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Abstract
Chemical reactions are dynamical processes involving the correlated reorganization of atomic
configurations, driving the conversion of an initial reactant into a result product. By virtue of the
metastability of both the reactants and products, chemical reactions are rare events, proceeding
fleetingly. Reaction pathways can be modelled probabilistically by using the notion of reactive
density in the phase space of the molecular system. Such density is related to a function known as
the committor function, which describes the likelihood of a configuration evolving to one of the
nearby metastable regions. In theory, the committor function can be obtained by solving the
backward Kolmogorov equation (BKE), which is a partial differential equation (PDE) defined in
the full dimensional phase space. However, using traditional methods to solve this problem is not
practical for high dimensional systems. In this work, we propose a reinforcement learning based
method to identify important configurations that connect reactant and product states along
chemical reaction paths. By shooting multiple trajectories from these configurations, we can
generate an ensemble of states that concentrate on the transition path ensemble. This
configuration ensemble can be effectively employed in a neural network-based PDE solver to
obtain an approximation solution of a restricted BKE, even when the dimension of the problem is
very high. The resulting solution provides an approximation for the committor function that
encodes mechanistic information for the reaction, paving a new way for understanding of complex
chemical reactions and evaluation of reaction rates.

1. Introduction

The study of rare reactive events is a fundamental topic within the field of chemical physics [1]. These
reactions are dynamical processes that can be characterized by the transition of a molecular system from one
collection of meta-stable atomic configurations, i.e. a reactant, to another, i.e. a product. This metastability
arises from the features of the potential energy surface, where metastable states are configurations near the
local minimizer separated by high energy saddle points. When the saddle points lie along the typical
transition paths between reactants and products, they are referred to as transition states. The direct
numerical studies through molecular dynamics simulations are typically prohibitive computationally
because these reactions are rare relative to the timescales of the typical thermal fluctuations of the system [2].

A primary quantity of interest that has been employed to infer a mechanistic understanding of reactive
events is the committor, a function that maps the phase space of the system to the probability of reacting [3,
4]. This function encodes the ideal reaction coordinate, an abstract one dimension coordinate that can be
thought of as a nonlinear function of the full state of the system along which chemical reaction can be well
characterized, and the computation of this function can be framed as a multidimensional optimization
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problem [5–7]. The high-dimensionality of this problem poses difficulties in its inference, however a
multitude of methods have been developed over the past decade that have made the computation of this
function tractable. Some notable examples include the string method [5, 6], diffusion maps (DMs) [8–11]
and neural networks (NNs) [12–21].

This optimization of the committor can be framed as two separate but intertwined problems—(1)
finding configurations with high reactive densities and (2) fitting a nonlinear ansatz to solve the optimization
problem on those configurations to compute the committor. To solve the first problem, one needs a measure
of the reactive density that depends on the committor itself, and to solve the second problem, one needs to
access those configurations. One way to solve the first problem is to obtain an ensemble of reactive
trajectories via Transition Path Sampling [3, 22–24], a Monte-Carlo based method that enables generation of
new reactive trajectories from old ones. While this method provides access to the ideal set of configurations
to compute the committor on, it often suffers from low acceptance rates resulting in long decorrelation times
between subsequent trajectories, and further refinements based on approximations of the committor are
required to enable efficient sampling. Beyond transition path sampling, a wide range of methods have been
developed in the past two decades to access rare but important configurations that encode information of
reactive events. Such examples include but are not limited to metadynamics [25, 26], weighted ensemble
method [27, 28] and variational enhanced sampling [29]. These methods rely on applying a carefully chosen
bias potential to the original Hamiltonian along some low-rank ansatz of the reaction coordinate, often
referred to as an order parameter to generate more atomic configurations near the transition state. While
these methods can obtain accurate estimates of thermodynamic and kinetic observables, they strongly hinge
on the overlap between the order parameter and the reaction coordinate. As such, the ensembles of
configurations are often limited by the choice of the order parameter.

In this paper, we use a reinforcement learning (RL) based method to obtain an ensemble of
configurations with high reactive densities. This is done through a two-step method in which we first find
saddle points along the reactive probability density, which we refer to as connective configurations. Connective
configurations are a subset of the transition state ensemble defined as the collection of configurations where
the probability of reacting is one half. Connective configurations additionally are the maxima of reactive
probability density, they are the most likely set of transition states to be encountered during a reactive event.
While transition states can be thought of as a surface in the full configurational phase space from which a
configuration has equal likelihood to react or not, connective configurations are a set of points along this
surface where the reaction is most likely to cross the iso-committor surface. The optimization to find these
saddle points proceeds through an RL algorithm where an agent moves from one state to another by taking
an action in order to achieve a certain goal. Each action is associated with a reward, and which action to take
depends on a policy function designed to guide the agent toward the goal. In the context of searching for
connective configurations, a state is an atomic configuration, an action simply moves the agent from one
configuration to another according to a policy that is updated (or learned) over time. The optimal policy,
which is obtained after performing several RL episodes with each episode consisting of a sequence of actions,
would allow us (the agent) to move from any arbitrary configuration toward a connective configuration. In
our RL algorithm, the reward function, which we will describe in detail in section 3, is chosen as a proxy to
the true objective function to be maximized.

While RL based methods have been previously used to identify transition states [30] and perform
transition path sampling [31–33] or cloning [34, 35], the proposed method has a different objective and
yields different quantities of interest. Once we have obtained these configurations, we perform shooting
operations from these points to obtain a set of configurations along a relatively small subspace in the
configuration space, which we refer to as reaction channels. These channels can be understood as a set of
configurations distributed according to the reactive probability density. Obtaining these configurations
solves the first part of our problem without utilizing importance sampling methods [22, 36]. We also note
that the notion of reaction channels is similar to the concept of transition tubes introduced in within the
Transition Path Theory framework [7]. The distinction lies in the fact that transition tubes are assumed to be
localized within a narrow domain of the system. This is not a requirement in our case as the reactive channels
contain configurations from multiple reactive tubes when degenerate reactive pathways exist.

Once we obtain configurations within each reaction channels, we train a feed-forward neural network
(FNN) to solve the backward-Kolmogorov equation (BKE). While a range of methods have been proposed to
approximate a committor using an FNN, the method demonstrated in this work is unique in that it solves the
exact BKE rather than the variational form [13–16] or the Feynman–Kac form [17, 18]. This form of
optimization is more accurate, however similar to other methods, it is strongly sensitive to the configurations
that it is trained on. We find that training on samples obtained from RL based method proposed in this work
outperforms optimization on samples generated from a grid-based or high-temperature based sampling
method by at least one order of magnitude. Beyond the accuracy of the committor, the fidelity of this method
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is also demonstrated through accurate estimates of reactive rates, that are often non-trivial to converge. Thus,
we are able to solve the problem of obtaining samples with high reactive densities using RL (figure 1(a)), and
the problem of computing the committor by parameterizing an FNN as the solution to the exact BKE
(figure 1(b)).

The rest of the paper is organized as follows. In section 2, we introduce terminologies and concepts that
are relevant to the approach we take to study chemical reactions. We outline the basic scheme we use with
some detail in section 3. Section 3.1 is devoted to the details of the RL algorithm we use to identify
connective configurations. In particular, we discuss how to define the reward function and design an effective
policy. We discuss how to use NN to obtain the values of the committor function at selected configurations
generated within reaction channels in section 3.2. We demonstrate the effectiveness of our approach using a
few examples in section 4. We conclude the paper with some additional perspectives in section 5. Some of the
computational details and discussions are provided in the appendix.

2. Preliminaries

In this section, we introduce terminologies and concepts needed to present our algorithms in subsequent
sections. Specifically, we define a reactive trajectory associated with an overdamped Langevin dynamics, the
committor function associated with transition paths, and describe how the reaction rate constant can be
calculated from the committor function in section 2.1. The formalism of transition path theory discussed in
section 2.1 that we will use in this paper is well reviewed in the previous literature [7, 37]. We show how the
committor function can be computed by using a FNN in section 2.2.

2.1. Transition path theory
We denoteΩ⊂ Rd as the configuration space of a system, which represents the coordinates of the system. For
example, if a molecule of interest has L atoms, then the dimension of the configuration space is d= 3L. This
is because each atom has 3 spatial coordinates. Let x(t) = (x1(t),x2(t), . . . ,xd(t)) ∈ Ω be the evolution of
configuration that satisfy an overdamped Langevin dynamics defined by

γiẋi (t) =−∂V(x(t))

∂xi
+ ξi (t) , i = 1, . . . ,d, (1)

where V : Ω→ R is a potential energy function, γi is the friction coefficient for xi, ξi(t) is white noise with
mean ⟨ξi(t)⟩= 0 and variance ⟨ξi(t)ξj(t ′)⟩= 2β−1γi δ(t− t ′)δij and β is the inverse of the product of
temperature and Boltzmann’s constant.

Let A and B be two disjoint metastable regions of interest in the configuration space Ω⊂ Rd. They
correspond to regions surrounding two distinct local minima of the potential energy V(x). We are interested
in trajectories that start in A and terminate in B. Along such a trajectory, x(t)must escape out of one
metastable region and cross over a transition region Ω \(A∪B) before reaching another metastable region.
Such a trajectory is often referred to as a transition path. For chemical systems, a transition region is
associated with a chemical reaction. A transition path is also referred to as a reactive trajectory.

The probability density of x follows the Boltzmann–Gibbs distribution p(x) = exp(−βV(x))/Z, where
Z=
´
Ω
exp(−βV(x))dx is a normalization constant or the partition function. The probability of observing x

in a transition region relative to the probability of observing x in a metastable region is very low. As a result, a
transition path or a reactive trajectory is a rare event and generally requires a very long period of simulation
time to observe.
Committor function. Reactive trajectories are not unique. In fact, a chemical reaction is often

characterized by an ensemble of reactive trajectories. Along each reactive trajectory, we are particularly
interested in configurations that are equally likely to evolve (or commit) to either one of the metastable
regions A and B. The probability that a configuration will initially transition into one metastable region
rather than the other can be characterized by what is known as a committor function. To give a precise
definition of a committor function q(x), let τD(x) be the first hitting time of region D when the dynamics is
initiated from x, i.e. τD(x) represents the time it takes for the chemical system to first enter region D when
the dynamics starts from x. A committor function, denoted by q(x), is defined as the probability that a
trajectory x̄(t), starting from a point x̄(0) = x within a given set Ω, reaches B before it reaches A, namely,
q(x) = Prob(τB < τA | x̄(0) = x). It is well known that q(x) satisfies the BKE

L(q) :=
d∑

i=1

(
−γ−1

i

∂V(x)

∂xi

∂q(x)

∂xi
+ γ−1

i β−1 ∂
2q(x)

∂x2i

)
= 0,

x ∈ Ω \ (A∪B) , q(x) = 0, x ∈ A, q(x) = 1, x ∈ B. (2)
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When dimension of Ω is low (2 or 3), this partial differential equation (PDE) can be solved numerically by
standard methods such as the finite difference or finite element method. However, when the dimension of Ω
is high, it is not practical to use these methods to solve for q(x). We will discuss an alternative approach that
uses a FNN to solve for q(x) in section 2.2.
Probability of being reactive. We use ρ(x) to denote the probability of observing a reactive trajectory

crossing x. Observing a reactive trajectory crossing x involves two events. First, there’s the event of observing
x, which has a probability p(x) following the Boltzmann–Gibbs distribution. Second, the trajectory crossing
x is reactive. This reactive trajectory can be split into two sub-paths: one starts at x and first reaches point B
rather than A, with probability q(x); the other starts within A rather than B and reaches x, which has
probability (1− q(x)) under the assumption of time reversibility at thermal equilibrium [37]. Therefore,
ρ(x) can be expressed by

ρ(x) = (1− q(x))q(x)p(x) . (3)

A configuration x that has a high reactive density ρ(x) is of particular interest because it marks a
transition region along a reactive trajectory associated with an overdamped Langevin dynamics. The
function ρ(x) = (1− q(x))q(x)p(x) has two components: (1− q(x))q(x) and p(x). The first component
reaches its maximum when {x : q(x) = 0.5}, representing configurations on the half-isocommittor surface
{x : q(x) = 0.5}. It decreases as the configuration approaches either metastable region. On the other hand,
p(x) takes on larger values as x gets closer to the metastable states. Therefore, the maximum of ρ(x) arises
from a delicate balance between these two competing factors. This maximum point may reside on the
configurations of the lowest energy along the half-isocommittor surface. To evaluate ρ(x), the definition of
q(x) given in (3) requires the committor function q(x) to be known in advance. Because q(x) is generally
difficult to calculate for an arbitrary x, it is not easy to calculate ρ(x) in practice.
Reaction rate. The committor function is used in [7] to introduce the notion of the current or flux

associated with a reactive trajectory. At a configuration x along a reactive trajectory, the flux J(x) across x is
defined as

Ji (x) = Z−1e−βV(x)γ−1
i β−1 ∂q(x)

∂xi
, (4)

where J(x) = (J1(x), . . . , Jd(x)) and Z is again the partition function.
If J(x) is known for all x along a dividing surface S, a surface that separates A and B, we can use it to

evaluate the reaction rate constant κ via

κ=

ˆ
S
nS (x) J(x)dσS (x) , (5)

where nS(x) is normal vector of S.
Note that the main contribution to the integral (5) comes from configurations x along the dividing

surface that has a relatively large magnitude of the flux J(x). Because these configurations typically occupy a
small area S′ on S for rare events [7, 37], we can focus on this area and approximate (5) by

κ≈
ˆ
S ′
nS ′ (x) J(x)dσS (x) . (6)

The area S′ can be defined by the intersection of S and the so-called reaction channel to be defined in
section 3.

We should note that as long as S′ can be easily identified and J(x) can be efficiently evaluated for all
x ∈ S ′, the formula (6) provides a more practical way to compute the rate constant compared to a brute force
approach in which the rate constant is computed according to the alternative definition

κ= lim
T→∞

NT

T
, (7)

where NT is the number of trajectory segments that leave A and enter B within the time interval [0,T] [7]. In
the latter approach, κ can be approximated by a direct simulation, i.e. we can generate a sufficiently long
overdamped Langevin trajectory from a random starting point and count NT. However, when the system
contains a high barrier, it becomes extremely rare to observe a reactive trajectory even with a long time
simulation.
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If the dividing surface is not accessible, an alternative method is to calculate the integral of the flux on the
transition region, which can be done as follows:

κ=

ˆ
Ω\(A∪B)

Z−1e−βV(x)β−1
d∑

i=1

γ−1
i

(
∂q(x)

∂xi

)2

dx , (8)

for the systems considered here.

2.2. Solving committor function via deep learning
In recent year, deep learning has demonstrated remarkable progress in various domains of scientific
exploration [38–40], thanks to the exceptional approximation and generalization capabilities of NNs [41]. In
particular, deep learning has emerged as a powerful tool for solving a wide range of PDEs, including those
formulated in high-dimensional spaces where conventional solvers like finite difference and finite element
methods suffer from the curse of dimensionality [42]. Furthermore, NN-based solvers can be easily adapted
to solve PDEs defined on an irregular domain. These two key attributes of an NN-based PDE solver make it
highly advantageous for the specific problem we aim to address in this study. As we will show in section 4, an
NN-based PDE solver enables us to solve a 66-dimensional BKE associated with a 22-atom molecule within a
reaction channel that consists of an ensemble of configurations not uniformly distributed or organized in a
regular domain in the configuration space. The NN-based PDE solver overcomes these complexities and
enables us to effectively handle this challenging scenario.

To apply an NN-based PDE solver to BKE (2) on Ω, the approximation to the solution (i.e. the
committor function) is represented as an NN q(x;θ), where a vector θ denotes a set of weights and biases.
The network takes x as the input and generates q(x;θ) as the output. The NN parameters are determined in
an iterative training procedure that minimizes a loss function with respect to θ for different choices of the
input x. To learn θ, we define the loss function as

∥L(q(x;θ))∥2L2(Ω) + ℓ∥q(x;θ)∥2L2(A) + ℓ∥q(x;θ)− 1∥2L2(B), (9)

where ℓ is a penalty coefficient used to impose the boundary constraints. In practice, the L2-norm in (9) is
evaluated by summing the loss on the data points sampled randomly and uniformly in Ω and L is computed
by auto-differentiation using advanced deep learning frameworks (e.g. Pytorch [43]). The NN-based
optimization (9) can be conducted by stochastic gradient descent (SGD), such as Adam [44], a variant of
SGD based on momentum. Similarly, when solving BKE (2) on K sub-domains Ω1, . . . ,ΩK ⊂ Ω, the PDE
becomes L(q) = 0 for x ∈ ∪K

s=1Ωs along with the boundary conditions, which is referred to as restricted BKE.
We can define the NN-optimization problem by

min
θ

K∑
s=1

∥L(q(x;θ))∥2L2(Ωs)
+ ℓ∥q(x;θ)∥2L2(A) + ℓ∥q(x;θ)− 1∥2L2(B). (10)

When we have data points {xi,s}Ns
i=1 ⊂ Ωs, s= 1, . . . ,K, {x̂i}Nα

i=1 ⊂ A and {x̃i}Nβ

i=1 ⊂ B, the loss function
in (10) can be evaluated as

1∑K
s=1Ns

K∑
s=1

Ns∑
i=1

(
Lq

(
xi,s;θ

))2
+

ℓ

Nα

Nα∑
i=1

q
(
x̂i;θ

)2
+

ℓ

Nβ

Nβ∑
i=1

(
q
(
x̃i;θ

)
− 1

)2
. (11)

Here, Ns stands for the number of configurations within the sth subdomain Ωs for s= 1, . . . ,K, while Nα and
Nβ represent the number of configurations within a small neighborhood of the metastable states A and B
respectively.

3. Methodology

As we indicated in section 2.1, configurations x with high reactive density ρ(x) are of interest because they
mark a transition region in which reactive trajectories are more likely to be observed. Intuitively, if we shoot a
trajectory from a configuration x with a high reactive density ρ(x) and initiate it with a random momentum,
it is likely that the trajectory will stay within a region where reactive trajectories pass through. Even though
such a trajectory may not be part of a reactive trajectory, the configurations along such a trajectory occupy a
small subspace that is likely to contain several reactive trajectories. We will refer to the subspace formed by
these configurations as a reaction channel. Because configurations within such a subspace are likely to have
high reactive flux J(x), we will focus on these configurations, and solve a restricted BKE within a reaction

5
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channel using the NN technique discussed in section 2.2 to obtain an approximate committor function and
its gradient at configurations within the channel. With these, one can approximately calculate the reaction
rate constant by evaluating (6).

We should note that the concept of reaction channel introduced here is similar in spirit to the notion of
transition tube introduced in [7]. A transition tube is defined to be an ensemble of regions on
non-intersection dividing surfaces between two metastable regions A and B that have localized flux. Because
a transition tube is characterized by configurations with relatively high reactive flux which depends on the
unknown committor function, it is not easy to identify directly. Although the central curve within the
transition tube can be approximated by the minimum energy path which can be computed by the string
method [5], defining the region of the tube is still not trivial. The transition tube and reaction channel share
conceptual similarities, as they both aim to characterize the average behavior of reactive trajectories between
metastable states A and B. However, there are some key differences: The transition tube is a concept within
Transition Path Theory that requires the assumption that the reactive pathway is dominated by a single
localized tube (a chain of configurations that connect the two metastable states) that spans a narrow subset of
the complete state space of the system. However, this assumption can break down when there are degenerate
pathways that the system evolves through to go from one metastable well to the other. As an example, in
section 4.1, the potential energy surface contains two pathways or tubes through which the reaction can
occur through. On the other hand, we use the concept of reaction channels to define samples of
configurations that are distributed according to the reactive probability density. Hence, the two concepts
should be the same for reactions where there is a single dominant reactive pathway.

Because a reaction channel is generated by shooting trajectories from a single configuration, it is
relatively easy to produce as long as we can select a proper configuration to shoot from. Ideally, that
configuration should be the one that has a high reactive density ρ(x). However, because ρ(x) is defined in
terms of the committor function, it is not easy to identify configurations with high ρ(x) directly because that
would require solving the original BKE (2). In the following, we will present a RL-based technique to identify
configurations that are likely to have a high ρ(x), and we will refer to these configurations as connective
configurations.

To create reaction channels, we start by performing a shooting procedure from connective
configurations. Within each reaction channel, we can determine the committor function on each
configuration by solving a restricted BKE using a NN. Using the NN solution and its gradient, we can then
calculate the reactive flux for every configuration within the reaction channels. As we will see in the next
section, the reaction channel generated by shooting trajectories from connective configurations is likely to
contain configurations with relatively high reactive flux. This is sufficient to provide a good estimation of
statistics, such as rate, even if not all configurations within the channel have high reactive flux.

3.1. Seeking connective configurations via RL
In this section, we show how to use a RL method to identify connective configurations. Our basic strategy is
to treat each configuration as a state xt and train an agent to take a sequence of actions {a0,a1, . . . ,an} to
move from an arbitrary state x0 to x1, x2, . . . successively through the operation xt+1 = xt + at, for
t= 0,1, . . . ,n− 1, until it ultimately reaches a desired state xn which corresponds to a connective
configuration. The sequence of state-action pairs {(xt,at)}, with t= 0,1,2, ..,n− 1 is an instance of a policy
π the agent follows, which is initially not optimal. However, over a multi-episode learning process, the policy
is gradually improved based on the feedback the agent receives from the environment, which consists of
configurations not being visited, through a policy gradient. An optimal policy allows the agent to move from
an arbitrary state to the desired state efficiently.

In an RL algorithm, an action that an agent takes at a particular state x is associated with a reward r(x,a)
that measures the effectiveness of that state action pair. The policy an agent follows at a particular state x is
often designed to maximize not just the reward r(x,a), but also the expectation of a sequence of discounted
future rewards, i.e.

Eτ∼π
[
R(τ) |x0 = x,a0 = a

]
, (12)

where τ is an instance of a policy π that is specified by a sequence of state action pairs
τ := {(x0,a0), . . . ,(xt,at), . . .}, and

R(τ) :=
∞∑
t=1

ηtr(xt,at) ,

for some discount factor 0< η ⩽ 1. Such expectation of discounted future rewards is often referred to as a
Q-value function or Q-function in short and denoted by Qπ(x,a).

6
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We use A(x) to denote the action that maximizes Qπ(x,a) for a given policy π, i.e.

A(x) = argmax
a

Qπ (x,a) . (13)

It is well known that the optimal Q-function Q∗(x,a) :=maxπQπ(x,a) satisfies the Bellman
equation [45]

Q∗ (x,a) = Ex ′

[
r(x,a)+ ηmax

a ′
Q∗ (x ′,a ′)

]
, (14)

where the expectation is taken with respect to the conditional probability of the new state x ′ given x and a.
Associated with this optimal Q-function is the optimal action

A∗ (x) = argmax
a

Q∗ (x,a) . (15)

Because the state space that contains x and the action space that contains a in our problem are not
discrete and because the analytical form of the optimal Q-function is generally unknown, it is difficult to
solve the Bellman equation (14) or the optimization problem (15) directly. Finding the optimal Q-function is
often an intractable problem, and approximate solutions are commonly used instead. Several methods such
as the deep deterministic policy gradient [46] (DDPG) method, twin delayed DDPG [47] (TD3) method
have been developed to solve the problem approximately. In these methods, Q(x,a) and A(x) are represented
by NNs with parameter setsΨ and Φ respectively. Here,Ψ and Φ are used to represent trainable parameters
including weights and biases within the respective NNs. These NNs are trained by a set of data P that
contains a collection of (x,a, r(x,a),x ′), where x ′ denotes a new state reached by the agent after taking the
action a. Roughly speaking, the parametersΨ and Φ are optimized in an alternate fashion by maximizing the
objectives derived from (15) and the Bellman equation. We have included a diagram in appendix A to
provide a visual illustration of the Q-learning training process. To be specific, the training process is used to
solve the following optimization problems alternately

max
Φ

E
(x,a,r,x ′)∼P

Q(x,A(x;Φ) ;Ψ) (16)

and

min
Ψ

E
(x,a,r,x ′)∼P

[Q(x,a;Ψ)− (r(x,a)+ ηQ(x ′,A(x ′;Φ) ;Ψ))]
2
. (17)

Reward.Note that the solution of the second problem (17) depends on how the reward function r(x,a) is
defined. Because our ultimate goal is to identify connective configurations that are expected to have a high
reactive density ρ(x), ideally, we would like to use ρ(x ′), where x ′ = x+ a, as the reward function. The
difficulty is that, as we indicated earlier, ρ(x) is defined in terms of the committor function q(x) which is
unknown in general. Therefore, setting r(x,a) to the exact ρ(x ′) is not practical.

However, as q(x) is defined as the probability of a trajectory starting from a point x and reaching B before
reaching A, we can estimate this probability numerically by shooting trajectories from x, and performing
statistical analysis of these trajectories. To be specific, we propose to use a shooting procedure to estimate
q(x) by counting the number of trajectories originating from x with a random momentum and terminating
in one of the metastable regions A or B within a fixed number of time steps.

We shoot N trajectories from x with a random momentum or force. Let NA be the number of trajectories
reaching A first rather than B within a fixed number of time T, and NB be the number of trajectories reaching
B first rather than A. Typically, T is far smaller than the time scale required to observe a reactive trajectory.
Clearly, NA +NB ⩽ N since some trajectories may hover around the starting configuration for a long time
and never reach either A or B within T time interval. We can view NA/(NA +NB) as an approximation to
q(x) and NB/(NA +NB) as an approximation to 1− q(x). Consequently, we can use

ρ̂(x) =
NANB

(NA +NB)
2 p(x) (18)

as a proxy for ρ(x). As a result, the reward function associated with the state action pair (x,a) can be
defined as

r(x,a) :=
NANB

(NA +NB)
2 ·

exp(−βV(x ′))

Z
, (19)

7



Mach. Learn.: Sci. Technol. 4 (2023) 045003 S Liang et al

Figure 1. The proposed workflow. (a) A schematic description of the proposed RL action-reward feedback loop. In each episode, a
sequence of states (configurations) {x0, . . . ,xt, . . .} is generated iteratively. Each iteration consists of the following stages. 1⃝
Initialization: a configuration x0 is randomly drawn from the configuration set; 2⃝ Evolution: the parameterized policy yields the
action at after observing the state xt . After taking the action, the agent moves to a new configuration xt+1=xt + at; 3⃝
Interaction: we shoot multiple trajectories from xt+1, and evaluate its reward r(xt,at). The quadruples (xt,at, r(xt,at),xt+1) is
used in Q-learning to update the policy. (b) We shoot multiple trajectories starting from the identified connective configurations.
We collect configurations along these trajectories that characterize the reaction channels. We then use these configurations to
solve the NN approximation to BKE.

where x ′ = x+ a is a new state. In practice, we can ignore the constant Z in (19).
Once the NNs are properly trained, the optimal action to be taken at each x satisfies

Q∗ (x,A(x)) =max
a

Q∗ (x,a) .

RL is a multi-episode iterative learning process. In each episode, a random configuration x0 is chosen to
start the learning process. A NN that represents the action function A(x) takes the configuration as the input
and generates an action a0 as the output. Taking such an action yields a new configuration x1 for which a
reward r can be obtained by shooting several trajectories from x1 and evaluating (19). This process can be
repeated several times until we generate a sequence of state action pairs {(xt,at)}. Figure 1 gives a schematic
illustration of the process of generating a sequence of state action pairs within a single episode.

The generated sequence of state action pairs, together with the rewards evaluated for states form the
training data set P that we use to optimize the NN representations of the Q-function Q(x,a) and action A(x)
by solving the minimization problems (16) and (17) in an alternate fashion. This data set P is continuously
updated as the agent interacts with the environment and adapts its policy over time. The action network and
Q network are trained by resampling from the P collection. The reward function r(x,a) guides the update of
the action network to generate valid actions. In addition, In order to discourage the agent from exploring
regions with extremely low Boltzmann–Gibbs distribution probabilities, we interrupt an episode when a
configuration ends up in an area of very low probability. As a result, the action strategy directs the state away
from these low-probability regions, thus strengthening the generation of valid actions. The RL code
incorporates a user-defined parameter to regulate the range of the action strategy. This prevents the action
strategy from producing excessively large values, as any actions that surpass this predefined range are clipped.

We use the TD3 method to perform the optimization of A(x) and Q(x,a). This variant of the DDPG
method uses a variety of techniques to improve the stability of the training process and mitigate the risk of
potentially over-estimating the Q-value function. In particular, TD3 uses the moving average of parameters
associated with multiple NNs to solve (16) and (17). Furthermore, TD3 uses a ‘delayed’ policy update, where
the policy network (which is used to determine the optimal action) is only updated after a certain number of
Q-network updates. This delayed updating scheme helps to stabilize the training process and reduces the
likelihood of the policy network training being stuck in an undesirable local minimum.

The main steps of a multi-episode RL algorithm for seeking the optimal policy that allows us to quickly
identify connection configurations from an arbitrary starting configuration is shown in algorithm 1.

8
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Algorithm 1. An RL algorithm for seeking connective configurations.

Input: Random parameter initializationΨ1 andΨ2 of critic networks and Φ of actor network.
Output: Action network A(·;Φ).
1: Initialize target networksΨ ′

1←Ψ1,Ψ
′
2←Ψ2 and Φ ′← Φ

2: Replay buffer P←∅
3: for episode from 1 to the maximal number of episodes do
4: x0 ∼ Uniform(Ω) ▷ Start a new episode
5: for t from 0 to L− 1 do
6: Obtain a new action at = A(xt;Φ) and a new state xt+1 = xt + at ▷ New state update rule
7: if p(xt+1) is smaller than a threshold then Break
8: end if
9: Compute the reward r(xt,at) using (19) ▷ Compute the reward by shooting
10: Append (xt,at, r(xt,at),xt+1) to P
11: end for
12: for tt from 0 to t do
13: Sample a mini-batch (x,a, r,x ′) of size B from P
14: y← r+ ηmin{Q(x ′,A(x ′;Φ ′); ·)) : Ψ ′

1,Ψ
′
2}

15: UpdateΨi with the loss
1
B

∑
(Q(x,a;Ψi)− y)2 for i = 1,2

16: if tt mod policy_delay= 0 then
17: Update Φ with the loss 1

B

∑
−Q(s,A(s;Φ);Ψ1)

18: Update target networks: Φ ′← τΦ+(1− τ)Φ ′ andΨ ′
i ← τΨi +(1− τ)Ψ ′

i for i = 1,2
19: end if
20: end for
21: end for

3.2. Generating reaction channels and computing reaction rate constant
After performing several episodes of RL using algorithm 1, we obtain an optimal action function A(·;Φ∗)
parameterized by Φ∗. Such a function yields the policy we follow at each configuration x to quickly move
towards a connective configuration. Figure 2(a) shows how such a policy (represented as the vector field)
looks like for a simple potential energy surface. The value of A(x), which is a vector with two components, is
plotted as an arrow for each x uniformly sampled in [−2.0,2.0]× [−1.5,2.0]. We see the arrows point to two
configurations marked by crosses. These correspond to two connective configurations.

Once we identify a connective configuration, we perform additional shooting operations from that
configuration to generate multiple trajectories originating from the connective configuration. The
configurations generated along these trajectories are considered as samples within a reaction channel
between A and B. If multiple connective configurations are identified, each one of them can be used to
generate a distinct reaction channel. Specifically, we shoot N trajectories from each of the identified
connective configurations using a time step of∆t up to a total time of T.

The configurations generated within reaction channels can be used to compute the committor function
q(x) by solving a restricted BKE on these configurations using a deep NN as we described in section 2.2. The
utilization of NN-based PDE solver is often associated with an implicit bias towards fitting smooth functions
that exhibit fast decay in the frequency domain [48]. Consequently, This bias can make it challenging for NN
models to capture drastic changes in the committor function. However, by choosing an appropriate training
dataset, one can mitigate this bias [49]. To generate an appropriate dataset, one can adjust how to perform
shooting from the identified connective configurations so that enough configurations cover the area of
interest. Both the hyperparameters T and N can be tuned, however the minimum value of these parameters
to guarantee accurate estimates is understood [24]. The choice of T, the trajectory length depends on the
relaxation timescale of the system and can be multiple order of magnitudes smaller than the first passage
time of the reaction. The dependence of the estimate on N, the number of trajectories can be computed by
noting that the outcome of the individual trials corresponds to a Bernoulli distribution. Hence, getting
accurate estimate of the committor along the isocommittor surface requires the most number of samples.
However, even for those points, one can get estimates within value of 0.1 with N = 20. In appendix D.2, we
demonstrate the advantage of using configurations within reaction channels to train the NN designed to
solve the restricted BKE.

The NN not only returns q(x) for each x within all reaction channels, but also its gradient∇q(x). This
will allow us to compute the reactive flux at each x within the reaction channel. As a result, by using (6), we
can calculate the rate constant.
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4. Numerical results

In this section, we present several numerical experiments that demonstrate the effectiveness of the RL
method introduced in section 3 for identifying connective configurations and using them to generate
configurations that characterize reactive channels. Our experiments were performed on model potentials
(triple-well and rugged Muller potentials) as well as the Alanine dipeptide (ADP) molecule in vacuum. The
triple-well potential contains several reaction pathways, and we utilize this potential to evaluate the
effectiveness of the proposed RL method in identifying different connective configurations within these
channels. The choice of the Rugged Muller-Brown potential is motivated by its rough energy landscape,
including a number of local minima between the states of interest. This selection is used to assess the ability
of the proposed RL method in handling complex systems. We examined two numerical models at distinct
temperatures: a lower temperature and a relatively higher one. As temperature decreases, observing
transitional paths and reaction channels becomes increasingly challenging. This choice of two temperatures
aims to verify the capacity of the proposed RL method to identify reaction channel across a range of
temperature conditions, particularly low temperatures. While we demonstrate the RL results with
initializations uniformly sampled from Ω in this section, we have the flexibility to relax this constraint by
considering initializations from metastable states (see appendix D.1).

4.1. Potential with multiple reaction pathways
We consider the triple-well potential defined by

V(x1,x2) = 3e−x21−(x2− 1
3 )

2

− 3e−x21−(x2− 5
3 )

2

− 5e−(x−1)2−x22 − 5e−(x1+1)2−x22 + 0.2x41 + 0.2

(
x2 −

1

3

)4

. (20)

We focus on the domain Ω= [−2,2]× [−1.2,2]. Figure 2(a) shows this potential as a color-mapped image.
The two meta-stable regions A and B are defined by

A= {x : V(x1,x2)<−2 and x1 ⩽−0.1} , B= {x : V(x1,x2)<−2 and x1 ⩾ 0.1} .

We can see from figure 2(a) that there are two transition paths from A to B. The top transition path goes
through the third well in the top part of the image and two transition states between the third well and A (B).
The bottom transition path goes directly from A to B and crosses the transition state. Because the potential
function is symmetric with respect to x1 = 0, all configurations along {x : x1 = 0} have an equal probability
of reaching either A or B. As a result, {x : x1 = 0} represents the half-isocommittor surface. Here, the
half-isocommittor surface is a set of configurations whose committor value is 0.5, i.e. {x : q(x) = 0.5}. We
experimented with both a relatively low-temperature regime β= 6.67 and a relatively high-temperature
regime β= 1.67. We discuss the results for β= 6.67 here, which is more challenging for studying rare events.
We report a similar observation for the β= 1.67 case in appendix B.1. By default, the friction coefficient is set
as 1.
Identifying reaction channels. In the presented experiments, the initial configuration for each RL

episode is randomly sampled from a uniform distribution of configurations in Ω. The reward r(x,a) (19) is
obtained by shooting N = 50 trajectories from x. The maximal number of evolution steps is set to L= 15.
The maximum number of episodes used in RL is set to 1000. While we initially set a large number of episodes
for the RL training process, it is worth noting that the convergence of RL does not require an extensive
number of episodes. Additional discussion can be found in appendix B.3.

Figure 2(a) shows the learned action A(x;Φ∗) as a vector field that represents an optimal policy. Two
attractors can be seen from this policy field. They correspond to two connective configurations located in
two different transition paths.

From each of the identified connective configuration, we shoot 50 trajectories by simulating the
overdamped Langevin dynamics (1) using the Euler–Maruyama scheme. We choose a uniform time step size
∆t= 5× 10−3, and propagate the solution from T= 0.0 to T= 2.0. The total number of configurations
generated along these trajectories is 40 000. These configurations lie either in the metastable region A or B or
two transition regions between A and B as shown in figure 2(b). These two transition regions correspond to
the two reactive channels associated with this potential energy surface.
Solving BKE.We then solve the restricted BKE in the identified reaction channels by using the NN-based

solver discussed in section 2.2. The loss function (11) is optimized by the Adam optimizer [44]. The
hyperparameters used in the NN are listed in appendix C. Figure 2(d) shows the contour plots of the NN
solution (colored contour lines) and the potential (dotted contour lines). The 0.5-level set of NN solution
marked in the figure almost coincides with the true half-isocommittor {x : x1 = 0}. As a reference, we also
used the finite difference method (FDM) to solve the BKE on the entire domain Ω. The absolute difference
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Figure 2. The results obtained from running the RL algorithm for Triple-well potential at inverse temperature β= 6.67. (a) The
action function (vector field) learned by the proposed RL. The action function reveals two connective configurations (crosses).
(b) The configurations generated by shooting trajectories initiated at the identified connective configurations. (c)–(e) The FDM
(c) and NN (d) solutions of the BKE (2) and their difference (e).

Table 1. Reaction rate of the triple-well potential under various temperatures. ‘N/A’ means that no reactive trajectory is observed in the
long trajectory of time T= 2× 107.

β

Methods 1.67 6.67

Direct simulation 2.18× 10−2 N/A
Finite difference (equation (6)) 2.16× 10−2 7.43× 10−8

NN (equation (6)) 2.00× 10−2 7.11× 10−8

NN (equation (8)) 1.99× 10−2 7.32× 10−8

between the NN and FDM solutions on a 100× 100 uniform mesh is shown in figure 2(e). We observe small
errors in the NN solution in the regions that contain a large number of sampled configurations (such as the
top transition path) and relatively large errors in regions where configurations are sparsely sampled (such as
the region near (0.0,0.5)).
Rate estimation. The NN approximation to the committor function and its gradient on configurations

with two reactive channels are used to calculate the reaction rate by integrating (5) over the dividing
sub-surfaces identified with each reaction channel based on the data. We compare the computed rate with
the one obtained from a direct dynamics simulation (see section 2.1) and that computed from the committor
function obtained from the finite difference solution of the KBE on the entire domain Ω in table 1. We list
the computed rates for both β= 1.67 and β= 6.67. In the direct dynamics simulation, we generate a long
trajectory by time evolving the solution to the overdampled Langevin equation to T= 2× 107. In the FDM
calculation, the rate is computed with numerical integration of (5) on the entire line segment {x : x1 = 0,
−1.2⩽ x2 ⩽ 2}. From these numerical experiments, we find that the generated configurations mainly cross
the line segment {x : x1 = 0,−1.0⩽ x2 ⩽ 2.2} for β= 1.67 and line segments {x : x1 = 0,−0.8⩽ x2 ⩽ 0.0,
0.8⩽ x2 ⩽ 1.8} for β= 6.67. We then compute the rates using the NN solutions on these segments. As we
can see, the NN solution on reaction channels gives comparable rates as the one obtained by the FDM and a
direct simulation. Finally, we validate the rate calculation with the proposed NN solution using the
formula (8).
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Figure 3. The results obtained from running the RL algorithm for the Rugged Muller potential at the inverse temperature
β= 0.25. (a) The action function (vector field) learned by the RL algorithm. It reveals one connective configuration (cross). (b)
The configurations generated by shooting trajectories from the identified connective configurations. (c)–(e) The FDM (c) and
NN (d) solutions of the BKE (2) and their difference (e).

4.2. Potential with rough landscape
In the second example, we consider the rugged Muller potential on the domain Ω= [−1.5,1]× [−0.5,2].
The potential function is defined by

V(x1,x2) =
4∑

i=1

Di exp
[
ai (x1 −Xi)

2
+ bi (x1 −Xi)(x2 −Yi)+ ci (x2 −Yi)

2
]
+ γ sin(2kπ x1) sin(2kπ x2) .

(21)

Here the parameters γ and k control the roughness of the landscape, which are set to 9 and 5, respectively.
Other model parameters (ai,bi, ci,Xi,Yi,Di, i = 1, . . . ,4) are exactly the same as the ones used in [14, 15]. By
default, the friction coefficient is set as 1.
Identifying reaction channels.We discuss the numerical results in the low temperature regime β= 0.25

(figure 3) here and refer readers to appendix B.2 for results obtained for β= 0.1. In this example, the reward
in the RL algorithm is calculated by shooting N = 20 trajectories up to T= 0.25. The step size used in each
trajectory is set to 5× 10−5. Each RL episode consists of L= 20 steps (actions). We ran the RL algorithm for
1000 episodes. Figure 3(a) shows that the learned policy points to a single connective configuration. From
that configuration, we shoot 50 trajectories using the Euler–Maruyama scheme. These trajectories contain
100 000 configurations that lie in the metastable regions A and B as well as the transition region in between
(figure 3(b)). The latter is viewed as the reactive channel for this particular potential energy surface. The
hyperparameter setting for the NNs used in the RL algorithm is listed in appendix C.
Solving BKE.We use the configurations contained in the reactive channel to solve the BKE via a NN.

Figures 3(c) and (d) show the contour plots of the solution to the BKE obtained from both the FDM and the
NN, respectively. The difference between the two is also shown in figure 3(e). From these plots, we observe
that the NN solution agrees well with the FDM solution. In particular, the NN solution captures drastical
changes near the point (−0.8,0.6).
Rate estimation. The computed committor functions obtained by the FDM and the NN approach are

used to compute the reaction rate under different β values. The computed rates are compared with those
obtained from direct numerical simulations of the corresponding overdamped Langevin dynamics in table 2.
In direction numerical simulations, we ran a long trajectory until T= 1.5× 104 with a time step size of 10−5.
When β= 0.25, no reactive trajectory is observed. When the committor function is obtained from the FDM,
the rate is computed from the numerical integration of (5) on the dividing surface {x1 = 0.0,
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Table 2. Reaction rate of the rugged Muller potential under various temperatures. ‘N/A’ means that no reactive trajectory is observed in
the long trajectory of time T= 1.5× 104.

β

Methods 0.1 0.25

Direct simulation 4.75× 10−3 N/A
Finite difference (equation (6)) 4.31× 10−3 1.78× 10−10

NN (equation (6)) 4.36× 10−3 6.27× 10−10

Figure 4. Alanine dipeptide in vacuum under temperature 300 K. (a) The potential energy landscape visualized in (ϕ,ψ)-space
and two metastable states (solid and dotted rectangle). (b) configurations generated from overdamped Langevin dynamics at
temperature 300 K. (c) The action function learned by the proposed RL algorithm. The action function reveals two connective
configurations (CC’s). (d) Configurations generated by shooting from the identified connective configurations. (e) The change of
molecule configuration from the identified connective configuration to metasable states.

−0.5⩽ x2 ⩽ 2.0}. When using an NN to compute the commitor function within the reactive channel, the
reaction rate is computed from the numerical integration of (5) along the line segments
{x1 =−0.5,0.0⩽ x2 ⩽ 0.8} for β= 0.1. When β= 0.25, we calculate the rate by integrating (5) along the
line segment {x1 =−0.5,0.3⩽ x2 ⩽ 0.65}. We observe that the rates computed by all three methods are
comparable when β= 0.1. When β= 0.25, the rates obtained from the NN and FDM approximation of the
committor function have the same magnitude.

4.3. ADP in vacuum
In this example, we show how the RL algorithm introduced above can be used to identify a reaction channel
of an ADP molecule in vacuum that corresponds to its isomerization process. In the following numerical
experiment, we set the temperature to 300 K. The ADP molecule contains 22 atoms (see figure 4(e)).
Therefore, the dimension of the configuration space is 66. The isomerization process is principally described
by two the dihedral angles (ϕ,ψ) ∈ [−180◦,180◦]2 of a subset of atoms (indexed by 4,6,8,14 and 6,8,14,16,
respectively.) With a slight abuse of notation, we use ϕ(x) and ψ(x) to donate the mapping from a
configuration x to the two specific torsion angles. Figure 4(a) shows the potential energy landscape in the
(ϕ,ψ)-space. The plot is constructed as follows. We first generate a long trajectory at a relatively high
temperature (1200 K). We denote the set of configurations along this trajectory by S. The potential energy
for each configuration in S is stored. Next, we discretize (ϕ,ψ) in (−180◦,180◦]× (−180◦,180◦] by
generating a 100× 100 uniform grid. For each (ϕi,ψj) pair on the grid, we define a neighborhood

C
(
ϕi,ψj

)
=
{
x ∈ S : |ϕ(x)−ϕi|⩽ 5◦, |ψ (x)−ψj|⩽ 5◦

}
.
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Figure 5. A comparison of solutions of the BKE (2) obtained from a diffusion map and NN respectively at temperature 300 K.

If C(ϕi,ψj) ̸= ∅, we set the potential energy associated with (ϕi,ψj) to Vmin, where

Vmin = min
x∈C(ϕi,ψj)

V(x) .

Otherwise, the potential energy of (ϕi,ψj) is undefined and colored by white in figure 4. The two metastable
regions A (solid box in figure 4(a)) and B (dotted box) are defined by A= {x :−150◦ ⩽ ϕ(x)⩽−65◦,
0◦ ⩽ ψ(x)⩽ 150◦},B= {x : 30◦ ⩽ ϕ(x)⩽ 100◦,−150◦ ⩽ ψ(x)⩽ 0◦}. Figure 4(b) shows the snapshots of
one trajectory initiated at a configuration near A of T= 1× 108 fs when the temperature is 300 K and we can
see that the no reactive trajectory is observed.
Identifying reaction channels. The proposed RL algorithm aims to find a connective configuration in

the (ϕ,ψ)-space. Subsequently, we use this configuration to generate additional configurations that bridge
two metastable states. We should note that, for the ADP system, the actions taken in the RL algorithm are
defined in a low-dimensional space specified by (ϕ,ψ) whereas the shooting procedure used to evaluate the
reward takes place in the 66-dimensional configuration space. To address this disparity in dimensionality, it is
necessary to establish a one-to-one mapping between each (ϕ,ψ) pair and a configuration in the phase space.
To this end, we first construct a configuration set P by generating trajectories at high temperature 1200 K. We
then map a given torsion coordinate in (ϕ,ψ) back to the configuration space by choosing a configuration
from P with lowest potential energy. We simulate the Langevin dynamics with a step size of 2 fs and friction
10ps−1 using the package Openmm Python API [50]. The reward for each action is computed by shooting 10
trajectories of T= 2× 103 fs with kinetic initialization randomly sampled from the Boltzmann–Gibbs
distribution. Each RL episode consists of L= 10 steps (actions). Figure 4(c) shows the learned action function
reveals 2 different connective configurations, i.e. (−10◦,−62◦) and (139◦,−120◦). However, our primary
interest is in (−10◦,−62◦) configuration, as it has been extensively studied in the existing literature [14, 20,
51]. We shoot 100 trajectories of T= 2× 103 fs from this connective configuration to generate the additional
configurations that bridge two metastable states as shown in figure 4(d). We also visualize the change of
molecular structures from the connective configuration to two metastable states in figure 4(e).
Solving BKE. Our next objective is to solve the BKE (2) in a 66-dimensional space. The obtained

numerical solution is used to generate the plot of the approximate committor function in (ϕ,ψ). Such an
approximation is then compared with the approximation obtained from the DM [8, 52] method. Note that it
is not possible to use traditional PDE solvers, such as finite difference and finite element to solve (2) because
they suffer from the curse of dimensionality, i.e. their computational cost increase exponentially with respect
to dimension of the problem [42]. The DMmethod is another sample-based method that allows for the
solution of the BKE to be approximated on an arbitrary set of configurations {xi}. However, it is important
to note that DMmay not always produce an accurate approximation of the derivatives at configurations near
the boundary [53, 54]. This can result in less accurate DM solutions to BKE near the boundaries of a fixed
domain.

We use the dataset {xi} identified by the proposed RL method as shown in figure 4(d) and apply DM and
NN method to get the solutions of the BKE. The solutions are presented in figure 5. We observe that the
half-isocommittor region of the solution, i.e. the set of configurations on which the committor function
value is close to 0.5, obtained from the DMmethod occupies a relatively large area in the (ϕ,ψ) plane,
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whereas the half-isocommittor region defined by the NN solution is confined to a small area defined by
[−25◦,25◦]× [−80◦,25◦]. Our solution is found to be more consistent with the results presented in figure 1
panel 2 of [51].
Rate estimation. To estimate the reaction rate, we use formula (8) and approximate the evaluation of the

integral using the generated configurations {xi} obtained through the shooting method. This approach
yields the approximation formula:

κ=

´
Ω
e−βV(x)β−1 ∥∇q(x)∥2 dx´

Ω
e−βV(x)dx

≈
∑N

i=1 e
−βV(xi)β−1 ∥∇q(xi)∥2∑N

i=1 e
−βV(xi)

. (22)

Finally, evaluating (22) using the approximated solution of KBE, we obtain a rate of 1.58× 10−5 ps−1. This
calculated estimate is comparable to the approximated value 4.54× 10−5 ps−1 (reported in figure 5 of [20]).

5. Conclusion and discussion

We presented a novel RL-based approach for identifying and characterizing an ensemble of configurations
where reactive trajectories are likely to be found. The optimized action function returned from the RL
algorithm reveals connective configurations that have high reactive probabilities. One of the key elements of
the RL algorithm is the proper construction of a reward function that serves as a surrogate for measuring the
reactive probability of a configuration, which is normally defined in terms of the value of the committor
function. Because the exact committor function is generally unknown in advance, we employ a randomized
shooting procedure to estimate its value at an arbitrary configuration. Using the identified connective
configurations, we generate trajectories directed towards metastable regions. The configurations along these
trajectories are utilized to define reactive channels on which a restricted BKE is solved by a NN-based PDE
solver. The solution yields an approximate committor function evaluated within these channels. This
committor function can then be used to estimate reaction rates. Our numerical results showcase the
capability of our RL approach in identifying reaction channels across multiple model problems of different
sizes. Furthermore, we attain a accurate approximation of the committor function on the reaction channels
using a NN-based PDE solver.

While our RL method effectively identifies the reaction channels and the NN-based PDE solver allows us
to approximate the committor function on the reaction channels, there are still several aspects that merit
further exploration.

To achieve a more accurate estimation of the committor function, which is utilized in the reward
function (19), it might be necessary to conduct a greater number of shooting operations, along with longer
shooting durations. However, an increase in the values of N and T will inevitably escalate the associated
costs. It becomes imperative to explore a reward function that maintains computational efficiency.

In our approach, we train a NN specifically designed to solve the restricted BKE within reaction channels.
While the committor values outside the reaction channel might not be of primary interest, it is important to
note that the approximated solution may be less accurate outside the reaction channel where limited data is
available.

As shown in figure 4(c), our RL method reveals two connective configurations. In particular, it identifies
one close to [140◦,−120◦] that is rarely discussed in the literature. We can potentially gain new chemical
insights from these identified reaction channels that have received little attention. Furthermore, we could
explore applications of our method on more complex systems, such as ADP in solvent.
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Figure 6. A schematic illustration of how the Q-learning is performed for a continuous action.

Appendix A. Q-learning algorithm

Figure 6 gives a schematic description of how the action function and the Q-function are optimized in the RL
algorithm used to identify connective configurations.

Appendix B. Numerical results for high temperature regime

B.1. Triple-well potential
This section presents the results obtained from running the RL algorithm to identify connective
configurations for a triple-well potential with an inverse temperature of β= 1.67. The reward function
defined in equation (19) was evaluated by shooting 50 trajectories of that evolve up to time T= 0.75. The
maximum number of time steps taken in each trajectory is set to L= 20. The RL procedure was run for a
total of 1000 episodes.

Figure 7(a) shows the action function A(x;Φ) produced at the end of the RL run. We mark two distinct
connectivity configurations identified by crosses. They are nearly identical to the connective configurations
we found when the trajectories were generated using β= 6.67. In figure 7(b), we plot configurations
generated by shooting trajectories from two connective configurations. We observe that the configurations
generated from running trajectories using β= 1.67 cover a wider region of the configuration space that
includes the local maximum near (0.0,0.5), as well as some configurations outside the pre-defined domain
Ω= [−2,2]× [−1.2,2]. Figures 7(c)–(e) show that the NN solution to BKE is comparable to solution
obtained from the FDM.

B.2. RuggedMuller potential
Figure 8 shows the results obtained from applying the previously presented RL algorithm to the Rugged
Muller potential at an inverse temperature of β= 0.1. The reward function defined in equation (19) was
computed based on shooting N = 10 trajectories that evolve up to time T= 0.05. The maximum number of
time steps taken in each trajectory was set to L= 20. The RL algorithm was run for a total of 1000 episodes.
We can observe that the configurations generated by shooting trajectories from the identified connective
configurations with β= 0.1 (see figure 8(b)) cover a wider area compared to that obtained from performing
RL and generating trajectories at β= 0.25. The committor function appears to be more stable near the region
around (−0.8,0.6). The error is relatively small in the region covered by the sampled configurations.

B.3. Monitoring RL progress
Figure 9 shows the reward as a function of the episode in the RL algorithm. A maximum of 1000 episodes are
allowed. However, the largest rewards are achieved around episode 500. This suggests that the RL process is
efficient and reaches a high level of performance before reaching the limit on the allowed number of episodes.

Appendix C. Implementation details of NN solutions of the BKE

In this paper, we approximate the solution of the BKE by a fully connected neural network (FNN), which can
be viewed as a composition of L simple nonlinear functions, i.e. ϕ(x;θ) := σ2 ◦ a⊤hL ◦hL−1 ◦ . . . ◦h1(x).
Here, hℓ(x) = σ (Wℓx+ bℓ) withWℓ ∈ RNℓ×Nℓ−1 , bℓ ∈ RNℓ for ℓ= 1, . . . ,L, a ∈ RNL , σ is the tanh function,
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Figure 7. The results obtained from running the RL algorithm for Triple-well potential at inverse temperature β= 1.67. (a) The
action function learned by our proposed RL. The action function reveals two connective configurations (crosses). (b) The
configurations generated by shooting trajectories initiated at the identified connective configurations. (c)–(e) The FDM (c) and
NN (d) solutions of the BKE (2) and their difference (e).

Figure 8. The results obtained from running the RL algorithm for the Rugged Muller potential at the inverse temperature β= 0.1.
(a) The action function learned by the RL algorithm. It reveals two connective configurations (crosses). (b) The configurations
generated by shooting trajectories from the identified connective configurations. (c)–(e) The FDM (c) and NN (d) solutions of
the BKE (2) and their difference (e).

and σ2 is a sigmoid function such that the range of output is [0,1]. We use an FNN with L= 2 and a uniform
widthm, i.e. Nℓ =m for all ℓ ̸= 0.

We split the collected configurations into 90% for training and 10% for validation. We tuned the
hyperparameters, such as the width of the FNN, the boundary penalty coefficient, and the number of training
iterations, by monitoring the equation error on the validation set. We optimized the hyperparameters to
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Figure 9. The moving average of the reward as a function of the episode number during the RL procedure. Here the value of the
reward is linearly scaled to the interval [0,1] by min-max normalization.

Table 3.Hyperparameter setting for solving BKE with NN. Note that we use two different boundary coefficients for boundary
conditions of A and B in the Alanine dipeptide case.

Example Triple-well Rugged Muller Alanine dipeptide

β 1.67 6.67 0.1 0.25 1/2.5 kJ−1mol

Widthm 50 50 100 100 200
Boundary coefficient ℓ 10 100 10 000 100 000 1 million & 2 million
Iteration 30 000 30 000 100 000 30 000 100 000

obtain the low equation loss on the validation set. The FNN is optimized by Adam [44]. In Adam, we use an
initial learning rate of 0.001 for T iterations. The learning rate is then adjusted in each iteration by a factor of
0.5(cos(π t

T )+ 1), where t is the current iteration number. We set the batch size to be the total number of
training points. The hyperparameter setting for each numerical example is listed in table 3.

Appendix D. Additional notes on the RLmethod

D.1. RL initialization from stable states
In the numerical results presented in section B, the initialization of the RL algorithm is performed by
randomly sampling from Ω uniformly. In a revised approach, we revise the initialization scheme by sampling
the initial configurations from the meta-stable regions. To show the impact of this change, we retrain the RL
model and plot the final configurations obtained from RL procedure using 1000 different initializations
sampled from the meta-stable region in figure 10.

With this initialization scheme, the RL method still successfully identifies two regions with a high reactive
probability for the triple-well potential. Similarly, in the case of the Rugged Muller potential, the RL
algorithm converges closely to the configurations depicted in figures 3(a) and 8(a). Furthermore, in the ADP
case, the RL approach reveals reactive regions similar to those shown in figure 4(c). These findings
demonstrate the robustness of the RL model with respect to different initialization strategies.

D.2. Solving the BKE using NNwith different training datasets
The utilization of NN-based optimization methods is often associated with an implicit bias toward fitting
smooth functions that exhibit fast decay in the frequency domain [48]. Consequently, training NN models
that can be used to approximate the committor function can be challenging when we attempt to capture
drastic changes in the committor function. Such implicit bias can be mitigated by using an appropriate
training dataset [49]. By carefully selecting the training dataset to provide the necessary samples that
encompass the desired variations in the committor function, we can overcome the limitations posed by the
implicit bias of NN-based optimization. Here we compare NN solutions of the BKE trained on various
datasets. These datasets consist of configurations sampled uniformly on Ω, configurations obtained from
overdamped Langevin dynamics ran at a higher temperature, and configurations generated by shooting from
CC’s, as depicted in figures 11 and 12 respectively. We evaluate the performance of the NN on two examples
(a triple-well potential and a Rugged Muller potential) at a low temperature. Figures 13 and 14 show the
mean square error (MSE) of the training loss and the NN solutions obtained from different training datasets.

From these results, it is evident that the NN solution trained on the dataset generated by shooting
trajectories from CC’s achieves a lower MSE and yields a more accurate approximation.
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Figure 10. The learned action produced by the RL algorithm where the initial configurations are randomly sampled from the
meta-stable region uniformly. Each ‘+’ represents the configuration generated in the final configuration of RL episode.
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Figure 11. Different training datasets used for NN solutions of the BKE for the triple well potential with β= 6.67. (a) Uniform
samples fromΩ. (b) Samples along a overdamped Langevin dynamics trajectory with β= 1.67. (c) Configurations generated by
shooting trajectories from the identified connective configurations.

Figure 12. Different training datasets used for NN solutions of the BKE for the Rugged Muller potential with β= 0.25. (a)
Uniformly sampled in Ω. (b) Sample along a overdamped Langevin dynamics trajectory with β= 0.05. (c) Configurations
generated by shooting from the identified connective configurations.

Figure 13. (a) Mean square error of the training loss at configurations sampled from the transition region of the triple well
potential. (b)–(d) NN solutions obtained from different training datasets.

Figure 14. (a) Mean square error of the training loss at configurations sampled from the transition region of the rugged
Muller-Brown potential. (b)–(d) NN solutions obtained from different training datasets.
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