
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Data-Efficient Surrogate Models for High-Throughput Density Functional Theory

Permalink
https://escholarship.org/uc/item/37b5z9rv

Author
Krawczuk, Schuyler

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/37b5z9rv
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

DATA-EFFICIENT SURROGATE MODELS FOR
HIGH-THROUGHPUT DENSITY FUNCTIONAL THEORY

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

SCIENTIFIC COMPUTING & APPLIED MATHEMATICS

by

Schuyler Krawczuk

June 2020

The Thesis of Schuyler Krawczuk
is approved:

Professor Daniele Venturi, Chair

Professor Qi Gong

Professor Marcella Gomez

Dean Quentin Williams
Vice Provost and Dean of Graduate Studies

Copyright c© by

Schuyler Krawczuk

2020

Table of Contents

List of Figures v

List of Tables ix

Abstract x

Acknowledgments xi

1 Density Functional Theory 1
1.1 Quantum Physics Background . 2

1.1.1 Bra And Ket Vectors . 2
1.1.2 The Wave Function, Schrodinger Equation & The Hamiltonian . 2

1.2 Hohenberg-Kohn Theorems . 4
1.3 Kohn-Sham Equations . 6

1.3.1 Exchange-Correlation Functionals 8
1.4 Solving The Kohn-Sham Equations . 10

1.4.1 The Eigenvalue Problem . 10
1.4.2 Plane Wave Basis . 12
1.4.3 Pseudopotential . 14
1.4.4 Reaching Self-Consistency . 15

1.5 Numerical Methods . 16
1.5.1 Davidson Algorithm . 17
1.5.2 Conjugate Gradient . 18
1.5.3 Computational Benchmark . 19

2 Neural Network Modeling For Density Functional Theory 21
2.1 Input-Output Maps . 21
2.2 Neural Networks . 24

2.2.1 Motivation For Neural Networks 25
2.2.2 Activation Functions . 26
2.2.3 Convolutional Neural Network 28

2.3 Assessing Accuracy . 31
2.4 Training . 33

iii

2.4.1 Training Neural Networks & Backpropagation 40
2.4.2 Regularization Methods . 42

2.5 Transfer Learning . 43
2.6 Neural Networks For Modeling Atomic Systems 46

2.6.1 Atomistic Neural Networks . 46
2.6.2 SchNet . 49
2.6.3 Transfer Learning For Modeling Molecular Properties 51

3 Predicting Free Energy Of Transition Metal Oxides With SchNet 53
3.1 Data Set Creation . 54
3.2 SchNet Direct Training Results . 54
3.3 Transfer Learning With SchNet . 55

3.3.1 Results . 57
3.3.2 Error Analysis . 58

3.4 Computational Cost Comparison . 60
3.5 Summary . 63

iv

List of Figures

1.1 Top: From top left moving clockwise: plot of V eff, V ext, V XC, and V Hartree

in a 2-dimensional slice of a Si structure. Spatial units are in Bohrs
(5.29 × 10−11m) and potential is in Rydberg units (13.6eV). Bottom:
The resulting electron density (in electrons per cubic Bohr) for the above
potential. 9

1.2 Algorithm for performing a DFT calculation 11
1.3 Comparison of a potential and its wave function (solid lines) to the pseu-

dopotential and its resulting wave function (dashed lines). The pseu-
dopotential results in a smoother wave function that is identical to the
true wave function outside of the core radius, rc. 15

1.4 Distribution computational time of 1,300 DFT calculations. Calculations
were done on a compute node with 2 Intel 2.1GHz Xeon E5-2620v4 pro-
cessors using 16 cores and 64GB RAM. 19

2.1 Left: Linear regression. The red line minimizes the error function in
Equation (2.3) to find the line that best fits the relationship between
hours studied and test grade.. Right: Logistic regression gives the percent
chance of getting a passing (above 70) grade on the test. A 50% chance
is indicated by the dashed horizontal line. 23

2.2 Activation functions. It can be seen that tanh(z) is a rescaled version
of the sigmoid function σ(z), which both mimic the behavior of the step
function in a continuous form. The ReLu is a piecewise linear function,
which applies a nonlinear transformation to z. 27

2.3 Examples of convolutional filters applied to an image of an apple. From
left to right is the original image, then that image convolved with a
sharpening kernel, a blurring kernel, and an edge detection kernel called
the Sobel filter. 29

2.4 A convolutional layer with six kernels, also called filters. Each kernel is
convolved with the three-dimensional input tensor, outputting a single
channel for each of these operations. 31

v

2.5 Top: The data from Figure 2.1 is split into a training set (blue circles) and
a test set (green squares). The training data is fit with linear regression on
the left and a fifth-degree polynomial on the right. Bottom: Probability
distribution of the absolute error of the training set on the left and test
set on the right. The polynomial fit achieves lower mean error (E) on the
training set but performs much differently on the test set, while linear
regression performs consistently on both. The polynomial overfits the
training data, making it unable to generalize well. 34

2.6 A plot of a function and its derivative. It can be seen that the maxima
and minima of f correspond to the points where its derivative are equal
to zero. Only the points where df

dx is increasing are the minima. 35
2.7 Top: State space of batch gradient descent and stochastic gradient de-

scent used to train linear regression, where y = −4x−4. Here, stochastic
gradient descent is updating each step with the gradient of only one data
point at a time. This leads to a path that does not follow the direction of
steepest descent as closely as batch gradient descent, but arrives at the
same minimum. Each method uses the constant learning rate α = 0.1.
Bottom: The two gradient descent methods used on a non-convex loss
function. It can be seen that stochastic gradient descent does not get
stuck in the smaller local minima as batch gradient descent does due to
the variation in its direction. 38

2.8 Training of the linear regression problem from Figure 2.7 using stochastic
gradient descent with and without learning rate decay. An initial step size
of α = 0.25 is used. As each converges on the minimum, it can be seen
the learning rate decay allows a more precise minimization. The larger
step size does not allow the flexibility to get as close to the minimum,
leading to the oscillations seen crossing over it. 39

2.9 Gradient descent with momentum gradually increases the step size during
the descent, allowing it to escape the local minimum at 5, which normal
gradient descent converges to. 40

2.10 A simple computational graph. Equation (2.50) describes back-propagation
used to get the gradient of x with respect to w. 42

2.11 L1 and L2 regularization visualized. The red contour line can be seen as
the bound placed on the two parameters β0 and β1 by the regularization,
L2 on the left and L1 on the right. The blue/green contour shows the
minimum parameter values for the cost function by itself. The red point
shows where the regularized cost function is minimized. 43

2.12 Comparison of polynomial regression on a small number of data points
without regularization and with L2 regularization where λ = 0.1. 44

vi

2.13 A visualization of transfer learning. A neural network is trained for source
Task 1 given a data set of input-output pairs {x(1), y(1)}. The shaded
boxes indicate portions whose weights are updated during training. The
trained hidden layer is then used to train a model for target Task 2,
a similar task to the source task with a different domain, {x(2), y(2)}.
In this model, the hidden layers are frozen and only the output layer’s
parameters are optimized. 45

2.14 Atomistic neural network approach to predicting properties. The struc-
ture of a material can be represented by a matrix consisting of each atom’s
atomic number (Z) and its Cartesian coordinates (R) with respect to a
reference point. This representation will be used as the input to the
neural network, which maps it to a target property, such as an energy. . 47

2.15 The atomistic neural network proposed by Behler and Parrinello, shown
with a three atom system modeling the total energy E. Each atom, from
its atomic number and position, are embedded into symmetry functions
G, describing its local environment relative to its neighbors. These sym-
metry functions are then each passed to a subnet S, each of which is a
neural network with the same weights. The result of this subnet is the
individual contribution to the total energy from each atom, which is then
aggregated to get the total energy. 48

2.16 Architecture of SchNet using a feature size of 64 and three interaction
blocks. The interaction block is shown in the middle, and the continuous-
filter convolutional layer on the right. 50

3.1 Visualization of the three transfer learning schemes used. The embedding
layer, the interaction blocks, and the output layer are either frozen or
fine-tuned. 56

3.2 Results of the three best transfer learning methods compared to best
direct training method without transfer learning with the original TMO
data set. Left: Mean absolute error of the validation set evaluation for
the models trained on each of the training set sizes. Right: Percent of
evaluations within chemical accuracy of the value computed with DFT. 58

3.3 Results of the two best transfer learning methods compared to best di-
rect training method without transfer learning with the extended TMO
data set. Left: Mean absolute error of the validation set evaluation for
the models trained on each of the training set sizes. Right: Percent of
evaluations within chemical accuracy of the value computed with DFT. 59

3.4 Relative error for each method on the original and extended TMO data
set. Left: Original data set. Right: Extended data set. 60

vii

3.5 Error distribution in cases where TL1 and direct training had similar
MAE with a significant gap in predictions within chemical accuracy. In
each case, TL1 errors make up a larger portion of both the ends of the
distribution, with the larger values making a significant impact to the
MAE. Left: Predictions from models trained on 100 length training sets
of original TMO data set. Right: Predictions from models trained on 500
length training set of extended TMO data set. 61

3.6 Top: Cumulative distribution of validation set error for direct training
and TL1 methods trained with the 100 and 400 length training sets of the
TMO data. In each case, over 20% more of the predictions from transfer
learning are within chemical accuracy (1 kcal/mol). Bottom: Cumulative
distribution of validation set error for direct training and TL2 methods
trained with the 125 and 500 length training sets of the extended TMO
data. 62

3.7 Total hypothetical computational time for screening properties with only
DFT and neural networks. Using 500 samples for training, using either
direct training or transfer learning would save 135 or 78 hours respectively
in computational time over DFT in predicting properties of just 300 more
materials. 63

viii

List of Tables

2.1 Validation set Mean absolute error of SchNet on the U0 from the QM9
dataset with varying amounts of training data. For 50,000 data points
and up, error remains within chemical accuracy. 52

3.1 Validation set mean absolute error in eV of SchNet models trained on
the full TMO training set. Arch 1 is the larger architecture described
and arch 2 is the smaller architecture. L2 signifies the inclusion of L2
regularization with a coefficient of 10−3 in the loss during training. . . . 55

3.2 Validation set mean absolute error in eV of each of the transfer learning
schemes along with the best performing direct training method across the
different-sized splits of the original TMO data set. The bold numbers are
the best result for the row. 57

3.3 Validation set mean absolute error in eV of the previously best performing
direct training and transfer learning methods applied to the extended
data TMO data set. 59

3.4 Total computational time in seconds to train direct and transfer learning
models per size of training set. Transfer learning models also take into
account the training time of their source model, accounting for the large
difference between methods. 60

ix

Abstract

Data-Efficient Surrogate Models for High-Throughput Density Functional

Theory

by

Schuyler Krawczuk

High-throughput screening of compounds for desirable electronic properties can allow

for accelerated discovery and design of materials. Density functional theory (DFT)

is the popular approach used for these quantum chemical calculations, but it can be

computationally expensive on a large scale. Recently, machine learning methods have

gained traction as a supplementation to DFT, with well-trained models achieving similar

accuracy as DFT itself. However, training a machine learning model to be accurate and

generalizable to unseen materials requires a large amount of training data. This work

proposes a method to minimize the need for novel data creation for training by using

transfer learning and publicly-available databases, allowing for both data-efficient and

accurate machine learning to replace density functional theory.

x

Acknowledgments

I’d like to thank my advisor Daniele Venturi for guiding me on this thesis and helping

me grow as a researcher over the last year. I also received guidance from Tyler Smart of

the Ping computational material science group, and would like to thank him for helping

me find my direction for this thesis. I would also like to acknowledge support from the

NSF-TRIPODS grant 81389-444168.

xi

Chapter 1

Density Functional Theory

Density functional theory is used to find properties of a many-body system.

With a single-body system, the Schrodinger equation can be solved to find the wave func-

tion, which contains all of the information about a system. However, the Schrodinger

equation quickly becomes more difficult to solve as the number of bodies increases. The

number of variables is 3N for a 3-dimensional N-bodied system. With more than one

electron, the Hamiltonian will also include a term for electron interaction which prevents

this problem from being separated into N single-body systems and causes the number

of terms to grow exponentially with N [20]. For these reasons, the many-body problem

becomes computationally infeasible and a different approach is required to find the wave

function in practice.

Density functional theory allows for an alternative approach to solving the

Schrodinger equation for many-bodied systems. Density functional theory is based on

the idea that any property of a system of interacting particles is a functional of its

ground state density. This limits the dimensionality of the problem to 3 regardless of

the number of bodies. This is originally shown by the work of Hohenberg and Kohn

[12]. Before this is covered, some basic concepts and mathematics of quantum physics

will be reviewed.

1

1.1 Quantum Physics Background

To understand the methods used in performing density functional theory cal-

culation, some knowledge in quantum mechanics is required. This section contains the

necessary background information, including the description of common notation and

theoretical concepts.

1.1.1 Bra And Ket Vectors

Bra-ket notation is the common way to represent vectors in quantum physics.

A vectorA can be represented in this notation as a row vector using a ”bra”, 〈A|, and as

a column vector with a ”ket”, |A〉. The inner product of vectors A and B is written as

〈A|B〉, and the outer product is |A〉 〈B|. Any complete bracket expression, such as the

preceding inner product, represents a scalar, while any incomplete bracket expression,

such as an individual bra or ket, or the outer product, represents a vector. Distributive

properties also hold for bra and ket vectors such that,

α(|A〉+ |B〉) = α |A〉+ α |B〉 , (1.1)

where α is a linear operator [7]. A linear operator may operate on either a bra as 〈A|α

or a ket, as α |A〉. The associative property applies to these operations such that,

(〈A|α) |B〉 = 〈A| (α |B〉). (1.2)

Since the order these two operators are multiplied in does not matter, this expression is

written as 〈A|α|B〉. The inner product of two functions f(x) and g(x), is the same as,

〈f |g〉 =

∫ ∞
−∞

f∗(x)g(x)dx, (1.3)

where f∗(x) is the complex conjugate of f(x) [7].

1.1.2 The Wave Function, Schrodinger Equation & The Hamiltonian

Contrary to classical mechanics, particles at the atomic scale behave as waves,

not just particles, so their dynamics are treated as such. In quantum mechanics, a

2

system is described by the wave function. The wave function is related to the system’s

physical state by the probability density. The probability density, or the probability of

a particle being at some position r, is equal to the square of the amplitude of the wave

function,

P (r) = |Ψ(r)|2. (1.4)

The wave function is typically represented by Ψ(r), with r being variables in the Eu-

clidean space. In the case of a system of electrons, the probability can be thought of as

the electron density, ni(r), of an electron in state Ψi [11].

ni(r) = |Ψi(r)|2. (1.5)

The system’s electron density n(r) is the sum of the electron density of each state,

n(r) =

N∑
i=1

|Ψi(r)|2. (1.6)

A wave function’s amplitude is not significant as much as its direction. A state multiplied

by a constant coefficient, αΨ, still represents the same state as Ψ. A wave function is

typically normalized such that,

〈Ψ|Ψ〉2 = 1. (1.7)

The square of the inner product of two different states represents the probability of

one state transforming to the other, justifying this normalization. The wave function

behaves according to the Schrodinger equation. This partial differential equation, in

the time-independent case which we will focus on, is written as,[
~

2m
∇2 + V (r)

]
Ψ(r) = EΨ(r). (1.8)

The left-hand coefficient of the wave function in the Schrodinger equation is known as

the Hamiltonian operator, which is the sum of kinetic and potential energy operators T

and V ,

H = T + V. (1.9)

3

E is the total energy of the state. This leads to a simplified notation for the Schrodinger

equation,

HΨ(r) = EΨ(r). (1.10)

Since E is a scalar quantity, H is a linear operator and E is an eigenvalue of H. We

can re-write the equation in bracket notation as,

H |Ψ〉 = E |Ψ〉 . (1.11)

E can be found by multiplying both sides on the left by 〈Ψ|,

〈Ψ|H|Ψ〉 = 〈Ψ|E|Ψ〉 = E 〈Ψ|Ψ〉 = E. (1.12)

〈Ψ|H|Ψ〉 is known as the expectation value, or the expected value of E when H operates

on Ψ. The expectation value of the Hamiltonian can also be written as,

E = 〈Ψ|H|Ψ〉 =

∫
R3

Ψ∗(r)HΨ(r)dr. (1.13)

For the case of a system of interacting particles, Equation (1.13) can be written in a

more specific form. In the following, Vext is the external potential; the electric potential

on electrons because of atoms’ nuclei. U is the internal potential caused by electron

interaction. n(r) is the electron density, which in R3 is the electric charge per unit

volume.

E = 〈Ψ|H|Ψ〉 = 〈Ψ|(T + U)|Ψ〉+

∫
R3

Vext(r)n(r)dr. (1.14)

1.2 Hohenberg-Kohn Theorems

Hohenberg and Kohn’s two proofs lay out the theoretical groundwork for mod-

ern density functional theory. First, they show that external potential is a unique func-

tional of electron density. From this it follows that the total energy functional is also

unique for a electron density.

Theorem 1. The external potential of an interacting system of particles is uniquely

determined by the ground state particle density.

4

Proof. Given two unique external potentials V
(1)
ext and V

(2)
ext , where V

(1)
ext is not V

(2)
ext + a

constant, suppose they lead to the same ground state density n(r). The two potentials

lead to different Hamiltonians H(1) and H(2) with ground state wave functions Ψ(1) and

Ψ(2), which are assumed to have the same ground state density. U is the potential due

to electron interaction within the system. The two energies can be written as,

E(1) =
〈

Ψ(1)
∣∣∣H1

∣∣∣Ψ(1)
〉

=
〈

Ψ(1)
∣∣∣(T + U)

∣∣∣Ψ(1)
〉

+

∫
R3

V
(1)
ext (r)n(r)dr (1.15)

and

E(2) =
〈

Ψ(2)
∣∣∣H2

∣∣∣Ψ(2)
〉

=
〈

Ψ(2)
∣∣∣(T + U)

∣∣∣Ψ(2)
〉

+

∫
R3

V
(2)
ext (r)n(r)dr. (1.16)

Since Ψ(2) is not the ground state,

E(1) <
〈

Ψ(2)
∣∣∣H1

∣∣∣Ψ(2)
〉
, (1.17)

E(1) <
〈

Ψ(2)
∣∣∣(T + U)

∣∣∣Ψ(2)
〉

+

∫
R3

V
(1)
ext (r)n(r)dr, (1.18)

E(1) <
〈

Ψ(2)
∣∣∣(T + U)

∣∣∣Ψ(2)
〉

+

∫
R3

V
(2)
ext (r)n(r)dr) +

∫
R3

V
(1)
ext (r)n(r)dr (1.19)

−
∫
R3

V
(2)
ext (r)n(r)dr, (1.20)

E(1) <E(2) +

∫
R3

(V
(1)
ext (r)− V (2)

ext (r))n(r)dr. (1.21)

And likewise for E(2),

E(2) < E(1) +

∫
R3

(V
(2)
ext (r)− V (1)

ext (r))n(r)dr. (1.22)

Adding these two together gives us a contradictory inequality,

E(1) + E(2) < E(1) + E(2). (1.23)

This shows that two unique potentials will not have a same corresponding density. This

means a potential is uniquely determined by the density.

In their second proof, it is shown that this unique energy functional is mini-

mized by the ground state density.

5

Theorem 2. There exists a universal functional for energy E[n] that is valid for any

external potential. The global minimum of this functional corresponds to the ground

state energy, and the density n that minimizes it is the ground state density.

Proof. Theorem 1 shows that the ground state density is unique for each external po-

tential, the energy can be written as a functional of density:

E[n] = T [n] + Eint[n] + EII +

∫
R3

V ext(r)n(r)dr, (1.24)

FHK[n] = T [n] + Eint[n], (1.25)

E[n] = FHK[n] +

∫
R3

V ext(r)n(r)dr + EII . (1.26)

EII refers to the interaction energy of the nuclei. The functional FHK contains all

of the terms of the interacting electron system and is only a function of n, so will be

treated the same regardless of external potential. Given the ground state density n(1),

the ground state energy is defined by,

E(1)[n(1)] =
〈

Ψ(1)
∣∣∣H(1)

∣∣∣Ψ(1)
〉
. (1.27)

Given a different density n(2) with corresponding wave function Ψ(2), the energy is,

E(2) =
〈

Ψ(2)
∣∣∣H(1)

∣∣∣Ψ(2)
〉
. (1.28)

We also know, 〈
Ψ(1)

∣∣∣H(1)
∣∣∣Ψ(1)

〉
<
〈

Ψ(2)
∣∣∣H(1)

∣∣∣Ψ(2)
〉
. (1.29)

So from this, it can be seen that the energy corresponding to the ground state density

is lower than that of any other density, minimizing the functional E[n]. If FHK[n] is

known, the system can be minimized with respect with respect to n to find the ground

state energy.

1.3 Kohn-Sham Equations

The Kohn-Sham method is based on the Hohenberg-Kohn theorems, and is the

common way modern density functional theory calculations are done. This approach

6

replaces the interacting many-body system with an auxiliary system of non-interacting

particles. The Kohn-Sham ansatz assumes that the ground state of this system is

equivalent to the ground state of the interacting system [12]. To solve the Schrodinger

equation for a many-body interacting system, there is a number of interaction terms

that exponentially increases with the number of atoms. Solving the non-interacting

system in its place is computationally feasible because of the removal of the interaction

terms.

The energy functional is rewritten as,

EKS = T [n] + EHartree[n] +

∫
R3

V ext(r)n(r)dr + EXC[n], (1.30)

where EHartree describes the self-interaction of the density, defined as,

EHartree[n] =
1

2

∫
n(r)n(r′)

|r − r′|
drdr′, (1.31)

and the potential energy, T is defined as the expectation value of the Laplacian for each

particle:

T [n] =
1

2

N∑
i=1

〈Ψi[n]|∇2|Ψi[n]〉 . (1.32)

Each of the terms of this new energy functional is well-defined, except for the exchange-

correlation energy term EXC . This functional accounts for the interaction between

electrons and the difference between the kinetic energy of the interacting and the non-

interacting system. An exact form of the exchange-correlation functional is not known

exactly. However, this term’s contribution is small enough compared to the others that

it can be inexactly approximated to still obtain an accurate result. There are a number

of approximation techniques based on the local density that will be talked about later

on. With these terms, an effective potential and Hamiltonian for the auxiliary system

can be written respectively as,

V eff(r) = V ext(r) +
δEHartree[n]

δn(r)
+
δEXC[n]

δn(r)
= Vext(r) + V Hartree[n] + V XC[n] (1.33)

and

Heff(r) = −1

2
∇2 + V eff(r). (1.34)

7

Using this new Hamiltonian, the Kohn-Sham equations can be written very similarly to

the Schrodinger equation,

Heffψi(r) = εiψi(r), (1.35)

where ψi is the wave function for each particle in the non-interacting system and εi

are the eigenvalues of the Hamiltonian. While in the original Schrodinger equation

these eigenvalues represent the allowed energies of the system, that is not the case in

the Kohn-Sham equations, since the auxiliary system of non-interacting particles is not

true to its real interacting form. The significance of these eigenvalues is an open area

of research.

1.3.1 Exchange-Correlation Functionals

The exchange-correlation functional’s exact form is unknown, but it is also

the smallest contribution to the total energy. Because of this, it can be approximated

and still lead to an accurate solution. The simplest approximation used for exchange-

correlation is the local density approximation (LDA). Stated by Kohn and Sham, solids

can be considered close to the limit of the uniform electron gas [12]. The local exchange-

correlation energy for the uniform electron gas is known, written as εxc. The LDA

exchange-correlation function can be written as,

EXC[n] =

∫
n(r)εxc(n(r))dr. (1.36)

A more accurate class of functionals that build off of LDA is the generalized-gradient

approximation (GGA). These are exchange-correlation functionals that include a term

FXC that is in terms of the gradient of the density.

EXC[n] =

∫
n(r)εxc(n(r))FXC(∇n(r))dr. (1.37)

The improvement in accuracy given by GGA functionals led to the wider adoption of

density functional theory across chemistry and material science [20].

8

Figure 1.1: Top: From top left moving clockwise: plot of V eff, V ext, V XC, and V Hartree

in a 2-dimensional slice of a Si structure. Spatial units are in Bohrs (5.29 × 10−11m)
and potential is in Rydberg units (13.6eV). Bottom: The resulting electron density (in
electrons per cubic Bohr) for the above potential.

9

1.4 Solving The Kohn-Sham Equations

To solve the Kohn-Sham equations, two quantities are needed: the external

potential V ext and n. V ext can be constructed based on the structure of the system. n

can also be approximated based on the structure of the system, but will not be accurate

enough. n, if correct, will be self-consistent through the algorithm shown in Figure 1.

In this process shown, an initial value for n is used to construct the effective potential,

for which the Kohn-Sham equations are solved. The resulting wave functions can then

be used to recalculate n. If this final n is close enough to the initial guess for n, then it is

considered self-consistent and is the correct density for the system. If not, it is adjusted

and another iteration with a new initial n is computed. With this self-consistent density,

other important properties of the system can be found.

1.4.1 The Eigenvalue Problem

Once a value for n is given and the Hamiltonian is created, there comes the

issue of solving the Kohn-Sham equations to obtain each wave function. We are left

with the eigenvalue problem,

Hψi(r)− εiψi(r) = 0. (1.38)

In order to solve for the wave function, the Hamiltonian will need to be diagonalized.

Using an exact method to do this is not computationally efficient for a large matrix,

which is the typically the case in DFT calculations, so an inexact, iterative method is

used [2] [9]. The widely used approach to solving this problem is representing ψ with a

finite expansion in a basis set φ [29], where

ψi =

N∑
j=1

cjφj . (1.39)

The wave function in this form can be substituted into the eigenvalue prob-

lem, which will then take on another term called the overlap matrix (S) to become a

generalized eigenvalue problem. The overlap matrix describes the interaction between

10

Figure 1.2: Algorithm for performing a DFT calculation

11

basis functions, written as,

Sjk = 〈φj |φk〉 . (1.40)

The generalized eigenvalue problem is now written as,

∑
jk

Hijcjck −
∑
jk

εiSjkcjck = 0, (1.41)

∑
jk

cjck(Hjk − εiSjk) = 0. (1.42)

Freezing the change of this expression with respect to coefficient cj , we are left with the

condition, ∑
k

ck(Hjk − εiSjk) = 0. (1.43)

1.4.2 Plane Wave Basis

To solve the eigenvalue problem, the wave function is usually expanded into a

set of basis functions, as seen in the previous section. The most commonly used basis

is the plane wave basis. The plane wave basis is physics terminology for the Fourier

basis. Plane wave basis is convenient because the orthonormality of Fourier functions

is taken advantage of to simplify calculations, effectively setting the overlap matrix S

from Equation (1.43) to the identity matrix. The trade-off between convergence and

efficiency is also easily controlled by setting a cutoff energy, which corresponds to the

number of plane waves [23]. The physical intuition behind this is motivated by Bloch’s

theorem, which says that a wave function ψ in a periodic potential can be written as

a plane wave modulated by a periodic function [23]. In plane wave basis, the wave

function can be written as,

ψi(r) =
∑
q

ci,qe
iq·r. (1.44)

Since plane waves q are orthonormal,

〈
q′
∣∣q〉 = δq′,q. (1.45)

12

Rewriting the Schrodinger equation in Fourier space we get,∑
q

〈
q′
∣∣H∣∣q〉 ci,q = εi

∑
q

〈
q′
∣∣q〉 ci,q′ = εici,q′ . (1.46)

The two terms of the Hamiltonian (T and V eff) can be rewritten for the plane wave

basis. The kinetic energy matrix operator will become,〈
q′
∣∣1
2
∇2
∣∣q〉 =

1

2
|q|2δq′,q. (1.47)

In a crystal with a periodic potential, V eff(r) is expanded in terms of Fourier compo-

nents,

V eff(r) =
∑
m

V eff(Gm)eiGm·r, (1.48)

where G are lattice vectors. V eff(G) is then,

V eff(G) =
1

Ω

∫
Ω
V eff(r)eiGm·rdr, (1.49)

Where Ω is the volume of a cell of the lattice. The matrix form of the effective potential

is then, 〈
q′
∣∣V eff

∣∣q〉 =
∑
m

V eff(G)δq′−q,Gm , (1.50)

so the elements are zero unless q and q′ are separated by a lattice vector Gm [20].

Defining q = k +Gm and q′ = k +Gm′ , the Schrodinger equation is written in terms

of k as, ∑
m′

Hm,m′(k)ci,m′(k) = εici,m(k), (1.51)

where the full Hamiltonian in terms of k is,

Hm,m′(k) =
1

2
|k +Gm|2δm,m′ + V eff(Gm −Gm′). (1.52)

The number of plane waves used is set by a cutoff energy, Ecut, limiting the plane waves

to a finite basis. Only plane waves satisfying the inequality,

1

2
|G|2 < Ecut, (1.53)

are kept. A higher cutoff energy will allow for more plane waves and in turn a more

accurate representation, but is more computationally expensive.

13

1.4.3 Pseudopotential

Pseudopotentials are a surrogate potential used in density functional theory

calculations to increase computational efficiency.The nucleus of an atom causes an elec-

tric potential that is felt by electrons in the form of

V nucleus =
Z

|r|
, (1.54)

where Z is the net positive charge of the nucleus. To construct the external potential

of a molecule or system for the DFT calculation, one can simply sum these potentials

for the given r, be it 1, 2, or 3-dimensional:

V ext =

N∑
i=1

Zi
|r − ri|

. (1.55)

In practice, however, this is not the most efficient method. Close to the nucleus, there

are core electrons, or electrons that are bonded as opposed to the unbonded valence

electrons. The higher density of electrons in the core region leads to a less smooth

function and more plane waves needed to model the wave function in this region. More

components leads to more computational cost. These core electrons, since they are

already bonded, can be removed from the potential to approximate the wave function

[16]. They should contribute very little to the interaction between atoms. This allows

for accurate modeling of the wave function outside of the core region. This creates a

new potential that is the same as the true potential outside of the core region, called a

pseudopotential.

The aim of a pseudopotential is to increase the speed of calculations without hurting

their accuracy. Given the valence state ψ, the aim is to replace it with a smoother state

inside the core region while remaining the same outside of it. The valence portion of

this state can be replaced by a smooth pseudo-wave function φ, while the core region

can be expanded in terms of the core states, χ.

|ψ〉 = |φ〉+

Ncore∑
n=1

an |χn〉 . (1.56)

14

Figure 1.3: Comparison of a potential and its wave function (solid lines) to the pseu-
dopotential and its resulting wave function (dashed lines). The pseudopotential results
in a smoother wave function that is identical to the true wave function outside of the
core radius, rc.

The valence state must be orthogonal to the core states, so taking the inner product of

the two leaves us with,

〈χn|ψ〉 = 〈χn|φ〉+

Ncore∑
n=1

an 〈χm|χn〉 = 0. (1.57)

Writing the state in terms of φ we get,

|ψ〉 = |φ〉 −
Ncore∑
n=1

〈χn|ψ〉 |χn〉 . (1.58)

If the Hamiltonian is then applied to the state in this form, the resulting eigenvalue will

be the same as that of the true state,

H |φ〉+

Ncore∑
n=1

(ε− εn) |χm〉 〈χn|φ〉 = ε |φ〉 , (1.59)

where εn are the core eigenvalues.

1.4.4 Reaching Self-Consistency

At each iteration of the algorithm in Figure 2, a choice of a new guess for n

is made. Initially, the density is approximated. This can be done using the atomic

15

densities [23],

n0(r) =
N∑
α=1

nα(r −Rα), (1.60)

where Rα and nα are the position and atomic density of atom α. The Kohn-Sham

equations are then solved and density is calculated by,

n(r) =
N∑
i

|ψi(r)|2. (1.61)

For the following steps it is not as simple as using the last output a the next input,

however. To choose the best next step, we look at the error from the optimal density,

nKS:

δn = n− nKS

. Taking the output density as a function of the input density, we can solve for the

optimal density nKS, which would ideally be the next step.

δnout[nin] = nout − nKS (1.62)

=
nout − nKS

nin − nKS
(nin − nKS) (1.63)

=
δnout

δnin
(nin − nKS), (1.64)

nKS = nin − (
δnout

δnin
)−1(nout − nin). (1.65)

This does not give us an exact solution for nKS since it is just based off the change

in previous iterations, but it does give the optimal input for the following input. This

formula for finding the next step is simplified with the linear mixing formula. the error

ratio term is replaced with a constant α so that the next n is a linear combination of

the last two steps’ n.

nin
i+1 = nin

i + α(nout
i − nin

i). (1.66)

1.5 Numerical Methods

The most computationally expensive part of the self-consistent calculation is

the solving of the Kohn-Sham eigenvalue problem. This problem requires the repeated

16

diagonalization of the Hamiltonian matrix. Two methods that are commonly imple-

mented in DFT codes, such as Quantum Espresso and VASP, are the Davidson algorithm

and conjugate gradient method [25]. The Davidson algorithm is more computationally

efficient, but has a higher memory requirement. Conjugate gradient is slower, but more

memory-efficient [4].

1.5.1 Davidson Algorithm

Going back to Equation (1.61), the calculation of density is only dependent

on the lowest N orbitals, where N may be much lower than the number of plane waves

m that define the size of the Hamiltonian (1.61). The Davidson algorithm allows the

diagonalization of a subspace of the matrix, finding just the lowest few eigenvalues [5].

This algorithm starts with a set of trial orbitals and eigenvectors, ψ
(0)
i and ε

(0)
i . The

eigenvalue problem is solved in a 2N-dimensional subspace spanned by a reduced basis

set φ(0), where φ
(0)
i = ψ

(0)
i and φ

(0)
i+N = δψ

(0)
i [4]. For each step, the Hamiltonian is

written in terms of the basis,

Hjk =
〈
φ

(0)
j

∣∣∣H∣∣∣φ(0)
k

〉
, Sjk =

〈
φ

(0)
j

∣∣∣S∣∣∣φ(0)
k

〉
, (1.67)

then diagonalized using a conventional algorithm. The trial eigenpairs are then updated

by,

ψ
(1)
i =

2N∑
j=1

c
(i)
j φ

(0)
j , ε

(1)
i =

〈
ψ

(1)
i

∣∣∣H∣∣∣ψ(1)
i

〉
. (1.68)

This process is repeated until sufficient convergence is achieved in the residual gi of the

eigenvalue problem,

g
(0)
i = (H − ε(0)

i S)ψ
(0)
i . (1.69)

17

1.5.2 Conjugate Gradient

In this approach, the eigenvalue problem is solved as a constrained minimiza-

tion problem in the form,

min

 〈ψi|H|ψi〉 −∑
j≤i

λj(〈ψi|S|ψj〉 − δij)

 , (1.70)

where λj are Lagrange multipliers. We assume the first j eigenvectors are already

calculated, where j = i − 1. An initial guess ψ(0) is made for the ith eigenvector such

that
〈
ψ(0)

∣∣S∣∣ψ(0)
〉

= 1 and
〈
ψ(0)

∣∣S∣∣ψj〉 = 0. A preconditioned diagonal matrix P is

introduced, leading to the auxiliary functions y = P−1ψ, H̃ = PHP , and S̃ = PSP .

The new minimization problem is,[
〈y|H̃|y〉 − λ(〈y|S̃|y〉 − 1)

]
. (1.71)

The gradient of Equation (1.71) is

g(0) = (H̃ − λS̃)y(0). (1.72)

Making this gradient initially orthonormal to the starting vector so that,〈
g(0)
∣∣∣S̃∣∣∣y(0)

〉
= 0, (1.73)

the Lagrange multiplier can be written as,

λ =

〈
y(0)
∣∣S̃H̃∣∣y(0)

〉〈
y(0)
∣∣S̃2
∣∣y(0)

〉 . (1.74)

Pg(0) is then orthonormalized by explicitly orthonormalizing ψj , and the conjugate

gradient h(0) is introduced with an initial value set to the gradient g(0), as well as the

normalized direction n(0). This direction is written as,

n(0) =
h(0)〈

h(0)
∣∣S̃∣∣h(0)

〉1/2
. (1.75)

The minimum of
〈
y(1)
∣∣H̃∣∣y(1)

〉
is search for along the direction y(1) where,

y(1) = y(0) cos θ + n(0) sin θ. (1.76)

18

Figure 1.4: Distribution computational time of 1,300 DFT calculations. Calculations
were done on a compute node with 2 Intel 2.1GHz Xeon E5-2620v4 processors using 16
cores and 64GB RAM.

in order to ensure the constraint on the norm is enforced [1]. The minimum is found

analytically by,

θ =
1

2
arctan

(
2 Re

〈
y(0)
∣∣H̃∣∣n(0)

〉
ε(0) −

〈
n(0)

∣∣H̃∣∣n(0)
〉) . (1.77)

Each iteration, the next conjugate gradient is calculated from the previous using the

Polak-Ribiere formula [28],

h(n) = g(n) + γ(n−1)h(n−1) (1.78)

where,

γ(n−1) =

〈
g(n) − g(n−1)

∣∣S̃∣∣g(n)
〉〈

g(n−1)
∣∣S̃∣∣g(n−1)

〉 . (1.79)

h(n) is re-orthogonalized to y(n) in the next step.

1.5.3 Computational Benchmark

Depending on the size of the system and level of accuracy of the exchange-

correlation functional, density functional theory can vary greatly in computational time.

Figure 1.4 quantifies some of these times, using calculations done of 1,300 transition

19

metal oxides with a mean size of 30 atoms. The calculations had a mean time of 1,635

seconds, the fastest taking 5 seconds and the slowest taking 20 hours. These calculations

were run using VASP with a GGA exchange correlation functional.

20

Chapter 2

Neural Network Modeling For Density

Functional Theory

In this section we go over what machine learning is, some common machine

learning methods, and how it is currently applied for modeling atomic systems. Machine

learning can be divided into two categories: supervised and unsupervised learning.

This research uses supervised learning techniques. Supervised machine learning involves

learning a function to map an input to an output. Given a mapping between independent

variable x and dependent variable y,

y = f(x), (2.1)

supervised machine learning attempts to approximate the mapping f given a set of

input and output pairs.

2.1 Input-Output Maps

Two common examples of input-output maps in machine learning are regres-

sion and classification. In regression, the input is mapped to a numerical output so

that y is a quantitative variable. A common example of this is linear regression. Linear

regression learns a mapping with an affine relationship assumed between the input and

21

output. Linear regression has two parameters, w and b where,

y = wx+ b. (2.2)

An example of linear regression is seen in Figure 2.1, where a line of best fit is found for

the given data points. In order to learn the best fit mapping, a common approach is to

minimize the mean square of the error. Given N data points, the function to minimize,

also called the cost function or loss function, is,

E(w, b) =
1

N

N∑
n=1

[yn − (wxn + b)]2 . (2.3)

The cost function E is minimized with respect to the parameters w and b. Generalizing

this as a problem with n data points of k dimensions each, the linear model in Equation

(2.2) for a given data point xi becomes,

yi = bi + w1x1i + w2x2i + . . .+ wkxki. (2.4)

Defining a matrix X as a k × n matrix containing all n data points,

X =

1 x21 . . . xk1

...
...

...

1 x2n . . . xkn

 , (2.5)

and a column vector for both y and the parameters β,

β =

b

w1

...

wk

 ,y =

y1

y2

...

yn

 , (2.6)

the cost function from Equation (2.3) can be rewritten as,

E(β) =
1

N
||y −Xβ||2. (2.7)

Regression is useful for both prediction and inferring relationships. It can be

used to predict a y-value for a never before seen x-value. It can also discover relationships

22

Figure 2.1: Left: Linear regression. The red line minimizes the error function in Equa-
tion (2.3) to find the line that best fits the relationship between hours studied and test
grade.. Right: Logistic regression gives the percent chance of getting a passing (above
70) grade on the test. A 50% chance is indicated by the dashed horizontal line.

between variables, such as determining the rate of change w between x and y in linear

regression. This can have important interpretations for real problems. For example,

given the number of hours each student in a 30-student class studied for a test and

their final score on the test, linear regression could be used to determine a relationship

between these two values. From this regression, the number of hours of studying needed

to get a certain score can be inferred. From Figure 2.1, we can infer that if a student

wants a score of 80, they must study for about seven hours.

In classification, the input is mapped to a qualitative variable rather than a

quantitative variable, such as a label. y is a numerical code corresponding to a label.

Consider the last example from the previous subsection. If it was only known if a

student passed or failed their test, this data could be represented as 1 for pass, 0 for

fail. A basic algorithm for classification problems is the perceptron. The perceptron is

an adaptation of linear regression to classification, done by applying a step function to

the its output. The output of a perceptron is,
1 Xβ > 0

0 Xβ ≤ 0

. (2.8)

The perceptron is the basis of the neural network, which will be seen next. A more

practical algorithm for classification with a statistical interpretation is logistic regres-

23

sion. Logistic regression, like linear regression, returns a continuous function based on

its input. Unlike linear regression, the output is made to be between 0 and 1, the two

values for binary labels. This is done by applying a logistic function rather than a step

function as done by the perceptron. This function becomes,

h(X) =
eXβ

1 + eXβ
. (2.9)

In Figure 2.1, we see that this function gives us a continuous output, rather than discrete

labels. This can be viewed as the probability that x falls within the label where y = 1,

or Pr(y = 1|x). These two techniques for input-output mapping are simple models that,

while not mapping each point exactly, give a general idea of the trend of the data points.

This method will work similarly with both a small are large number of input-output

pairs. For cases with more complicated, highly nonlinear, mappings with many more

data points available there are more sophisticated methods that can give us better

results. Neural networks are a machine learning method that accomplish this.

2.2 Neural Networks

Neural networks are a machine learning algorithm that are able to learn highly

nonlinear mappings between an input and output. The machine learning methods de-

scribed so far are considered shallow learning methods. Given a set of inputs, they

directly map to the output from these features. These methods are interpretable, as the

importance of each feature can be measured directly by the magnitude of its correspond-

ing coefficient. Neural networks are deep learning methods. Deep learning methods have

multiple layers, using the input of the previous layer as the input to the next. In these

intermediate layers, latent features are learned from the data which are then used by

the final layer to approximate the mapping. Deep learning has the tradeoff of being

less interpretable, as feature importance is not as obvious, but has potential to be more

accurate with large amounts of data.

The Feed-forward neural network is the simplest form of the neural network.

More domain-specialized neural networks are based off of the feed-forward network ar-

24

chitecture. Feed-forward neural networks consist of many units connected in an acyclic

computational graph. Each node of this graph is a unit similar to that seen in the per-

ceptron where its output represented as an affine function of its input, with a nonlinear

function is applied to this. The output h(1) of the first layer is,

h(1) = g(1)(W (1)x+ b(1)), (2.10)

where g(1) is a nonlinear function known as the activation function. In the case of the

perceptron, the activation function is a step function. The output of second layer is

then,

h(2) = g(2)(W (2)h(1) + b(2)). (2.11)

This pattern generalizes such that layer n will have the output,

h(n) = f (n)(h(n−1)) = g(n)(W (n)h(n−1) + b(n)). (2.12)

The output of a neural network can be generalized as a composition of functions such

that,

f̂(x) = f (n)(f (n−1)(f (n)(...f (2)(f (1)(x)))))). (2.13)

2.2.1 Motivation For Neural Networks

Neural networks bring to the table some advantages that make them as popular

as they are for practical applications today. First and foremost, their parameter space

allows them to approximate a mapping of arbitrary complexity and dimension to any

desired degree of accuracy, given certain conditions on the activation function [13][19].

What gives them an advantage over other techniques such as a basis expansion is network

depth. The number of terms needed in order to represent a function using k basis

functions in an n-dimensional space is kn; an exponential increase with dimensionality.

In a multi-layer neural network, the composition of functions across layers reduces the

number of parameters needed. It is shown by Eldan and Shamir that to approximate

a certain function that requires an exponential number of input nodes with respect to

dimensions for a 2-layer neural network, the same function can be approximated with

25

a 3-layer network with only a polynomial number of input nodes [8]. Another benefit

of neural networks is that there is no need for feature engineering. Feature engineering

is a common practice in machine learning where the inputs to a model are carefully

chosen or created. Neural networks have the ability to learn features from the data,

removing user effort and bias from the equation. The input to each hidden layer is the

output of the previous layer, which can be seen as a feature learned from its input.

Later, a powerful example of this is seen with convolutional neural networks and their

application to image processing.

2.2.2 Activation Functions

Each layer of the neural network has an activation function g as seen in Equa-

tion (2.12). Without this function, the output would simply be a linear function of the

inputs, regardless of the number of layers and nodes. In the perceptron, the activation

function is the step function, where the output is thresholded at zero. This step func-

tion, however, is not continuous and has no non-zero value for its gradient, which makes

the minimization process in training hard to do. This function is instead replaced by a

continuous function that behaves similarly: The logistic function seen in logistic regres-

sion. This function, also known as the sigmoid function, is more widely replaced by the

hyperbolic tangent function tanh, which, as seen in Figure 2.2, is a scaled up version of

the sigmoid, bound by (−1, 1) rather than (0, 1). tanh has a stronger gradient, meaning

its derivative is steeper. This is beneficial in the training process, as the gradient is used

to guide the optimization. However, both of these functions still suffer from the issue of

the gradient approaching zero the farther away the function’s input gets from 0. This

is known as the vanishing gradient problem.

Another common activation function is the rectified linear unit (ReLu), which

is one of the most commonly used activation functions. The ReLu is a piecewise linear

function, which is applies a nonlinear transformation to its input. It takes the form,

g(z) = max(z, 0). (2.14)

26

Figure 2.2: Activation functions. It can be seen that tanh(z) is a rescaled version of
the sigmoid function σ(z), which both mimic the behavior of the step function in a
continuous form. The ReLu is a piecewise linear function, which applies a nonlinear
transformation to z.

Because it is nearly a linear function, ReLu retains qualities that make it efficient

to optimize with gradient-based methods, such as a constant derivative, as long as

parameters are initialized with nonzero values [10]. It can be seen that the ReLu will

also suffer from a vanishing gradient as its input becomes negative, so there is a change

made to mitigate this, giving us the leaky ReLu. The leaky ReLu has a small linear

coefficient for negative z, rather than zero so that,

g(z) =

0.01z z < 0

z z ≥ 0

. (2.15)

For the output layer, the activation function is simply linear in the case of regression,

and softmax in the case of classification. The softmax function normalizes each output

27

so they sum to 1, since they each represent the possibility of a given label over the rest.

The softmax function for each output node is,

g(z)i =
ezi∑N
i=i e

zi
. (2.16)

Consider a case of classification with three possible output classes A, B, and C with

corresponding z values in their output nodes of zA = 0.72, zA = 0.54, and zA = .22.

The softmax function will transform these into 0.41, 0.34, and 0.25. This means the

given data point has a 41% chance of being class A, 34% of being class B, and 25%

chance of being class C.

There are many variations of the neural network designed for specialized tasks.

One that has been important in the growing popularity of machine learning is the

convolutional neural network, which will be described next.

2.2.3 Convolutional Neural Network

The convolutional neural network is a specialized adaptation of the neural

network for applications in signal processing. These networks employ a convolutional

layer, rather than just the fully connected layers seen so far. Convolutional layers apply

a convolution to its input with a kernel that is learned in the training process. A

convolutional layer learns a kernel that creates features from its input, which typically

is an image. A convolutional network can either pass these features to fully connected

layers to perform a regression or classification task, or can use this as a structured,

high-dimensional output, giving more flexibility in tasks these networks can be used for.

First, the convolution is introduced and examples are given as to why it is useful in

image processing.

A convolution is an integral that gives the overlap between two functions as

one, called the kernel (w(a)), is shifted over the other (x(t)) [3]. This can be expressed

as,

(x ∗ w)(t) =

∫ ∞
−∞

x(a)w(t− a)da. (2.17)

28

Figure 2.3: Examples of convolutional filters applied to an image of an apple. From left
to right is the original image, then that image convolved with a sharpening kernel, a
blurring kernel, and an edge detection kernel called the Sobel filter.

In discrete form, which is how it is used in practice on discrete data points, the equation

becomes,

(x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a). (2.18)

An image can be treated as a three-dimensional tensor, m× n spatial dimensions, with

one grid point for each pixel. A color image has three channels, one each for red, blue,

and green. These channels are the third dimension of the tensor. Pixel values range

between 0 and 255. To convolve a two-dimensional kernel K with a two-dimensional

image I, the operation is written as,

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n). (2.19)

The convolution is commutative, so K ∗ I = I ∗K. In practice, it is simpler to perform

K ∗ I. Many machine learning libraries implement the a cross-correlation instead of a

convolution [10], which is the same as the convolution but with a flipped kernel such

that,

(K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n). (2.20)

Figure 2.3 gives a few examples of applications of convolution in image processing. A

few common examples of convolutional kernels used in image processing are blurring

and sharpening kernels, as also seen in 2.3. A blurring kernel takes the average over the

29

values within the kernel size’s distance from the pixel. A 3× 3 blurring kernel is,

1

9

1 1 1

1 1 1

1 1 1

 . (2.21)

A sharpening kernel does the inverse, by removing correlation from neighboring pixels.

This takes the form,

1

9

0 −1 0

−1 5 −1

0 −1 0

 . (2.22)

These kernels sum to one, making them a weighted average over the pixels they operate

on.

The convolutional layer is the building block of the convolutional network. The

convolutional layer’s optimizable parameter is its kernel, which learns to create features

from the input images. A standard convolutional layer is made up of three parts; the

convolution, activation, and pooling. In the initial stage, we perform a convolution of

the input x with the kernel w and add a bias b to it.

z(x) = w ∗ x+ b. (2.23)

Kernels typically are three-dimensional like the image, so the convolution gives us an

output with one channel. Each layer can have multiple kernels, so the convolution with

each kernel is stacked in the output, as shown in Figure 2.4. Next, output is passed

through an activation function, such as the ReLu. Third, pooling may be applied.

Pooling is effectively downsampling the output image. A common technique for this is

max-pooling, or taking the maximum value from an area as the value to represent the

entire area. For example, if we wanted to downsample a 4×4 output by a factor of two,

it would be resized to 2 × 2, taking on the max values of each 2 × 2 quadrant of the

original output. The reason for this is two-fold. For one, it reduces the computational

cost of later layers while minimally affecting performance. Once a feature is located, its

30

Figure 2.4: A convolutional layer with six kernels, also called filters. Each kernel is
convolved with the three-dimensional input tensor, outputting a single channel for each
of these operations.

exact location is not as important as its relative location to others. This then helps to

prevent overfitting, making the output invariant to small translations in the input [10].

2.3 Assessing Accuracy

We’ve seen that neural networks can represent input-output mappings. But

how is the accuracy of this representation evaluated? In this subsection, methods for

model validation and bias-variance trade-off are discussed.

As mentioned earlier, the cost function of a machine learning model is mini-

mized with respect to its parameters. The cost function describes a quantity that we

want to minimize, such as an accuracy metric. In the linear regression seen, the cost

function is mean squared error of the model output and the true output. Given the

true output y and the output of a model ŷn = ŷ(xn;βn) with parameters β, the mean

31

squared error for N data points is,

MSE(x;β) =
1

N

N∑
n=1

(yn − ŷn)2. (2.24)

Mean squared error becomes more sensitive to error as the error increases, penalizing

large differences more than small differences. Mean squared error is a convex function

given that y, ŷ ∈ (−∞,∞). This accuracy metric works well for regression, as it com-

pares two numerical values. For different tasks, different accuracy metrics are necessary.

Assessing the accuracy of a classification problem using mean squared error would not

guarantee finding a minimum since it is not guaranteed to be convex with binary labels

where y ∈ {0, 1} and ŷ ∈ [0, 1]. An alternative approach is to maximize the likelihood.

In binary classification, the likelihood is the probability that x falls within the label

where y = 1, or Pr(y = 1|x). The total likelihood is written as the product of the

likelihood of each of N points,

L(x) =
N∏
n=1

Pr(yn|xn). (2.25)

Writing this in terms of the output of the model we get,

L(x;β) =
N∏
n=1

ŷynn . (2.26)

In practice, it is easier to take the logarithm of the likelihood to get a sum instead of

a product. Instead of maximizing it, cost functions are typically minimized, so this is

then made negative. The negative log-likelihood cost function is,

L(x;β) = −
N∑
n=1

yn log ŷn. (2.27)

To evaluate the model using an accuracy metric, an entire data set is not

evaluated all together. The simplest method for evaluating a machine learning model

is to split the available data set into a training and testing set. Most of the data will

be used to train the model, while the remaining data points, which have not been seen

in the training process, are then assessed for accuracy. Simply evaluating the accuracy

32

of the model on the training set can result in a model that does not generalize well to

unseen data, which is known as an overfit model. In Figure 2.5, we see two different

regression models fit on a training set from the hours studied and test performance

example. The linear model on the left performs worse than the polynomial fit on the

right if looking at the mean square error of the training set. However, the mean squared

error of the test data is much lower for the linear model.

The polynomial fit in this case has a high variance, meaning it is able to vary

more with changes in the input. Though this can be a good thing by allowing more

complicated functions to be modeled, without a sufficient amount of data points it will

tend to model the noise in the small data set, which results in overfitting [17]. The linear

model, on the other hand, has a low variance, allowing it to perform similarly on the test

and training test. However, it is not as flexible in the functions it can model, leading

to a higher error on the data it is trained on compared to the polynomial fit. This

inflexibility leads to what is known as the bias. The bottom row of Figure 2.5 visualizes

the relationship of this bias-variance tradeoff. It can be seen that the polynomial fit

gives lower error on the training set than linear regression, but on the testing set this

performance does not translate as well as linear regression. A key challenge in machine

learning is choosing a model that has sufficiently low variance and bias for the task,

allowing both an accurate and generalizable fit. The next subsection addresses methods

to help reach this balance and prevent overfitting.

2.4 Training

In order to get meaningful values for the weights in these machine learning

models we have seen so far, they must be trained. The goal of training a machine

learning model is to minimize its cost function (E) with respect to its parameters (β)

given a set of input-output pairs {x,y}. This leaves us with the minimization problem,

min
β
E(x|y;β). (2.28)

33

Figure 2.5: Top: The data from Figure 2.1 is split into a training set (blue circles)
and a test set (green squares). The training data is fit with linear regression on the
left and a fifth-degree polynomial on the right. Bottom: Probability distribution of the
absolute error of the training set on the left and test set on the right. The polynomial fit
achieves lower mean error (E) on the training set but performs much differently on the
test set, while linear regression performs consistently on both. The polynomial overfits
the training data, making it unable to generalize well.

Here, some basic concepts of optimization and a family of methods used to train neural

networks is covered. To solve a minimization problem such as Equation (2.28), a local

minimum β∗ is found. Since it is non computationally feasible to search the entire

parameter space of the function, there is no guarantee of finding a global minimum

unless the function being minimized is convex, meaning there is only one local minimum.

At a local minimum, the gradient of the cost function will be zero, and its hessian will be

positive semidefinite [22]. These give us the necessary condition of local minimization.

Considering the minimization of function f(x), the necessary conditions are,

∇f(x∗) = 0, ∇2f(x∗) ≥ 0. (2.29)

34

Figure 2.6: A plot of a function and its derivative. It can be seen that the maxima and
minima of f correspond to the points where its derivative are equal to zero. Only the
points where df

dx is increasing are the minima.

For the case of a convex loss function we can find an analytical solution to the minimum,

such as with linear regression. The cost function for squared error is,

E(β) = ||y −Xβ||2. (2.30)

Taking the partial derivative with respect to β and equating it to zero,

∂E

∂β
= 2XT (y −Xβ) = 0, (2.31)

we can rearrange to arrive at what is known as the normal equation for least squares,

β∗ = (XTX)−1XTy. (2.32)

For many cost functions in practice, there may not be a closed form solution for the

minimum or it may be inefficient to find, as matrix operations of high dimension can

be computationally expensive. For these cases, there are iterative methods that are

used for minimization. Line search is one of these methods, and is the basis of the

most commonly used neural network optimization methods. Line search updates the

parameters iteratively such that,

βk+1 = βk + αkpk, (2.33)

35

where α is a step length and p is a step direction. First, the search direction is de-

termined, then a suitable step length is found. Generally, p is in a descent direction,

meaning the function being minimized is decreasing along the direction, so pTk∇Ek < 0.

To determine the step length, we want to take a step that sufficiently decreases the

cost function, but isn’t computationally inefficient. A popular set of conditions used

for determining the step size are the Wolfe conditions. These first require a sufficient

decrease by the condition,

E(βk + αpk) ≤ E(β) + c1α∇ETk pk, (2.34)

where c1 ∈ (0, 1). The step size is then prevented from being unreasonably small by the

second condition,

E(βk + αpk)
Tpk ≥ c2E

T
k pk, (2.35)

where c2 ∈ (c1, 1). Typically, c1 is chosen to be close to 0, such as 10−4, and c2 is

chosen between 0.1 and 0.9, depending on the direction method [22]. Since our goal in

optimization is to approach a minimum, our step direction should be in a direction of

descent. The simplest direction of descent is the one of steepest descent, or the negative

gradient. This direction, also known as gradient descent, updates the parameters at

each iteration so that,

βk+1 = βk − α∇E(x;β). (2.36)

Following the direction of descent, this method will eventually arrive at a minimum

of the cost function. In a case of a convex function, where there is a single global

minimum, this gets a satisfactory result. In the case of a non-convex cost function, as

with neural networks, this can lead to gradient descent converging on an unsatisfactory

local minimum. We can rewrite E as the sum of the mean squared error of N training

points,

E(x|y;β) =
1

N

N∑
n=1

[yn − ŷ(xn;β)]2 . (2.37)

One approach that can be taken to help prevent the optimization from falling into a

local minimum is instead updating β with only a small, random subset of training data

36

each iteration so that,

βk+1 = βk − α∇E(x′|y′;β), {x′,y′} ⊆ {x,y}. (2.38)

This is called stochastic gradient descent. In Figure 2.7, we see an example of batch

gradient descent where the entire set of training points is used in each update, and an

example of stochastic gradient descent used to minimize the cost function for linear

regression. Although stochastic gradient descent doesn’t follow the direction of steepest

descent exactly, it still arrives at the same minimum. With an incomplete gradient

being used in each step of stochastic gradient descent, line search will not give a step

size satisfactory for the optimization problem over the complete training set. In practice,

the common approach for the step length is to choose a constant value. The step length,

also called the learning rate, can also be given a decay rate so steps become more refined

as training goes on. The step length can be linearly decayed until it reaches a minimum

size,

αk =

(
1− λ

τ

)
α0 +

λ

τ
ατ . (2.39)

where λ is a decay coefficient and τ is a fixed iteration number where the decay reaches

the minimum step length. As seen in Figure 2.8, decaying learning rate allows for more

precise steps toward the end of training, getting closer to the minimum point. Sufficient

conditions on the step length for stochastic gradient descent to converge are (see [10]),

∞∑
k=1

αi =∞,
∞∑
k=1

α2
i <∞. (2.40)

The most popular neural network optimization methods today are modifica-

tions of stochastic gradient descent. One of these methods is momentum. Momentum

aims to speed up the optimization process by multiplying the learning rate by a factor

of the previous iteration’s step. Each iteration, β is updated as,

βk+1 = βk + v, (2.41)

with,

g = ∇E(x′|y′;β), (2.42)

37

Figure 2.7: Top: State space of batch gradient descent and stochastic gradient descent
used to train linear regression, where y = −4x− 4. Here, stochastic gradient descent is
updating each step with the gradient of only one data point at a time. This leads to a
path that does not follow the direction of steepest descent as closely as batch gradient
descent, but arrives at the same minimum. Each method uses the constant learning rate
α = 0.1. Bottom: The two gradient descent methods used on a non-convex loss function.
It can be seen that stochastic gradient descent does not get stuck in the smaller local
minima as batch gradient descent does due to the variation in its direction.

38

Figure 2.8: Training of the linear regression problem from Figure 2.7 using stochastic
gradient descent with and without learning rate decay. An initial step size of α = 0.25 is
used. As each converges on the minimum, it can be seen the learning rate decay allows
a more precise minimization. The larger step size does not allow the flexibility to get
as close to the minimum, leading to the oscillations seen crossing over it.

v = ηv − αg, (2.43)

where η ∈ [0, 1) is a predetermined parameter [10], and v must be initialized. Momen-

tum is a physical analogy for the velocity of a ball rolling down a hill in this method.

As it rolls down the hill, much like the optimization descends toward a minimum, the

ball will gain speed. The larger η is, the more the previous iteration will affect the next

one. This momentum also helps to escape local minima, as seen in Figure 2.9. Another

family of gradient descent methods used to speed up training are adaptive learning rate

algorithms. These methods use a separate learning rate for each parameter and update

them throughout the optimization process. One of the best performing adaptive meth-

ods is the Adam optimizer [18]. Adam, short for adaptive moments, updates individual

39

Figure 2.9: Gradient descent with momentum gradually increases the step size during
the descent, allowing it to escape the local minimum at 5, which normal gradient descent
converges to.

learning rates based on previous learning rates in an exponential moving average. Each

parameter is updated similarly to momentum, where,

v = ηv − α√
r
� g, (2.44)

and the r, the accumulation of the gradient, is updated as,

r = ρr + (1− ρ)g � g, (2.45)

and � is the element-wise product. Although Adam exhibits faster convergence to

a minimum, it has been shown to not reach an optimal solution as well as regular

stochastic gradient descent, which is more likely to reach a value close to the global

minimum [37] [32].

2.4.1 Training Neural Networks & Backpropagation

We’ve seen that optimization algorithms for machine learning rely on the gra-

dient of the cost function with respect to the parameters. In the case of the neural

network, the multi-layer computational graph makes the process not as straightfor-

ward, and an efficient approach must be taken. In the forward propagation of a neural

40

network, the input x is passed through each node of the first layer, from where its

output flows to each node of the next hidden layer, continuing until the output y is

produced. In order to get the gradient, this path is followed in reverse; from the output

to each individual node. This process is called back-propagation. To understand how

back-propagation is implemented, we will first consider the chain rule of calculus, which

allows us to find the partial derivative of the neural network’s output with respect to

any given weight. For two functions y = g(x) and z = f(y), their composition would

be, z = f(g(x)). The chain rule tells us that,

dz

dx
=
dz

dy

dy

dx
. (2.46)

For the case of vector input and output x ∈ Rm and y ∈ Rn, this rule can be generalized

to,
∂z

∂xi
=

n∑
j=1

∂z

∂yj

∂yj
∂xi

. (2.47)

In vector notation this becomes,

∇xz =

(
∂y

∂x

)T
∇yz. (2.48)

∂y
∂x is a n ×m Jacobian matrix of the above function g(x). We can use this result to

compute the gradient of the neural network output with respect to each parameter,

but working backwards through the computational graph we see many expressions are

frequently reused, such as, say, the gradient of a final layer node. It would be computa-

tionally efficient to do approach this in a way that does not recalculate these repeated

subexpressions.

Consider the computational graph in Figure 2.10. The input is w, and the

output is z, with a function f applied three times in between these value. The gradient

of z with respect to w, is found by,

∂z

∂w
=
∂z

∂y

∂y

∂x

∂x

∂w
. (2.49)

41

Figure 2.10: A simple computational graph. Equation (2.50) describes back-propagation
used to get the gradient of x with respect to w.

In terms of the function f , this becomes,

∂z

∂w
= f ′(y)f ′(x)f ′(w) (2.50)

= f ′(f(f(w)))f ′(f(w))f ′(w). (2.51)

In this case, back-propagation will compute f(w) only once, saving us a function evalu-

ation. In the case of a deep neural network with many neurons each layer, this saves a

significant amount of computation and is a significant reason that neural networks are

computationally practical.

2.4.2 Regularization Methods

In training, it is necessary to prevent overfitting the training data. As seen

in the section on assessing the accuracy of a machine learning model, a model with a

larger number of parameters can easily overfit without a substantial amount of data.

Regularization is a method to reduce a fit’s variance, making it more able to generalize

to new data. The two common techniques that will be addressed in this section do this

by putting constraints on the fit parameters in the cost function [17]. These methods are

L1 and L2 regularization. Consider again the case of linear regression. L2 regularization

constrains the parameters β by penalizing their 2-norm, turning the cost function from

Equation (2.30) into,

E(β) = ||y −Xβ||2 + λ||β||22, (2.52)

where λ is a positive coefficient. In this setting, β∗ becomes,

β∗ = (XTX + λI)−1XTy. (2.53)

42

Figure 2.11: L1 and L2 regularization visualized. The red contour line can be seen as
the bound placed on the two parameters β0 and β1 by the regularization, L2 on the left
and L1 on the right. The blue/green contour shows the minimum parameter values for
the cost function by itself. The red point shows where the regularized cost function is
minimized.

The matrix (XTX + λI)−1 is changed by a constant factor on the diagonal from its

original form [10]. Penalizing the L2 norm effectively puts an upper bound on the square

of the magnitude of the parameters, which is proportional to λ. This is visualized

in Figure 2.11. In L1 regularization, the magnitude of the parameters is penalized

rather than the square of the magnitude. The previous cost function with this form of

regularization becomes,

E(β) = ||y −Xβ||2 + λ||β||1. (2.54)

This type of regularization enforces sparsity on the parameters, meaning less important

parameters tend towards zero. For this reason, L1 regularization is useful for deciding

feature importance and ultimately, feature selection.

2.5 Transfer Learning

Neural networks are able to approximate any mapping given a sufficient num-

ber of nodes and layers, but without a sufficient amount of training data, this approx-

43

Figure 2.12: Comparison of polynomial regression on a small number of data points
without regularization and with L2 regularization where λ = 0.1.

imation will probably not generalize well to other data. This can be a problem in

applications where data is costly to collect, generate, or label. A method to limit the

amount of new data needed to create accurate neural networks is transfer learning [26].

Transfer learning takes the latent features learned by a trained neural network and ap-

plies them to a similar task. Ideally these latent features are transferable, circumventing

the need to re-learn them for the new task [14]. A common method to performing trans-

fer learning is freezing the hidden layers of a trained neural network, re-initializing its

output layer, and re-training the network with the new data. This method is visualized

in Figure 2.13. Transfer learning in this manner can be thought of as using the hidden

layer of a trained neural network as the input features to a single-layer neural network.

Another technique for transfer learning is fine-tuning, which only involves initializing a

new neural network with the trained model’s weights, allowing all of the weights to be

adjusted for the new data during training.

Transfer learning is widespread in the domain of computer vision, where it has

been shown that features extracted from convolutional neural networks are generaliz-

able and perform better than traditional feature extraction techniques used in image

processing [31]. An example of this is seen in using a neural network pre-trained on

the ImageNet dat aset for melanoma identification in medical imaging. ImageNet is a

large-scale, publicly available data set consisting of 14 million images of common ob-

44

Figure 2.13: A visualization of transfer learning. A neural network is trained for source
Task 1 given a data set of input-output pairs {x(1), y(1)}. The shaded boxes indicate
portions whose weights are updated during training. The trained hidden layer is then
used to train a model for target Task 2, a similar task to the source task with a different
domain, {x(2), y(2)}. In this model, the hidden layers are frozen and only the output
layer’s parameters are optimized.

jects spanning 22,000 unique labels [34]. A convolutional neural network pre-trained

on ImageNet with its final layer trained with a data set of roughly 2,000 images for

melanoma identification out-performed a convolutional neural network trained directly

on the same data set across three different identification tasks, achieving up to 10%

better accuracy. [21]. Furthermore, it was also shown that transfer learning from a

smaller, more related data set of 35,000 retinopathy images was not as effective as with

ImageNet, showing the robustness of the features learned from the exhaustive ImageNet

data set.

45

2.6 Neural Networks For Modeling Atomic Systems

Discovery of material properties for a wide range of applications, such as elec-

tronics and medicine, rely on computational methods like density functional theory.

As seen in Section 1, density functional theory calculations can be computationally

expensive, so accelerating these is necessary for efficient high-throughput screening of

materials. High-throughput screening relies on computationally finding properties of

a wide configuration space of materials rather than carefully picking a smaller subset

to test. With the increase of computing power available to researchers, this approach

has become more feasible, although it still has room for further speed-up. Machine

learning methods such as neural networks are a good candidate to do this. Once a

neural network is trained, the prediction calculation is very fast and consistent in its

computational performance, taking milliseconds to make a prediction that may take

DFT minutes or hours to calculate. Additionally, their ability to represent highly non-

linear relationships gives them the potential to model a material’s properties to a high

degree of accuracy. If able to represent the mappings between a material’s structure

and these properties to relatively close to chemical accuracy, neural networks can be an

effective surrogate model to improve computational performance of density functional

theory calculations.

Deep learning has helped to make recent advances in prediction of chemical

properties. Previously, shallow machine learning approaches relied on input features

manually engineered for specific applications. Deep learning methods circumvent this

feature engineering approach by learning features directly from the data, given con-

straints consistent with the underlying physics. In this section, an overview of deep

learning methods used for predicting chemical properties of materials is given.

2.6.1 Atomistic Neural Networks

One of the first developments for neural networks specialized for modeling

atomic systems was made by Behler and Parrinello in 2007, where they introduced

46

Figure 2.14: Atomistic neural network approach to predicting properties. The structure
of a material can be represented by a matrix consisting of each atom’s atomic number (Z)
and its Cartesian coordinates (R) with respect to a reference point. This representation
will be used as the input to the neural network, which maps it to a target property,
such as an energy.

a method to represent individual contributions from atoms to total molecular energy,

allowing models that scale well with system size [15]. A standard, fully-connected

feed-forward neural network is limited in its ability to model atomic systems because

of its fixed input size. The atomistic neural network applies the same weights to the

transformed input for each atom, allowing a flexible input size. Outputs for each of

these atoms, seen as their individual contribution to the total energy, are then summed

to get the molecule’s total energy.

Another limitation of a standard neural network is representation of the ro-

tational invariance of a molecule. Regardless of its orientation, a molecule’s properties

should remain constant, which is a hard task for a neural network to model with a

limited amount of data. To solve this problem, the Cartesian coordinates of the atomic

positions are transformed into rotationally invariant symmetry functions. These sym-

metry functions, which describe the local environment of each atom, consist of both

radial and angular symmetry functions. The radial symmetry functions for an n-atom

system are written as a summation of gaussians with parameters η and Rs,

GRi =

n∑
j 6=i

e−η(Rij−Rs)2fc(Rij). (2.55)

47

Figure 2.15: The atomistic neural network proposed by Behler and Parrinello, shown
with a three atom system modeling the total energy E. Each atom, from its atomic
number and position, are embedded into symmetry functions G, describing its local
environment relative to its neighbors. These symmetry functions are then each passed
to a subnet S, each of which is a neural network with the same weights. The result of
this subnet is the individual contribution to the total energy from each atom, which is
then aggregated to get the total energy.

fc is a cutoff function, limiting the number of symmetry functions to an immediate

vicinity of the atom. It is given as,

fc(Rij) =

0.5
(

cos
(
πRij
Rc

)
+ 1
)

Rij ≤ Rc,

0 Rij > Rc.

. (2.56)

The angular symmetry functions, which ensure a smooth decay to zero for large inter-

atomic distances, has the form,

GA = 21−ξ
n∑

j,k 6=i
(1 + λ cos θijk)

ξe−η(R2
ij+R2

ik+R2
jk)fc(Rij)fc(Rjk)fc(Rik), (2.57)

where θijk =
RijRik

RijRik
, and ξ is another parameter. The number of symmetry functions

used is a model hyperparameter, where each unique symmetry function has different set

parameter values. The symmetry function for each atom is then passed through a neural

network, whose output is a single value identified as the atom’s individual contribution

to the total energy. These individual atomic energies are then summed to reach the

total system’s energy.

48

2.6.2 SchNet

SchNet is an improvement on the previous atomistic neural network. It retains

the approach of atom-wise contributions and rotationally invariant representation, and

adds more powerful tools used in modern neural networks, such as the convolution [35].

Convolutional layers are the state of the art for machine learning with spatial

data, but typically these are discretized, such as pixels of an image. Molecular structure

does not lie on a grid such as these signals. Although it can be discretized, it requires

choosing a proper interpolation scheme and typically a large number of grid points for

proper representation that can capture subtle positional changes of atoms. Continuous-

filter convolutional layers are implemented in SchNet, getting around this problem by

applying a convolution element-wise. Given feature representations of n objects X l =

(xl1, ...,x
l
n) at locations Rl = (rl1, ..., r

l
n), the output of continuous convolutional layer l

at position ri is,

xl+1
i = (X l ∗W l)i =

n∑
j=1

xlj �W l(ri − rj), (2.58)

where � is the element-wise product. In the continuous-filter convolutional layer, the

positions, the distances dij = |ri − rj | are expanded with radial basis functions,

ek(ri − rj) = exp
(
−γ|dij − µk|2

)
, (2.59)

located at centers 0Å ≤ µk ≤ 30Å with γ = 10Å. Introducing this additional nonlin-

earity causes filter to be less correlated, since the network after initialization is close

to linear. This speeds up the beginning of the training process, which may plateau

otherwise [35].

In addition to the radial basis functions, each atom of a system is represented

by an embedding unique to its atomic number. This embedding is a vector of a pre-

defined length F that is refined through each layer l of the network. The feature

representations for an n-atom system for a layer are X l = (xl1, ...,x
l
n), with xli ∈ RF .

Each feature vector is initialized randomly for each Zi such that,

x0
i = aZi , (2.60)

49

Figure 2.16: Architecture of SchNet using a feature size of 64 and three interaction
blocks. The interaction block is shown in the middle, and the continuous-filter convo-
lutional layer on the right.

and is refined during training.

2.6.2.1 Architecture

The SchNet architecture consists of the previously described features in blocks

called the interaction blocks. Each interaction block refines the feature representations,

which are then passed to a final set of atom-wise layers and are pooled to reach the out-

put value. Figure 2.16 shows the full form of this output. Rather than each interaction

block being a composition of the previous, as typically done with neural network layers,

each uses a residual connection. The features are updated each layer as,

xl+1
i = xli + vli. (2.61)

This connection helps to prevent overfitting, as it is easier for vli to become zero in the

training process if the next layer is unnecessary by minimizing the residual between

50

xl+1
i and xli. Without a residual connection, the next layer would be updated as,

xl+1
i = f l(xli), (2.62)

requiring f l to learn the identity function, which is a non-trivial task. The activation

function used is the shifted softplus. It is defined as,

ssp(x) = ln(0.5ex + 0.5). (2.63)

This function is a smooth approximation of the ReLu, and ssp(0) = 0 in order to

improve convergence of the network.

The atom-wise layer seen in the architecture applies an affine transformation

to the features of each atom separately. This layer shares the same weights throughout

every atom, giving the output,

xl+1
n = W lxli + bl (2.64)

for atom i. The atom-wise layer is a concept seen in the atomistic neural network

discussed earlier. The sharing of weights across atoms allows for the network to scale

with the size of the system properly.

2.6.2.2 Results

Results of SchNet were given for the QM9 data set. QM9 is a database of

roughly 130,000 molecules consisting of up to nine atoms of C, H, O, N, and F. Each

molecule has fifteen chemical properties, including free energy G and total energy U0

[33][30]. The authors focus on the results of the total energy calculations. Table 2.1

gives the resulting mean absolute error of evaluating the validation set with an SchNet

model trained using different amounts of training data.

2.6.3 Transfer Learning For Modeling Molecular Properties

Neural networks such as SchNet achieve impressive accuracy on large data

sets such as QM9. However, this level of accuracy may not be attainable in applications

51

N MAE (eV)

50,000 0.026
100,000 0.015
110,462 0.013

Table 2.1: Validation set Mean absolute error of SchNet on the U0 from the QM9 dataset
with varying amounts of training data. For 50,000 data points and up, error remains
within chemical accuracy.

without a large amount of data for a specific task available. Transfer learning, which

has shown promise in other fields, is a potential candidate to improve the effectiveness

of SchNet with these smaller data sets. Transfer learning has been used to improve

molecular property prediction for very small data sets, with as few as 19 observations

[38]. In that approach, 1,000 neural networks pre-trained for various tasks were used

for transfer learning on predicting heat capacity and thermal conductivity of polymers,

showing considerable improvement over directly trained networks for a variety of base

data sets. This method may be viable for very small data sets, but with hundreds

or thousands of data points, training many networks without discretion can become

computationally expensive, so it would be desirable to train fewer neural networks with

a higher confidence in their transferability.

Another application of transfer learning seen in tandem with density functional

theory is in improving the accuracy of low-fidelity DFT results. Coupled cluster methods

such as coupled cluster single double triple (CCSD(T)) are a generally more accurate

technique for solving many-body wave functions than density functional theory but

are much more computationally expensive. Demonstrated in [36], a modified Behler-

Parrinello atomistic network trained on a large data set of DFT calculations for organic

molecules was used for transfer learning with a smaller set of accurate coupled cluster

calculations of similar molecules. The accuracy of the resulting model’s predictions

approached that of CCSD(T) calculations, surpassing the accuracy of DFT [36].

52

Chapter 3

Predicting Free Energy Of Transition

Metal Oxides With SchNet

The goal of using machine learning in place of density functional theory is

to speed up calculations, which is especially useful for high-throughput screening of

materials. The goal of this work is to apply machine learning for screening of transition

metal oxides. Transition metal oxides are used for solar energy conversion. However,

poor conductivity and electron-hole separation limits their carrier conductivity. It has

been shown that appropriate doping (adding of impurity) of these materials may improve

their utility. An important property to be found in these doped transition metal oxides

is a low defect formation energy. The defect formation energy is the difference between

the total free energy of the pure transition metal oxide and that of the impure, doped

transition metal oxide. Although there are other properties of importance, this work

focuses on the learning of the mapping between transition metal oxides and their free

energy.

To get the speedup of using a neural network for screening materials, some

examples are needed to train it, adding an overhead computational cost if these are not

materials with properties already available and DFT is needed to get them. Because

of this, it is desirable to have a training method that is data-efficient; able to learn an

accurate mapping with relatively little data as opposed to tens or hundreds of thousands

53

of examples as demonstrated so far. This chapter describes how a data set of transition

metal oxide DFT calculations is put together and reports the results of using this data

for training SchNet networks with a variety of methods.

3.1 Data Set Creation

In order to create a data set of transition metal oxides, an open-source data

base of DFT results was used. AFLOW makes outputs from DFT calculations directly

available, including over 3 million material compounds currently [6]. From the AFLOW

database, a small set of 517 transition metal oxides including Iron, Titanium, Vanadium,

and Oxygen was created. These materials each have between 2 and 110 atoms, with a

mean of 12. An extension of this data set was then created, introducing an additional

146 transition metal oxides consisting of Chromium and Manganese.

A second data set was created for the purpose of transfer learning use the

Materials Project database. The Materials Project curates a database of materials

with information regarding their structure and properties [24]. This subset consisted of

materials made up of 87 elements, including those of the target data set, Ti, Fe, V, and

O. Materials of the same unit cell formula as the transition metal oxide data set were

excluded for the sake of preventing overlap between the two data sets. This means that

materials with the same composition as one in the transition metal oxide set, even if

they had a unique geometry, were not included in this data set. This data set includes

50,000 materials used for training, and 10,000 for validation. A smaller subset of this

data set was created, also excluding Mn and Cr for the purpose of transfer learning with

the extended transition metal oxide data set.

3.2 SchNet Direct Training Results

To get a performance benchmark for the Transition metal oxide (TMO) data

set, SchNet was trained on it on the full training set. Two different model architectures

and regularization schemes were used. The architecture used for training on the QM9

54

N arch 1 arch 1+L2 arch 2 arch 2+L2

400 0.563 0.551 1.175 1.005

Table 3.1: Validation set mean absolute error in eV of SchNet models trained on the full
TMO training set. Arch 1 is the larger architecture described and arch 2 is the smaller
architecture. L2 signifies the inclusion of L2 regularization with a coefficient of 10−3 in
the loss during training.

data set by the creators of SchNet was first considered, with and without L2 regular-

ization on all weights. This architecture consisted of six interaction blocks, 128 length

embedding vectors and 128-filter convolutional layers. Since the TMO data set is con-

siderably smaller than QM9, a smaller architecture was also trained with and without

regularization in an attempt to prevent potential overfitting. This architecture had four

interaction blocks, with embeddings of length 30 and convolutional layers with 30 filters.

For each model trained, Adam optimizer is used to minimize the mean squared error

with an initial learning rate of 10−4, which is reduced by a factor 0.8 when training loss

plateaus for 25 epochs until a minimum learning rate of 10−6 is reached. The results

of the validation set evaluated by these models are reported in Table 3.1. As expected,

with the small amount of data and a more diverse data set, the error is significantly

higher than what is achieved with the QM9 data set. The model with the best mean

absolute error was the original architecture with an L2 regularization coefficient of 10−3.

Out of the validation set, only 47 of the 117 predictions were within chemical accuracy.

This best-performing model is used to compare with transfer learning models in the

following sections.

3.3 Transfer Learning With SchNet

In order to improve the results of SchNet with the small data set, transfer

learning was implemented in three different schemes with the Materials Project data

set used for training the initial network:

1. Initialize the network with pre-trained weights, fine-tune all by training on the

55

Figure 3.1: Visualization of the three transfer learning schemes used. The embedding
layer, the interaction blocks, and the output layer are either frozen or fine-tuned.

TMO data set.

2. Initialize the network with pre-trained weights, fine-tune all except the embedding

layer, which stays frozen in training.

3. Initialize the network with pre-trained weights, fine-tune only the output layer

during training.

The transfer learning methods are demonstrated on two target transition metal

oxide data sets. First, all three of the methods are used on the initial TMO data set.

The data was split into a training set of 400 and a validation set of 117. Training data

sizes of 400, 200, and 100 are used. For the 200-length data set training, the 400 are split

into two sets, and a separate neural network is trained with each. The same is done

with the 100-length training set, where four neural networks are trained. The mean

absolute error of each of the same-length data set networks is then averaged to get the

given results. This is done to ensure consistent results, since the data set is small and

all portions may not be entirely representative of each other. Next, the two successful

methods are compared to direct training on the extended TMO data set, including two

additional transition metal elements and 146 additional data points. On the extended

set, training is done similarly except with training set sizes of 500, 250, and 125 and

56

N No TL TL1 TL2 TL3

100 0.939 0.929 0.943 1.191
200 0.762 0.691 0.703 0.847
400 0.551 0.477 0.482 0.686

Table 3.2: Validation set mean absolute error in eV of each of the transfer learning
schemes along with the best performing direct training method across the different-
sized splits of the original TMO data set. The bold numbers are the best result for the
row.

a validation set of 163 samples. The best performing direct training method, using L2

regularization with a coefficient of 10−3, is compared to the transfer learning results for

each data set.

3.3.1 Results

This subsection provides the results of the two experiments outlined above.

First The original TMO data set is trained with each method, then the best methods

are considered again for the slightly larger and more diverse extended data set.

3.3.1.1 TMO Data Set

For the transition metal oxide data set consisting of three transition metals,

transfer learning methods 1 and 2 proved to be the most effective, achieving lower mean

absolute error on the validation set than the best direct training model for the 400

and 200 size training sets, and similar error for the 100 size training sets. The third

transfer learning scheme performed worse than the direct training. The mean absolute

errors are reported in Table 3.2. A significant difference was seen between the number

of validation predictions within chemical accuracy of the DFT value for the successful

transfer learning methods compared to direct training, with over 20% more for each

training data set size. These results are visualized in Figure 3.2.

57

Figure 3.2: Results of the three best transfer learning methods compared to best direct
training method without transfer learning with the original TMO data set. Left: Mean
absolute error of the validation set evaluation for the models trained on each of the
training set sizes. Right: Percent of evaluations within chemical accuracy of the value
computed with DFT.

3.3.1.2 Extended Data set

For the extended TMO data set, only TL1 and TL2 transfer learning methods

are considered in the comparison with direct training. For models trained on training

sets of size 125 and 250, both transfer learning methods achieve lower mean absolute

error than direct training, while models trained on the largest training set all performed

similarly. Like the smaller TMO data set, the transfer learning methods both get

significantly more predictions from the validation set within chemical accuracy of their

DFT-calculated value than the directly trained model. These results are reported in

Table 3.3 and Figure 3.3.

3.3.2 Error Analysis

In these two experiments, transfer learning methods 1 and 2 perform good

as or better than direct training in mean absolute error. However, even in the two

cases with similar mean absolute error, a much larger fraction of the transfer learning

58

N No TL TL1 TL2

125 1.355 1.083 1.067
250 0.827 0.753 0.751
500 0.730 0.744 0.730

Table 3.3: Validation set mean absolute error in eV of the previously best performing
direct training and transfer learning methods applied to the extended data TMO data
set.

Figure 3.3: Results of the two best transfer learning methods compared to best direct
training method without transfer learning with the extended TMO data set. Left:
Mean absolute error of the validation set evaluation for the models trained on each of
the training set sizes. Right: Percent of evaluations within chemical accuracy of the
value computed with DFT.

predictions are within chemical accuracy than the direct model predictions. The reason

for this was explored further, and it was found that in addition to the lower error, the

transfer learning predictions also shared a higher proportion of the higher errors than

the directly trained model, leading to similar mean error. This is shown for the TL1

model in both the 100 length training sets for the original data set and the 500 length

training set for the extended data set in Figure 3.5. The cumulative error distributions

of the best transfer learning method for the larger and smaller training set size of both

the original and extended TMO data is explored in Figure 3.6, along with relative errors

59

Figure 3.4: Relative error for each method on the original and extended TMO data set.
Left: Original data set. Right: Extended data set.

N No TL TL

125 7182 214495
250 5008 210736
500 3626 209751

Table 3.4: Total computational time in seconds to train direct and transfer learning
models per size of training set. Transfer learning models also take into account the
training time of their source model, accounting for the large difference between methods.

of all methods in Figure 3.4.

3.4 Computational Cost Comparison

As seen in Chapter 1, density functional theory calculations can be compu-

tationally expensive, with the average calculation from a set of 1,300 transition metal

oxides taking over 27 minutes. Using a neural network in place of DFT allows for ac-

celerated predictions after the overhead cost of training and generation of data. With

a trained SchNet model, predicting the free energy of a new transition metal oxide is in

the order of milliseconds, while running DFT calculations takes similar time as the pre-

vious calculations. The overhead cost of training the neural network can be insignificant

60

Figure 3.5: Error distribution in cases where TL1 and direct training had similar MAE
with a significant gap in predictions within chemical accuracy. In each case, TL1 errors
make up a larger portion of both the ends of the distribution, with the larger values
making a significant impact to the MAE. Left: Predictions from models trained on 100
length training sets of original TMO data set. Right: Predictions from models trained
on 500 length training set of extended TMO data set.

for larger scale screening of materials. Table 3.4 gives the training times for direct and

transfer learning models. SchNet was implemented using the PyTorch machine learning

framework in python [27]. Training was done with an NVIDIA Titan RTX GPU. While

both direct and transfer training times were similar, we must also consider the training

of the source model used to initialize the transfer learning models, which leads to the

large discrepancy between the two. For the largest training set, the total training time

was 2.2 times that of the mean DFT calculation time for direct training, and 128.2 times

for transfer learning. If hundreds or thousands of materials are to be screened, neural

networks allow a large savings in computational time, as visualized in Figure 3.7.

To give an example of this speedup, DFT was done on a simple, two-atom

TiO molecule using the Quantum Espresso DFT code on a 2014 Mac Mini with 1.4

GHz Intel Core i5 processor and 4GB of RAM. This took 87 seconds. Evaluating the

same material with the neural network took 4.6 milliseconds on the same computer.

While being a big speedup, this does not capture the more significant speedup seen

with materials with more atoms. While DFT calculations for larger transition metal

61

Figure 3.6: Top: Cumulative distribution of validation set error for direct training and
TL1 methods trained with the 100 and 400 length training sets of the TMO data. In
each case, over 20% more of the predictions from transfer learning are within chemical
accuracy (1 kcal/mol). Bottom: Cumulative distribution of validation set error for
direct training and TL2 methods trained with the 125 and 500 length training sets of
the extended TMO data.

62

Figure 3.7: Total hypothetical computational time for screening properties with only
DFT and neural networks. Using 500 samples for training, using either direct training
or transfer learning would save 135 or 78 hours respectively in computational time over
DFT in predicting properties of just 300 more materials.

oxides took as long as 20 hours in the benchmark, the longest SchNet evaluation time

was 350 milliseconds.

3.5 Summary

In two experiments, it is demonstrated that using transfer learning for training

SchNet models with small data sets can improve the mean absolute error of predictions

compared to direct training methods. Furthermore, even in cases with marginal dif-

ferences in mean absolute error, transfer learning models made a higher percentage of

predictions within chemical accuracy, but on the other end of the spectrum had outlying

predictions of greater error than that of the directly trained models.

Transfer learning methods using a source model trained on a data set with the

same elements as the target data set and fine-tuning the weights proved to be the most

effective transfer learning approaches. Method 1 did this, while method 2 only froze

the weights of the initial embedding layer, fine-tuning the rest. These two methods

performed similarly on all tests, while the other approach proved to be less effective

than the direct training.

63

Using neural networks for predicting material properties allows for accelerated

screening of materials, as evaluating with a neural network for a single material takes

milliseconds while density functional theory can take minutes to hours. Here, it was

shown that transfer learning can allow for training more accurate models than direct

training with the same amount of data. Though it requires further investigation, this

could mean training models of similar accuracy as direct training would require less

data for the target data set, reducing the number of new density functional theory

calculations needed to be done to create training data. The source data set used for

transfer learning consisted of 50,000 materials, but was all available through public

data sets, meaning no extra computational cost was used in its creation. The extra

computational cost associated with transfer learning was in training the source model,

which could be reused in practice since it consisted of a wide range of elements.

To further validate the efficacy of these methods, experiments with a larger

target data set would be necessary. Although the goal was to learn accurate representa-

tions with little data, 500 training samples is still considered relatively small for neural

network optimization, and the effects of this can be seen by the very poor performance

on some outliers. A larger data set would reduce the effect these outliers have on the

mean error, giving a more reliable metric less dependent on the noise of the data set.

64

Bibliography

[1] T. A. Arias, M. C. Payne, and J. D. Joannopoulos. Ab initio molecular-dynamics

techniques extended to large-length-scale systems. Phys. Rev. B, 45(4):1538–1549,

January 1992.

[2] P. Blaha, H. Hofstätter, O. Koch, R. Laskowski, and K. Schwarz. Iterative diagonal-

ization in augmented plane wave based methods in electronic structure calculations.

J. Comput. Phys., 229(2):453–460, January 2010.

[3] R.N. Bracewell. The Fourier Transform and its Applications. McGraw-Hill Ko-

gakusha, Ltd., Tokyo, second edition, 1978.

[4] A. Chandran. A performance study of Quantum ESPRESSO’s diagonalization

methods on cutting edge computer technology for high-performance computing. PhD

thesis, 2017.

[5] M. Crouzeix, B. Philippe, and M. Sadkane. The Davidson Method. SIAM J. Sci.

Comput., 15(1):62–76, January 1994.

[6] S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J.

Nelson, G. L. W. Hart, S. Sanvito, ¡. Buongiorno-Nardelli, N. Mingo, and

O Levy. AFLOWLIB.ORG: A distributed materials properties repository from

high-throughput ab initio calculations. Computational Materials Science, 58:227–

235, June 2012.

[7] P. A. M. Dirac. The Principles of Quantum Mechanics. Clarendon Press, 1981.

65

[8] R. Eldan and O. Shamir. The power of depth for feedforward neural networks.

CoRR, abs/1512.03965, 2015.

[9] B. Ghojogh, F. Karray, and M. Crowley. Eigenvalue and Generalized Eigenvalue

Problems: Tutorial. March 2019.

[10] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[11] D. Griffiths and D. Schroeter. Introduction to Quantum Mechanics. Cambridge

University Press, August 2018.

[12] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev.,

136(3B):B864–B871, November 1964.

[13] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are

universal approximators. Neural Networks, 2(5):359–366, January 1989.

[14] M. Huh, P. Agrawal, and A. A. Efros. What makes ImageNet good for transfer

learning? arXiv:1608.08614 [cs], December 2016. arXiv: 1608.08614.

[15] M. Parrinello J. Behler. Generalized Neural-Network Representation of High-

Dimensional Potential-Energy Surfaces. Physical Review Letters, 98(14):146401,

April 2007.

[16] P. Duclos J. M. Combes and R. Seiler. The Born-Oppenheimer Approximation.

In G. Velo and A. S. Wightman, editors, Rigorous Atomic and Molecular Physics,

pages 185–213. Springer US, Boston, MA, 1981.

[17] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical

Learning, volume 103 of Springer Texts in Statistics. Springer New York, New

York, NY, 2013.

[18] D.P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs], January 2017. arXiv: 1412.6980.

66

[19] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks

with a nonpolynomial activation function can approximate any function. Neural

Networks, 6(6):861–867, January 1993.

[20] R. M. Martin. Electronic Structure: basic theory and practical methods. Cambridge,

2004.

[21] A. Menegola, M. Fornaciali, R. Pires, F. V. Bittencourt, S. Avila, and E. Valle.

Knowledge transfer for melanoma screening with deep learning. In 2017 IEEE

14th International Symposium on Biomedical Imaging (ISBI 2017), pages 297–300,

Melbourne, Australia, April 2017. IEEE.

[22] J. Nocedal and S. Wright. Numerical Optimization. Springer Science & Business

Media, December 2006.

[23] F. Nogueira, A. Castro, and M. A. L. Marques. A Tutorial on Density Functional

Theory. In A Primer in Density Functional Theory, volume 620. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2003.

[24] A. Jainand S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia,

D. Gunter, D. Skinner, G. Ceder, and K. a. Persson. The Materials Project: A

materials genome approach to accelerating materials innovation. APL Materials,

1(1):011002, 2013.

[25] N. Bonini M. Calandra R. Car C. Cavazzoni D. Ceresoli G. L. Chiarotti M. Co-

coccioni I. Dabo A. D. Corso S. de Gironcoli S. Fabris G. Fratesi R. Gebauer U.

Gerstmann C. Gougoussis A. Kokalj M. Lazzeri L. Martin-Samos N. Marzari F.

Mauri R. Mazzarello S. Paolini A. Pasquarello L. Paulatto C. Sbraccia S. Scan-

dolo G. Sclauzero A. P. Seitsonen A. Smogunov P. Umari P. Giannozzi, S. Baroni

and R.M. Wentzcovitch. QUANTUM ESPRESSO: a modular and open-source

software project for quantum simulations of materials. J. Phys. Condens. Matter,

21(39):395502, September 2009.

67

[26] S. J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Transactions on

Knowledge and Data Engineering, 22(10):1345–1359, October 2010.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Py-

torch: An imperative style, high-performance deep learning library. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett, editors,

Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran

Associates, Inc., 2019.

[28] E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions con-

juguées. Revue française d’informatique et de recherche opérationnelle. Série rouge,

3(16):35–43, 1969.

[29] J. A. Pople, P. M. W. Gill, and B. G. Johnson. Kohn—Sham density-functional

theory within a finite basis set. Chem. Phys. Lett., 199(6):557–560, November 1992.

[30] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld. Quantum

chemistry structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.

[31] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-

the-shelf: An astounding baseline for recognition. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, June 2014.

[32] S. J. Reddi, S. Kale, and S. Kumar. On the Convergence of Adam and Beyond.

arXiv:1904.09237 [cs, math, stat], April 2019. arXiv: 1904.09237.

[33] L. Ruddigkeit, R. van Deursen, L.C. Blum, and J.-L.Reymond. Enumeration of

166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17.

Journal of Chemical Information and Modeling, 52(11):2864–2875, November 2012.

Publisher: American Chemical Society.

68

[34] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Vi-

sual Recognition Challenge. International Journal of Computer Vision, 115(3):211–

252, December 2015.

[35] K. T. Schütt, P.-J. Kindermans, H. E. Sauceda Felix, S. Chmiela, A. Tkatchenko,

and K.-R. Müller. SchNet: A continuous-filter convolutional neural network for

modeling quantum interactions. In Advances in Neural Information Processing

Systems 30, pages 991–1001. Curran Associates, Inc., 2017.

[36] J. Smith, B. Nebgen, R. Zubatyuk, N. Lubbers, C. Devereux, K. Barros, S. Tretiak,

O. Isayev, and A. Roitberg. Outsmarting Quantum Chemistry Through Transfer

Learning. January 2018.

[37] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The Marginal Value

of Adaptive Gradient Methods in Machine Learning. In Advances in Neural Infor-

mation Processing Systems 30, pages 4148–4158. Curran Associates, Inc., 2017.

[38] H. Yamada, C. Liu, S. Wu, Y. Koyama, S. Ju, J. Shiomi, Morikawa, and R. Yoshida.

Predicting Materials Properties with Little Data Using Shotgun Transfer Learn-

ing. ACS Central Science, 5(10):1717–1730, October 2019. Publisher: American

Chemical Society.

69

