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ABSTRACT
It is generally accepted that diverse, poorly characterized microorganisms reside deep
within Earth’s crust. One such lineage of deep subsurface-dwelling bacteria is an
uncultivated member of the Firmicutes phylum that can dominate molecular surveys
from both marine and continental rock fracture fluids, sometimes forming the sole
member of a single-species microbiome. Here, we reconstructed a genome from basalt-
hosted fluids of the deep subseafloor along the eastern Juan de Fuca Ridge flank and
used a phylogenomic analysis to show that, despite vast differences in geographic
origin and habitat, it forms a monophyletic clade with the terrestrial deep subsurface
genomeof ‘‘CandidatusDesulforudis audaxviator’’MP104C.While a limited number of
differences were observed between the marine genome of ‘‘CandidatusDesulfopertinax
cowenii’’ modA32 and its terrestrial relative that may be of potential adaptive impor-
tance, here it is revealed that the two are remarkably similar thermophiles possessing
the genetic capacity for motility, sporulation, hydrogenotrophy, chemoorganotrophy,
dissimilatory sulfate reduction, and the ability to fix inorganic carbon via the Wood-
Ljungdahl pathway for chemoautotrophic growth. Our results provide insights into the
genetic repertoire within marine and terrestrial members of a bacterial lineage that is
widespread in the global deep subsurface biosphere, and provides a natural means to
investigate adaptations specific to these two environments.

Subjects Ecology, Genomics, Microbiology
Keywords Deep subsurface, Microorganisms, Firmicutes, Juan de Fuca Ridge, Chemoautotrophy,
Basement biosphere, Sulfate reduction, Sporulation, Genomic, Metagenomic

INTRODUCTION
Recent progress in understanding the nature of microbial life inhabiting the sediment-
buried oceanic crust has beenmade through the use of ocean drilling program borehole ob-
servatories as platforms to successfully sample fluids that percolate through the subseafloor
basement (Wheat et al., 2011). In 2003, a pioneering study by Cowen and colleagues (2003)
used a passive-flow device to collect microbial biomass from fluids emanating out of
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an over-pressured borehole that originated from deep with the igneous basement of the
eastern flank of the Juan de Fuca Ridge in the Northeast Pacific Ocean. Ribosomal RNA
(16S rRNA) gene cloning and sequencing from the crustal fluids led to the first confirmation
of microbial life in the deep marine igneous basement and revealed the presence of diverse
bacteria and archaea. Discovered in this initial survey was an abundant, uniquely branching
lineage within the bacterial phylum Firmicutes that was only distantly related to its closest
known relative at the time, a thermophilic nitrate-reducing chemoautotroph isolated from
a terrestrial volcanic hot spring, Ammonifex degensii (Huber et al., 1996).

Subsequent molecular surveys within both the terrestrial and marine deep subsurface
revealed the presence of microorganisms related to the original marine firmicutes lineage
(Lin et al., 2006; Jungbluth et al., 2013). In the deep subseafloor basement, this lineage
has been recovered in high abundance (up to nearly 40%) from basaltic crustal fluids
collected from a borehole nearby the initial location sampled ten years previously by
Cowen and colleagues (2003), as well as from multiple boreholes spaced up to ∼70 km
apart in the same region of the Northeast Pacific Ocean seafloor (Jungbluth et al., 2013;
Jungbluth et al., 2014). In a surprising discovery, a single ecotype closely related to this
firmicutes lineage was discovered in deep terrestrial subsurface fracture water of South
Africa and found to be widespread (Magnabosco et al., 2014), where it sometimes made up
an extremely high proportion of microorganisms in situ (Chivian et al., 2008). This lineage
has since been found in other terrestrial habitats such as the Fennescandian Shield in
Finland (Itävaara et al., 2011), a saline geothermal aquifer in Germany (Lerm et al., 2013),
and an alkaline aquifer in Portugal (Tiago & Veríssimo, 2013). Based on 16S ribosomal
RNA sequence analyses, most of the terrestrial and marine lineages form a monophyletic
clade of predominantly subsurface origin but do not partition into subclades of exclusively
terrestrial and marine origin, suggesting that there may have been multiple transitions
between the terrestrial and marine deep subsurface environments (Jungbluth et al., 2013).

Chivian and colleagues (2008) reconstructed the first complete genome from a terrestrial
member of this firmicutes lineage, provisionally named ‘‘Candidatus Desulforudis
audaxviator’’ MP104C, via metagenome sequencing of a very low diversity sample from
a deep gold mine in South Africa. The ‘‘Ca. D. audaxviator’’ genome revealed a motile,
sporulating, thermophilic chemolithoautroptroph genetically capable of dissimilatory
sulfate reduction, hydrogenotrophy, nitrogen fixation, and carbon fixation via the reductive
acetyl-coenzyme A (Wood-Ljungdahl) pathway (Chivian et al., 2008). Thus, ‘‘Ca. D.
audaxviator’’ appears well suited for an independent lifestyle within the deep continental
subsurface environment. ‘‘Ca. D. audaxviator’’ and close relatives have continued to be
recovered in subsequent metagenomes sequenced from the South African subsurface
(Lau et al., 2014; Magnabosco et al., 2016). Recently, five flow-sorted and single amplified
genomes related to ‘‘Ca. D. audaxviator’’ were sequenced from the terrestrial subsurface
of South Africa, revealing significant genotypic variation with the terrestrial genomes
and providing evidence for horizontal gene transfer and viral infection in the terrestrial
subsurface environment (Labonté et al., 2015). To date, knowledge regarding marine
members of this deep subsurface firmicutes lineage has been limited to phylogenetic (16S
rRNA) and functional (dsr) gene surveys (Jungbluth et al., 2013; Robador et al., 2015).

Jungbluth et al. (2017), PeerJ, DOI 10.7717/peerj.3134 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.3134


In this study, we sought to improve understanding of the functional and evolutionary
attributes of microorganisms inhabiting the deep subseafloor basement by sequencing the
environmental DNA from two basement fluid samples from Juan de Fuca Ridge flank
boreholes U1362A and U1362B, generating the first metagenomes from this environment.
Binning of the resulting sequence data led to the reconstruction of a nearly complete
genome closely related to ‘‘Ca. D. audaxviator.’’ This genome has allowed us to compare
the functional composition of members of a microbial lineage that spans the terrestrial and
marine deep subsurface, investigate its evolutionary history, and determine its prevalence
within a globally-distributed assemblage of metagenomes.

MATERIALS AND METHODS
Borehole fluid sampling
Themethods used to collect samples duringR/VAtlantis cruise ATL18_07 (28 June 2011–14
July 2011) are described elsewhere (Jungbluth et al., 2016). Briefly, basement crustal fluids
were collected from CORK observatories located in 3.5 million-year-old ocean crust east
of the Juan de Fuca spreading center in the Northeast Pacific Ocean. Basement fluids were
collected from the polytetrafluoroethylene (PTFE) lined fluid delivery lines associated with
the lateral CORKs (L-CORKs) at boreholes U1362A (47◦45.6628′N, 127◦45.6720′W) and
U1362B (47◦45.4997′N, 127◦45.7312′W). These lines extend to 200 m and 30 m below the
sediment-basement interface, respectively. Fluids were filtered in situ via a mobile pumping
system (Cowen et al., 2012) through Steripak-GP20 filter cartridges (Millipore, Billerica,
MA, USA) containing 0.22 µm pore-sized polyethersulfone membranes. A filtration rate
of 1 L min−1 was calculated from laboratory tests, indicating that ∼124 L (U1362A)
and ∼70 L (U1362B) of deep subsurface crustal fluids were filtered. Based on average
cell abundances in whole water samples collected on the same dive/sampling sequence
(Jungbluth et al., 2016), ∼2.6 × 109 and ∼0.18 × 109 cells were collected from U1362A
and U1362B, respectively.

DNA extraction and metagenome sequencing
Nucleic acids were extracted from borehole fluids using a modified phenol/chloroform
lysis and purification method, and is described in detail elsewhere (Jungbluth et al., 2016;
samples SSF21-22, SSF23-24). Library preparation, DNA sequencing, read quality-control,
metagenome assembly, and gene prediction and annotation were conducted by the
Department of Energy Joint Genome Institute as part of their Community Science
Program using previously described informatics workflows (Huntemann et al., 2016),
which are described in detail elsewhere (Jungbluth, Amend & Rappé, 2017).

Genomic bin identification and reconstruction
All metagenomic scaffolds greater than 200 basepairs (bp) from U1362A (n= 137,672
contigs) and U1362B (n= 212,542 contigs) were binned separately with MaxBin v1.4
(Wu et al., 2014) using the 40 marker gene set universal among bacteria and archaea (Wu,
Jospin & Eisen, 2013), minimum contig length of 1,000 bp, and default parameters. Contig
coverage from each metagenome was estimated using the quality control-filtered raw reads
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as input for mapping using Bowtie2 v2.1.0 (Langmead & Salzberg, 2012) via MaxBin. The
genomic bins were screened and analyzed for completeness, contamination, and assigned
taxonomic identifications using CheckM v1.0.5 (Parks et al., 2015) with default parameters.

Raw quality control-filtered sequence reads from theU1362A andU1362Bmetagenomes
related to ‘‘Ca. D. audaxviator’’ were identified by mapping to three sources: (1) a single
genomic bin from U1362A related to ‘‘Ca. D. audaxviator’’ identified via CheckM (bin
A32), (2) the ‘‘Ca.D. audaxviator’’ genome, (3) and all ‘‘Ca.D. audaxviator’’-related contigs
>200 bp from the U1362A and U1362B metagenome assemblies generated by the Joint
Genome Institute. Mapping was performed independently for the U1362A and U1362B
metagenomes using both the bbmap v34.25 (http://sourceforge.net/projects/bbmap/) and
Bowtie2 v2.1.0 (Langmead & Salzberg, 2012) software packages with default parameters and
the paired-end read-mapping feature (Table S1). All reads from the U1362A metagenome
mapping to any of the three sources (1,785,284 sequences) were assembled using SPAdes
v3.5.0 (Bankevich et al., 2012) with options –k: 21,33,55,77, --careful –pe1-12 and default
parameters. Contaminating contigs in the assembly were screened and removed using the
JGI ProDeGe web portal v2.0 (https://prodege.jgi-psf.org/) on April 10, 2015, using default
parameters with the following taxonomy specified: ‘‘Bacteria; Firmicutes; Clostridia’’
(Tennessen et al., 2016). Contigs remaining following the use of ProDeGe comprise the
genome bin henceforth named ‘‘Ca. Desulfopertinax cowenii’’ modA32 and were screened
using CheckM as described above.

Genome annotation and analysis
The modified genome bin resulting from the pipeline described above (‘‘Ca. D. cowenii’’
modA32) was annotated via the Joint Genome Institute’s Integrated Microbial Genomes-
Expert Review (IMG-ER) web portal (Markowitz et al., 2014; Huntemann et al., 2015).
Annotations in the IMG-ER web portal served as the source of reported genome charac-
teristics and reported genes and their assignment to COGs. Phylogenetically informative
marker genes from ‘‘Ca. D. cowenii’’ were identified and extracted using the ‘tree’ command
in CheckM. In CheckM, open reading frames were called using prodigal v2.6.1 (Hyatt et
al., 2012) and a set of 43 lineage-specific marker genes, similar to the universal set used by
PhyloSift (Darling et al., 2014), were identified and aligned using HMMER v3.1b1 (Eddy,
2011). Initial phylogenetic analysis used pplacer (v1.1.alpha16-1-gf748c91) (Matsen,
Kodner & Armbrust, 2010) to place sequences into a CheckM tree/database (version 0.9.7)
composed of 2,052 finished and 3,604 draft genomes (Markowitz et al., 2012).

An alignment 6,988 amino acids in length corresponding to the 43 concatenated marker
genes from ‘‘Ca. D. cowenii,’’ ‘‘Ca. D. audaxviator,’’ other Firmicutes, and Actinobacteria
were used for additional phylogenetic analysis. The concatenated amino acid alignment
was used to generate a phylogeny using FastTree v2.1.9 (Price, Dehal & Arkin, 2010) with
the WAG amino acid substitution model. The dendogram was visualized using iTOL v3
(Letunic & Bork, 2016).

Average nucleotide identity (ANI)was computed in IMG-ERusing pairwise bidirectional
best nSimScan hits of genes having 70% or more identity and at least 70% coverage of the
shorter gene. The ‘‘Ca.D. cowenii’’→ [other genome] values are reported. Protein-coding
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genes in ‘‘Ca. D. cowenii’’ with homologs in ‘‘Ca. D. audaxviator,’’ and vice versa, were
identified and percent similarity estimated using the ‘‘Phylogenetic Profiler’’ tool in
IMG-ER with default parameters (max e-value: 10e−5; minimum identity: 30%). Average
amino acid identity (AAI) was computed for pairs of genomes closely related to ‘‘Ca. D.
cowenii’’ with an online web tool (http://enve-omics.ce.gatech.edu/aai/) using default
parameters. All non-RNA genes at least 100 amino acids in length were used in this
analysis. Two-way average amino acid identity scores are reported and the percent shared
genes were calculated as follows: 100 × (2 × (number of proteins used for two-way AAI
analysis))/((total number of amino acids ≥ 100 from genome A) + (total number of
amino acids ≥ 100 from genome B)). Estimates of transposase and integrase abundance
were derived in IMG using a functional profile of 100 pfams and COG functions selected
searching for keywords ‘‘transposase’’ and ‘‘integrase.’’

Genome and scaffold visualizations
Global genome comparisons were visualized in Circos v0.67-5 (Krzywinski et al.,
2009). Links between genomic regions of ‘‘Ca. D. cowenii’’ and ‘‘Ca. D. audaxviator’’
represent best reciprocal BLAST hits, which were generated using the blast_rbh.py script
(https://github.com/peterjc/galaxy_blast/tree/master/tools/blast_rbh) with blastn v2.2.29
(Altschul et al., 1990) and default parameters. Links between genomic regions from the
single amplified genomes of Labonté et al. (2015) represent BLAST hits that were generated
using blastn with default parameters and using ‘‘Ca.D. cowenii’’ and ‘‘Ca.D. audaxviator’’
as reference databases.

Selected scaffold regions were visualized with Easyfig v2.2.2 (Sullivan, Petty & Beatson,
2011). Similarity between regions was assessed using BLAST wrapped within Easyfig using
default parameters and task: blastn; minimum hit length: 50; max e-value: 0.001; minimum
identity value: 50. In all instances of blast, contigs from ‘‘Ca. D. cowenii’’ were used as the
query and ‘‘Ca. D. audaxviator’’ was used as the reference, with the exception of the single
three-scaffold comparison where ‘‘Ca. D. audaxviator’’ was used as the query and ‘‘Ca. D.
cowenii’’ Ga007115_16 used as the reference.

Metagenome fragment recruitment
Quality-filtered raw reads from the U1362A metagenome were mapped to the six scaffolds
that make up the ‘‘Ca. D. cowenii’’ genome bin and the ‘‘Ca. D. audaxviator’’ genome.
Recruitment was performed using FR-HIT v0.7.1 (Niu et al., 2011) with default parameters
(minimum sequence similarity 75%) and reporting a single best top hit for each read (-r 1).

Analysis of metagenome-derived SSU rRNA genes
Full length SSU rRNAgenes from the rawquality-filteredU1362A andU1362Bmetagenome
reads were assembled using EMIRGE (Miller et al., 2011) with default parameters and -a
20, -i 270, -s 100, -l 150, -j 1.0, –phred33, and using the SILVA SSURef_Nr99 version
119 database that was prepared using the fix_nonstandard_chars.py script supplied on
the EMIRGE website (https://github.com/csmiller/EMIRGE). Out of 1951 (U1362A) and
1434 (U1362B) near full-length SSU rRNA sequences constructed after 66 (U1362A) and
100 (U1362B) iterations of EMIRGE, a single sequence from U1362A related to the ‘‘Ca.
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D. audaxviator’’ lineage was identified through the SILVA online portal (Pruesse, Peplies
& Glöckner, 2012). The sequence was aligned using the SINA online aligner and manually
curated in ARB (Ludwig et al., 2004). Ambiguous and mis-aligned positions were excluded
from further analysis.

A base SSU rRNA gene phylogenetic tree was reconstructed in ARB from 36 sequences
and an alignment of 797 nucleotide positions using RAxML v7.72 (Stamatakis, 2006) with
default parameters, the GTR+G+I nucleotide substitution model identified via JModelTest
v2.1.1 (Darriba et al., 2012), and selecting the best tree from 100 iterations. Bootstrapping
was performed in ARB using the RAxML tool with 2,000 replicates (Stamatakis, Hoover &
Rougemont, 2008). Sequences of short length, including a masked version of the ‘‘Ca. D.
audaxviator’’-related SSU rRNA gene found here, were added to the phylogeny using the
parsimony insertion tool in ARB and a filter containing 363 nucleotide positions.

Phylogenetic analysis of dsrAB gene sequences
DNA sequences corresponding to dissimilatory sulfite reductase subunits alpha and beta
(dsrAB) were aligned in ARB using the ‘integrated aligners’ tool and a previously published
database of aligned dsrAB sequences (Loy et al., 2009). Additional sequences were identified
and included via BLAST search of the non-redundant NCBI database using megablast and
blastn with default parameters. Phylogenetic analyses were performed individually for dsrA
and dsrB using RAxML with the GTR model of nucleotide substitution under the gamma-
and invariable-models of rate heterogeneity, identified via jModelTest. The tree with the
highest negative log-likelihood score was selected from performing 100 iterations using
RAxML with default parameters. Phylogenies for the base trees were derived from partial
length dsrA and dsrB alignments (545 and 303 nucleotides, respectively) and bootstrapping
was performed in ARB using the RAxML rapid bootstrap analysis algorithm with 2,000
bootstraps.

Analysis of global distribution patterns
All protein-coding genes corresponding to the genomes of ‘‘Ca. D. cowenii’’ (1,782
genes) and ‘‘Ca. D. audaxviator’’ (2,239 genes) were used to generate a profile against 489
globally-distributedmetagenomes frommarine subsurface fluids, the terrestrial subsurface,
terrestrial hot springs, marine sediments, and seawater (Table S2). In IMG-ER, the ‘‘Profile
& Alignment’’ tool was used to query assembled metagenomes using genes corresponding
to the two genomes, a maximum e-value of 10−5, and a minimum similarity of 70%.
The number of gene hits was converted to a relative frequency and the location of hits
was visualized in R v3.1.2 (R Core Team, 2015) using latitude and longitude information
provided as metadata and the R maps package (version 2.3-10).

Fragment recruitment was subsequently used in effort to discriminate between
the distribution of the marine (‘‘Ca. D. cowenii’ modA32A) and terrestrial (‘‘Ca. D.
audaxviator’’) genomes of this Firmicutes lineage. Raw reads corresponding to IMG-ER
metagenomes with the highest hit frequencies in the profiles generated in IMG, and
additional unamplified metagenomes from the marine and terrestrial subsurface available
only via NCBI sequence read archive and MG-RAST, were used as references for mapping
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to the genomes of ‘‘Ca. D. cowenii’’ and ‘‘Ca. D. audaxviator’’ (Table S3). In order to
determine a % similarity cutoff that can discriminate between the two targets, the two
genomes were cut into non-overlapping 150 bp fragments to simulate the most common
sequence read length in current metagenome projects, and mapped back to the intact ‘‘Ca.
D. cowenii’’ and ‘‘Ca. D. audaxviator’’ genomes using FR-HIT with default parameters,
restricting matches to the single top best hit. Percent similarities ranging from 70–100%
were tested in one percent increments in order to quantify the frequency that the fragmented
genomes map to their source genome. A 96% similarity level was ultimately used because
it restricted spurious matches (i.e., reads mapping from one genome to the other) to a
frequency of ∼1% (Fig. S1). The ratio of reads mapping to ‘‘Ca. D. cowenii’’ or ‘‘Ca. D.
audaxviator’’ was calculated and visualized using Circos.

Sample access and affiliated information
The annotated draft genome of ‘‘Ca. D. cowenii’’ modA32 is available via the IMG web
portal under Taxon ID number 2615840622 (Gold Analysis Project ID: Ga0071115)
and NCBI whole genome shotgun (WGS) project MPOA00000000. The U1362A and
U1362B metagenomes are available via the IMG-M web portal under Taxon ID numbers
330002481 and 3300002532, respectively. Gold Analysis Project ID numbers are Ga0004278
(U1362A) andGa0004277 (U1362B). Samplemetadata can be accessed using the BioProject
identifier PRJNA269163. The NCBI BioSamples used here are SAMN03166137 (U1362A)
and SAMN03166138 (U1362B). Raw sequence data can be accessed using NCBI SRA
identifiers SRR3723048 (U1362A) and SRR3732688 (U1362B). A FASTA file containing all
EMIRGE-reconstructed SSU rRNA genes from the two borehole fluid metagenomes can
be accessed at https://doi.org/10.6084/m9.figshare.4539149.v1.

RESULTS AND DISCUSSION
Bin identification and refinement
Of 60 and 41 genome bins representing diverse groups of uncultivated bacteria and
archaea reconstructed from the U1362A and U1362B metagenomes, respectively, one that
comprised a nearly complete genome from U1362A (bin A32) was identified as related to
‘‘Ca. D. audaxviator’’ by phylogenetic analyses of a set of concatenated single copy marker
genes. In order to maximize genome recovery while minimizing potential contamination,
contigs within genome bin A32, the ‘‘Ca. D. audaxviator’’ genome, and scaffolds related
to ‘‘Ca. D. audaxviator’’ that were assembled directly from the U1362A and U1362B
metagenomes were used as references for mapping raw sequence reads from the U1362A
andU1362Bmetagenomes via several readmappingmethods. Because of the relatively high
abundance of reads in the U1362A library compared to U1362B, sequence mate pairs from
the U1362A metagenome that mapped to these templates were pooled and reassembled
(Table S1). Following subsequent screening and removal of contaminating sequences
(Table S4), six genomic scaffolds from U1362A totaling 1,778,734 base pairs (bp) in length
and originating from only the U1362A metagenome were identified that correspond to the
draft ‘‘Ca.D. cowenii’’ modA32 genome described here (Table 1). Average read coverage of
‘‘Ca.D. cowenii’’ modA32 was 55.0. The purity of the modified genomic bin was supported

Jungbluth et al. (2017), PeerJ, DOI 10.7717/peerj.3134 7/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.3134#supp-6
http://dx.doi.org/10.7717/peerj.3134#supp-1
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA269163
https://www.ncbi.nlm.nih.gov/sra?term=SRR3723048
https://www.ncbi.nlm.nih.gov/sra?term=SRR3732688
https://doi.org/10.6084/m9.figshare.4539149.v1
http://dx.doi.org/10.7717/peerj.3134#supp-4
http://dx.doi.org/10.7717/peerj.3134#supp-7
http://dx.doi.org/10.7717/peerj.3134


Table 1 Genome characteristics of ‘‘Ca.Desulfopertinax cowenii’’ modA32 and ‘‘Ca.Desulforudis au-
daxviator’’ MP104C.

‘‘Ca.D. cowenii’’ ‘‘Ca.D. audaxviator’’

Percent complete 98–99% (6 scaffolds) 100% (closed)
Genome size (bp) 1,778,734 2,349,476
Percent coding 89.8% 87.6%
GC content 60.2% 60.9%
Total no. of genes 1,842 2,293
No. of protein coding genes 1,782 (96.7%) 2,239 (97.6%)

With function prediction 1,518 (85.2%) 1,587 (70.9%)
Without function prediction 264 (14.8%) 652 (29.1%)
Shared 1,514 (85.0%) 1,606 (71.7%)

Paralogs 137 265
Pseudogenes n.d. 82
rRNA genes 2 6

5S rRNA 2 2
16S rRNA n.d. 2
23S rRNA n.d. 2

tRNA genes 44 45
CRISPR elements 1 4
Mobile elements (integrases/transposons) 6/7 23/81

Notes.
n.d., not detected.

Table 2 ‘‘Ca.Desulforudis audaxviator’’ MP104C-related genome bins from the U1362Ametagenome, analyzed by CheckM.

Bin_ID Total contigs/N50 (Kbp)/
longest contig (Kbp)

Completeness
(%)

Contamination
(%)

Strain heterogeneity
(%)

Total bases
(Mbp)

D. audaxviator – 98.09 0.32 0 2.35
1362A_maxbin32 50/112/179 97.61 5.10 100 1.87
1362A_maxbin32
(ProDeGe filtered)

31/112/179 95.70 5.10 100 1.81

‘‘Ca. D. cowenii’’ modA32
(SPAdes reassembly, ProDeGe
filtered)

6/332/826 97.61 0 0 1.78

by results generated using CheckM (Parks et al., 2015) (Table 2), congruent phylogenetic
analyses of concatenated marker genes (Fig. 1A) and dsrB (Fig. 2A) and dsrA genes (Fig.
S2), and a high percent of shared genes and gene synteny between the six genomic scaffolds
of ‘‘Ca. D. cowenii’’ and the ‘‘Ca. D. audaxviator’’ genome (Figs. 1B and 3A).

The 1.78Mbp ‘‘Ca.D. cowenii’’ modA32 genome is 98–99% complete based on separate
analyses of tRNA and other marker gene content specific to the phylum Firmicutes (Table
1). A phylogenomic analysis of 43 conserved marker genes confirmed a monophyletic
relationship between ‘‘Ca. D. cowenii’’ and ‘‘Ca. D. audaxviator’’ within the Firmicutes
(Fig. 1A), a relationship that was also supported by analyses of both dsrA (Fig. S2) and dsrB
genes (Fig. 2A). While no small-subunit (SSU) rRNA genes were identified in the ‘‘Ca. D.
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Figure 1 Phylogenomic and shared gene content analysis of ‘‘Ca.Desulfopertinax cowenii,’’ ‘‘Ca.
Desulforudis audaxviator’’ and other Firmicutes. Analysis of phylogenomic relationships, percent
shared genes, and average amino-acid identity between ‘‘Ca. Desulfopertinax cowenii’’ modA32 and ‘‘Ca.
Desulforudis audaxviator’’ MP104C reveal two lineages similar to each other and distinct from other
Firmicutes. (A) Phylogenomic relationships between ‘‘Ca. D. cowenii,’’ ‘‘Ca. D. audaxviator,’’ and other
Firmicutes based on a concatenated amino acid alignment of 43 universal single-copy marker genes. Black
(100%), gray (>80%), and white (>50%) circles indicate nodes with high local support values, from
1,000 replicates. Actinobacteria (n = 687) were used as an outgroup. The scale bar corresponds to 0.10
substitutions per amino acid position. (B) Percent shared genes and average amino-acid identity between
‘‘Ca. D. cowenii,’’ ‘‘Ca. D. audaxviator,’’ and six closely related Firmicutes lineages from (A). The grey
scale distinguishing horizontal axis labels corresponds to genome size.
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Figure 2 Phylogenetic analysis of ‘‘Ca. Desulfopertinax cowenii,’’ ‘‘Ca.Desulforudis audaxviator’’
and other closely related dsrB and SSU rRNA genes. Phylogenetic relationships between ‘‘Ca. Desul-
fopertinax cowenii,’’ ‘‘Ca. Desulforudis audaxviator,’’ and closely related dsrB genes (A) and a SSU rRNA
gene related to ‘‘Ca. D. audaxviator’’ reconstructed from the U1362A metagenome via EMIRGE (B) lend
additional support to a shared evolutionary history between ‘‘Ca. D. cowenii’’ and ‘‘Ca. D. audaxviator.’’
Black (100%), gray (≥80%), and white (≥50%) circles indicate nodes with bootstrap support, from 2,000
replicates. The scale bars correspond to 0.05 substitutions per nucleotide position. SSU rRNA gene se-
quences are colored according to their source location: blue, marine igneous basement; yellow, marine
sediments; green, terrestrial subsurface; red, artificial (man-made).

cowenii’’ genome bin, a single full-length SSU rRNA gene related to ‘‘Ca. D. audaxviator’’
was reconstructed from raw U1362A metagenome reads. Phylogenetic analyses revealed
this gene to form a tight cluster with SSU rRNA genes recovered previously from the
deep subseafloor along the Juan de Fuca Ridge flank and, more broadly, a monophyletic
lineage with ‘‘Ca. D. audaxviator’’ within the phylum Firmicutes (Fig. 2B). Consistent
with previous studies (Jungbluth et al., 2014; Jungbluth et al., 2016), oceanic crustal fluid
SSU rRNA gene clones formed at least two independent sub-lineages within this clade
(Fig. 2B). Overall, the topology of the 16S rRNA, dsrA, and dsrB gene phylogenies reveal
multiple distinct lineages related to the Ammonifex, Ca. D. audaxviator, Ca. D. cowenii,
and several additional uncharacterized lineages containing members from the marine
and terrestrial deep subsurface. Additional genomic information from these Firmicute
lineages will help reveal the functional and evolutionary characteristics shared among deep
subsurface microbial life.

Comparative genomics
The genomes of ‘‘Ca. D. cowenii’’ and ‘‘Ca. D. audaxviator’’ share an average nucleotide
identity of 76.9%. This similarity value is 7% higher than ‘‘Ca. D. cowenii’’ shares with the
next most closely related Firmicute genomes and demonstrates that ‘‘Ca. D. cowenii’’ and
‘‘Ca. D. audaxviator’’ originate from, at least, different species (Konstantinidis & Tiedje,
2005a). Similarly, the genomes of ‘‘Ca. D. cowenii’’ and ‘‘Ca. D. audaxviator’’ share an
average amino acid identity of 74.2%, nearly 18% higher than ‘‘Ca. D. cowenii’’ shares
with its next most similar genome, the Firmicute Desulfotomaculum kuznetsovii DSM 6115
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Figure 3 Analysis of genome alignment and shared and unique gene inventories in ‘‘Ca.Desulfoper-
tinax cowenii’’ and ‘‘Ca.Desulforudis audaxviator.’’ Multiple genome alignment and analysis of shared
and unique gene inventories reveal key conserved and variable features of ‘‘Ca. Desulfopertinax cowenii’’
and ‘‘Ca. Desulforudis audaxviator.’’ (A) Comparison of the ‘‘Ca. D. cowenii’’ genome scaffolds with ‘‘Ca.
D. audaxviator’’ based on reciprocal best BLAST. From innermost to outermost, concentric circles show:
nucleotide positions of genomes and scaffolds, percent GC content using a 100 bp sliding window, simi-
larity of mapped U1362A reads. Links connecting circles are colored according to ‘‘Ca. D. cowenii’’ scaf-
fold origin [Ga007115_(11–16)] and the degree of shading represents similarities (minimum similar-
ity 70%) based on BLAST comparisons using <75% (light shade), ≥75% (dark shade) nucleic acid iden-
tity thresholds. (B) Frequency of reciprocal best BLAST hits (n = 1,364) by percent similarity. Percent
similarity histogram bins are in 2% increments and the dashed lines indicate average nucleotide identity
(red) and average amino acid identity (blue) between ‘‘Ca. D. cowenii’’ and ‘‘Ca. D. audaxviator.’’ Rel-
ative abundance of shared (C) and unique (D) genes in the ‘‘Ca. D. cowenii’’ and ‘‘Ca. D. audaxviator’’
genomes, sorted by annotated COG categories. COG categories are: (A) RNA processing and modifica-
tion; (B) Chromatin structure and dynamics; (C) Energy production and conversion; (D) Cell cycle con-
trol, cell division, chromosome partitioning; (E) Amino acid transport and metabolism; (F) Nucleotide
transport and metabolism; (G) Carbohydrate transport and metabolism; (H) Coenzyme transport and
metabolism; (I) Lipid transport and metabolism; (J) Translation, ribosomal structure and biogenesis; (K)
Transcription; (L) Replication, recombination and repair; (M) Cell wall/membrane/envelope biogenesis;
(N) Cell motility; (O) Post-translational modification, protein turnover, and chaperones; (P) Inorganic
ion transport and metabolism; (Q) Secondary metabolites biosynthesis, transport, and catabolism; (R)
General function prediction only; (S) Function unknown; (T) Signal transduction mechanisms; (U) Intra-
cellular trafficking, secretion, and vesicular transport; (V) Defense mechanisms.
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(Fig. 1B). In addition to reinforcing the species-level evolutionary divergence observed
with ANI, an AAI value of 74.2% indicates that the genomes of ‘‘Ca. D. cowenii’’ and ‘‘Ca.
D. audaxviator’’ lie at the boundary demarcating genus-level divergence (Konstantinidis &
Tiedje, 2005b; Konstantinidis & Tiedje, 2007). A similar result was obtained by quantifying
the proportion of genes shared between ‘‘Ca. D. cowenii’’ and ‘‘Ca. D. audaxviator’’
(73.2%) (Fig. 1B).

Compared to the genomes of its closest relatives, the 1.78 Mbp genome harbored by
‘‘Ca.D. cowenii’’ is small (Fig. 1B). Despite the smaller size of the ‘‘Ca.D. cowenii’’ genome
compared to the 2.35 Mbp genome of ‘‘Ca. D. audaxviator,’’ the two share similar coding
density (89.8% vs. 87.6%), resulting in 451 fewer genes in ‘‘Ca.D. cowenii’’ (1,842 vs. 2,293)
(Table 1). Compared to other firmicutes, the predicted genome size of ‘‘Ca. D. cowenii’’
is among the smallest for members of the Class Clostridia with an elevated %GC (Fig.
S3); this relatively small genome size might be expected given the low flux of energy and
nutrients in the deep subseafloor environment . The smaller genome of ‘‘Ca. D. cowenii’’
shares 1,514 of its 1,782 (85.0%) protein coding genes with ‘‘Ca. D. audaxviator.’’ Despite
the lower gene content overall, ‘‘Ca. D. cowenii’’ harbors a similar number of protein
coding genes with a predicted function as the genome of ‘‘Ca. D. audaxviator’’ (1518 vs.
1587) (Table 1). In addition to a smaller genome and fewer genes, ‘‘Ca. D. cowenii’’ also
contained fewer pseudogenes (0 vs. 82) and paralogs (137 vs. 265) in comparison to ‘‘Ca.
D. audaxviator’’ (Table 1), which together suggest some form of streamlining of the ‘‘Ca.
D. cowenii’’ genome. Compared to ‘‘Ca. D. audaxviator,’’ the genome of ‘‘Ca. D. cowenii’’
contains fewer CRISPR elements, integrases and transposases, and phage-related genes,
which suggests lower viral infection and less horizontal gene transfer in the marine lineage.

Extensive gene synteny between ‘‘Ca.D. cowenii’’ and ‘‘Ca.D. audaxviator’’ was revealed
by comparing locations of homologs (Figs. 3A and 3B). Aligning the genome of ‘‘Ca. D.
cowenii’’ with five incomplete (3.6–7.8% complete) single amplified genomes (SAGs)
isolated from the terrestrial South Africa subsurface and related to ‘‘Ca. D. audaxviator’’
(Labonté et al., 2015) revealed that all of the SAGsweremore similar to ‘‘Ca.D. audaxviator’’
than ‘‘Ca. D. cowenii’’ (Fig. 4).

Similarities in functional gene complement
Comparisons of predicted proteins assigned to clusters of orthologous groups (COGs)
revealed a markedly similar distribution within the ‘‘Ca. D. cowenii’’ and ‘‘Ca. D.
audaxviator’’ genomes (Fig. 3C). A detailed description of these shared features is included
in Table S5.

The genome of ‘‘Ca. D. cowenii’’ reveals a microorganism that is functionally similar
to ‘‘Ca. D. audaxviator’’: an independent lifestyle consisting of a motile, sporulating,
thermophilic, anaerobic chemolithoautroptroph genetically capable of dissimilatory
sulfate reduction, hydrogenotrophy, carbon fixation via the reductive acetyl-coenzyme
A (Wood-Ljungdahl) pathway, and synthesis of all amino acids. The genome of ‘‘Ca. D.
cowenii’’ also indicates a chemoorganotroph that possesses abundant sugar transporters
and is capable of glycolysis, which is somewhat surprising given the low dissolved organic
carbon concentrations in this system (Lin et al., 2012). Similar to ‘‘Ca. D audaxviator,’’
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Figure 4 Analysis of genome alignment between ‘‘Ca.Desulfopertinax cowenii,’’ ‘‘Ca. Desulforudis
audaxviator’’ and five closely related single-cell genomes. Comparison of terrestrial deep subsurface
SAGs AC-310-P15, O10, N13, E02, and A06 with the genomes of ‘‘Ca. Desulfopertinax cowenii’’ and ‘‘Ca.
Desulforudis audaxviator.’’ Links connecting colored circles represent similarities based on blastn com-
parisons allowing a maximum of one best hit and using 75–80% (green), 80–85% (blue), >85% (grey) nu-
cleic acid identity thresholds. Inset plot indicates blastn comparisons allowing a maximum of a two best
hits.

hydrogenases were abundant in ‘‘Ca. D. cowenii,’’ which is consistent with the availability
of hydrogen in basement fluids of the Juan de Fuca Ridge flank (Lin et al., 2014). Altogether,
the shared features between ‘‘Ca. D. cowenii’’ and ‘‘Ca. D. audaxviator’’ help to explain
the wide distribution of this lineage in the global deep subsurface.

Differences in functional gene complement
Despite highly similar genomes overall, comparisons of predicted proteins assigned to
clusters of orthologous groups (COGs) revealed unique genes in ‘‘Ca.D cowenii’’ that were
not found in ‘‘Ca. D. audaxviator’’ (Fig. 3D; also see Tables S6 and S7). These genes are
likely locations to uncover features that differentiate the marine versus terrestrial members
of this lineage. While most unique genes in the ‘‘Ca. D. cowenii’’ genome have general
functional characterizations only (COG category R), the largest fraction of unique genes in
the ‘‘Ca. D. cowenii’’ versus ‘‘Ca. D. audaxviator’’ genome are found within COG category
M (Cell wall/membrane/envelop biogenesis) and include nucleoside-diphosphate-sugar
epimerases (e.g., galE) and glycosyltransferases (e.g., treT ) involved in cell wall biosynthesis,
and possibly in the production of exopolysaccharides involved with biofilm formation.
Defense mechanisms (COG category V) contained the highest ratio of unique genes in
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the ‘‘Ca. D. cowenii’’ genome compared to ‘‘Ca D. audaxviator’’ and includes genes
related to ABC-type multidrug transport systems, multidrug resistance efflux pumps
(hylD), and a class-A beta-lactamase. The marine genome has numerous monosaccharide
transporters not present in the terrestrial genome, including those encoding for components
of ribose/xylose, arabinose, methyl-galactoside, xylose, allose, and rhamnose transport.
Thus, potential differences in organic carbon substrate specificity are evident, which might
be expected given the different ages and reactivity of organic material in the marine and
terrestrial deep subsurface (e.g., Lang et al., 2006; Simkus et al., 2016).

Though the genome of ‘‘Ca. D. cowenii’’ is incomplete, within assembled contigs
there are a small number of large indels that are also potential sources of functional
differentiation between ‘‘Ca. D cowenii’’ and ‘‘Ca. D. audaxviator.’’ An indel present in
‘‘Ca. D. audaxviator’’ but lacking in ‘‘Ca. D. cowenii’’ includes a nitrogenase operon as
well as genes for ammonium transport and nitrogen regulation (Fig. 5). While the genes
for glutamine synthetase and glutamate synthase within the genome of ‘‘Ca. D. cowenii’’
suggest that it obtains its nitrogen from the abundant ammonia in Juan de Fuca Ridge
flank crustal fluids (Lin et al., 2012), it appears to be unable to fix inorganic dinitrogen.
Another indel suggests that ‘‘Ca. D. cowenii’’ lacks the capacity to produce cobalamin
(Fig. 5). Moreover, a large cassette of genes present in the ‘‘Ca. D. audaxviator’’ genome
that is related to gas vesicle production (and flanked by an integrase and two transposases)
is missing in ‘‘Ca. D. cowenii.’’ Finally, CRISPR-CAS gene arrays and CRISPR elements
were distinct between the two genomes (Fig. 5), with the genome of ‘‘Ca. D. cowenii’’
encoding 14 CRISPR-associated proteins versus 25 in ‘‘Ca. D. audaxviator.’’

Distribution
The Desulfopertinax/Desulforudis lineage was detected in metagenomic data generated
from the terrestrial subsurface of Mt. Terri, Switzerland and the Coast Range Ophiolite,
California, USA (Fig. 6A; see also Table S2). It was also foundwithinmarine sediments from
the coastal Atlantic and Pacific, a Yellowstone National Park hot spring, and the terrestrial
subsurface in Ontario, Canada, but never identified in seawater worldwide. Mapping raw
metagenome reads in a lineage-specific manner that discriminated between reads mapping
to ‘‘Ca. D. audaxviator’’ and ‘‘Ca. D. cowenii’’ revealed partitioning of these genomes
between terrestrial and marine environments, respectively (Fig. 6B; see also Table S3).
Surprisingly, the ratio of mapped reads from ‘‘Ca. D. cowenii’’ to ‘‘Ca. D. audaxviator’’
was, highest (18.9) in a sample from the terrestrial subsurface. The next largest ratios
were from the U1362A metagenome (7.3), three serpentinite groundwater metagenomes
(1.7–1.6), and the U1362B metagenome (1.4). The ratio of ‘‘Ca. D. audaxviator’’ to ‘‘Ca.
D. cowenii’’ reads was highest (up to ∼165) in samples collected from the terrestrial
subsurface of Witwatersrand Basin, South Africa, although this lineage also appears
present in serpentinite fluids from the terrestrial subsurface. Thus, it appears that the
Desulfopertinax/Desulforudis lineage has a cosmopolitan distribution throughout the
global subsurface environment, as indicated by mapping reads from 489 metagenomes
from the terrestrial and marine subsurface to the genomes of ‘‘Ca. D. cowenii’’ and ‘‘Ca.
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Figure 5 Comparative analysis of genomic organization in ‘‘Ca.Desulfopertinax cowenii’’ and ‘‘Ca.
Desulforudis audaxviator.’’ Comparison of genomic organization in ‘‘Ca. Desulfopertinax cowenii’’ with
‘‘Ca. Desulforudis audaxviator’’ highlighting regions with large, internal insertion/deletion events contain-
ing no homologous genes in the opposing genome. (A) nitrogen-fixation operon, (B) vitamin B12 synthe-
sis, (C) gas vesicle production, (D) a CRISPR-CAS array. Genes are colored according to COG categories
and BLAST similarity between regions is indicated by shading intensity.
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Figure 6 Analysis of the global distribution of ‘‘Ca.Desulfopertinax cowenii’’ and ‘‘Ca.Desulforudis
audaxviator.’’ ‘‘Ca. Desulfopertinax cowenii’’ and ’’Ca. Desulforudis audaxviator’’ are globally-
distributed in the deep subsurface. (A) Ellipse sizes correspond to the frequency of mapped reads
from environmental metagenomes to ‘‘Ca. D. cowenii’’ and ‘‘Ca. D. audaxviator’’ genomes. Triangles
indicate locations where a lineage has been detected in SSU rRNA gene surveys. The average frequency
of reads mapped to ‘‘Ca. D. coweii’’ and ‘‘Ca. D. audaxviator’’ are shown for all metagenomes listed in
Table S2 with >50,000 genes. (B) Graphical representation of the frequency of environmental genome
reads mapping to the ‘‘Ca. D. cowenii’’ and ‘‘Ca. D. audaxviator’’ genomes using a 96% read similarity
score. Environmental metagenomes with the highest ratio of reads mapped to ‘‘Ca. D. cowenii’’ vs. ‘‘Ca.
D. audaxviator’’ and having an average frequency of ≥0.00025 mapped reads are ordered in clockwise
fashion from highest to lowest (Table S2). MG-RAST metagenome 4440282 was retained solely because
it had the highest ratio of reads mapped to ‘‘Ca. D. cowenii’’:‘‘Ca. D. audaxviator.’’ Links are colored
according to the environmental source of each metagenome, while link sizes are proportional to the
frequency of a read from a metagenome to map to one genome or the other. The log of metagenome size
(number of reads) was used to create the relative length of the outer edges of the circle, which coarsely
divide the environments into marine versus terrestrial. The ‘‘Ca. D. cowenii’’ genome is sized 2.2× the
largest displayed metagenome and ‘‘Ca. D. audaxviator’’ is 1.32× (ratio of genome sizes) larger than the
‘‘Ca. D. cowenii’’ genome.

D. audaxviator,’’ as well as gene clones identified in published SSU rRNA surveys (Fig. 6;
see also Fig. 2B and Tables S2 and S3).

CONCLUSIONS
Crustal fluids within the terrestrial and marine deep subsurface contain microbial life
living at the biosphere’s limit; globally, deep subsurface biosphere is thought be one
of the largest reservoirs for microbial life on our planet. This study takes advantage of
new sampling technologies and couples them with improvements to DNA sequencing
and associated informatics tools in order to reconstruct the genome of an uncultivated
Firmicutes bacterium from fluids collected deep within the subseafloor of the Juan de Fuca
Ridge flank that has previously been documented within both the terrestrial and marine
subsurface. Based on our analyses, the capacity for both autotrophic and heterotrophic
lifestyles combined with motility and sporulation confers upon ‘‘Ca. D. cowenii’’ and
‘‘Ca. D. audaxviator’’ the ability to colonize the global deep biosphere. The close shared
ancestry between the marine ‘‘Ca.D. cowenii’’ and terrestrial ‘‘Ca.D. audaxviator’’ provide
a unique opportunity to advance our understanding of subsurface microbiology. By
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comparing the genome of this microorganism to a terrestrial counterpart, we reveal a
high and unsuspected degree of functional similarity spanning the marine and terrestrial
members of this lineage. Based on the predicted ability to reduce sulfate for energy
generation, the persistent detection of this lineage in deep marine biosphere studies, and
its initial discovery by deep subseafloor pioneer James Cowen (Cowen et al., 2003), we
propose the name ‘‘Desulfopertinax cowenii’’ for this candidatus taxon.
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