)–(3.12), (3.14), and

lemma 4, the approximation error of the interpolant can be bounded in the energy

semi-norm defined in (4.13). Define the non-negative mesh dependent functional

E(Q,τ,p+1)(u) ≡
{

∆x2 max
0<t≤T

|u(t)|2p+1 +Q
(
|u(·)|2p+1 + ∆x2|uτ (·)|2p+1

)
+

m∑
i=1

∆ti|u(ti−1)|2p+1 +

∫ T

0

(
||∂p+1
τ u(t)||20 + ∆x2(p+1)|∂p+1

τ u(t)|2p+1

)
dt

}1/2

. (4.29)

Note that E(Q,τ,p+1)(χ) = 0 for any χ in Vph.

For a given mesh and quadrature rule, the functional E(Q,τ,p+1) acts as a

semi-norm on V ; however, this quantity has terms that depend on the maximum

element diameter of the spatial meshes Vph(t) that are cross terms arising from

the tensor product elements. (Recall that ∆x ≤ 1 can alleviate this dependence.)

Note that this quantity also depends on the mesh motion, due to the character-

istic derivative term. In convection dominated problems, aligning the mesh with

the convection velocity can keep uτ small. This demonstrates that the quantity

E(Q,τ,p+1) can be reduced by following characteristics of the differential equation.

Furthermore, the time discretization is a necessary dependence that cannot

be avoided due to the method of lines approach in the proposed finite element

method. The definition of this functional shows that when u has large spatial

derivatives of order p or the spatial derivative of uτ is large, small time steps,

∆ti, should be chosen to get a smaller quantity, and larger time steps should be

chosen when the spatial derivatives of u and uτ are smaller. This is consistent with

previous results regarding adaptive time-stepping methods [44], and is revisited in

chapter 7.
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Lemma 5. Suppose Vph is a finite element space with a non-degenerate mesh that

satisfies (3.10)–(3.12) and (3.14) with ∆t ≤ 1/2c̃µ,d and ∆x/∆ti ≤ γ, for some

positive constant γ, i = 1, . . . ,m. Then, the error of the interpolant using the

collocation nodes of quadrature rule Q is bounded by∣∣∣∣∣∣u− Iphu∣∣∣∣∣∣(Vp
h,Q)
≤ C(∆xp + ∆tp)E(Q,τ,p+1)(u),

for some positive constant C = CQ̂,δ,γ,µ,d,p, where E(Q,τ,p+1) is defined in (4.29).

To comment on the constraint ∆x/∆ti ≤ γ, this requirement is a neces-

sary bound to control the effect of the projection error at the beginning of each

time partition. The quantity ∆x/∆ti naturally helps bound this projection error,

as it improves upon spatial refinement (small ∆x) and prefers longer time steps

(large ∆ti), which counteracts using many time steps, which implies many L2(Ω)-

projections at the mesh discontinuities. If the meshes at the time partition align

quite closely, the constant γ plays a less significant role, as can be seen in the proof.

Proof. This proof uses the definition of the energy semi-norm (4.13) to split the

approximation error into several terms that can be bounded independently. We

have

|||u− Iphu|||
2
(Vp

h,Q) = max
1≤i≤m
1≤j≤p

∣∣∣∣(u− Iphu)(ti,j)∣∣∣∣20
+Q

(∣∣∣∣∂τ(u− Iphu)(·)∣∣∣∣2(−1,Vp
h(·)) +

∣∣∣∣(u− Iphu)(·)∣∣∣∣21) . (4.30)

For any collocation node ti,j with j > 0, the shape regularity assumptions (3.10)–

(3.11) show that IpVh(ti,j) satisfies the hypothesis of lemma 4 to provide∣∣∣∣(u− Iphu)(ti,j)∣∣∣∣k ≤ Cδ,d,p∆x
p+1−k|u(ti,j)|p+1, (4.31)

for k = 0 and 1.

Bounding the terms involving the characteristic derivatives is more compli-

cated due to the moving nodes in the mesh. To circumvent the complications that

arise from the characteristic derivative, we use the results proven in section 4.2.1
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to shift the functions onto a static mesh. First and foremost, we remove the time

dependence of the negative norm, || · ||(−1,Vp
h(t)), by noting∣∣∣∣∂τ(u− Iphu)(ti,j)∣∣∣∣(−1,Vp

h(ti,j))
≤
∣∣∣∣∂τ(u− Iphu)(ti,j)∣∣∣∣0. (4.32)

From (4.28), the time derivative of the shifted interpolant satisfies

d

dt

(
Ĩphu
)
(x̃, t) = IpVh(ti−1+ )

( d
dt
KpQ,iũ

)
(x̃, t),

which we combine with the shift lemma 2, lemma 3, and (4.27) to show

∣∣∣∣∂τ(u−Iphu)(ti,j)∣∣∣∣(−1,Vp
h(ti,j))

≤ (1+Cµ,d∆ti)
∣∣∣∣∣∣ũt(ti,j)−IpVh(ti−1+ )

( d
dt
KpQ,iũ

)
(ti,j)

∣∣∣∣∣∣
0

≤ (1+Cµ,d∆ti)

{∣∣∣∣∣∣ũt(ti,j)−IpVh(ti−1+ )ũt(ti,j)
∣∣∣∣∣∣

0

+
∣∣∣∣∣∣IpVh(ti−1+ )

(
ũt(ti,j)−

d

dt
KpQ,iũ(ti,j)

)∣∣∣∣∣∣
0

}
≤ (1+Cµ,d∆ti)

{∣∣∣∣∣∣ũt(ti,j)−IpVh(ti−1+ )ũt(ti,j)
∣∣∣∣∣∣

0
+
∣∣∣∣∣∣IpVh(ti−1+ )

(
ũt(ti,j)−

d

dt
IpQ,iũ(ti,j)

)∣∣∣∣∣∣
0

+
∣∣β′i,0(ti,j)

∣∣∣∣∣∣IpVh(ti−1+ )ũ(ti−1)− Pi−1IpVh(ti−1− )ũ(ti−1)
∣∣∣∣

0

}
. (4.33)

Lemmas 2 and 4 give∣∣∣∣∣∣ũt(ti,j)− IpVh(ti−1+ )ũt(ti,j)
∣∣∣∣∣∣

0
≤ Cδ,d,p∆x

p+1|ũt|p+1

≤ (1 + Cµ,d∆ti)Cδ,d,p∆x
p+1|uτ |p+1 (4.34)

and, since ũ(ti−1) = u(ti−1),∣∣∣∣∣∣IpVh(ti−1+ )ũ(ti−1)− Pi−1IpVh(ti−1− )ũ(ti−1)
∣∣∣∣∣∣

0

=
∣∣∣∣Pi−1

(
IpVh(ti−1+ )u(ti−1)− IpVh(ti−1− )u(ti−1)

)∣∣∣∣
0

≤
∣∣∣∣u(ti−1)− IpVh(ti−1+ )u(ti−1)

∣∣∣∣
0

+
∣∣∣∣u(ti−1)− IpVh(ti−1− )u(ti−1)

∣∣∣∣
0

≤ 2Cδ,d,p∆x
p+1|u(ti−1)|p+1. (4.35)

To complete the proof, it is only needed to bound the second term on the right in

(4.33). Denoting v = ũt(ti,j)− d
dt
IpQ,iũ(ti,j), we again invoke lemma 4 to bound∣∣∣∣IpVh(ti−1+ )v

∣∣∣∣
0
≤ ||v||0 +

∣∣∣∣v − IpVh(ti−1+ )v
∣∣∣∣

0
≤ ||v||0 + Cδ,d,p∆x

p+1|v|p+1. (4.36)
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Using the Peano kernel theorem [66] and ∆ti ≤ 1/2c̃µ,d, we have

∣∣∣∣∣∣ũt(ti,j)− d

dt
IpQ,iũ(ti,j)

∣∣∣∣∣∣
0
≤ CQ̂,p∆t

p

∣∣∣∣∣∣∣∣( ∫ ti

ti−1

[(
d

dt

)p+1

ũ(t)

]2

dt

)1/2∣∣∣∣∣∣∣∣
0

≤ CQ̂,µ,d,p∆t
p

{∫ ti

ti−1

||∂p+1
τ u(t)||20 dt

}1/2

(4.37)

and∣∣∣ũt(ti,j)− d

dt
IpQ,iũ(ti,j)

∣∣∣
p+1

=

∣∣∣∣∣∣∣∣ ddt
[ ∑
|α|=p+1

Dα
x ũ(ti,j)

]
− d

dt
IpQ,i

[ ∑
|α|=p+1

Dα
x ũ(ti,j)

]∣∣∣∣∣∣∣∣
0

≤ CQ̂,p∆t
p

∣∣∣∣∣∣∣∣( ∫ ti

ti−1

[(
d

dt

)p+1 ∑
|α|=p+1

Dα
x ũ(t)

]2

dt

)1/2∣∣∣∣∣∣∣∣
0

≤ C ′Q̂,p∆t
p

∣∣∣∣∣∣∣∣( ∫ ti

ti−1

∑
|α|=p+1

[(
d

dt

)p+1

Dα
x ũ(t)

]2

dt

)1/2∣∣∣∣∣∣∣∣
0

≤ CQ̂,µ,d,p∆t
p

{∫ ti

ti−1

|∂p+1
τ u(t)|2p+1 dt

}1/2

, (4.38)

where CQ̂,p is a bounding constant for the function and kernel, K̂Q̂,p(t, ζ) =∫ 1

0

∫ 1

0
(t − ζ)p+ − I

p

Q̂[(· − ζ)p+] dζ dt, which is attained analogously to (4.10). Com-

bining (4.32)–(4.38) gives the bound for the time discretization error:

∣∣∣∣∂τ(u− Iphu)(ti,j)∣∣∣∣(−1,Vp
h(ti,j))

≤ CQ̂,δ,γ,µ,d,p

{
∆xp+1|uτ |p+1

+ ∆xp+1∆t−1
i |u(ti−1)|p+1 + ∆xp+1∆tp

(∫ ti

ti−1

|∂p+1
τ u(t)|2p+1 dt

)1/2

+ ∆tp
(∫ ti

ti−1

||∂p+1
τ u(t)||20 dt

)1/2}
. (4.39)

Due to the coefficient |β′i,0(ti,j)| = ∆t−1
i |β̂′0(t̂)| in (4.33), we have a term multiplied

by ∆xp+1/∆ti ≤ γ∆xp, which follows from the space-time quasi-uniformity.
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From (4.30), (4.31), and (4.39), we obtain

|||u− Iphu|||
2 ≤ C2

Q̂,δ,γ,µ,d,p(∆x
p + ∆tp)2×{[

∆x max
0<t≤T

|u(t)|p+1

]2
+Q

(
|u(·)|2p+1 +

[
∆x|uτ (·)|p+1

]2)
+

m∑
i=1

∆ti|u(ti−1)|2p+1 +

∫ T

0

||∂p+1
τ u(t)||20 dt+

[
∆x

∫ T

0

||∂p+1
τ u(t)||20 dt

]2}
,

as desired.

As an immediate consequence of this lemma, we have the following theorem

regarding the best-approximation error for Vph.

Theorem 1. Suppose Vph is a finite element space with a non-degenerate mesh

that satisfies (3.10)–(3.12) and (3.14) with ∆t ≤ 1/2c̃µ,d and ∆x/∆ti ≤ γ, for

i = 1, . . . ,m. Then, the best approximation error of the finite element space using

the collocation nodes of a composite quadrature rule, Q, is bounded by

inf
χ∈Vp

h

|||u− χ|||(Vp
h,Q) ≤ C(∆xp + ∆tp)E(Q,τ,p+1)(u),

for some positive constant C = CQ̂,δ,γ,µ,d,p, where E(Q,τ,p+1) is defined in (4.29).

Proof. The proof is an immediate result because Iphu ∈ V
p
h. Thus, we see

inf
χ∈Vp

h

|||u− χ|||(Vp
h,Q) ≤

∣∣∣∣∣∣u− Iphu∣∣∣∣∣∣(Vp
h,Q)
≤ C(∆xp + ∆tp)E(Q,τ,p+1)(u).

Lemma 5 and theorem 1 are results that describe approximation properties

of the finite element space. They are independent of the differential equation and

the finite element methods discussed in this dissertation. However, in providing

bounds for the error of the finite element solution, we separate the error introduced

by the finite element method and the finite element discretization. Thus, proving

a quasi-optimal error estimate of the finite element solution, as discussed in the

introduction, and using theorem 1 shows that

|||u− uh||| ≤ C inf
χ∈Vp

h

|||u− χ||| ≤ C ′(∆xp + ∆tp)E(Q,τ,p+1)(u). (4.40)
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The results in this section form the basis for the analysis in the following

chapters. Insofar, the differential equation and the finite element mesh have not

been considered together, except for some brief discussion regarding choices for

mesh motion and adaptive time stepping. We now discuss and analyze two finite

element methods that employ these space-time moving finite element spaces for

discretizing the differential equation and solving this discrete formulation of the

problem.

Chapter 4, in part, is in preparation for submission for publication of this

material. Bank, Randolph E. The dissertation author is the primary investigator

and author of this material.



Chapter 5

A Space-Time Moving Finite

Element Method

67
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In this chapter, a space-time moving finite element method is described.

An important feature of this method is that the mesh motion is not prescribed

by the method and many strategies for determining the mesh motion of the finite

element space fall within the framework of this method. The efficacy of moving

finite elements is largely predicated on how well the mesh motion suits the given

differential equation. Accordingly, mesh selection is a critical component of finding

an accurate numerical solution using moving finite elements. Many techniques

have been proposed and tested for determining the mesh motion for a wide range

of differential equations, though as far as we have seen, there is no single strategy

that works well for all types of problems.

By not fixing the mesh motion, we provide a general error analysis that

applies to a broad class of moving finite element methods. For many moving finite

element methods, the finite element solution is computed by residual minimization;

this approach is effective for finding the finite element solution and mesh motion

simultaneously via an extended set of constraint equations, beyond those of the

usual Galerkin approach. The mesh motion is often determined by additional

equations relating the motion of the spatial nodes to the computed solution, its

gradient, or some penalty terms that enforce shape regularity (and, consequently,

ensure well-posedness of the moving finite element method) ([57],[55]). Another

scheme is the Gradient-Weighted Moving Finite Element method, where the in-

tegrals of the variational equation are weighted by (1 + |u|21)1/2, which leads to

a nonlinear system of equations that must be solved to find the finite element

solution ([28],[29]). Other methods correspond to solving some modified version

of the residual minimization problem to ensure some other desirable properties of

the mesh motion, such as stabilizing meshes for steady state problems ([?],[56]).

Many of these methods also lead to a nonlinear set of equations, as in the case of

gradient weighted moving finite element methods.

In an effort to avoid nonlinear equations, we only consider methods where

the motion of the spatial nodes does not implicitly depend on the solution to the

PDE. For our finite element method, the mesh motion can be determined by the

method of characteristics, by satisfying some conservation law [13], by previously
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computed values of the finite element solution, by some monitor function like an

a posteriori error estimators [65], or by some iterative method [12]. For simplicity,

we assume that the mesh motion is pre-determined so that we may use a standard

Galerkin approach and avoid solving nonlinear systems to find the finite element

solution. To maintain a level of generality, the only assumptions that the mesh

must satisfy in this analysis are the shape regularity constraints (3.10)–(3.12),

(3.14), and

||b(t)− xt(t)||∞ <∞,

for 0 < t ≤ T . These relaxed constraints should be satisfied for any reason-

able choice of mesh. Notice that both standard space-time tensor elements (when

xt ≡ 0) and the method of characteristics (when xt = b) can satisfy these mesh

constraints, assuming that b does not lead to degenerate finite element spaces on

F .

In this chapter, a space-time moving finite element formulation of the PDE

is given, followed by a brief discussion of a discrete Galerkin orthogonality property

of the proposed method. Then, the effects of the method of lines approach are

analyzed along with certain constraints required to attain a symmetric error bound.

The well-posedness of the method is proven by analyzing the linear system that

results from the discrete formulation, along with two Grönwall-like arguments that

are used to prove a quasi-optimal, symmetric a priori error estimate. To conclude

the chapter, the results in chapter 4 are used to prove convergence rates of the

finite element solution, with respect to mesh refinement.

5.1 The finite element formulation

The space-time finite element formulation that is used to determine the

finite element solution is a discretization of formulation 3. As usual with finite

element methods, the space of trial and test functions is restricted to the finite

element space. The result is a system of ordinary differential equations, where

each equation describes the evolution of the solution in time along the trajectory

of a spatial node. This method is, therefore, a method of lines. In the case of
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moving meshes, this generalizes to a “method of trajectories,” which encompasses

the method of lines, when xt = 0, and the method of characteristics, when xt = b.

Hence, we have a semi-discrete formulation of the differential equation, as the time

dimension remains undiscretized. To discretize this problem in time, we only re-

quire the constraint (2.11) to hold at discrete time steps that correspond to some

composite quadrature rule to numerically solve the resulting system of ordinary

differential equations. Consequently, the fully discrete formulation depends on the

choice of mesh motion, xt, and the quadrature rule, Q, that is used to determine

the location of the discrete collocation nodes. As before, the bilinear form cor-

responding to the spatial components of the differential equation depends on the

mesh motion and is given by

Aτ (u, χ; t) ≡∫
Ω

a(x, t)∇u(x, t) ·∇χ(x)+(b(x, t)−xt(t)) ·∇u(x, t) χ(x)+c(x, t)u(x, t)χ(x) dx.

Using this notation, the fully discretized moving finite element formulation of the

convection-diffusion-reaction equation is given in the following.

Formulation 4. Let a, b, c, and f be smooth and bounded functions on F satis-

fying a ≥ ā > 0 and c ≥ c̄ ≥ 0, and let g(t) be in L2(∂Ω) for 0 < t ≤ T . Given the

mesh velocity, xt, and collocation nodes, {ti,j}, find uh in Vph such that for each ti,j

and all χ in Vph(ti,j), the finite element solution satisfies(
∂τuh(ti,j), χ

)
+Aτ

(
uh, χ; ti,j

)
=
(
f(ti,j), χ

)
+
〈
g(ti,j), χ

〉
(5.1)

for i = 1, . . . ,m and j = 1, . . . , p, and when t = 0,

(
uh(·, 0), χ

)
=
(
u0, χ

)
.

Although not explicitly stated in the finite element formulation, the com-

puted solution at the beginning of each time step is the L2-projection of the solution

at the end of the previous time partition:

(uh(ti+), χ) = (uh(ti−), χ), (5.2)
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for all χ in Vph(ti+) and i = 1, . . . ,m. This is a requirement for uh to belong

to Vph, as stated in (3.7). In truth, this is necessary only to simplify the error

analysis. As a practical note, interpolation is a faster option for transferring the

computed solution across the mesh discontinuities between time partitions. The

effects of using interpolation instead of projection onto a new mesh is discussed in

the numerical experiments section 7.4.

5.2 A discrete Galerkin orthogonality

Inherent to formulation 4, the error of the finite element solution will satisfy

a Galerkin orthogonality condition at the discrete collocation nodes; this is an

immediate result of subtracting (6.5) from (2.11). Hence, at each collocation node

in the time discretization,(
∂τ (u− uh)(ti,j), χ

)
+Aτ

(
u− uh, χ; ti,j

)
= 0, (5.3)

for all χ in Vph(ti,j), when 1 ≤ i ≤ m and 1 ≤ j ≤ p. This is a standard property of

finite element methods for elliptic equations; however, this Galerkin orthogonality

property does not necessarily hold throughout the entire time domain, as it is only

imposed at the discrete collocation nodes. The degree to which this orthogonality

holds between these time nodes depends on the placement of collocation nodes.

As discussed in section 4.1.3, the collocation nodes {ti,j} correspond to a

composite quadrature rule, Q. Using weights wj from definition of the composite

quadrature rule (4.9) in conjunction to (5.3), one recovers∫ T

0

(
∂τ (u−uh)(t), χ

)
+Aτ

(
u−uh, χ; t

)
dt ≈ Q

((
∂τ (u−uh), χ

)
+Aτ

(
u−uh, χ

))
=

m∑
i=1

p∑
j=1

wj∆ti
{(
∂τ (u− uh)(ti,j), χ

)
+Aτ

(
u− uh, χ; ti,j

)}
= 0, (5.4)

since the finite element space Vph(ti,j) ⊂ H1(Ω). Thus, a discrete Galerkin or-

thogonality property over the space-time domain is satisfied. By refining the time

discretization (smaller ∆t) or carefully choosing the collocation nodes (optimizing
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{ti,j}), the discrete Galerkin orthogonality better resembles a true Galerkin orthog-

onality on the space-time domain, and the rate of convergence to this orthogonality

property is determined by the order of the quadrature rule.

5.2.1 A closer look at the time discretization

In formulation 3, the differential equation (2.11) is imposed for every time t

in the domain (0, T ]. Since the finite element solution only satisfies this requirement

at the discrete time collocation nodes in the mesh, it is important to understand

the effects on the error introduced by the relative position of the collocation nodes

within a time partition. Any interpolatory quadrature rule with p collocation

nodes is of order p, as mentioned in section 4.1.3, and we consequently assume an

interpolatory quadrature rule.

The space-time variational formulation given by∫ ti

ti−1

(∂τuh(t), χ(t)) +Aτ (uh, χ; t) dt =

∫ ti

ti−1

(f(t), χ(t)) + 〈g(t), χ(t)〉 dt

has a characteristic derivative term that is a polynomial of degree 4p− 1. This is

because ∂τuh(t) is, in general, a polynomial of degree 2p−1 with respect to t, since

it is the composition of the static polynomial d
dt
ũh, of degree p− 1, and the degree

p polynomial characteristic trajectory x(t). Similarly, the function χ(t) = χ̃ ◦ x(t)

is of degree 2p with respect to t. By shifting this term and using (4.18) of lemma

2, (
∂τuh(t), χ(t)

)
=
( d
dt
ũh(t), χ̃(t)

)
+O(||∆ti∂τuh||0||χ||0),

the resulting time derivative term is of order 2p − 1 with respect to the time

variable. Thus, to integrate this shifted term exactly, the collocation nodes must

correspond to the nodes of Gaussian quadrature, defined by the roots of the pth

orthogonal polynomial; this is the only quadrature rule that has order of exactness

2p− 1 with only p nodes.

This does not restrict the only plausible choice of quadrature rule to be

Gaussian, though. The error analysis provides a symmetric error bound as long as

the quadrature rule satisfies a non-truncating condition, which we describe here.



73

Let Q̂ be a given quadrature rule over the unit interval, [0, 1]. Then, the quadrature

rule is non-truncating if it satisfies

Q̂
( d
dt

(v2)
)
≥
∫ 1

0

d

dt
(v2(t)) dt = v2(1)− v2(0), (5.5)

for all polynomials v of degree at most p with positive leading coefficients.

5.2.2 A one parameter family of non-truncating quadra-

ture rules

Clearly, the Gaussian quadrature rule satisfies (5.5), as it is exact for all

polynomials of degree at most 2p, meaning Q̂
(
d
dt

(v2)
)

=
∫ 1

0
d
dt

(v2(t)) dt in the case

of Gaussian quadrature. We describe a one parameter family of quadrature rules

that are non-truncating for a given p. Consider quadrature rules that have degree

of exactness 2p−2. Then, for a monic polynomial v(t) = tp+vp−1t
p−1 +vp−2t

p−2 +

· · ·+ v0, it holds that∫ 1

0

d

dt
(v2(t)) dt−Q̂

( d
dt

(v2)
)

= 2p

{∫ 1

0

t2p−1 dt− Q̂
(
t2p−1

)}
= 1−2p

p∑
j=1

wj t̂
2p−1
j ,

since Q̂ has degree of exactness 2p− 2. Thus, we need to show that

p∑
j=1

wj t̂
2p−1
j ≥ 1/2p. (5.6)

From [62], it is true that any quadrature rule with degree of exactness 2p− 2 must

have collocation nodes that coincide to the roots of a linear combination of the

orthogonal polynomials of degree p and p − 1 (these polynomials are orthogonal

on [0, 1] with the unit weight function w ≡ 1). Namely, if {πq} represent these

orthogonal polynomials, assumed to be normalized to be monic, then there exists

some α such that

(t− t̂1) · · · (t− t̂p) = πp(t) + απp−1(t). (5.7)

Note that for α = 0, we have Gaussian quadrature. Let α = αGR < 0 correspond

to the right Gauss-Radau quadrature, defined by t̂p = 1. It is known that right

Gauss-Radau quadrature rule has degree of exactness 2p− 2 and that (5.5) holds
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with strict inequality [59], which implies that (5.6) holds with strict inequality

when α = αGR. Thus, using Gauss or Gauss-Radau quadrature provides a non-

truncating quadrature rule.

Let t̂j(α) denote the collocation nodes as continuously parametrized by α

in (5.7). Then, the weights wj(α) also depend continuously on α since

wj(α) =

∫ 1

0

p∏
k=1
k 6=j

t̂− t̂k(α)

t̂j(α)− t̂k(α)
dt̂.

Note that t̂j(α) 6= t̂k(α) for j 6= k, which keep the wj well-defined and positive.

Hence, the quadrature of t2p−1 is a quantity that is continuously parametrized by

α when we assume order of exactness 2p− 2. The choice α = 0 satisfies (5.6) with

equality, since it corresponds to the higher order Gauss rule, whereas the choice

α = αGR satisfies this requirement with a strict inequality. Suppose there exists

ᾱ in the interval (αGR, 0) such that (5.6) does not hold; then, the intermediate

value theorem states that there must be some other rule, beside the Gauss rule,

that satisfies (5.6) with equality holding since the quadrature of t2p−1 is continuous

with respect to the parameter α. If this were true, then there would exist another

quadrature rule with p collocation nodes, distinct from the Gauss rule, with order

of exactness 2p − 1. This is a contradiction since this property is known to be

unique to the Gauss rule. As a result, if the quadrature rule has collocation nodes

defined to be the roots of some polynomial as given in (5.7) with α in [αGR, 0],

then it is non-truncating.

Examples of families of non-truncating quadrature rules

For the case where p = 1, using the decomposition (5.7), we find t − t̂1 =

(t − 1/2) + α, which implies αGR = −1/2 since this gives t̂1 = 1. Thus, for α in

[−1/2, 0], we have a non-truncating quadrature rule; this corresponds to choosing

the collocation node to be in the range [1/2, 1], and an a priori error estimate has

been proven in this case by Dupont and Mogultay [40].

Once the order p ≥ 1, the parameterization of the quadrature rule and its

collocation nodes becomes nonlinear and more complicated. For example, when
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p = 2, we have

(t− t̂1)(t− t̂2) = (t2 − t/7− 17/42) + α(t− 1/2)

=

t− 1
7
− α−

√
α2 + 12

7
α + 241

147

2

t− 1
7
− α +

√
α2 + 12

7
α + 241

147

2

 ,

which gives αGR = −19
21

. Thus, we may choose

t̂1 =

1
7
− α−

√
α2 + 12

7
α + 241

147

2

with

t̂2 =

1
7
− α +

√
α2 + 12

7
α + 241

147

2

for −19
21
≤ α ≤ 0. The non-truncating family for higher order quadrature rules can

be found analogously to the p = 1 and p = 2 cases.

5.3 Well-posedness of the finite element formu-

lation

Formulation 4 corresponds to a linear system that can be solved to compute

the finite element solution, uh, by using a basis expansion of the finite element

functions. For finite element methods that use a method of lines approach for

space-time problems, the linear system is derived by expanding the finite element

solution by its spatial basis functions to get a semi-discrete linear system involving

the vector representation of the finite element solution and its time derivative.

Subsequently, the time domain is discretized so that the existence and uniqueness

of a solution to the fully discrete formulation is established.

5.3.1 The semi-discrete linear system

Using the basis functions of Vph(ti,j), the finite element solution uh of for-

mulation 4 must satifsy(
∂τuh(ti,j), σ`(ti,j)

)
+Aτ

(
uh, σ`; ti,j

)
=
(
f(ti,j), σ`(ti,j)

)
+
〈
g(ti,j), σ`(ti,j)

〉
(5.8)
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for all spatial basis functions σ`(ti,j), 1 ≤ ` ≤ Ni, corresponding to the degrees of

freedom in the mesh, xk(ti,j), and for all ti,j, j = 1, . . . , p and i = 1, . . . , p, where

Ni denotes the number of degrees of freedom on the mesh at time ti,j. Expanding

Vph(ti,j) by the spatial basis functions gives

(
∂τuh(ti,j), σ`(ti,j)

)
=

Ni∑
k=1

∂τuh(xk(ti,j), ti,j)
(
σk(ti,j), σ`(ti,j)

)
.

Define the mass matrix at time ti,j by the pairwise inner-products of the spatial

basis functions,

M(ti,j) ≡
[(
σk(ti,j), σ`(ti,j)

)]
(`,k)

and the vector of basis coordinates for ∂τuh(ti,j) by

Uτ (ti,j) ≡
[
∂τuh(xk(ti,j), ti,j)

]
k
,

for 1 ≤ k, ` ≤ Ni. Thus, if there are Ni degrees of freedom in the mesh at time

t = ti,j, then the mass matrixM(ti,j) is a Ni×Ni matrix and Uτ (ti,j) is a vector of

length Ni. It is easy to see that the mass matrix,M(t), is positive definite. Let the

vector ~v in IRNi be the vector containing the basis coefficients of a nonzero finite

element function v(ti,j) in Vph(ti,j). Then, the positive definiteness follows from the

identity ~v TM(ti,j)~v = ||v(ti,j)||20 > 0. Note that the shape regularity assumptions

improve the condition number of the mass matrix.

For the bilinear form Aτ
(
uh, σ`; ti,j

)
, we expand uh(ti,j) to get

Aτ
(
∂τuh(ti,j), σ`(ti,j); ti,j

)
=

Ni∑
k=1

uh(xk(ti,j), ti,j)Aτ
(
σk(ti,j), σ`(ti,j); ti,j

)
.

Similar to the characteristic derivative term, define the stiffness matrix at time ti,j,

now using the bilinear form,

S(ti,j) ≡
[
Aτ
(
σk(ti,j), σ`(ti,j); ti,j

)]
(`,k)

and the vector of basis coefficients for uh(ti,j),

U(ti,j) ≡
[
uh(xk(ti,j), ti,j)

]
k
,
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for 1 ≤ k, ` ≤ Ni. In the case when b − xt ≡ 0, it holds true that the stiffness

matrix is positive definite as well since a > 0 and c ≥ 0, following from the

same argument as for the mass matrix. However, the asymmetry brought on

by the convection term can break this positive definite property when |b − xt| is

sufficiently large. If the bilinear form is coercive, as discussed in subsection 4.1.2,

this matrix is guaranteed to be nonsingular by (4.7). Methods that are designed

from an Eulerian approach seek to improve this asymmetry by means of upwind

differencing, streamline diffusion, the method of characteristics, or, as in our case,

moving meshes. Of course, this list of methodologies is not exhaustive, but it

covers some of the most common methods that are designed for non-symmetric

stiffness matrices.

For the right side of equation (5.8), define the vectors

F (ti,j) ≡
[
(f(ti,j), σ`(ti,j))

]
`

and G(ti,j) ≡
[
〈g(ti,j), σ`(ti,j)〉

]
`
,

where 1 ≤ ` ≤ Ni. Then, the system of ODEs corresponding to equation (5.8) is

given by

M(ti,j)Uτ (ti,j) + S(ti,j)U(ti,j) = F (ti,j) +G(ti,j). (5.9)

Thus, the vectorized finite element solution, U(t), and its characteristic derivative,

Uτ (t), must solve the linear system (5.9) for each collocation node, t = ti,j. It is

important to remember that this equality only holds at the collocation nodes, and

not for all t in the time domain.

5.3.2 The fully discrete linear system

The linear system (5.9) is not quite ready to be solved as there are two

unknowns, U(ti,j) and Uτ (ti,j), which must be related for j = 1, . . . , p and i =

1, . . . ,m. Thus, we expand the finite element solution and its characteristic deriva-

tive using the time basis functions, as in (3.6). For the characteristic derivative,

this gives

∂τuh
(
xk(ti,j), ti,j

)
=

1

∆ti

p∑
`=0

β̂′`
(
t̂j
)
uh(x(ti,`), ti,`)
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where β̂j and t̂j = (ti,j − ti−1)/∆ti are the basis functions and collocation nodes

on the reference element, respectively. In truth, using the collocation nodes as

the time basis nodes is only a special case of the basis expansion of the finite

element formulation. In general, we do not require the nodes of the time basis

to coincide with the collocation nodes of the quadrature rule. This assumption is

made in chapter 4 for simplicity; we lift this assumption in this section to attain a

more general linear system, which corresponds to a wider variety of time stepping

methods for propagating the finite element solution in time.

Let {ζ̂j}pj=0 be an ordered partition of [0, 1] such that

0 = ζ̂0 < ζ̂1 < . . . < ζ̂p ≤ 1.

We require ζ̂0 = 0, as this basis node is mapped to the beginning of each time par-

tition by the isoparametric map. Consequently, this ensures that the L2-projection

of the computed solution, uh(ti+), is incorporated into the fully discrete system.

As before, we use the time component of the isoparametric map to distribute these

basis nodes through the time domain: ζi,j = ti−1 + ζ̂j∆ti. The basis Lagrange basis

functions are defined on the reference element as

λ̂j(ζ̂) =


∏p

k=0
k 6=j

ζ̂−ζ̂k
ζ̂j−ζ̂k

ζ̂ ∈ [0, 1],

0 else.

At collocation node ti,j, we have

uh(x, ti,j) =

p∑
`=0

λ̂`(t̂j)uh
(
x(ζi,`), ζi,`

)
and

∂τuh(x, ti,j) =
1

∆ti

p∑
`=0

λ̂′`(t̂j)uh
(
x(ζi,`), ζi,`

)
,

where we assume x = x(ti,j) for the characteristic trajectory.

Distinguishing the collocation nodes from the time basis nodes proves to

be useful in the next chapter, where Runge-Kutta methods are used to propagate

the semi-discrete system in time. In section 5.2, we show that the quadrature rule
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determines the order of approximation of the time stepping method; however, the

basis nodes can be used to improve the stability of the time stepping method.

Using the finite element solution at the time basis nodes, define the pNi-

vector of space-time basis coefficients of uh by

Ui ≡


U(ζi,1)

...

U(ζi,p)

 .
The vectorized finite element solution and its characteristic derivative can be writ-

ten in terms of Ui. Define the (pNi)× (pNi) block matrices Λ and Λ′ by

Λ ≡
[
λ̂`(t̂j)INi

]
(j,`)

and Λ′ ≡
[
λ̂′`(t̂j)INi

]
(j,`)

, (5.10)

for 1 ≤ j, ` ≤ p, and the (pNi)×Ni block matrices by

Λ0 ≡
[
λ̂0(t̂j)INi

]
j

and Λ′0 ≡
[
λ̂′0(t̂j)INi

]
j
,

for 1 ≤ j ≤ p. Then, we have U(ti,j) = ΛUi+Λ0U(ti−1+) and Uτ (ti,j) = ∆t−1
i Λ′Ui+

∆t−1
i Λ′0U(ti−1+), where we have separated the U(ti−1+) term as it corresponds to

the initial condition of the time step. This initial condition is moved to the right

side of the linear system since it is known from the L2-projection (5.2) of the

solution in the previous time partition.

Denote the time and space block diagonal matrices by

Mi ≡


M(ti,1) 0 · · · 0

0 M(ti,2) · · · 0
...

...
. . .

...

0 0 · · · M(ti,p)


and

Si ≡


S(ti,1) 0 · · · 0

0 S(ti,2) · · · 0
...

...
. . .

...

0 0 · · · S(ti,p)

 ,
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respectively, and

Fi ≡


F (ti,1)

...

F (ti,p)

 and Gi ≡


G(ti,1)

...

G(ti,p)

 .
Then, the fully discrete linear system that determines the finite element solution

uh on Fi is given by[ 1

∆ti
MiΛ

′ + SiΛ
]
Ui = Fi +Gi −

[ 1

∆ti
MiΛ

′
0 + SiΛ0

]
U(ti−1+). (5.11)

Hence, a linear system of size pNi must be solved to find the basis coefficients for

the finite element solution on the ith time partition.

5.3.3 Invertibility of the linear system

Denoting the coefficient matrix Ai = 1
∆ti
MiΛ

′+SiΛ and the right side vector

RHSi = Fi +Gi −
[

1
∆ti
MiΛ

′
0 + SiΛ0

]
U(ti−1+) in (5.11), we have

AiUi = RHSi.

Since the basis coefficients in the vector Ui uniquely determine the finite element

solution of formulation 4 on the ith partition, the existence and uniqueness of the

finite element solution is guaranteed when Ai is nonsingular for i = 1, . . . ,m.

To determine whether Ai is nonsingular, recall that the mass matricesM(t)

are invertible whenever T ph (t) is a non-degenerate mesh, whereas the invertibility

of the stiffness matrices S(t) depend on the alignment of the mesh and convection

velocities, b(t) − xt(t). Since we do not want to constrain the mesh motion more

than necessary, we rely on the invertibility of the mass matrices to prove that Ai is

nonsingular. For sufficiently small ∆ti > 0, the coefficient matrix Ai is dominated

by MiΛ
′ and, accordingly, is invertible whenever MiΛ

′ is invertible. If we assume

that T ph (ti,j) satisfies (3.10) and (3.11), M(t) is invertible and all that is needed

is to show that Λ′ is invertible. This is accomplished by showing that the p × p
reduced time matrix

L′ =
[
λ̂`(t̂j)

]
(j,`)

, 1 ≤ `, j ≤ p, (5.12)

is invertible, since the invertibility of Λ′ follows directly by row reduction.
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Lemma 6. Let {λ̂j}j=0,...,p be the Lagrange basis for polynomials of degree p with

nodes

0 = ζ̂0 < ζ̂1 < · · · < ζ̂p ≤ 1.

Then, the matrix L′, as defined in (5.12), is invertible.

Proof. Suppose that there exists a p-vector, v, such that L′v = 0. Then, the

polynomial of degree p defined by

v(t̂) ≡
p∑
j=1

λ̂j(t̂)vj

satisfies v′(t̂j) = 0 for j = 1, . . . , p. Hence, the derivative v′(t̂) has p distinct roots,

by the hypothesis, meaning that v′(t̂) ≡ 0 because it has degree at most p− 1. As

a result, the polynomial v(t̂) is constant and λ̂j(0) = 0 for j = 1, . . . , p implies that

v(t̂) ≡ 0. Hence, the vector v = 0, which shows that the matrix L′ is invertible.

From lemma 6, the linear system corresponding to the finite element formu-

lation is nonsingular, which implies that the finite element solution computed in

formulation 4 exists and is unique when the discrete time basis nodes are distinct

and the spatial meshes at the time collocation nodes satisfy (3.10) and (3.11).

Furthermore, note that the condition number of the coefficient matrix is

influenced by the shape regularity and b − xt via the block diagonal mass and

stiffness matrices, Mi and Si. Hence, the finite element mesh influences the con-

ditioning of the linear system through these block diagonal matrices. The other

block matrices, Λ′ and Λ, can also be used to improve the condition number of

the linear system for appropriate choices of time basis nodes; this corresponds to

the stability of the time discretization, which is determined by the collocation and

time basis nodes. The connections between the time collocation and basis nodes

with Runge-Kutta methods are the topic of chapter 6. This is useful for introduc-

ing the notion of stable time stepping schemes, which correspond to “A-stable” or

“L-stable” Runge-Kutta methods.
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Basis representation of finite element functions

For analytical purposes, the choice of basis functions used to represent the

finite element functions do not affect the solution of finite element formulation;

however, as a practical matter, it has been pointed out that the choice of basis

is very important for computational stability and efficiency of the time stepping.

In the analysis of this chapter, we choose collocation and basis nodes to coincide,

ζ̂j = t̂j, as the theoretical properties finite element functions are independent of

their basis representations. As such, let

B = L′ =


β̂′1(t̂1) β̂′2(t̂1) · · · β̂′p(t̂1)

β̂′1(t̂2) β̂′2(t̂2) · · · β̂′p(t̂2)
...

...
. . .

...

β̂′1(t̂p) β̂′2(t̂p) · · · β̂′p(t̂p)

 .

5.4 Two discrete Grönwall inequalities

Since we are analyzing methods for solving time-dependent problems, a

Grönwall inequality provides the tools necessary for bounding the error of the

computed solution over the time domain by the approximation error of the initial

condition and the source terms. For our purposes, two discrete Grönwall esti-

mates are required; the first corresponds to bounding the local error accumulated

within each time partition and the second, which comes from [18], corresponds to

bounding the error that aggregates over all time partitions.

We begin with the local Grönwall inequality that can bound the error within

the time partitions. An important property that follows from the invertibility of

matrix B = L′, proven in lemma 6, is that there exists a p-vector, ~αk = [α
(k)
j ]pj=1,

such that

BT ~αk =


∑p

j=1 α
(k)
j β̂′1(t̂j)
...∑p

j=1 α
(k)
j β̂′p(t̂j)

 = ~ek =



0
...

1
...

0


← kth element (5.13)
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where ~αk = B−T~ek only depends on the collocation nodes, {t̂j}, on the reference

element.

Lemma 7 (Local Grönwall Inequality). Let Q̂ be the reference quadrature rule for

Qi with positive weights and p distinct nodes on the unit interval and suppose that

the mesh partition T ph,i satisfies the space-time regularity constraint (3.14) at the

collocation nodes and there exists a positive constant κ such that

||b− xt||∞ ≤ κ. (5.14)

If functions φ in Vph,i and η in V|Fi
satisfy(

φτ (ti,j), χ
)

+Aτ
(
φ, χ; ti,j

)
=
(
ητ (ti,j), χ

)
+Aτ

(
η, χ; ti,j

)
(5.15)

for all χ in Vph(ti,j) at time ti,j and ∆ti ≤ 1/2c̃µ,d, as defined in (3.16), then, there

exists a constant such that

max
1≤j≤p

∣∣∣∣φ(ti,j)
∣∣∣∣2

0
≤ C

{∣∣∣∣φ(ti−1+)
∣∣∣∣2

0
+ ∆tiQi

(
||ητ ||2(−1,Vp

h(·)) + ||η||21 + ||φ||21
)}

,

where C depends on κ, µ, d, p, the reference collocation nodes {t̂j}pj=1, and the dif-

ferential equation.

Proof. To simplify notation, the time partition index, i, is assumed to be fixed

and we let φj ≡ φ(ti,j). Define φ̃
(j)
` in Vph(ti,j) to be the finite element function

with the same basis coefficients as φ` multiplying the basis functions for time ti,j.

The function φ̃
(j)
` is, therefore, the shift of φ(ti,`) onto the mesh at time ti,j, and

φ̃
(j)
j = φj.

Let k index the collocation node where φ attains its maximimal L2 norm:

||φk||0 = max1≤j≤p ||φj||0. The crux of this proof is to use the linear combination

given in (5.13) to combine the equations (5.15) such that the characteristic deriva-

tive terms cancel out and simplify to isolate ||φk||0 on the left side of the equation,

which is in turn bounded to get the desired result.

Choose χ = φ̃
(j)
k in Vph(ti,j) for equation (5.15), j = 1, . . . , p. Use the time

basis expansion of the characteristic derivative (3.6) to get

1

∆ti

p∑
`=0

β̂′`(t̂j)
(
φ̃

(j)
` , φ̃

(j)
k

)
+Aτ (φj, φ̃(j)

k ; ti,j) =
(
ηj,τ , φ̃

(j)
k

)
+Aτ (ηj, φ̃(j)

k ; ti,j),
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for j = 1, . . . , p. Equivalently,

p∑
`=1

β̂′`(t̂j)
(
φ̃

(j)
` , φ̃

(j)
k

)
= −β̂′0(t̂j)

(
φ̃

(j)
0 , φ̃

(j)
k

)
+ ∆ti

{(
ηj,τ , φ̃

(j)
k

)
+Aτ

(
ηj − φj, φ̃(j)

k ; ti,j

)}
. (5.16)

Taking the linear combination defined in (5.13), the left side can be simplified and

bounded using the shift lemma 2:

p∑
j=1

α
(k)
j

p∑
`=1

β̂′`(t̂j)
(
φ̃

(j)
` , φ̃

(j)
k

)
≥

p∑
j=1

α
(k)
j

p∑
`=1

β̂′`(t̂j)
(
φ̃

(0)
` , φ̃

(0)
k

)
− 1

2
Cµ∆ti

p∑
j=1

∣∣∣α(k)
j

∣∣∣ p∑
`=1

∣∣∣β̂′`(t̂j)∣∣∣ (∣∣∣∣φ̃(0)
`

∣∣∣∣2
0

+
∣∣∣∣φ̃(0)

k

∣∣∣∣2
0

)
≥
∣∣∣∣φ̃(0)

k

∣∣∣∣2
0
− ĈQ̂,µ,d,p∆ti

p∑
j=1

∣∣∣∣φ̃(0)
j

∣∣∣∣2
0

≥
∣∣∣∣φ̃(0)

k

∣∣∣∣2
0
− Ĉ ′Q̂,µ,d,p∆ti

p∑
j=1

||φj||20, (5.17)

where the dependence of the constant on the quadrature rule Q̂ comes from the

fact that the basis functions β̂`(t̂j) and the linear combination ~αk depend on the

reference collocation nodes, {t̂j}pj=1.

To bound the right side, choose δ > 0 to be sufficiently small, say δ < 1/2,

and use the shift lemma (lemma 2) to get

−
p∑
j=1

α
(k)
j β̂′0(t̂j)

(
φ̃

(j)
0 , φ̃

(j)
k

)
≤ 1

2

p∑
j=1

∣∣α(k)
j β̂′0(t̂j)

∣∣∣∣∣∣φ̃(j)
0

∣∣∣∣
0

∣∣∣∣φ̃(j)
k

∣∣∣∣
0

≤ Ĉ ′′Q̂,µ,d,p
∣∣∣∣φ0

∣∣∣∣2
0

+ δ
∣∣∣∣φ̃(0)

k

∣∣∣∣2
0
. (5.18)

Furthermore, by the definition of the mesh dependent negative norm and the shift

lemma, (
ηj,τ , φ̃

(j)
k

)
≤ 1

2

(
||ηj,τ ||2(−1,Vp

h(ti,j)) + Cµ,d,p||φk||21
)
. (5.19)

From lemmas 1 and 2,

Aτ
(
ηj − φj, φ̃(j)

k ; ti,j

)
≤ CA,κ

(
||ηj||21 + ||φj||21 +

∣∣∣∣φ̃(j)
k

∣∣∣∣2
1

)
≤ CA,κ

(
||ηj||21 + ||φj||21 + Cµ,d,p||φk||21

)
. (5.20)
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From (5.17)–(5.20), we get

∣∣∣∣φ̃(0)
k

∣∣∣∣2
0
≤ CQ̂,µ,d,p

{
||φ(ti−1+)||20 + CA,κ∆ti

p∑
j=1

(
||ηj,τ ||2(−1,Vp

h(ti,j)) + ||ηj||21 + ||φj||21
)}
.

(5.21)

From the shift lemma and ∆ti ≤ 1/2c̃µ,d,∣∣∣∣φ̃(0)
k

∣∣∣∣2
0
≤ 1

1− c̃µ,d∆ti
||φk||20 ≤ 2||φk||20, (5.22)

and since the weights of the quadrature rule are positive, there’s a constant CQ̂ > 0

such that

p∑
j=1

(
||ηj,τ ||2(−1,Vp

h(ti,j)) + ||ηj||21 + ||φj||21
)
≤ CQ̂Qi

(
||ητ (·)||2(−1,Vp

h(·)) + ||η(·)||21 + ||φ(·)||21
)
.

(5.23)

Since ||φk||0 = max1≤j≤p ||φj||0, combining the bounds (5.21)–(5.23) yields the de-

sired result.

The next bound is the discrete Grönwall lemma that bounds the errors

that accumulates over the time partitions. This discrete Grönwall lemma comes

directly from [65] and was also used in the error analysis [18] for linear moving

finite elements with backward Euler time stepping — in the current context, this

corresponds to the case where t̂0 = 0 and t̂1 = 1.

Lemma 8 (Discrete Grönwall Inequality). Let ∆ti > 0 and αi, γi, θi, qi ≥ 0, for

1 ≤ i ≤ m, with θi∆ti ≤ 1
2

and θ = maxi θi. Then, if

qi − qi−1

∆ti
+ γi ≤ αi + θi(qi + qi−1),

there exists a positive constant Cθ such that

max
1≤i≤m

qi +
m∑
i=1

γi∆ti ≤ Cθ

{
q0 +

m∑
i=1

αi∆ti

}
.

This theorem comes directly from [65] and the proof can be found therein.



86

5.5 Error estimates of the finite element solution

In section 4.3, approximation properties are established for the finite el-

ement space. In this section, we give two error estimates for the finite element

solution that is defined by formulation 4. These are the main results for the space-

time moving finite element method proposed in this chapter. It is shown that the

finite element solution satisfies a quasi-optimal error bound, and displays order-p

convergence to the true solution of formulation 3 with respect to mesh refinement.

5.5.1 A symmetric error estimate

The most important analytical result of this chapter is the a priori error

bound given here. This bound shows that the finite element method proposed

in this chapter gives a quasi-optimal solution to the differential equation when

measured in the energy semi-norm, defined in (4.13). It is implicitly assumed

that the time step is sufficiently small so that the finite element formulation is

well-posed.

Theorem 2. Suppose that Vph is a finite element space with a non-degenerate

mesh and collocation nodes determined by a non-truncating reference quadrature

rule. Furthermore, assume that there exist positive constants µ and κ such that at

each collocation node

ρ
(
He(ti,j)

)
≤ µ, (5.24)

and

||b− xt||∞ ≤ κ. (5.25)

Then, if ∆t = max1≤i≤m ∆ti is sufficiently small, there exists a positive constant

C such that the finite element solution defined by formulation 4 satisfies

|||u− uh||| ≤ C inf
χ∈Vp

h

|||u− χ|||, (5.26)

where C depends on µ, κ, d, p, the reference collocation nodes {t̂j}pj=1, and the dif-

ferential equation.
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To comment on the result (5.26), note that the bounding constant does

not depend on the finite element space, except indirectly by the shape regularity

assumption assumption (5.24) and the boundedness of b− xt, whereas the energy

semi-norm does in fact depend on the choice of finite element space. This depen-

dence on the mesh can be removed by the property that ||v||(−1,Vp
h(t)) ≤ ||v||−1, for

all v in L2(Ω) and 0 < t ≤ T . However, this comes at the cost of breaking the

symmetry of the error bound.

Proof. This proof follows the arguments of Douglas and Dupont in [37]; this argu-

ment was originally designed for semi-discrete formulations, where the differential

equation (6.5) holds for all t in the time domain. Subsequently, the argument was

modified for fully discrete linear finite elements in [18], [65], and [40]. The proof

can be summarized as first bounding the error introduced at the collocation nodes

by the spatial discretization by using the Galerkin orthogonality (5.3) and then

applying the Grönwall lemmas in order to aggregate the spatial errors over the

time domain.

The constraint (5.24) in the hypothesis is the mesh regularity assumption

to bound the degree to which elements in the mesh can change their size or shape;

controlling element deformation through a time step is analogous to controlling

the size of µ. The bound (5.25) is a constraint that bounds the mesh velocity.

Smaller bounding constants in these required constraints imply improved space-

time shape regularity and alignment between the mesh and convection, which leads

to a smaller bounding constant in (5.26).

From the Galerkin orthogonalities, at each collocation node(
∂τuh(ti,j), χ

)
+Aτ

(
uh, χ; ti,j

)
=
(
∂τu(ti,j), χ

)
+Aτ

(
u, χ; ti,j

)
,

for all χ in Vph(ti,j) with i = 1, . . . ,m and j = 1, . . . , p. Let ψ ∈ Vph and define φ ≡
uh−ψ in Vph and η ≡ u−ψ. Re-write the statement of the Galerkin orthogonality

as

(∂τφi,j, χ) +Ai,j (φ, χ) = (∂τηi,j, χ) +Ai,j (η, χ) , (5.27)

for all χ in Vph(ti,j). Using equation (5.27) we will show

|||φ||| ≤ C|||η|||
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and use the triangle inequality to obtain the sought after bound (5.26).

Fix i and j and choose χ = φ(ti,j) so that (5.27) gives

(φτ , φ) +Aτ (φ, φ) = (ητ , φ) +Aτ (η, φ), (5.28)

at time t = ti,j. The bound at this collocation node comes from bounding the

terms in (5.28) individually. For the first term on the left,

(φτ , φ) =
1

2
∂τ ||φ||20. (5.29)

And, since the mesh motion satisfies (5.25), the lower bound (4.2) from lemma 1

shows

Aτ (φ, φ) ≥ CA||φ||21 − CA,κ||φ||20. (5.30)

Now, choose ε > 0 to be sufficiently small and note

(ητ , φ) ≤ C||ητ ||2(−1,Vp
h(ti,j)) + ε||φ||21 (5.31)

and, since (5.25) holds, apply lemma 1 to 1√
ε
η and

√
εφ to get

Aτ (η, φ) ≤ CA,κ||η||21 + ε||φ||21. (5.32)

Hence, from (5.28)–(5.32), it is true at t = ti,j that

1

2
∂τ ||φ||20 + CA||φ||21 ≤ CA,κ

{
||ητ ||2(−1,Vp

h(ti,j)) + ||η||21 + ||φ||20
}
. (5.33)

The bound (5.33) is reminiscent of the hypothesis of a Grönwall inequality,

except that our bound only holds at the discrete time steps. Furthermore, the

term corresponding to the time derivate in our bound is actually a characteristic

derivative, which we must contend with before the time discretization error is

bounded. Using the bound (4.18) from lemma 2 together with lemma 3,

1

2
∂τ ||φ||20 = (φτ , φ) ≥ (φ̃t, φ̃)− Cµ,d,p

(∣∣∣∣∆tiφ̃t∣∣∣∣20 +
∣∣∣∣φ̃∣∣∣∣2

0

)
≥ 1

2

d

dt

∣∣∣∣φ̃∣∣∣∣2
0
− CQ̂,µ,d,p max

1≤j≤p
||φi,j||20. (5.34)

Applying the quadrature rule to the ith partition gives

Qi
(
d

dt
||φ̃||20

)
+ CAQi

(
||φ||21

)
≤ CA,Q̂,µ,κ,d,p

{
Qi
(
||ητ ||2(−1,Vp

h(·)) + ||η||21
)

+Qi
(
||φ||20

)}
. (5.35)
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This is almost of the form to which the discrete Grönwall lemma (lemma 8) applies,

except for the terms Qi( ddt ||φ̃||
2
0) and Qi(||φ||20). To get these terms in the proper

form, we apply the local Grönwall lemma (lemma 7).

For the first term, since Q̂ is assumed to be non-truncating and d
dt
||φ̃(t)||20 is

a polynomial of degree 2p − 1 with a positive leading coefficient, we use the shift

lemma:

Qi
(
d

dt
||φ̃||20

)
≥ 1

∆ti

∫ ti

ti−1

d

dt
||φ̃(t)||20 dt

=

∣∣∣∣φ̃(ti−)
∣∣∣∣2

0
− ||φ(ti−1+)||20
∆ti

≥ ||φ(ti−)||20 − ||φ(ti−1+)||20
∆ti

− Cµ,d,p||φ(ti−)||20. (5.36)

The next term is bounded by lemma 7,

Qi
(
||φ||20

)
≤ C max

1≤j≤p
||φi,j||20

≤ C
{
||φ(ti−1+)||20 + ∆tiQi

(
||ητ ||2(−1,Vp

h(·)) + ||η||21 + ||φ||21
)}

. (5.37)

Thus, if ∆ti is sufficiently small, bounds (5.35)–(5.37) combine to yield

||φ(ti−)||20 − ||φ(ti−1+)||20
∆ti

+ C0Qi
(
||φ||21

)
≤ C1Qi

(
||ητ ||2(−1,Vp

h(·)) + ||η||21
)

+ C2

(
||φ(ti−)||20 + ||φ(ti−1+)||20

)
,

where C0, C1, C2 > 0 depend on µ, κ, d, p, the reference quadrature rule, and the

differential equation. Since φ(ti−1+) is the L2-projection of φ(ti−1−), we have

||φ(ti−1+)||0 ≤ ||φ(ti−1−)||0,

which we use to get

||φ(ti−)||20 − ||φ(ti−1−)||20
∆ti

+ C0Qi
(
||φ||21

)
≤ C1Qi

(
||ητ ||2(−1,Vp

h(·)) + ||η||21
)

+ C2(||φ(ti−)||20 + ||φ(ti−1−)||20). (5.38)

The bound (5.38) satisfies the hypothesis of the discrete Grönwall lemma

so that, for sufficiently small ∆ti, we apply the lemma to obtain

max
0≤i≤m

||φ(ti−)||20 +Q(||φ||21) ≤ C
{
||φ(0)||20 + |||η|||2

}
. (5.39)
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Note that the initial condition of formulation 4 gives

||φ(0)||0 ≤ ||η(0)||0 ≤ |||η|||. (5.40)

Furthermore, at each collocation node, ti,j,

(∂τφ, χ) = (∂τη, χ) +Aτ (η, χ)−Aτ (φ, χ)

for all χ in Vph(ti,j), which implies that

||∂τφ||(−1,Vp
h(ti,j)) ≤ CA,κ

{
||∂τη||(−1,Vp

h(ti,j)) + ||η||1 + ||φ||1
}
. (5.41)

From (5.39)–(5.41),

max
0≤i≤m

||φ(ti−)||20 +Q
(
||φ||21 + ||φ||2(−1,Vp

h(·))
)
≤ C|||η|||2.

All that is needed to conclude the proof is the local Grönwall inequality once more

to show

max
1≤j≤p

||φi,j||20 ≤ C
{
||φ(ti−1+)||20 + ∆tiQi

(
||ητ ||2(−1,Vp

h(·)) + ||η||21 + ||φ||21
)}
≤ C|||η|||2

(5.42)

for i = 1, . . . ,m. Thus, we have |||φ||| ≤ C|||η|||, as desired.

5.5.2 An a posteriori error estimate

We now use the shape regularity assumptions of T ph to bound the error of

the finite element solution, uh, in terms of the mesh size. This result is useful for

determining the rate of convergence of uh to u as the mesh is refined. A direct

corollary of theorems 1 and 2 is the following a posteriori bound.

Corollary 1. Let the finite element space, Vph, and the reference quadrature rule,

Q̂, satisfy the hypotheses of theorems 1 and 2. Then, there exists a constant C > 0

such that finite element solution determined by formulation 4 satisfies

|||u− uh||| ≤ C(∆xp + ∆tp)E(Q,τ,p+1)(u), (5.43)

where C depends on δ, µ, κ, d, p, the reference collocation nodes {t̂j}pj=1, and the

differential equation.
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5.5.3 Closing remarks

While we attain a symmetric error estimate and order p convergence of the

finite element solution to the true solution of the weak formulation, it is unfortu-

nate that the choice of reference quadrature rule is restricted to be a non-truncating

quadrature rule. This is a drawback of analyzing the error of the finite element

solution, which is determined by a method of lines approach, in a purely finite ele-

ment framework. As far as we know, the requirement of a non-truncating quadra-

ture rule is required to make the theoretical error analysis provide the symmetric

error bound and the corresponding restrictions for the case p = 1 are present in

the error analysis for linear elements in [40]. One difficulty with these choices for

quadrature rules is that they require the finite element solution be computed at

all collocation nodes in a time partition simultaneously, which can significantly

increase the computational complexity when p > 1. These choices of collocation

nodes rule out many choices for more computationally efficient time integration

schemes. The following section generalizes the space-time finite element method to

allow for more general time stepping schemes where the discrete time integration

no longer needs to correspond to some interpolatory quadrature rule. Moreover,

an error bound for finite element solutions computed by a second order diagonally

implicit time integration scheme, TR-BDF2 as proposed by Bank et al. [23], is

proven.

Chapter 5, in part, is in preparation for submission for publication of this

material. Bank, Randolph E. The dissertation author is the primary investigator

and author of this material.
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The chapter begins with a brief discussion of Runge-Kutta methods for

solving ordinary differential equations. These methods are designed for solving

ordinary differential equations and compute the solution of the PDE sequentially

through the time domain. In the current context, they are employed as time

integration schemes of the semi-discrete formulation to propagate the finite element

solution in time. In particular, we discuss the TR-BDF scheme proposed in [23], as

this is an A-stable, L-stable, second order, and diagonally implicit time stepping

scheme. The well-posedness of Runge-Kutta space-time moving finite element

methods is analyzed as in section 5.3, where we see that TR-BDF time stepping

yields a unique solution for sufficiently small time steps. While we have not found

a satisfactory error estimate for general Runge-Kutta methods applied to the semi-

discrete finite element formulation, this chapter presents an error estimate for a

space-time moving finite element method that employs TR-BDF time integration.

6.1 A brief overview of some Runge-Kutta

schemes

Consider the initial value problem

vt(t) = Φ(t, v(t)), v(0) = v0, (6.1)

where v ∈ IRN and Φ is some source function, N ≥ 1. To discretize equation

(6.1), we define a p-stage Runge-Kutta scheme by a set of collocation nodes ti,j =

ti−1 + t̂j∆ti, along with a set of basis nodes ζi,k = ti−1 + ζ̂k∆ti, k = 1, . . . , p, where

it is assumed that 0 = ζ̂0 < . . . < ζ̂p ≤ 1. The solution is propagated over the time

step (ti−1, ti] using some approximation for the time derivative

δ̄tv(ti,j) ≡
p∑

k=0

ωj,kv(ζi,k) ≈ ∆tivt(ti,j), (6.2)

and some approximation of the function itself

vRK(ti,j) ≡
p∑

k=0

ξj,kv(ζi,k) ≈ v(ti,j), (6.3)
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where coefficients {ωj,k} and {ξj,k}, with 0 ≤ j, k ≤ p, are determined by the

Runge-Kutta method. Thus, we need to find the values of v at times t = ti,j such

that the discretization of equation (6.1), given by

δ̄tv(ti,j) = ∆tiΦ
(
vRK(ti,j)

)
, (6.4)

is satisfied for i = 1, . . . ,m and j = 1, . . . , p. Though these schemes may be p-

stage methods (as they employ intermediate timesteps ti−1 < ti,j ≤ ti), they are

necessarily one-step methods, meaning that we only require information from the

end of previous time step, ti−1− , to compute the approximate solution at time

ti. An important quality of one-step methods is that they do not give spurious

solutions, as is the case for multi-step methods, from which the desired computed

solution must then be selected [44].

An example: collocation based formulae

A special case of Runge-Kutta schemes correspond to approximating the

function v in (6.1) by a piecewise polynomial on the time partition 0 < t1 ≤ . . . ≤
tm = T . Define the collocation nodes

0 = t̂0 < . . . < t̂p ≤ 1

and

0 = ζ̂0 < . . . < ζ̂p ≤ 1,

as in section 5.3. Then define the basis functions {λ̂j(t̂)} to be the Lagrange basis

polynomial with nodes at {ζ̂j}, j = 0, . . . , p. If we define

vRK(ti,j) =

p∑
k=0

λ̂k(t̂j)v(ζ̂k),

and

δ̄tv(ti,j) =

p∑
k=0

λ̂k(t̂j)v(ζ̂k),

then we have exactly recovered the time integration scheme developed in section

5.3.
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Another example: TR-BDF

The motivating example for this chapter is to employ the two-stage, diago-

nally implicit time integration scheme TR-BDF. The fact that this is a diagonally

implicit scheme is significant when v(t) in equation (6.1) represents a vector of

length N and N is large. The diagonal implicitness leads to great savings in

computation costs for such cases, which includes the important and relevant case

where (6.1) corresponds to a system of ordinary differential equations arising from

a method of lines approach. This scheme was proposed in [23] and has been ana-

lyzed in several other papers for its efficiency and stability ([72],[43],[36]). TR-BDF

actually refers to a family of time stepping methods that is parametrized by the

location of the intermediate basis node.

For this method, we define the collocation nodes to be

t̂0 = 0, t̂1 = ε/2, and t̂2 = 1,

where 0 < ε < 1 is the free parameter that determines the exact time stepping

scheme within the TR-BDF family. We choose the basis nodes to be

ζ̂0 = 0, ζ̂1 = ε, and ζ̂2 = 1

so that t̂1 is the midpoint of ζ̂0 and ζ̂1. The Runge-Kutta coefficients correspond

to integrating the computed solution a step of length ε∆ti by the trapezoid rule,

then completing the time step by a second-order backward Euler difference:

vRK(ti,1) =
1

2
v(ζi,0) +

1

2
v(ζi,1),

vRK(ti,2) = v(ζi,2).

The coefficients for the time derivative are determined by evaluating the Lagrange

basis polynomials associated with {ζi,0, ζi,1, ζi,2} at the collocation nodes:

δ̄tv(ti,1) = −1

ε
v(ζi,0) +

1

ε
v(ζi,1),

δ̄tv(ti,2) =
1− ε
ε

v(ζi,0)− 1

ε(1− ε)
v(ζi,1) +

2− ε
1− ε

v(ζi,2).

The optimal choice for the parameter is known to be ε = 2 −
√

2, as it

minimizes the local truncation error ([23],[72]). This value also allows identical



96

Jacobian matrices for solving at the TR step and the BDF step when the source

terms (and boundary conditions) relatively smooth and gradually changing (this

is the Richardson TR-BDF method and we refer to the choice ε = 2 −
√

2 as

the Richardson basis node) ([31],[23]). Furthermore, improved stability in the

right side of the complex plane has been shown for this value of ε [36]. The

TR-BDF scheme is A-stable (or unconditionally stable), which guarantees that

the computed solution decays in time when the reaction term in the differential

equation is positive [44]. The L-stability is another very important property of

this scheme (in fact, the scheme has been shown to possess strong S-stability [43]),

as it implies that the computed solution does not display artificial oscillations

induced by the time stepping scheme [23]. Thus, this scheme is well suited to

diffusion problems; if the convection and mesh velocity are sufficiently aligned, this

scheme provides the stability properties to ensure that the diffusion is propagated

accurately in time.

6.2 A space-time moving finite element method

with Runge-Kutta time integration

In this section, we describe how to apply the Runge-Kutta methods dis-

cussed in section 6.1 to the linear system

Uτ (t) =M−1(t)
[
F (t) +G(t)− S(t)U(t)

]
≡ Φ(t, U(t)),

which is equivalent to (5.9), derived in section 5.3, except that we impose this

system for 0 < t ≤ T instead of only the discrete collocation nodes. Applying the

Runge-Kutta coefficients to this system of ordinary differential equations, we get

the discrete problem

δ̄tU(ti,j) = ∆tiM−1(ti,j)
[
F (ti,j) +G(ti,j)− S(ti,j)URK(ti,j)

]
.

By reverse engineering, this linear system can be shown to correspond to the

constraint (
δ̄τ ū(ti,j), χ

)
+Aτ

(
ūRK , χ; ti,j

)
=
(
f(ti,j), χ

)
+
〈
g(ti,j), χ

〉
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at each collocation node, where δ̄τ signifies the derivative approximation along the

characteristic trajectories of the mesh and the approximate solution, ū in Vph, is

determined by the vectors of basis coefficients, U(ζi,j), 1 ≤ j ≤ p and 1 ≤ i ≤ m.

This method is formalized in formulation 5.

Formulation 5. Let a, b, c, and f be smooth and bounded functions on F satis-

fying a ≥ ā > 0 and c ≥ c̄ ≥ 0, and let g(t) be in L2(∂Ω) for 0 < t ≤ T . Given the

mesh velocity, xt, and collocation nodes, {ti,j}, find uh in Vph such that for each ti,j

and all χ in Vph(ti,j), the finite element solution satisfies(
δ̄τ ū(ti,j), χ

)
+Aτ

(
ūRK , χ; ti,j

)
=
(
f(ti,j), χ

)
+
〈
g(ti,j), χ

〉
(6.5)

for i = 1, . . . ,m and j = 1, . . . , p, and when t = 0,

(
ūRK(·, 0), χ

)
=
(
u0, χ

)
.

As before, the constraint ([ū](ti), χ) = 0 must hold for all χ in Vph(ti+),

i = 1, . . . ,m, to ensure that ū ∈ Vph.

6.2.1 The importance of stability

It is commented that the system of ordinary differential equations arising as

the semi-discrete formulation may correspond to a very stiff problem ([57],[55], [?]).

Accordingly, it is important to choose a stable time integration scheme to ensure

that the qualitative behavior of the computed solution matches that of the true

solution. An A-stable time integration method implies that the computed solution

decays in time for any sized time step when c > 0 in the differential equation

[44]. However, the computed solution may still display some artificial oscillations

in time that are not a reflection of the true solution’s behavior when the time step

is too large. To avoid this undesirable behavior, L-stable schemes should be used,

as they dampen such numerically-induced “ringing” [23].

When p = 1, backward Euler time stepping possesses both A-stability and

L-stability; when p = 2, TR-BDF and second difference backward Euler serve

as stable methods, where TR-BDF also benefits from its diagonally implicitness.
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For higher order methods, implicit backward difference methods possess favorable

stability properties ([44],[62]), though this comes at the cost of greater CPU time

when numerically solving the differential equation.

6.3 The associated linear system and well-

posedness

Formulation 5 is a generalization of the finite element formulation given in

chapter 5. To prove that the Runge-Kutta formulation admits a unique solution,

an analysis following the one presented in section 5.3 is conducted. Since the

current formulation 5 does not alter the spatial discretization, the only matrices

that must be modified are Λ and Λ′, defined in (5.10). These matrices correspond

to evaluations of the time basis functions at the collocation nodes, which are now

replaced by the Runge-Kutta coefficients; we define the reduced p × p coefficient

matrices

W =
[
ωj,`
]

(j,`)
and Z =

[
ξj,`
]

(j,`)
,

with 1 ≤ j, ` ≤ p. The matrices W and Z replace the L′ and L matrices of section

5.3, respectively. The corresponding (pNi) × (pNi) block matrices used to set up

the linear system are then given by

Ω =
[
ωj,`INi

]
(j,`)

and Z =
[
ξj,`INi

]
(j,`)

.

Following the arguments of section 5.3, the linear system that is solved to find the

basis coefficients for uRK on the ith time partition is[ 1

∆ti
MiΩ + SiZ

]
Ui = Fi +Gi −

[ 1

∆ti
MiΩ0 + SiZ0

]
U(ti−1+). (6.6)

where the right side vectors, U(ti−1+), Fi, and Gi, are given as before, and Ω0 and

Z0 are the (pNi)×Ni block matrices

Ω0 =
[
ωj,0INi

]
j

and Z0 =
[
ξj,0INi

]
j
,

for 1 ≤ j ≤ p. As before, the solution’s coefficient vector Ui provides the basis

coefficients for the solution at the time basis nodes, ζi,j.
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Ultimately, the condition that must be satisfied is that the mesh is shape

regular at the collocation nodes, {ti,j}, so that the mass matrix at each collocation

node is invertible, and the matrix of Runge-Kutta derivative coefficients, Ω, must

be also be nonsingular — recall that Ω is nonsingular if and only if the p × p

matrix W is nonsingular, following from a simple row reduction argument. If

these two conditions are met, then the coefficient matrix ARK,i = 1
∆ti
MiΩ +SiZ in

the linear system is nonsingular and, therefore, when ∆ti > 0 is sufficiently small,

the coefficient matrix is invertible.

It is interesting to note that ∆ti can give a solution for sufficiently small for

any choice of ordered basis nodes ζi,k and coefficients ξj,k, so long as the coefficients

ωj,k lead to a nonsingular matrix. However, the parameters {ζi,k, ξj,k} play a major

role in determining not only what the computed solution is, but also what “suffi-

ciently small” means; this relates to the stability of the time stepping scheme, as

it details how the choice of Runge-Kutta method can improve the conditioning of

the linear system. Furthermore, certain choices of these parameters can decouple

the linear system (6.6) into several smaller linear systems, which can lead to great

savings in computation time. This is the case when the reduced matricesW and Z
are lower triangular, corresponding to diagonally implicit Runge-Kutta methods,

such as TR-BDF.

6.3.1 Well-posedness of the TR-BDF scheme

Checking that the formulation based on TR-BDF time stepping is well-

posed, we merely set up the matrices of Runge-Kutta coefficients and check for

nonsingularity. The matrices are given by

W =

[
1
ε

0

− 1
ε(1−ε)

2−ε
1−ε

]

and

Z =

[
1
2

0

0 1

]
,
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which are clearly nonsingular as they are lower triangular, when 0 < ε < 1.

Consequently, if ∆t is sufficiently small, then we are guaranteed a that ū exists.

Furthermore, the lower triangular structure implies that the solution at the

mid-step of each time partition, ū(ti−1 + ε∆ti), can be computed independently

of the solution at the end of the time step, ū(ti−), which implies that two linear

systems of size Ni can be solved on each partition instead of solving a single

system of size 2Ni, where Ni indicates the number of spatial nodes in T ph,i. For fine

meshes, Ni is large and sequentially solving for the finite element solution leads to

significant savings in computation time.

6.4 Error analysis for TR-BDF

In this section, we prove an error estimate for the TR-BDF time integra-

tion scheme. The proof follows that of theorem 2 with some additional arguments

that bound the error introduced by the trapezoid approximation at the mid-step

of each time partition. Due to the departure of this method from a finite element

framework, the symmetry of the error bound is broken and an additional term,

proportional to the error of the trapezoid approximation of the true solution, is

introduced to the bounding quantity. Since the trapezoid approximation is substi-

tuted into the bilinear form, Aτ (·, ·), the diffusion coefficient must have a bounded

characteristic derivative,

||aτ ||∞ ≤ α,

for some α > 0.

One final aspect of the error bound that comes into play is that this ap-

proach is more sensitive to the discontinuous changes in the mesh at the beginning

of the time steps. Recently, Bank and Yserentant [22] have proven the H1-stability

of L2-projections onto finite element spaces with potentially nonuniform meshes.

Making use of this result, it holds that |χ(ti+)|1 ≤ CH|χ(ti−)|1, for χ in Vph. As can

be seen from [22], the bounding constant, CH, is smaller when the mesh T ph (ti+) is

close to T ph (ti−). This intuitively makes sense, since χ(ti+) ≈ χ(ti−) in such cases.

For a given differential equation, since 0 < ā ≤ a ≤ ||a||∞, we have an equivalence
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of norms
1

cA
||a1/2(ti)∇φ||0 ≤ |φ|1 ≤ cA||a1/2(ti)∇φ||0

for some positive cA. We define the stability constant for the diffusion-weighted

semi-norm by

|a1/2(ti)∇φ(ti+)|20 ≤ CA,H|a1/2(ti)∇φ(ti−)|20. (6.7)

The norm in which the error is bounded employs the trapezoid approxi-

mation at the mid-step collocation node of each time partition. Let u ∈ V and

uTR(ti,1) ≡ ũ(ζi,1)+ũ(ζi,0)

2
, where ũ(t) represents u evaluated at time t following the

characteristic from time ti,1. (Note that ũ(t) therefore represents the function u

shifted onto the mesh at time t.) The semi-norm in which we bound the error of the

finite element function determined by formulation 5 with TR-BDF time stepping

is

|||u|||2TR−BDF ≡ max
1≤i≤m
1≤j≤p

||u(ti,j)||20 +Q
(
||δ̄τu||2(−1,Vp

h(·)) + ||uRK ||21
)

+
m∑
i=1

∆ti||u(ζi,1)||21,

where uRK(ti,1) = uTR(ti,1) and uRK(ti,2) = u(ti,2).

Theorem 3. Suppose that Vph is a finite element space with a non-degenerate mesh

and let Q̂ correspond to the Gauss-Radau quadrature rule on the unit interval.

Furthermore, assume that there exist positive constants µ, κ, and α such that at

each collocation node

||aτ ||∞ ≤ α, (6.8)

ρ
(
He(ti,j)

)
≤ µ, (6.9)

||b− xt||∞ ≤ κ, (6.10)

and that the mesh discontinuities are controlled and the spatial meshes and length

of the time steps are graded so that

CA,H ≤ 7/2 (6.11)

and

∆ti ≤ 2∆ti−1. (6.12)
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Then, if ∆t = max1≤i≤m ∆ti is sufficiently small, there exists a positive constant

C such that the finite element solution defined by formulation 4 satisfies

|||u− ū|||2TR−BDF ≤ C
{

inf
χ∈Vp

h

|||u− χ|||2TR−BDF +

∫ T

0

||∆t2iuττ (t)||21 dt
}
, (6.13)

where C depends on µ, κ, d, p, and the differential equation.

Note that this proof is restricted to the case where we use the collocation

nodes determined by Gauss-Radau quadrature; this is necessary for the proof as

it maintains two important properties. First, Gauss-Radau quadrature is non-

truncating, which is needed to avoid a buildup of the quadrature errors. And

secondly, Gauss-Radau fixes a collocation node at the end of the time steps, which

is required for the TR-BDF scheme. This is important for creating a telescoping

sum that allows us to avoid a buildup of the approximation error of the trapezoid

rule within each partition. Notice that the intermediate time basis node for Gauss-

Radau is 2/3, which is close to the optimal value ε = 2−
√

2 ≈ 0.58578 for TR-BDF.

Furthermore, the assumption (6.11) and (6.12) lead to a cleaner proof, though they

are slightly stricter than necessary.

Proof. For this proof, we use the discrete Galerkin orthogonalities

(uτ − ūτ , χ) +Aτ (u− ūRK , χ) = 0,

for χ in Vph(t) at t = ti,1 and ti,2, respectively, for i = 1, . . . ,m. As in the proof

for theorem 2, let ψ in Vph be an arbitrary function and define φ = ū − ψ and

η = u− ψ. Then, we have

(φτ , χ) +Aτ (φi,TR, χ; ti,1) = (ητ , χ) +Aτ (ηi,TR, χ; ti,1) +Aτ
(
u(ti,1)− ui,TR, χ; ti,1

)
(6.14)

at t = ti,1 for χ in Vph(ti,1) and

(φτ , χ̂) +Aτ (φ, χ̂; ti,2) = (ητ , χ̂) +Aτ
(
η, χ̂; ti,2

)
(6.15)

at t = ti,2 for χ̂ in Vph(ti,2).
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We begin with bounding φ at the end step (6.15), which follows the proof

of theorem 2 exactly. We choose χ̂ = φ(ti−) to get

(φτ , φ) =
1

2
∂τ ||φ(ti−)||20, (6.16)

Aτ (φ, φ; ti,2) ≥ (1− δ)||a1/2(ti)∇φ(ti−)||20 − Cκ||φ(ti−)||20, (6.17)

(ητ , φ) ≤ C
(
||ητ ||2(−1,Vp

h(ti− )) + ||φ(ti−)||20
)

+ ε||a1/2(ti)∇φ(ti−)||20, (6.18)

Aτ
(
η, φ; ti,2

)
≤ Cκ

(
||η||21 + ||φ(ti−)||20

)
+ ε||a1/2(ti)∇φ(ti−)||20, (6.19)

where δ and ε are assumed to be small positive constants. Combining (6.16)–(6.19)

gives the bound

1

2
∂τ ||φ(ti−)||20 + (1− ε)||a1/2(ti)∇φ(ti−)||20

≤ C
{
||ητ (ti−)||2(−1,Vp

h(ti− )) + ||η(ti−)||21 + ||φ(ti−)||20
}
, (6.20)

where this ε is not the same constant as in the bounds (6.18)–(6.19), but can still

be made arbitrarily small at the cost of increasing the bounding constant on the

right side.

The bound at the mid-step collocation node follows from a new choice of

test function; define χ in (6.14) to be

χ = φi,TR +
∆ti
24

φτ (ti,1) = φ(ti,1) +
∆ti
24

φτ (ti,1) +
∆t2i
18

φi,ττ ,

where
∆t2i
18
φi,ττ is merely the error of the trapezoid approximation. The term

1
24

∆tiφτ (ti,1) is not an intuitive addition to the test function; however, it will

lend itself to perfectly offset the additional errors that arise front the trapezoid

approximation of ū. Using this test function, we have(
φτ (ti,1), φ(ti,1) +

∆ti
24

φτ (ti,1) +
∆t2i
18

φi,ττ

)
≥ 1

2
∂τ ||φ(ti,1)||20 +

∆ti
24
||φτ (ti,1)||20 −

∆t2i
18

∣∣∣∣φτ (ti,1)
∣∣∣∣

0

∣∣∣∣φi,ττ ∣∣∣∣0
≥ 1

2
∂τ ||φ(ti,1)||20 +

∆ti
24
||φτ (ti,1)||20 −

(
∆ti
24
||φτ (ti,1)||20 +

∆t−1
i

54
||∆t2iφi,ττ ||20

)
≥ 1

2
∂τ ||φ(ti,1)||20 −

∆t−1
i

54
||∆t2iφi,ττ ||20. (6.21)



104

For the bilinear form, we bound this in two parts:

Aτ
(
φi,TR, φi,TR; ti,1

)
≥ (1− δ′)||a1/2(ti,1)∇φi,TR||20 − Cκ||φi,TR||20 (6.22)

and

Aτ
(
φi,TR,∆tiφτ (ti,1)/24; ti,1

)
=

1

24
Aτ
(
φ̃(ζi,1) + φ̃(ζi−1+)

2
, 3
φ̃(ζi,1)− φ̃(ζi−1+)

2
; ti,1

)
≥ 1

32

{
(1− δ̃′)||a1/2(ti,1)∇φ̃(ζi,1)||20 − (1 + δ̃)||a1/2(ti,1)∇φ̃(ti−1+)||20

}
− Cκ||∆tiφτ ||20

≥ 1− δ̃′

32
||a1/2(ti,1)∇φ̃(ζi,1)||20 −

1 + δ̃

32
||a1/2(ti,1)∇φ̃(ti−1+)||20 − Cκ||∆tiφτ ||20, (6.23)

where δ′, δ̃, δ̃′ > 0 are all arbitrarily small. Bounds on the right side follow the

usual arguments. For arbitrarily small ε > 0, we have

(ητ , φi,TR + ∆tiφτ/24) ≤ C
(
||ητ (ti,1)||2(−1,Vp

h(ti,1)) +
∣∣∣∣φi,TR∣∣∣∣20 +

∣∣∣∣∆tiφτ (ti,1)
∣∣∣∣2

0

)
+ ε
{
||a1/2(ti,1)∇φi,TR||20 + ||a1/2(ti,1)∇φ̃(ζi,1)||20 + ||a1/2(ti,1)∇φ̃(ζi,1)||20

}
, (6.24)

Aτ
(
ηi,TR, φi,TR + ∆tiφτ/24; ti,1

)
≤ Cκ

(
||ηi,TR||21 +

∣∣∣∣φi,TR∣∣∣∣20 +
∣∣∣∣∆tiφτ (ti,1)

∣∣∣∣2
0

)
+ ε
{
||a1/2(ti,1)∇φi,TR||20 + ||a1/2(ti,1)∇φ̃(ζi,1)||20 + ||a1/2(ti,1)∇φ̃(ζi,1)||20

}
, (6.25)

and

Aτ
(
u(ti,1)− ui,TR, φi,TR + ∆tiφτ/24; ti,1

)
≤ Cκ

(
||u(ti,1)− ui,TR||21 +

∣∣∣∣φi,TR∣∣∣∣20 +
∣∣∣∣∆tiφτ (ti,1)

∣∣∣∣2
0

)
+ ε
{
||a1/2(ti,1)∇φi,TR||20 + ||a1/2(ti,1)∇φ̃(ζi,1)||20 + ||a1/2(ti,1)∇φ̃(ζi,1)||20

}
. (6.26)

Hence, at the mid-step collocation node corresponding to the trapezoid step of the

TR-BDF rule, the following bound follows from (6.21)–(6.26):

1

2
∂τ ||φ(ti,1)||20 −

∆t−1
i

54
||∆t2iφi,ττ ||20 + (1− ε′)||a1/2(ti,1)∇φi,TR||20

+
1− ε̃′

32
||a1/2(ti,1)∇φ̃(ζi,1)||20 −

1 + ε̃

32
||a1/2(ti,1)∇φ̃(ti−1+)||20

≤ C
{
||ητ (ti,1)||2(−1,Vp

h(ti,1)) + ||ηi,TR||21 + ||u(ti,1)− ui,TR||21

+
∣∣∣∣φi,TR∣∣∣∣20 +

∣∣∣∣∆tiφτ (ti,1)
∣∣∣∣2

0

}
. (6.27)
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Thus, we have the spatial bounds at each collocation node. We now turn

to bound the error introduced by the time stepping scheme. Since we are using

Gauss-Radau quadrature, we have

Q̂(f) =
3

4
f(1/3) +

1

4
f(1) =

∫ 1

0

f(t) dt+
1

63
f ′′′(ζ),

for some ζ in [0, 1] and any bounded function f on [0, 1]. For the characteristic

derivative terms in (6.20) and (6.27), applying lemma 2 and this quadrature rule

over the time partition gives

3∆ti
4

∂τ ||φ(ti,1)||20 +
∆ti
4
∂τ ||φ(ti,2)||20 ≥

3∆ti
4

d

dt
||φ̃(ti,1)||20 +

∆ti
4

d

dt
||φ̃(ti,2)||20

− Cµ,d∆ti
{
||∆tiφ̃t(ti,1)||0||φ̃(ti,1)||0 + ||∆tiφ̃t(ti,2)||0||φ̃(ti,2)||0

}
= ||φ̃(ti−)||20 − ||φ̃(ti−1+)||20 +

∆t4i
63

(
d

dt

)4

||φ̃||20 − C∆ti max
0≤j≤2

||φ̃(ti,j)||20

≥ ||φ(ti−)||20 − ||φ(ti−1+)||20 +
∆t4i
63

∂4
τ ||φ||20 − Ĉ∆ti max

0≤j≤2
||φ(ti,j)||20.

Since ∂3
τφ ≡ 0, we have ∆t4i∂

4
τ ||φ||20 = 6||∆t2iφi,ττ ||20. Hence, applying the quadrature

rule to the characteristic derivative gives

3∆ti
4

∂τ ||φ(ti,1)||20 +
∆ti
4
∂τ ||φ(ti,2)||20

≥ ||φ(ti−)||20 − ||φ(ti−1−)||20 +
1

36
||∆t2iφi,ττ ||20 − Ĉ∆ti max

0≤j≤2
||φ(ti,j)||20, (6.28)

where we used ||φ(ti−1−)||20 ≥ ||φ(ti−1+)||20. The quadrature rule applies to the ad-

ditional terms in the test function at time ti,1, which we combine with (6.28) to

attain to the bound

3∆ti
4

1

2
∂τ ||φ(ti,1)||20 +

∆ti
4

1

2
∂τ ||φ(ti,2)||20 −

3∆ti
4

∆t−1
i

54
||∆t2iφi,ττ ||20

≥ ||φ(ti−)||20 − ||φ(ti−1−)||20
2

+
( 1

72
− 1

72

)
||∆t2iφi,ττ ||20 − Ĉ∆ti max

0≤j≤2
||φ(ti,j)||20. (6.29)
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Accordingly, we have the bound

||φ(ti−)||20 − ||φ(ti−1−)||20

+
∆ti
2

{
3(1− ε′)||a1/2(ti,1)∇φi,TR||20 + (1− ε)||a1/2(ti)∇φ(ti−)||20

+
3(1− ε̃′)

32
||a1/2(ti,1)∇φ̃(ζi,1)||20 −

3(1 + ε̃)

32
||a1/2(ti,1)∇φ̃(ti−1+)||20

}
≤ C∆tiQi

(
||ητ (·)||2(−1,Vp

h(·)) + ||ηRK(·)||21 + ||φ(·)||20
)

+ C∆ti||u(ti,1)− uTR(ti,1)||21.

(6.30)

The term preventing us from applying the discrete Grönwall lemma, as

in the proof of theorem 2, is −3(1+ε̃)
32
||a1/2(ti,1)∇φ̃(ti−1+)||20 on the left side. Our

approach for getting rid of this term is to create a telescoping sum once we apply

the discrete Grönwall lemma. From (6.8) and lemma 2, and the H1-stability of

L2-projection [22], we have

3∆ti
32

(1 + ε̃)||a1/2(ti,1)∇φ̃(ti−1+)||20

≤ 3∆ti
32

(1 + ε̃)(1 + α∆ti)||ã1/2(ti−1)∇φ̃(ti−1+)||20

≤ 3∆ti
32

(1 + ε̃)(1 + α∆ti)(1 + Cµ,d∆ti)||a1/2(ti−1)∇φ(ti−1+)||20

≤ 3CA,H∆ti
32

(1 + ε̃)(1 + α∆ti)(1 + Cµ,d∆ti)||a1/2(ti−1)∇φ(ti−1−)||20.

(6.31)

If we choose ε̃ ≤ 1
3
, then the controlled mesh discontinuities (6.11) and graded time

stepping (6.12) gives 3CA,H∆ti/32 ≤ 7∆ti−1/8. Choose ε = 1/16 so that

15∆ti
16
||a1/2(ti)∇φ(ti−)||20 −

7∆ti−1

8
||a1/2(ti,1)∇φ̃(ti−1+)||20

≥ 7

8

{
∆ti||a1/2(ti)∇φ(ti−)||20 − (1 + Cα,µ,d∆ti)∆ti−1||a1/2(ti−1)∇φ(ti−1−)||20

}
+

∆ti
16
||a1/2(ti)∇φ(ti−)||20. (6.32)
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Then, we use a ≥ ā and lemma 2 to show that the bound for the ith partition is[
||φ(ti−)||20 +

7

16
∆ti||a1/2(ti)∇φ(ti−)||20

]
− (1 + C ′∆ti)

[
||φ(ti−1−)||20 +

7

16
∆ti−1||a1/2(ti)∇φ(ti−)||20

]
+
ā∆ti

2

{
3(1− ε′)||φi,TR||21 +

1

16
||φ(ti−)||21 +

3(1− ε̃′)
32

||φ(ζi,1)||21
}

≤ C∆ti

{
Qi
(
||ητ (·)||2(−1,Vp

h(·))+||ηRK(·)||21
)

+ max
0≤j≤2

||φ(ti,j)||20+||u(ti,1)−uTR(ti,1)||21
}
.

(6.33)

From the local Grönwall inequality, we can get the bound[
||φ(ti−)||20 +

7

16
∆ti||a1/2(ti)∇φ(ti−)||20

]
− (1 + C ′∆ti)

[
||φ(ti−1−)||20 +

7

16
∆ti−1||a1/2(ti)∇φ(ti−)||20

]
+ θ∆ti

{
||φi,TR||21 + ||φ(ti−)||21 + ||φ(ζi,1)||21

}
≤ C∆tiQi

(
||ητ (·)||2(−1,Vp

h(·)) + ||ηRK(·)||21
)

+ C∆ti||u(ti,1)− uTR(ti,1)||21, (6.34)

for some θ > 0, if ∆ti is sufficiently small. This is now in the appropriate form

to apply the discrete Grönwall lemma, where the error in the H1-norm arising

from the trapezoid approximation is joined in with the telescoping terms from the

characteristic derivative.

Applying the discrete Grönwall lemma gives

max
1≤i≤m

||φ(ti−)||20 +Q
(
||φRK(·)||21

)
+

m∑
i=1

∆ti||φ(ζi,1)||21

≤ C

{
|||η|||2TR−BDF +

m∑
i=1

∆ti||u(ti,1)− uTR(ti,1)||21 + ||φ(0)||20 + ∆t|φ(0)|21
}
. (6.35)

As in the proof of theorem 2, we have

||φ(0)||0 ≤ ||η(0)||0 ≤ |||η|||TR−BDF , (6.36)

||φτ (ti,j)||(−1,Vp
h(ti,j))

≤ C
{
||ητ (ti,j)||(−1,Vp

h(ti,j)) + ||ηRK(ti,j)||1 + ||u(ti,j)− uRK(ti,j)||1 + ||φRK(ti,j)||1
}

(6.37)
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for j = 1, 2, and use the local Grönwall lemma again to bound the maximum ||φ||0
at the intermediate collocation nodes to get

max
1≤i≤m
1≤j≤2

||φ(ti,j)||20 +Q
(
||φRK(·)||21 + ||φτ (·)||2(−1,Vp

h(·))

)
+

m∑
i=1

∆ti||φ(ζi,1)||21

≤ C

{
|||η|||2TR−BDF +

m∑
i=1

∆ti||u(ti,1)− uTR(ti,1)||21 + ∆t|φ(0)|21
}
. (6.38)

Since the trapezoid approximation is second order, we have

∆ti||u(ti,1)− uTR(ti,1)||21 ≤ CTR

∫ ti

ti−1

||∆t2iuττ (t) dt||21 (6.39)

and by the H1-stability of L2-projection, we have

∆t|φ(0)|21 ≤ C∆t|η(0)|21 ≤ C∆t
(
|η1,TR|21 + |η(ζ1,1)|21

)
≤ C|||η|||2TR−BDF . (6.40)

Thus, combining (6.35)–(6.40), we have

|||φ|||2TR−BDF ≤ C
{
|||η|||2TR−BDF +

∫ T

0

||∆t2iuττ (t) dt||21
}
,

as desired.

As can be seen from this proof, the values of the Runge-Kutta coefficients

and time basis nodes are used explicitly to prove the result. So far, attempts that

rely on generic Runge-Kutta approximation error bounds have not been fruitful in

providing a satisfactory space-time error bound. It is suspected that test functions

of the form χ =
∑p

j=0 cj∆t
j
i∂

j
τφ might lead to a more general result.

Chapter 6, in part, is in preparation for submission for publication of this

material. Bank, Randolph E. The dissertation author is the primary investigator

and author of this material.
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In this chapter, we report the results of some numerical experiments to eval-

uate the validity of the theory given in chapters 3–6. A solver for time-dependent

linear convection-diffusion-reaction equations with a single dimensional space do-

main was written in C++ and used to conduct these numerical experiments. All

experiments employ a piecewise quadratic tensor product finite element space as

described in chapter 3, with p = 2 and d = 1, and TR-BDF time integration.

Experiments have been constructed to measure the gains of using a moving mesh

versus a static mesh. The costs and benefits of a simple moving mesh scheme,

following the method of characteristics, is analyzed. Overall, these experiments

are designed to evaluate whether moving meshes provide improved accuracy and

efficiency over standard finite element methods with non-moving meshes. We also

test the effects of using interpolation rather than L2-projection of the finite el-

ement solution across mesh discontinuities (as in equations 3.7 and 5.2). This

leads to significant savings in CPU time and we verify that the accuracy of the

computed solution is not necessarily degraded by this “shortcut.” We also ex-

periment by comparing the results of using TR-BDF with several different values

for the mid-step time basis nodes, including values corresponding to Gauss-Radau

and Richardson’s TR-BDF. The intent of this experiment is to test whether non-

truncating quadrature rules are required to see second order convergence of the

solution with respect to the time discretization.

7.1 Two test problems

For these experiments, we test our methods on two problems, both of which

live on the domain F = [−3, 3]×(0, 1]. The first problem is a convection dominated

problem given by

u1,t(x, t)− 0.01u1,xx(x, t) + 3u1,x(x, t) = f1(x, t), (7.1)

with f1, the initial condition, and Neumann boundary condition chosen such that

the solution is given by

u1(x, t) = e−(x−3t)2 .
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Figure 7.1: Above is the solution to the equation described in (7.1). We have a
bell-curve initially centered at x = 0 that gradually shifts to the right as t increases.
The solution is plotted at times t = 0, .0.2, 0.4, 0.6, 0.8, and 1.

Due to the small diffusion coefficient and the null reaction term, this problem is not

well-conditioned. The convection velocity in this problem follows the characteristic

trajectories of the solution exactly and, accordingly, it is expected that the moving

mesh can be a great benefit for discretization of this problem, as uτ ≡ 0 when xt =

b. Note that neither the Neumann boundary condition nor the partial differential

equation describe the exact value of the solution, meaning that they only describe

the solution up to an additive constant; the initial condition is the only given

information that fixes the exact value of the solution. Figure 7.1 displays the

solution plotted at discrete times.

The second problem used for experimentation is given by

u2,t(x, t)−
(
(x2 + t2 + 0.1)u2,x(x, t)

)
x

+ 0.1(x3 − 9x)u2,x(x, t) + u2(x, t) = f2(x, t),

(7.2)

and the source term and boundary condition are chosen so that the solution of the

differential equation is given by

u2(x, t) = sin
(π

6
(x+ 5t)

)
.

The solution is a traveling sine wave that is depicted in figure (7.2). The diffusion

coefficient has a much stronger presence in this problem and the reaction term

also helps to improve the condition of the linear system that determines the finite

element solution. Notice that the characteristic directions of the solutions and the

convection term are rather misaligned. According to the theory in chapters 5 and
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Figure 7.2: The solution to equation (7.2) is plotted at times
t = 0, .0.2, 0.4, 0.6, 0.8, and 1.

6, moving the mesh will improve the conditioning of the linear system and reduce

the bounding constants of theorems 2 and 3, although moving the mesh along the

characteristics will not help flow the mesh with the structures of the computed

solution.

7.2 Moving meshes and static meshes

In this experiment, we use TR-BDF time stepping and set the mid-step

time basis node at ε = 2−
√

2 on the reference element, corresponding to Richard-

son’s TR-BDF. At the mesh discontinuities, we use interpolation instead of L2-

projection. Though these discretizations do not conform exactly to the theory

assumed in chapters 3, 5, and 6, the experiments in sections 7.3 and 7.4 demon-

strate that these modifications do not necessarily deteriorate the quality of the

computed solution. Uniform time steps are taken and the mesh on each time par-

tition is initialized with a uniform grid, with the spatial nodes moving to follow

the convection term, as in the method of characteristics. To solve for the mesh

velocity, we perform two steps of forward Euler, propagating the solution to the

mid-step and end-step basis nodes, respectively, so that xt ≈ b(x). Two examples

of moving meshes are depicted in figures 7.3 and 7.4.

Problem (7.1) sees a great advantage when the mesh moves with the con-

vection velocity, with the error seeing greater than a 300-fold improvement in the

relative error on highly refined meshes with large time steps. The ratio of the final

L2-errors at the end of the simulation and CPU time from the static mesh solutions
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Figure 7.3: An example of a moving mesh given by the method of characteristics
for equation (7.1). In this example, we have m = 5 time steps and initialize each
time partition with n = 11 spatial nodes. As a result of using the method of
characteristics, the spatial nodes on the interior of the domain satisfy xt = 3; some
spatial nodes have been deleted near the outflow boundary and inflow boundary.
The hat nodes and the bump nodes are both displayed and the bump nodes are
always chosen to be the midpoint of the element’s hat nodes. The vertical axis
corresponds to the time dimension and the horizontal axis corresponds to the
spatial dimension.

Figure 7.4: The mesh generated by the method of characteristics applied to
(7.2). Though the curvature is subtle, these mesh trajectories are quadratic and
approximately satisfy the evolution equation xt = 0.1(x3−9x). In this example, we
take m = 5 time steps and initialize each partition with n = 11 spatial nodes. The
hat nodes and the bump nodes are both displayed and the bump nodes are always
chosen to be the midpoint of the element’s hat nodes. The vertical axis corresponds
to the time dimension and the horizontal axis corresponds to the spatial dimension.
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to the moving mesh solutions are reported in table 7.1. These numbers are relative

to the solution computed using a static mesh; values less than 1 correspond to

an decrease in the norm of the error or a speedup in the CPU time, when using

moving meshes.

The greatest gains are realized when ∆t is large relative to ∆x, since the

mesh is following the characteristic directions of the differential equation. Fur-

thermore, the characteristic directions of the differential equation perfectly track

the solution of this problem, which may contribute additional accuracy to the

computed solution in the moving mesh cases.

It is important to note when ∆t is relatively small compared to ∆x, indicat-

ing many time steps and coarse meshes, that moving meshes lead to larger error;

such behavior is the result of interpolating the computed solution across many

coarse mesh discontinuities, causing a buildup of local interpolation errors. This

buildup of errors disappears as the spatial mesh is refined and one would expect

that it is not as pronounced if the grid at the beginning of each time partition were

to be initialized by the mesh at the end of the previous time step, as interpolation

will only be necessary for a few element deletions taking place near the bound-

aries. Investigations using adaptive meshes might also help and such experiments

are carried out in 7.5.1, where h-adaptivity is used, and in [50], which investigates

graph massage techniques. Note that moving meshes typically require more CPU

time, as the mesh motion must be computed for each time partition. However,

the motion of the nodes are independent of one another (except when checking

for element degeneration), so this process scales well with the number of spatial

nodes, and this is reflected in the relative change in the CPU time for larger n.

For the differential equation given in (7.2), a slight advantage is recognized

by using moving meshes, when ∆t is not too small relative to ∆x. A comparison

of the errors and CPU time is given in table 7.2. Comparing the results of this

experiment to those of problem (7.1), it is clear that this problem does not benefit

nearly as much from a moving mesh nor is the accuracy as dramatically impacted

when the time discretization is much finer than the spatial discretization. It is

suspected that mesh motion does not benefit this problem as much because the
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convection velocity in the differential equation does not align very well with the

structures of the solution, though small gains come from cancellation of the mesh

and convection velocities.

The results of this experiment indicate that superior accuracy can be at-

tained by moving the finite element mesh along with the convection term of the

differential equation, especially in cases when the mesh trajectories follow the struc-

tures of the solution to the equation. One must be careful, however, that the spatial

discretization is sufficiently refined relative to the time discretization in order to

avoid a buildup of the errors incurred at the discrete mesh discontinuities. This

suggests that a carefully crafted adaptive meshing scheme can be of great benefit

to moving finite element schemes. Note that this experiment did not employ a

non-truncating quadrature rule nor L2-projection at the mesh discontinuities. The

effects of these modifications are studied in the following two experiments.

7.3 Non-truncating time integration and other

collocation nodes

The experiment we describe in this section is designed to test the require-

ment of non-truncating quadrature rules to perform the time integration. Namely,

we did not use non-truncating quadrature rules to advance the solution in time

for our initial numerical experiments that encouraged the theoretical research of

this thesis. Instead, stable second order time stepping methods were used and we

observed satisfactory results. In this experiment, we choose the time basis nodes

and the collocation nodes such that TR-BDF is used as the time stepping scheme:

that is, we define the collocation nodes to be

t̂0 = 0, t̂1 = ε/2, and t̂2 = 1,

and choose the basis nodes to be

ζ̂0 = 0, ζ̂1 = ε, and ζ̂2 = 1,

for ε = 1/2, 2/3, and 2 −
√

2. The choice ε = 1/2 is tested here to evaluate the

simplest choice of time discretization, where the mid-step basis node is chosen to be
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the midpoint of the other basis nodes. The choice ε = 2/3 corresponds to Gauss-

Radau quadrature, as the collocation nodes are t̂1 = 1/3 and t̂2 = 1. This is the

only non-truncating quadrature rule used in this experiment and, therefore, is the

only choice for which our theory guarantees second order convergence. When ε =

2−
√

2, we are using Richardson’s TR-BDF, which has been shown to optimize the

truncation error of the TR-BDF scheme in other contexts (this choice of collocation

node was discussed in more detail in section 6.1) ([23],[72]).

We use a static mesh with a high spatial resolution to keep the error intro-

duced by the spatial discretization below that of the time discretization; further-

more, the mesh is chosen to be static to avoid incurring additional error at mesh

discontinuities, as seen in section 7.2. We partition the time domain (0, 1] of each

problem with m = 10, 20, 50, 100, and 500 time steps to measure how the error of

the solution at time t = 1 scales with the length of the time step.

For differential equation (7.1), the errors are reported in table 7.3 and plot-

ted on a logarithmic scale in figure 7.5 to show the order of convergence. From table

7.3, it is clear that the convergence is second order with respect to the shrinking

the time step length for any of the choices of collocation node. This is a validation

that the requirement of a non-truncating quadrature rule is primarily a theoretical

issue, or that we simply have not found a proof that can successfully bound the

local quadrature of the norm of the characteristic derivative term without this as-

sumption. The best error of our three time-stepping schemes is attained by using

the mid-step time basis node at ti,1 = ti−1 + (2 −
√

2)∆ti. Similar findings are

found for the problem described in equation (7.2) and these are reported in table

7.4 and figure 7.6.

Overall, this experiment suggests that strict adherence to using non trun-

cating quadrature rules for time stepping is more restrictive than necessary, and

small advantages can result by simply adjusting the placement of the time colloca-

tion and basis nodes. The benefits of choosing the time basis node to correspond

to Richardson’s TR-BDF appears to maintain its status of reducing the truncation

error better than the other choices considered in this experiment. Perhaps addi-

tional gains can be made by testing the Gauss rule for time integration, though



119

Table 7.3: The error table for problem (7.1). The bottom row is the ratio of
the differences of the log errors and the log of the number of time steps; the error
displays second order convergence.

ε = 1/2 ε = 2/3 ε = 2−
√

2
m L2-error H1-error L2-error H1-error L2-error H1-error
10 0.0326283 0.0899276 0.0326081 0.0897437 0.0316864 0.0873559
20 0.0083078 0.0221942 0.0083053 0.0221491 0.0080639 0.0215409
50 0.0013328 0.0034945 0.0013327 0.0034878 0.0012936 0.0033900
100 0.0003333 0.0008698 0.0003332 0.0008682 0.0003234 0.0008436
500 0.0000133 0.0000347 0.0000133 0.0000346 0.0000129 0.0000336
1000 0.0000033 0.0000087 0.0000033 0.0000087 0.0000032 0.0000084
order 1.9954068 2.0076131 1.9952674 2.0075588 1.9955322 2.0079723

Figure 7.5: The L2-errors for problem (7.1) plotted on a logarithmic scale. The
blue line with filled diamonds corresponds to the basis node ε = 1/2. The red line
with hollow triangles corresponds to the basis node ε = 2 −

√
2. The green line

with crosses corresponds to the basis node ε = 2/3. The errors are almost exactly
the same in this problem, with a slight gain for ε = 2−

√
2. This suggests that non-

truncating quadrature rules are not the only quadrature rules that can be used to
define the time stepping scheme and still maintain second order convergence with
respect to the time discretization.
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Table 7.4: The error table for problem (7.2). The bottom row is the ratio of
the differences of the log errors and the log of the number of time steps; the error
displays second order convergence.

ε = 1/2 ε = 2/3 ε = 2−
√

2
m L2-error H1-error L2-error H1-error L2-error H1-error
10 0.003439 0.002184 0.002920 0.001851 0.002703 0.001797
20 0.000832 0.000537 0.000714 0.000465 0.000648 0.000444
50 0.000130 8.51E-05 0.000113 7.51E-05 0.000101 7.08E-05
100 3.24E-05 2.12E-05 2.81E-05 1.90E-05 2.508E-05 1.77E-05
500 1.29E-06 8.50E-07 1.12E-06 7.65E-07 9.969E-07 7.13E-07
1000 3.22E-07 2.15E-07 2.81E-07 1.95E-07 2.491E-07 1.82E-07
order 2.0142919 2.002926 2.008410 1.988639 2.017711 1.99714210

Figure 7.6: The L2-errors for problem (7.2) plotted on a logarithmic scale. The
blue line with filled diamonds corresponds to the basis node ε = 1/2. The red line
with hollow triangles corresponds to the basis node ε = 2 −

√
2. The green line

with crosses corresponds to the basis node ε = 2/3. This problem shows a clearer
advantage in selecting ε = 2−

√
2 compared to the results shown in figure 7.5.
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the resulting linear system of this time-stepping scheme would not decouple as

TR-BDF does, and would significantly increase the time required to compute the

finite element solution.

7.4 Mesh Discontinuities: L2-projection and in-

terpolation

The experiments in this section address the transfer of the finite element

solution across the mesh discontinuities at the end of each time step. Formally,

the finite element solution should satisfy

(uh(ti−1+), χ) = (uh(ti−), χ),

for all χ in Vph(ti−1+), to live in the finite element space. Unfortunately, implement-

ing this condition requires solving a linear system of Ni equations, where Ni is the

number of nodes in the time partition. This condition becomes costly to imple-

ment when Ni is large and, accordingly, we seek an alternative means to transfer

the computed solution across the mesh discontinuities.

In practice, computing a finite element solution by means of interpolation

at the discontinuities is much cheaper than performing L2-projection, especially

when ∆t or ∆x are small. This is due to the fact that interpolation is an element-

wise operation, whereas L2-projection requires solving a linear system that couples

neighboring elements. We conduct an experiment to verify that interpolation is a

valid technique to more quickly transfer a computed solution over the discrete mesh

discontinuities. We compute numerical solutions on identical meshes and compare

the results of using interpolation versus L2-projection at the mesh discontinuities.

For this experiment, the final L2-error of the computed solution at the end of the

simulation and the computation time are measured for solving problems (7.1) and

(7.2).

For both experiments, we employ uniform time steps and the spatial mesh is

initialized to be uniform on each time partition, as in section 7.2. The mesh motion

within the partition is again determined by two steps of forward Euler. The mid-
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step is chosen to give the Richardson collocation node ti,1 = ti−1 + (2−
√

2)∆ti/2.

Note that the operation to compute the solution at the mesh discontinuities has no

effect on the mesh selection; the meshes used for interpolation and L2-projection

are identical, and examples are depicted in figures 7.3 and 7.4.

The result comparisons for equation (7.1) are reported in table 7.5 and the

result comparisons for equation (7.2) are given in table 7.6. These tables are of the

same form as tables 7.1 and 7.2 and report the ratio of the L2-errors and compu-

tation times of the solutions computed using L2-projection and interpolation. For

entries with L2-error ratios greater than 1, the corresponding discretization com-

putes a more accurate solution using interpolation. The CPU columns report the

relative speedup achieved by implementing interpolation instead of L2-projection.

In both experiments, we observe that the L2-error of the computed so-

lutions are very similar when m is not significantly larger than n. When m is

large compared to n, we notice that the solution computed using interpolation has

lower accuracy, especially for problem (7.1). This behavior suggests that adap-

tive meshing techniques can be used to effectively safeguard from such cases when

the number of time steps greatly exceeds the number of spatial nodes. The most

significant discrepancies correspond to performing many interpolations on coarse

meshes, which lead to deterioration in the quality of the computed solution. This

effect is more pronounced when solving equation (7.1), where the third derivative

attains a larger magnitude than the solution of equation (7.2). This sort of behav-

ior has a greater impact on the interpolation error than the error of the projection,

which may explain why coarser meshes suffer more from interpolation at the mesh

discontinuities. Notice, however, that there is virtually no loss of accuracy when

the spatial discretization is comparable to the time discretization. Typically, the

use of interpolation realizes a relative speedup of 20% to 30% versus L2-projection.

The results of this experiment suggest that interpolation at the end of the mesh dis-

continuities more quickly provides a satisfying solution across mesh discontinuities

compared to L2-projection, when the spatial mesh is sufficiently refined.

Considering the results of this experiment in conjunction to those of section

7.2, L2-projection shows improved stability in cases where the solutions computed
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on moving meshes with interpolation suffered the greatest losses in accuracy, com-

pared to solutions computed on static meshes. Consequently, when CPU time

is not an issue, one can stabilize the moving mesh methods by maintaining the

L2-projection at the mesh discontinuities. Tables reporting the comparative per-

formances of static mesh methods and moving mesh methods using L2-projection

are given by 7.7 and 7.8. Reported are the relative decrease in the L2-error and

the increase in CPU times.

Plots of the final L2-errors are plotted in figures 7.7–7.10 as a function of

the number of time steps. For these plots, the spatial resolution is fixed, we take

n = 101 for example, and plot the L2-error of the computed solution at the end

of the simulation. Note that the time domain is not changing by taking more

time steps, rather we are refining the time discretization. These plots are simply

designed to help visualize the behavior of the error of the computed solution with

respect to the various discretization schemes. The stabilization property of L2-

projection for coarse meshes is striking in figure 7.7 — note that the interpolation

error is much greater when the third derivative attains larger magnitudes, as in

problem (7.1). These figures indicate that properly implemented adaptive time-

stepping techniques for the moving mesh methods can yield great savings and avoid

time steps that are too small, which can stabilize the moving meshes in the case

of using interpolation at the mesh discontinuities.

7.5 Moving finite elements with spatial adaptiv-

ity

We describe a basic procedure for adaptively defining a moving mesh based

on derivative recovery. The mesh is initialized on each time partition by an h-

refinement of a given mesh, coming from the previous time partition (or an initial

configuration when t = 0). In earlier experiments, r-adaptivity (or mesh smooth-

ing) was implemented [20] though later disabled due to its high computational

costs. Note that p-methods are not straightforward to implement for moving finite

elements as the number of collocation nodes is determined by the order of the



126

T
a
b
le

7
.7

:
A

co
m

p
ar

is
on

ta
b
le

fo
r

p
ro

b
le

m
(7

.1
)

b
et

w
ee

n
st

at
ic

m
es

h
m

et
h
o
d
s

an
d

m
ov

in
g

m
es

h
m

et
h
o
d
s

u
si

n
g
L

2
-

p
ro

je
ct

io
n
.

R
ep

or
te

d
fo

r
ea

ch
m

es
h

d
is

cr
et

iz
at

io
n

is
th

e
ra

ti
o

of
fi
n
al
L

2
-e

rr
or

s
an

d
th

e
re

la
ti

ve
in

cr
ea

se
in

C
P

U
ti

m
e

of
th

e
m

ov
in

g
m

es
h

so
lu

ti
on

to
th

e
st

at
ic

m
es

h
so

lu
ti

on
.

It
is

cl
ea

r
th

at
L

2
-p

ro
je

ct
io

n
st

ab
il
iz

es
th

e
er

ro
r

fo
r

co
ar

se
sp

at
ia

l
m

es
h
es

.

n
=

51
n

=
10

1
n

=
50

1
n

=
10

01
n

=
30

01
m

L
2
-e

rr
or

C
P

U
L

2
-e

rr
or

C
P

U
L

2
-e

rr
or

C
P

U
L

2
-e

rr
or

C
P

U
L

2
-e

rr
or

C
P

U
10

0.
02

34
69

1.
34

02
48

0.
01

03
11

1.
22

51
76

0.
00

54
86

1.
21

57
25

0.
00

42
01

1.
21

97
36

0.
00

35
04

1.
21

62
47

20
0.

04
08

73
1.

38
27

82
0.

01
18

51
1.

38
31

68
0.

00
33

72
1.

38
31

52
0.

00
29

40
1.

25
84

24
0.

00
19

75
1.

24
54

59
50

0.
07

35
79

1.
42

75
72

0.
02

40
06

1.
27

18
80

0.
00

34
04

1.
25

82
82

0.
00

20
67

1.
26

33
06

0.
00

16
87

1.
27

94
86

75
0.

07
48

06
1.

42
25

89
0.

03
63

18
1.

42
38

40
0.

00
25

05
1.

41
53

33
0.

00
16

21
0.

76
76

66
0.

00
31

49
1.

26
44

57
10

0
0.

07
72

42
1.

44
25

43
0.

05
35

15
1.

42
52

27
0.

00
19

51
1.

42
98

24
0.

00
29

47
0.

61
45

30
0.

00
42

30
1.

27
17

93
20

0
0.

10
37

95
1.

43
68

50
0.

15
97

26
1.

42
69

01
0.

00
29

34
1.

42
80

83
0.

00
36

51
1.

42
09

63
0.

00
65

26
1.

43
09

18
50

0
0.

22
50

58
1.

43
69

38
0.

53
55

70
1.

43
29

09
0.

00
35

65
1.

43
04

35
0.

00
48

53
1.

26
27

27
0.

00
82

71
1.

27
61

27
10

00
0.

40
49

16
1.

45
55

57
0.

69
92

34
1.

44
31

70
0.

01
20

95
1.

43
64

21
0.

00
44

18
1.

42
86

95
0.

00
87

19
1.

43
94

83



127

T
a
b
le

7
.8

:
A

co
m

p
ar

is
on

ta
b
le

fo
r

p
ro

b
le

m
(7

.2
)

b
et

w
ee

n
st

at
ic

m
es

h
m

et
h
o
d
s

an
d

m
ov

in
g

m
es

h
m

et
h
o
d
s

u
si

n
g
L

2
-

p
ro

je
ct

io
n
.

R
ep

or
te

d
fo

r
ea

ch
m

es
h

d
is

cr
et

iz
at

io
n

is
th

e
ra

ti
o

of
fi
n
al
L

2
-e

rr
or

s
an

d
th

e
re

la
ti

ve
in

cr
ea

se
in

C
P

U
ti

m
e

of
th

e
m

ov
in

g
m

es
h

so
lu

ti
on

to
th

e
st

at
ic

m
es

h
so

lu
ti

on
.

n
=

51
n

=
10

1
n

=
50

1
n

=
10

01
n

=
30

01
m

L
2
-e

rr
or

C
P

U
L

2
-e

rr
or

C
P

U
L

2
-e

rr
or

C
P

U
L

2
-e

rr
or

C
P

U
L

2
-e

rr
or

C
P

U
10

0.
80

09
24

1.
30

47
05

0.
80

12
51

1.
32

20
61

0.
80

13
66

1.
32

99
19

0.
80

13
70

1.
32

04
17

0.
80

13
71

1.
32

61
50

20
0.

79
25

76
1.

32
91

98
0.

79
27

38
1.

33
14

34
0.

79
28

28
1.

33
96

51
0.

79
28

31
1.

31
47

80
0.

79
28

32
1.

33
62

90
50

0.
79

00
22

1.
34

25
66

0.
78

92
64

1.
33

61
32

0.
78

92
89

1.
34

08
45

0.
78

92
92

1.
33

66
67

0.
78

92
92

1.
34

59
42

75
0.

79
12

99
1.

33
87

22
0.

78
88

67
1.

34
05

97
0.

78
88

06
1.

34
20

78
0.

78
88

08
1.

34
01

67
0.

78
88

06
1.

34
46

43
10

0
0.

79
42

76
1.

34
13

91
0.

78
88

21
1.

34
13

24
0.

78
86

29
1.

34
23

07
0.

78
86

31
1.

32
76

45
0.

78
86

28
1.

33
78

06
20

0
0.

83
16

51
1.

33
89

85
0.

78
99

18
1.

34
45

20
0.

78
84

75
1.

36
11

13
0.

78
84

75
1.

33
95

46
0.

78
84

57
1.

33
75

94
50

0
0.

98
02

78
1.

34
02

22
0.

81
41

31
1.

34
85

90
0.

78
84

83
1.

34
43

18
0.

78
84

66
1.

34
28

64
0.

78
83

62
1.

33
98

43
10

00
0.

99
97

35
1.

34
52

09
0.

92
86

78
1.

33
40

90
0.

78
85

66
1.

34
50

81
0.

78
84

72
1.

35
29

83
0.

78
80

50
1.

34
34

20



128

Figure 7.7: The L2-errors for problem (7.1) plotted with respect to the number
of time steps. For this plot, each discretization employs 101 spatial nodes. As
the number of time steps increases, the time discretization is refined, rather than
extending the time domain. The most striking feature here is that the L2-error
does not decrease monotonically when using a moving mesh and interpolation at
the mesh discontinuities. The plot suggests that using L2-projection maintains the
benefit of smaller error of fewer time steps, as compared to using a static mesh,
though it avoids the build-up of error when more time steps are used.
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Figure 7.8: The L2-errors for problem (7.1) plotted with respect to the number
of time steps. For this plot, each discretization uses 1001 spatial nodes. Unlike
the case where only 101 spatial nodes are used, the interpolation error does not
buildup as the number of time steps increases when using a moving mesh; the
benefits of using L2-projection are not significant compared to using interpolation,
and the increase in CPU time is more dramatic as the mesh is more refined than
the case when 101 spatial nodes are used.
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Figure 7.9: The L2-errors for problem (7.2) plotted with respect to the number
of time steps. For this plot, each discretization employs 101 spatial nodes. As
the number of time steps increases, the time discretization is refined, rather than
extending the time domain. The smallest L2- error of the computed is attained by
using a moving mesh with L2-projection at the mesh discontinuities, though the
slight reduction in error over using interpolation at the mesh discontinuities might
not justify the more prominent increase in CPU time.

Figure 7.10: The L2-errors for problem (7.2) plotted with respect to the number of
time steps. For this plot, each discretization uses 1001 spatial nodes. In comparison
to figure 7.9, there are virtually no gains in using 1001 spatial nodes versus 101
nodes for this problem.
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finite element space. The motion of the mesh is again chosen to approximate the

method of characteristics.

7.5.1 An h-adaptive method

For each time partition, we assume that we are given an initial mesh and an

initial approximation of the solution, coming from either a previous time partition

or the initial condition. To find the mesh on the new time partition, we begin

by computing the cubic spline of the approximate solution, Suh, which provides

a piecewise constant approximation of the third derivative of the solution. Since

we are using piecewise quadratic polynomials to approximate the solution, it is

assumed for each element, ek(ti,j) = [xk−1(ti,j), xk(ti,j)] ⊂ Ω, that

|u(t)− uh(t)|(1,ek(t)) = C∆x2
k(t)|u(t)|(3,ek(t)) ≈ C∆x2

k|Suh(t)|(3,ek(t)),

for some positive constant C. The third derivative recovered from the cubic spline

is then used to indicate the error of our computed solution on each element. The

aim of the adaptive procedure is to find a mesh such that the error indicated by

the recovered derivative is equally distributed on the new mesh.

For h-adaptivity, we use the local error indicator derived from the cubic

spline to determine which elements to bisect or join with neighboring elements.

We approximate the number of nodes in the new mesh by

ni+1 ≈ 1 + (ni − 1)

√
|Suh(ti−)|3
|Suh(ti−1−)|3

,

which comes from setting

(ni+1 − 1)−2|Suh(ti−)|3 ≈ (ni − 1)−2|Suh(ti−1−)|3.

This statement suggests that the errors at the end of two consecutive time steps

should be similar. To determine whether an element should be refined, we check

whether the local error indicator is twice as big as the average predicted error:

∆x4
k|Suh(ti−)|2(3,ek(ti− )) ≤ 2(ni+1 − 1)−4|Suh(ti−)|23.
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If the error indicator is more than twice as large as the predicted average, the

element is refined until the local error indicator is below average on each refined

element. To coarsen the mesh, we sweep through the mesh evaluating the local

error indicator on the element that results from deleting a spatial vertex. If the

local error indicator on the coarsened element is below the refinement threshold,

2(ni+1 − 1)−4|Suh(ti−)|23, then the element is coarsened; otherwise, the vertex is

replaced and the next vertex is tested for deletion.

Two example meshes are displayed in figures 7.11 and 7.12. Comparing

the density of the spatial nodes to their respective solutions, shown in figures 7.1

and 7.2, it is clear the the heaviest concentration of spatial nodes occur where the

solution is changing rapidly in spatial directions, as desired.

7.5.2 Time discretization

For moving meshes, two steps of forward Euler are applied to advance the

mesh to the time basis nodes according to the evolution equation xt(t) = b(x, t).

This choice of mesh motion helps improve the condition of the linear system to solve

for the finite element solution, though other choices of mesh motion are viable.

Another viable candidate would be to attempt to distribute the L2-error

or H1-error of the solution between the elements and move the mesh so that the

proportion of the error on each element is preserved ([1],[3]) — essentially, the

error would serve as a continuous-in-time monitor function that describes the mesh

motion. A predictor-corrector approach is one way to implement such a mesh

motion scheme, where the ‘predictor’ step computes a coarse approximation of the

solution on a time-step and its error indicator can be used as the monitor function

to determine the mesh motion for a ‘correction’ step. A version of this scheme has

been explored by [3], where numerical experiments indicate that this mesh motion

improves the accuracy of the computed solution. Another approach to determining

the motion of the mesh would be to employ mesh smoothing techniques [20], where

an error indicator at each collocation node can be computed to determine how to

perturb the placement of the spatial nodes, while preserving the mesh topology.

Smoothing the mesh at the time collocation nodes would, therefore, determine the
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Figure 7.11: An example of a spatially adaptive moving mesh, given by the
method of characteristics for equation (7.1). In this example, we have m = 10
time steps and initialize each time partition with n = 51 spatial nodes. As a
result of using the method of characteristics, the spatial nodes on the interior of
the domain satisfy xt = 3; some spatial nodes have been deleted near the outflow
boundary and inflow boundary. Comparing the density of the spatial nodes to
the figure of the solution in figure 7.1, the spatial resolution is higher where the
solution is changing rapidly. Since the convection term aligns the mesh with the
solution of the differential equation, the nodes of the mesh trace out level sets of
the solution in time (except near the boundaries), which reduces the impact of the
discontinuities between time partitions.
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Figure 7.12: An adaptive mesh generated by the method of characteristics applied
to (7.2). Though the curvature is subtle, these mesh trajectories are quadratic and
approximately satisfy the evolution equation xt = 0.1(x3 − 9x). In this example,
we take m = 10 time steps and initialize each partition with n = 51 spatial nodes.
In this problem, the convection term does not align with the motion of the solution
in time; mesh discontinuities are more prominent than in figure 7.11, though they
are still an improvement over the mesh depicted in figure 7.4, where the mesh
configuration is reconfigured to be uniform on each time partition.
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motion of the nodes throughout a time partition.

We also attempted to employ variable sized time steps that took advantage

of the error indicators computed for the spatial adaptivity, though the discontinuity

between the time partitions complicated the use of our derivative recovery schemes

and we were unable to achieve satisfactory results. As a result, uniform time steps

were used in the following experiments. The use of predictor-corrector methods

provides a possible solution for effectively predicting the length of the time steps.

By predictor-corrector methods, the time-step can be chosen so that the solution

on the correction mesh is equal to a prescribed error tolerance. Another alternative

would be to solve for the finite element solution on a time partition twice, where

one solution is solved on a refined time partition. Then, the difference between the

solution computed on the coarser mesh and the solution computed on the refined

mesh can serve as an error indicator for the coarse solution and, thusly, can be

used to determine the length of the time steps.

7.5.3 Experiments with h-adaptivity in space

For the experiments with h-adaptive meshing, the initial condition is pro-

jected onto a uniform mesh with a prescribed number of spatial nodes. Based on

this initialization of the numerical solution, we use the derivative recovery scheme

described in section 7.5.1 to compute an indication of the initial error. Then, this

indicator is used to predict the number of spatial nodes in subsequent time parti-

tions so that the error indicators are relatively constant throughout the simulation.

Tables 7.9 and 7.10 provide the number of spatial nodes left at the end

of each simulation using adaptive meshing. The final L2-error of the computed

solution is plotted against the number of time steps used to solve the differential

equation in figures 7.13–7.15 to show how h-adaptivity affects the final L2-error

of the computed solution. As in figures 7.7–7.10, more time steps lead to a more

refined the time discretization rather than extending the time domain. Reviewing

these tables and figures, it becomes clear that the approach for predicting the

number of spatial nodes required in a time partition needs improvement. There is

clear evidence that the mesh tends both to over-refine and over-coarsen the mesh,
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Table 7.9: This table reports the count of spatial nodes in the mesh at the end
of the simulation using adaptive meshing. The problem solved is (7.1) and these
simulations were initialized using 101 (top) and 1001 (bottom) spatial nodes. The
final count of nodes is expected to be low as the bump structure in the solution is
exiting through the right boundary, leaving a very flat solution on the majority of
the spatial domain.

initial n = 101
Static Mesh Moving Mesh

m Interpolation L2-projection Interpolation L2-projection
10 47 45 61 61
20 59 56 62 63
50 72 75 67 67
75 79 79 67 67
100 82 84 65 68
200 63 71 65 68
500 65 68 82 67
1000 89 88 78 67

initial n = 1001
Static Mesh Moving Mesh

m Interpolation L2-projection Interpolation L2-projection
10 237 237 223 124
20 349 348 158 158
50 528 516 256 251
75 631 621 281 279
100 701 673 318 296
200 711 767 321 387
500 645 800 616 594
1000 646 649 629 626

depending on the problem at hand and the length of the time steps.

For problem (7.1), the L2-error is significantly larger for solutions found

on adaptive meshes. This is due, in part, to the fact the the “bump” in the

solution, depicted in figure 7.1, is exiting the domain by the end of the simulation.

Consequently, the error in the previous experiments decreased as the bump flowed

out of the domain. Since the adaptive method attempts to keep the error constant,

this decrease in error is not realized when using h-adaptivity; instead, the mesh

is coarsened and the error is approximately maintained. Note that the greatest
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Table 7.10: This table reports the count of spatial nodes in the mesh at the end of
the simulation using adaptive meshing. The problem solved is (7.2) and simulations
were initialized using 101 (top) and 1001 (bottom) spatial nodes. The final count
of nodes is rather high since the errors displayed in figure 7.15 are not significantly
reduced; this indicates that our mesh selection scheme needs improvement.

initial n = 101
Static Mesh Moving Mesh

m Interpolation L2-projection Interpolation L2-projection
10 104 104 119 119
20 154 149 167 167
50 191 195 219 219
75 192 192 210 210
100 173 184 202 213
200 177 177 203 213
500 180 180 204 206
1000 180 181 203 203

initial n = 1001
Static Mesh Moving Mesh

m Interpolation L2-projection Interpolation L2-projection
10 829 829 716 716
20 994 994 1127 1127
50 1943 1943 1762 1762
75 2065 2065 2002 2002
100 1932 1932 1884 1884
200 1965 1965 2201 2121
500 2462 2340 2245 2307
1000 945 945 2244 2265
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Figure 7.13: The L2-errors for problem (7.1) plotted with respect to the number
of time steps. For this plot, each discretization employs 101 spatial nodes. The
solutions computed on adaptively generated meshes display significantly higher
errors. In comparing the error to the number of nodes at the end of the simulation,
it is clear that predictor for the number of spatial nodes requires adjustment.

Figure 7.14: The L2-errors for problem (7.1) plotted with respect to the number
of time steps. For this plot, each discretization uses 1001 spatial nodes. The
solutions found by adaptive meshing show a great improvement in terms of their
overall performance. The fact that the final errors do not shrink as much as in
the non-adaptive cases may be a result of the error indicator staying relatively
constant throughout the simulation, even as the bump structure is exiting the
right boundary (see figure 7.1).
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Figure 7.15: The L2-errors for problem (7.2) plotted with respect to the number
of time steps. For this plot, each discretization employs 101 spatial nodes. Table
7.10 reports that the adaptive meshing scheme adds many spatial nodes to the
mesh, though we see that the error is not significantly reduced. The adaptive
method is over-solving the problem.

errors for the adaptive schemes correspond to the coarsest meshes. Perhaps a

mesh grading scheme that requires neighboring elements to be comparable in size

improve the overall performance of the adaptive scheme.

For the test problem given in (7.2), table 7.10 reports that the mesh tends

to refine in our simulations, but figure 7.15 demonstrates that the error does not

decrease significantly as the mesh refines. Thus, our adaptive method is prescribing

too many spatial nodes, and we are consequently “over-solving” problem (7.2).

Upon closer inspection, slight gains in accuracy are realized in using the adaptive

method, though such small gains do not justify the exhaustive use of so many

spatial nodes, as shown in table 7.10. As before, the solution computed using 1001

and 101 spatial nodes are nearly identical and their errors display nearly identical

behavior with respect to the number of time steps.

Overall, the mechanics of the h-adaptive method seem satisfactory in the

sense that the derivative recovery scheme using cubic spline interpolation seems to

properly identify regions where the solution is changing rapidly; this is indicated in

figures 7.11 and 7.12, which display two examples of the meshes generated by our
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derivative recovery based scheme. Unfortunately, it seems that our approach for

predicting the number of spatial nodes for the time partitions needs improvement,

and perhaps a mesh grading constraint could yield improved shape regularity of

the meshes given by the adaptive method. Another possibility is that an effective

method for predicting the length of the time step could also help stabilize the error.

7.6 Moving finite elements and Burger’s equa-

tion

In this section, we test our moving finite element method on Burger’s equa-

tion. This is a nonlinear equation given by

ut −
1

R
uxx + uux = 0 on F = [−3, 3]× (0, 2], (7.3)

where R > 0, and we assume a Neumann boundary condition, ux(±3) = 0. For

large values of R, the solution to Burger’s equation can develop steep shock layers

that propagate through the domain; accordingly, we anticipate that moving meshes

will improve the accuracy of computed solution in these cases. The number R is

the Reynolds number and it controls the amount of diffusion in equation (7.3).

In the limit as R tends to infinity, the equation becomes ill-conditioned and the

solution forms a discontinuity. Thus, we take R to be a large and finite number,

since smaller values of R increase the amount of diffusion in the equation and, as

a result, the moving front is smeared across a larger portion of the domain. We

use this test equation because it is a simple nonlinear equation that leads to sharp

moving fronts in the solution for large values of R.

Due to the nonlinearity of Burger’s equation, the linear systems recovered in

(5.11) and (6.6) become nonlinear and, consequently, we employ Newton’s method

to solve for the finite element solution at the time collocation nodes. Our approach

to this nonlinear solve is basic; we perform a single iteration of Newton’s method

at each collocation node to solve for the update of the solution from one time

collocation node to the next.

In these experiments, we set the initial condition to be the piecewise linear



141

Figure 7.16: An illustration of the initial condition used for Burger’s equation.
As the PDE propagates the solution in time, the structure on the left side should
move toward the right, creating a thin shock layer that propagates from the middle
of the domain toward the right boundary.

function

u0(x) =


1, for − 3 ≤ x ≤ −0.2

0.5− 2.5x, for − 0.2 ≤ x ≤ 0.2

0, for 0.2 ≤ x ≤ 3

,

which is depicted in figure 7.16. Since u0(x) is larger for smaller values of x, the

convection velocity (given by u for this equation) moves the structure on the left

of the solution towards the right, eventually forming a steep moving front that will

sweep out toward the right boundary.

7.6.1 Experiments on Burger’s equation

For these experiments, we compute solutions on static and moving meshes,

with a finite element space of piecewise tensor product quadratic polynomials (p =

2). Since we are solving a nonlinear equation, the mesh velocity depends on the

solution to the PDE. Thus, we want

xt = u(x, t).

Unlike the previous experiments, we cannot solve this equation using two steps of

forward Euler since the solution is unknown at the mid-step basis node. Initially,

we attempted to move the mesh partway through a time partition, solve for the

mid-step solution, and then continue to move the mesh through the rest of the

time partition. Unfortunately, due to the thinness of the shock layer, nodes would

often degenerate before solving for the solution at the end of the time step, and
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this would lead to hanging nodes in the middle of the time partition. To keep

our approach simple, we simply use linear mesh motion, given by a single step

of forward Euler, where any node that crashed into a neighboring node (as is

commonplace near the shock layer) is deleted. In a sense, deleting these nodes

does not lose very much information about the solution, as these deletions only

occur where the mesh is extremely dense. For these simulations, we do not allow

for mesh discontinuities in order to prevent errors from transferring the computed

solution from one time partition to the next. An example of one such mesh is

depicted in figure 7.17.

In the first simulations, we assume a moderate amount of diffusion by setting

R = 100. The solutions are computed on meshes initialized with 61 spatial nodes,

and either 10 time steps (shown in figure 7.18) or 25 time steps (shown in figure

7.19). It is known that finite element solutions for Burger’s equation typically

display artificial oscillations near the shock layers in the solution [57], and this

behavior is displayed for both static and moving meshes when we attempt to solve

equation (7.3) in only 10 time steps. In figure 7.19, however, we see that taking

25 time steps leads to a sufficiently refined time discretization to dampen these

undesirable oscillations near the shock when using moving finite elements, though

the non-moving finite element solution still bears these errors. This shows that

our moving finite element method shows improved accuracy over the non-moving

method, even for this nonlinear equation.

We also ran simulations where the Reynolds number is set to 1000. This

reduces the diffusive forces in the equation and leads to a thinner shock. The

solutions computed on static and moving meshes with 100 time steps are displayed

in figure 7.20. Each mesh is initialized with 301 spatial nodes, though the moving

mesh deletes many nodes within the shock layer and has only 112 nodes in the

final mesh. From the figure, it is evident that the moving mesh serves its purpose

in controlling the artificial oscillations induced by using a relatively coarse time

step.

We also ran a simulation to compute the solution using the h-adaptive

method devised in section 7.5.1. In this simulation, we set the Reynolds number
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Figure 7.17: An example of a moving mesh, given by the method of characteristics
for equation (7.3). In this example, we have m = 25 time steps and initialize
each time partition with n = 61 spatial nodes. As a result of using the method
of characteristics, the spatial nodes on the interior of the domain approximately
satisfy xt = u(x). Comparing the density of the spatial nodes to the figures of the
computed solutions in figures 7.18 and 7.19, the spatial nodes properly congregate
near the shock layer and track it throughout the simulation. The trailing node
near the left boundary is the bump node on the leftmost element. Its motion is
slower as it must bisect the hat nodes, one of which is fixed on the boundary.
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Figure 7.18: Computed solutions for equation (7.3) with R = 100 using a static
mesh (top) and a moving mesh (bottom). The meshes are initialized to have 61
spatial nodes and 10 time steps are used to advance the solution to time t = 2. In
both cases, the time step is too large and the computed solutions form artificial
structures near and within the shock layer.
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Figure 7.19: Computed solutions for equation (7.3) with R = 100 using a static
mesh (top) and a moving mesh (bottom). The meshes are initialized to have 61
spatial nodes and 25 time steps are used to advance the solution to time t = 2. The
solution computed using moving meshes has dampened the oscillatory behavior
occurring near the shock layer, though the solution computed using a static mesh
still displays this undesirable behavior.
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Figure 7.20: In this simulation, the Reynolds number is set to 1000, causing
a thinner shock layer. Solutions were computed using m = 100 time steps and
initialized with n = 301 spatial nodes. The static mesh in the top figure displays
the usual artificial oscillations that occur with finite element solutions near the
shock layer, whereas the moving mesh has suppressed this behavior.
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Figure 7.21: The computed solution and its mesh using the adaptive method
of section 7.5.1. The adaptive method effectively coarsens the mesh where the
solution is unchanging, while maintaining a high resolution near the shock layer.
The computed solution still displays small oscillations, though the mesh generated
by the adaptive method seems satisfactory. Mesh grading near the shock layer
could potentially dampen these oscillations.

to 500 so that only 50 time steps are required for the solution to be approximated

reasonable well. The moving mesh is initialized with 161 nodes and at the end of

the simulation, only 21 nodes remain. The computed solution and its mesh are

illustrated in figure 7.21. Small oscillations still form near the shocks, implying

that the adaptive method may over-coarsen the mesh close the steep front. While it

is difficult to determine the exact cause of the oscillations, the mesh discontinuities

arising from the adaptive approach are also suspect. Furthermore, forcing the mesh

to satisfy some grading constraint might also help eliminate this behavior.

From our experiments, it is evident that the presented moving finite element
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method has the potential to solve simple nonlinear equations. Aligning the mesh

velocity with the convection velocity permitted larger time steps, while avoiding

artificial oscillations in the computed solution near the moving front. Further

experimentation with multiple iterations of Newton’s methods may prove to be

useful for improving the accuracy of the computed solution, though a well-designed

time step predictor may be a more cost effective approach to dealing with the

nonlinearity of the PDE.

Chapter 7, in part, is in preparation for submission for publication of this

material. Bank, Randolph E. The dissertation author is the primary investigator

and author of this material.
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In this thesis, we have explored some theoretical and practical aspects of

space-time tensor product moving finite elements of arbitrary order. A method was

proposed that used these finite element spaces and the method of lines to solve

time-dependent linear convection-diffusion-reaction equations and an error analysis

was provided to estimate the error of the finite element solution found by this

method. A framework was proposed for generalizing the space-time finite element

method to employ more flexible time integration schemes, with an error estimate

proven for the special case of tensor-product quadratic finite elements and the TR-

BDF method used for time integration. Furthermore, we have experimented with

a numerical solver for PDEs with a single dimensional spatial domain using these

moving finite elements.

The construction of the tensor product finite element space was given in

chapter 3, which detailed the general properties of the mesh, the reference ele-

ments, the degrees of freedom, the isoparametric maps, and the basis functions.

Furthermore, we established relationships between the isoparametric maps with the

characteristic trajectories of the mesh as well as the shape regularity constraints of

the mesh. These shape regularity constraints correspond to standard assumptions

for the space and time discretization independently, plus another constraint that

ensures the space-time shape regularity. This new space-time shape regularity as-

sumption constrains the degree to which the eigenvalues of the Jacobian of the

spatial component of the isoparametric map can with respect to time, effectively

controlling how much the shape and size of the element can be distorted and ruling

out the possibility of element degeneration.

In chapter 4, we used the basis functions, isoparametric maps, and shape

regularity assumptions of the finite element space to establish some approximation

properties of the finite element subspace to the true solution space of the differential

equation. In this analysis, we derived some results the tools that allowed us to

prove our symmetric error estimate for the finite element solution defined in chapter

5. The main tool was the shift lemma (lemma 2), which established the continuity

of the shift operation in the L2 and H1-norms. The final result of chapter 4

was the bound on the best approximation error in the finite element space for
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functions on the space-time domain. Ultimately, the best approximation error for

tensor product degree p piecewise polynomials was shown to be proportional to

∆xp + ∆tp, for p ≥ 1.

Chapter 5 introduced a space-time moving finite element method that was

compatible with the space-time tensor product finite element spaces of arbitrary

order. Minimal constraints were shown to imply well-posedness of the finite ele-

ment formulation along with the shape regularity constraints of chapter 3. Two

Grönwall inequalities were introduced: one to bound the local truncation error

of each time partition and the other to aggregate the truncation errors over all

partition. These results were used in conjunction with the discrete Galerkin or-

thogonality of the finite element solution to prove the symmetric error estimate of

theorem 2, which was the main result of this chapter and the motivation for the

error analysis of the thesis.

In chapter 5, the finite element aspects of the discrete formulation were

emphasized, as this framework leads to the symmetric error estimate. In chapter

6, however, the focus shifted to the method of lines approach used for the moving

finite element method. Namely, the application of Runge-Kutta time integration

schemes for solving the semi-discrete formulation was discussed the existence and

uniqueness of a finite element solution was verified. We also explored some of the

effects that a time integration scheme could have on the finite element solution. An

error estimate was proven for piecewise quadratic finite element solutions computed

using TR-BDF for time integration. Unfortunately, this proof relied on some

properties specific to the TR-BDF integration scheme and no general error estimate

could be given for a larger class of Runge-Kutta methods.

The content of chapter 7 was the implementation of these moving mesh

methods. A linear convection-dominated test problem and a convection-diffusion-

reaction test problem were used to validate the expectations of the theory estab-

lished in the previous chapters. Both test problems had solutions computed more

accurately using moving mesh, with the benefits being most pronounce with high

resolution in the spatial discretization and relatively longer time steps. This falls

in line with the predictions of the theory and validates the benefits of moving fi-
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nite elements for tensor product quadratic finite element spaces. Simulations were

also tested using interpolation rather than L2-projection; when the time step was

relatively close in size or larger than the size of the spatial elements, interpolation

lead to a significant speedup for computing the solution without any deteriora-

tion in accuracy. However, if a coarse spatial mesh was used in conjunction with

many short time steps, the interpolation error would build over the time partitions

and severely impact the accuracy of the computed solution. Further experiments

tested requirement for non-truncating quadrature rule to define the placement of

the collocation nodes and revealed that the test problems achieved the lowest er-

ror using Richardson’s TR-BDF collocation node, which does not correspond to a

non-truncating quadrature rule.

A simple adaptive meshing scheme, based on h-adaptive refinement us-

ing derivative recovery, was proposed and implemented with somewhat satisfac-

tory results. Overall, the adaptive method seemed to proportion nodes effectively

throughout the domain, yet the mechanism that predicted the number of spatial

nodes to be used in a time partition did not perform quite as well as expected. As

a final experiment, Burger’s equation was used as a test problem to evaluate the

efficacy of the moving finite element method for a nonlinear equation. Numerically

induced oscillations are often found near the boundary of shock layers for problems

like Burger’s equation when the time steps are taken to be too long. These oscilla-

tions were dampened quicker when using moving meshes rather than non-moving

meshes, indicating that moving meshes permit taking larger time steps while main-

taining high resolution at the faces of propagating shock layer. For both the basic

and adaptive moving mesh techniques, the spatial nodes congregated near the face

of the shock layer and tracked it as it swept through the spatial domain.

Some interesting aspects remain unexplored for these moving finite element

methods. For example, it would be interesting to understand whether the error

analysis given in this thesis can extend to more general differential equations than

linear convection-diffusion problems. Another interesting problem would investi-

gate elements that are specifically designed to reside near the boundary of the

finite element space that are specifically designed to improve the accuracy of the
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computed solution near inflow and outflow boundaries. This type of research could

lead to great improvements in computing accurate solutions for problems where

refined structures enter and propagate through the spatial domain, or refract off

of the boundaries of the domain. Furthermore, the software package PLTMG [16]

serves as a great launch pad for implementing moving finite elements for problems

with two dimensional spatial domains, as it possesses advanced adaptive meshing

techniques, data structures, and solvers for elliptic PDEs. Consequently, moving

finite element solvers can be implemented by connecting these subroutines with a

time integration scheme.

Applying finite elements to time-dependent problems leads to some interest-

ing difficulties. Simply discretizing the space-time domain as a higher dimensional

spatial problem seems to be an oversimplification for these problems, and often

a mix of finite elements and time integration via finite differences is employed.

This is exactly the approach of our moving finite element methods, though this

approach often leads to difficult error analysis, due to the fundamental differences

between finite element theory and the analysis of time integration schemes. This

thesis sought to overcome these difficulties by defining a space-time tensor product

finite element space that is compatible with the method of lines approach. In chap-

ter 5, we found a symmetric error estimate for the finite element solution, though

this came at the cost of constraining the time integration scheme. In chapter 6, we

generalized the moving finite element method to encompass more general time inte-

gration schemes, though this cost the much sought after symmetric error estimate.

It is interesting to wonder whether there is some way to reconcile this natural fit

of space and time discretizations in an error analysis, and it is this thought that

will continue to propel these methods into the work of future research.

Chapter 8, in part, is in preparation for submission for publication of this

material. Bank, Randolph E. The dissertation author is the primary investigator

and author of this material.
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In this final portion of the thesis, we include some additional analysis for

some common finite element discretizations using space-time tensor moving el-

ements. Analysis for the case of linear elements with one spatial dimension is

straightforward, since one needs only to preserve the positivity of the spatial di-

ameter, ∆xk(t) > 0, for all time t in the respective time partition, which leads to

the simple constraint that ∆xk is positive at the beginning and end of the time

partition. Namely, we consider the non-degeneracy of tensor quadratic elements

with one spatial dimension, where practical bounds are derived that correspond

to two distinct approaches for selecting a moving mesh. Also, we find a necessary

and sufficient condition for tensor linear elements with two spatial dimensions to

be non-degenerate.

A.1 Tensor quadratic elements with one spatial

dimension

We consider two problems that verify the non-degeneracy of a quadratic

tensor element. In the first problem, we are given a trapezoidal element, which

can come from a linear tensor element, and we want to understand how much we

can shift the nodes at the middle collocation node before the element degenerates,

while keeping the element at the beginning and end of the time partition fixed.

The second problem corresponds fixing the element at the beginning of the time

partition and the midpoint collocation point; this problem comes from extrapolat-

ing the mesh motion from the mid-step collocation point and analyzing how much

one may perturb the extrapolated element before degeneracy occurs.

A.1.1 Mid-step perturbation of a trapezoidal element

For this problem, we let ∆x0 and ∆x1 represent the fixed lengths of the

spatial element at the beginning and end of the time partition. Thus, a trapezoidal

element with these lengths would be of the form

∆xTR(t̃) = ∆x1t̃+ ∆x0(1− t̃).
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Figure A.1: Three tensor product quadratic elements. The element labeled (a)
has not been perturbed at the middle collocation node. Element (b) has been per-
turbed at the middle collocation node, though it remains non-degenerate. Element
(c) is an example of an element that degenerates because the middle collocation
nodes move too close to each other. Notice how the intersection does not neces-
sarily occur at a collocation time slice.

Let 0 < ε < 1, where ε denotes the relative position of the mid-step collocation

node within the time partition. The problem we consider here can be characterized

as finding the values of δx such that

∆x(t̃) = ∆x1t̃+ ∆x0(1− t̃) + δx
t̃(1− t̃)
ε(1− ε)

> 0, (A.1)

for all t̃ in [0, 1]. The addition of this bump function corresponds to shrinking

(δx < 0) or expanding (δx > 0) the element at the mid-step. This is illustrated by

figure A.1. Note that (A.1) is unaffected if we merely translate the element at the

mid-step, as this does not change the length the the spatial element at any time.

Since t̃(1− t̃)/ε(1− ε) > 0 for 0 < t̃ < 1, we see from (A.1) that ∆x(t̃) > 0

whenever δx > 0. We rewrite (A.1) as

∆x(t̃) = − 1

ε(1− ε)
δx t̃2 +

(
1

ε(1− ε)
δx+ ∆x1 −∆x0

)
t̃+ ∆x0

and compute the discriminant to find the values of δx when zeros are introduced

to the element diameter function ∆x(t̃). The discriminant is given by(
1

ε(1− ε)
δx+ ∆x1 −∆x0

)2

− 4

ε(1− ε)
δx∆x0

=

(
1

ε(1− ε)
δx+ ∆x1 + ∆x0

)2

− 4∆x1∆x0,
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which we set equal to zero to find which values of δx correspond to introducing

roots to ∆x(t̃). We find that there are no roots when√
∆x1∆x0 >

∣∣∣∣ δx

2ε(1− ε)
+

∆x1 + ∆x0

2

∣∣∣∣ ,
which implies

− 2ε(1− ε)
(

∆x1 + ∆x0

2
+
√

∆x1∆x0

)
< δx

< 2ε(1− ε)
(
−∆x1 + ∆x0

2
+
√

∆x1∆x0

)
.

Upon inspection, we see that the upper bound on δx corresponds to having roots

outside the unit interval, which do not concern us. Therefore, if

∂x > −2ε(1− ε)
(

∆x1 + ∆x0

2
+
√

∆x1∆x0

)
, (A.2)

the element does not degenerate at any given time within the time partition.

A.1.2 End-step perturbation of an extrapolated

trapezoidal element

Suppose now that the length of the spatial element is fixed at the beginning

and the mid-step of the time partition. Let 0 < ε < 1, where ε denotes the relative

position of the mid-step collocation node, as before. We assume for simplicity that

the extrapolated element does not degenerate in time; that is,

∆x(t̃) =
1

ε
∆x1/2t̃+

1

ε
∆x0(ε− t̃) > 0

for 0 ≤ t̃ ≤ 1. Then, we can add a bump function at the end of the time step and

want to find the values of δx such that

∆x(t̃) =
1

ε
∆x1/2t̃+

1

ε
∆x0(ε− t̃) + δx

t̃(t̃− ε)
ε(1− ε)

> 0, (A.3)

for all t̃ in [0, 1]. To keep the element form degenerating at the end of the time

step, we require

δx > −1

ε

(
∆x1/2t̃− (1− ε)∆x0

)
. (A.4)
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Figure A.2: Three tensor product quadratic elements. Element (a) is an element
that has can be successfully extrapolated from the mid-step collocation node. El-
ement (b) has been perturbed at the end collocation node, though it remains
non-degenerate. The third element (c) is an example of an element that cannot be
extrapolated; such elements should not be permitted into time partitions that are
built one collocation time slice at a time.

Element (c) in figure A.2 is an example of an element that does not meet this

criterion.

As before, we find the discriminant of the quadratic function ∆x(t̃) and

determine when it is negative, corresponding to the case when the element does

not degenerate:

0 >

(
− ε

1− ε
δx+

1

ε
∆x1/2 −

1

ε
∆x0

)2

− 4

1− ε
δx∆x0

=

(
− ε

1− ε
δx+

1

ε
∆x1/2 +

1

ε
∆x0

)2

− 4

ε2
∆x1/2∆x0.

This is equivalent to

2(1− ε)
ε2

(
∆x1/2 + ∆x0

2
−
√

∆x1/2∆x0

)
< δx

<
2(1− ε)

ε2

(
∆x1/2 + ∆x0

2
+
√

∆x1/2∆x0

)
.

This time, the lower bound for δx corresponds to ∆x(t̃) having roots outside the

unit interval, until (A.4) is violated. Accordingly, when perturbing the end-step of
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an extrapolated element, the perturbation must satisfy

−1

ε

(
∆x1/2t̃−(1−ε)∆x0

)
< δx <

2(1− ε)
ε2

(
∆x1/2 + ∆x0

2
+
√

∆x1/2∆x0

)
. (A.5)

A.2 Tensor product linear elements of two spa-

tial dimensions

Now, we find a necessary and sufficient condition for characterizing non-

degenerate linear prism elements that arise when employing linear discretizations

in space and time. For this problem, the isoparametric map is affine in space and

changes linearly in time; let

A0
0 =

[
∆x1(0) ∆x2(0)

∆y1(0) ∆y2(0)

]
and A1

1 =

[
∆x1(1) ∆x2(1)

∆y1(1) ∆y2(1)

]
,

represent the spatial Jacobian of the isoparametric map at times t̃ = 0 and t̃ = 1,

respectively. Then, the Jacobian matrix at time t̃, where 0 ≤ t̃ ≤ 1 is given by the

convex combination A(t̃) = A1
1t̃+A0

0(1− t̃).
The degeneration of this element is characterized by det

(
A(t̃)

)
= 0 for

some t̃ in the unit interval. Figure 3.3 in chapter 3 depicts a linear element that

degenerates at the mid-step from a twisting motion. Therefore, we make the

necessary assumption that sign
(

det(A0
0)
)

= sign
(

det(A1
1)
)
, to avoid degeneracy

at some intermediate time, which would otherwise follow from the intermediate

value theorem. We make use of this by calculating the determinant of A(t̃) and

finding the conditions that ensure that the determinant has no roots in [0, 1].

To easily represent det
(
A(t̃)

)
, we introduce the notation

A0
1 =

[
∆x1(0) ∆x2(0)

∆y1(1) ∆y2(1)

]
and A1

0 =

[
∆x1(1) ∆x2(1)

∆y1(0) ∆y2(0)

]
,

which are simply the matrices A0
0 and A1

1 with alternating rows borrowed from A0
0
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and A1
1. Taking the determinant of A(t̃), one obtains

det
(
A(t̃)

)
= det(A1

1)t̃2 +
(

det(A1
0) + det(A0

1)
)
t̃(1− t̃) + det(A0

0)(1− t̃)2

=
(

det(A1
1) + det(A0

0)−
(

det(A1
0) + det(A0

1)
))
t̃2

+
(

det(A1
0) + det(A0

1)− 2 det(A0
0)
)
t̃+ det(A0

0),

which can be verified directly. In the case where sign
(

det(A0
0)
)

= sign
(

det(A1
1)
)
>

0, we know that there are no roots for 0 ≤ t̃ ≤ 1, if det(A1
1) + det(A0

0) < det(A1
0) +

det(A0
1) by the concavity of the quadratic function. Likewise, if sign

(
det(A1

1)
)

=

sign
(

det(A1
1)
)
< 0, there are no real roots when det(A1

1) + det(A0
0) > det(A1

0) +

det(A0
1).

To find where the roots of this quadratic polynomial occur, we apply the

quadratic formula and find that there are no real roots when

0 >
(

det(A1
0) + det(A0

1)− 2 det(A0
0)
)2

− 4 det(A0
0)
(

det(A1
1) + det(A0

0)−
(

det(A1
0) + det(A0

1)
))

=
(

det(A1
0) + det(A0

1)
)2 − 4 det(A0

0) det(A1
1).

The equivalent condition for when det(A(t̃)) has any real roots is√
det(A0

0) det(A1
1) >

|det(A1
0) + det(A0

1)|
2

.

Note, however, that this is too restrictive since we are not concerned with roots out-

side the unit interval; by the above concavity (convexity) arguments of det(A(t̃)),

we see that a necessary and sufficient condition for this element to be non-degenerate

is

sign
(

det(A0
0)
)√

det(A0
0) det(A1

1) > −sign
(

det(A0
0)
) |det(A1

0) + det(A0
1)|

2
. (A.6)
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