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A Similarity Solution for Two-Phase Fluid and Heat Flow 

ne~r High-Level Nuclear Waste Packages 

Emplaced in Porous Media 

Christine Doughty and Karsten Pruess 

Abstract 

The emplacement of a. heat source, such as a high-level nuclear waste package, into 

a. geologic medium gives rise to strongly coupled thermal and hydrologic behavior. 

Un.der certain conditions, a heat pipe may develop, with significant impact on conditions 

at the heat source. In an infinite homogeneous permeable medium with a. constant­

strength linear heat source, the partial differential equations governing fluid and heat 

flows in a radial geometry can be converted to ordinary differential equations through 

the use of a similarity variable, 'l=r /Vt. These equations are numerically integrated 

u:;ing an iterative "shooting" method to provide a description of temperature, pressure, 

saturation, heat flow, gas flow, and liquid flow conditions around a heat source such as a 

nuclt·ar waste package. The similarity solution is verified by numerical finite-difference 

simulations. Illustrative solutions are given for a range of hydrologic and thermal 

parameters. and the likelihood of heat-pipe development for conditions a.t several pro-

p<··st•d rt·pository sites is discussed. 
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energy accumulation term (Jjm3) 

mass accumulation terms (kgjm3
) 

rock specific heat (J/kg K) 
volumetric heat capacity (Jjm3 K) 
binary diffusion coefficient ( m2 /s) 

discrepancy vector at upper limit of integration 
enthalpy (Jjkg) 

Mobility (kg/s m Pa) (K~ =kk,i p j / J.l i, j =I ,g) 
intrinsic permeability (m-) 
relative permeability 

pressure (Pa) 
capillary pressure (Pa) (Pc =Pt -Pg) 
heat flow rate (W /m) 

mass flow rates (kg/s m) ( Qm =Qt:+Qt, m =w ,a) 

normalized heat flow rate (W/m) (Qe =Qe /211') 

normalized mass flow rates (kg/s m) ( Qm =Qm /211', m =w ,a) 
radial distance ( m) 
matrix of partial derivatives for Newton-Raphson iteration 
saturation 
temperature ( ·C) 
time (s) 
internal energy ( Jjkg) 
vector of variables unspecified at lower limit of integration 
mass fraction 
integration variable (z =lnq) 
rock expansivity (K-l) (a, ._(lj¢J)8¢>j8T) 
rock compressibility (Pa-l)(~, =(1/¢>)8¢>/oP) 
ratio of kinematic viscosity for liquid- and gas-phase water 
desired accuracy of endpoints of numerical integration 
jth increment for Newton-Raphson iteration 
very small non-zero number 
similarity variable (q=r /Vt) 
thermal conductivity (W jm K) 
parameter in van Genuchten [19] characteristic curves 
dynamic viscosity (Pas) 
density (kgjm3

) 

v:1.por-liquid interf:l.cial tension (N/m) 
porosity 

a a.ir (also used as :l. superscript) 
c C:l.pill:l.ry. constant value 
e energy 
g gas phase 
I liquid phase 
r rock, residual, relative 

sat at saturation (vapor-liquid equilibrium) 
w water (also used as a superscript) 
0 boundary condition, reference value 

L lower limit of integration 
U upper limit of integration 
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1. Introduction 

The Nevada Nuclear Waste Site Investigations (NNWSI) project is investigating the 

feasibility of constructing a geologic repository for high-level nuclear waste at Yucca 

Mountain, Nevada, in a partially-saturated, highly-fractured volcanic formation. Several 

recent mathematical modeling studies [1, 2] have examined the thermohydrologic 

behavior surrounding a repository in this geologic setting. Undisturbed conditions are 

such that temperature is well below the saturation temperature, so water is primarily in 

the liquid phase, and the initial heat transfer from a waste package is mainly conductive. 

As temperatures around the repository increase to the saturation temperature, evapora­

tion increases and vapor partial pressure becomes appreciable. Heat-pipe effects may 

contribute to or even dominate heat transfer in this regime. With time the heat ptpe 

moves away from the waste packages, leaving a gas-phase zone in which heat transfer is 

again conduction-dominated. The conditions surrounding a waste package at some time 

after emplacement are shown schematically in Figure 1. 

In the heat pipe region, heat transfer is pr,imarily convective. Near the heat source 

liquid water vaporizes, causing pressurization of the gas phase and gas-phase flow away 

from the heat source. The water vapor condenses in cooler regions away from the heat 

source, depositing its latent heat of vaporization there. This sets up a saturation profile, 

with liquid saturation increasing away from the heat source. The saturation gradient 

drives the backflow of the liquid phase toward the heat source through capillary forces. 

The liquid then vaporizes again and repeats the cycle. This convective heat transfer ts 

very efficient compared to conduction, so it occurs under nearly isothermal conditions. 

The requirements for heat-pipe development are (1) the presence of a volatile fluid, 

which will boil when temperature reaches saturation temperature; and (2) a mechanism 

by which gas-phase fluid can flow away from the heat source and liquid-phase fluid 

toward it. Gas-phase flow occurs if medium permeability is sufficiently high, and the 

far-field pressure is lower than that at the heat source. Thus, heat-pipe behavior is 
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unlikely in deep water-saturated formations, where ambient pressure is much higher 

than open-hole or backfill pressure at the repository. Liquid flow requires sufficient 

mobility and capillary pressure. Mobility depends on liquid saturation as well as 

medium permeability, since below a certain residual saturation, liquid is immobile. 

The present paper is concerned with an idealized version of the problem of fluid 

and heat flow near high-level nuclear waste packages. 'vVe study the behavior of an 

infinite homogeneous porous medium with uniform initial conditions, in response to the 

emplacement of an infinitely-long linear heat source of constant (time-independent) 

strength. Gravity effects are neglected, so that the system has a one-dimensional radial 

symmetry. With these simplifications, the coupled partial differential equations govern­

ing fluid and heat flow for radial geometry can be transformed into simpler ordinary 

differential equations through the use of a similarity variable, TJ=r /Vt. This change of 

variable is known as the Boltzmann transformation in heat conduction problems. It has 

been applied to the thermohydrologic behavior of geologic media by O'Sullivan [3], who 

used it to analyze geothermal well-test data. Other researchers [4, 5] also have used the 

similarity concept for this purpose, but limited themselves to simplified thermodynamic 

relationships to allow quasi-analytic solutions. 

Following O'Sullivan [3], we consider the fully non-linear problem with realistic 

thermodynamic relationships, which requires a numerical integration of the coupled 

differential equations. The main difference from O'Sullivan's treatment is that the mass 

flux boundary condition at r =0, appropriate for geothermal production or injection 

wells, is here replaced by a heat flux boundary condition. Furthermore we include capil­

lary pressure and heat conduction effects. These are unimportant for the geothermal 

well test problem, but are essential for the heat-driven problem considered here. Our 

general mathematical treatment includes two fluid components, water and air, although 

the specific solutions presented here are for water only. 
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Below, we describe the development of the governing equations and the techniques 

used for their integration. Next, the similarity solution is compared to results of numeri­

cal simulations, with excellent agreement. Finally, some characteristic features of ther­

mohydrologic behavior in a geologic medium around a heat source are illustrated 

through application of the similarity solution. 
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2. Basic Equations 

The governing equations for fluid and heat flow for a single-component system in 

radial geometry as given by O'Sullivan [3] consist of a mass balance for water and an 

energy balance 

(1) 

aMe 1 aQe 
--+---=0. at 21rT ar (2) 

If air is present in the system, a mass balance for air is also needed 

(3) 

The subscripts w, a, and e refer to water, a1r, and energy, respectively. To simplify 

the notation, we introduce normalized flux terms, given by iJ= Q /27r. ·With the rock 

and fluid assumed to be in local thermal equilibrium at all times, the accumulation terms 

are given by 

(4) 

(5) 

where ¢> is porosity, S is saturation, p is density, X is mass fraction, c is specific heat, 

T is temperature, and u is internal energy. The subscripts I, g, and r refer to liquid 

phase, gas phase, and rock, respectively. The mass flow r~te for each component, the 

sum of liquid and gas flow rates, is given by Darcy's Law, modified for two-phase flow. 

In the gas phase there is also a flow component due to binary diffusion 

for m =w ,a (6) 
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where k is intrinsic permeability, krj is the relative permeability of phase J, J..t 1s 

dynamic viscosity, P is pressure, and Dva is the diffusion coefficient for vapor-air m1x-

tures. Liquid and gas pressures are related by the capillary pressure through 

Pt = Pg + ~. If no air is present xw =1, xa =0, and the m =a case of equations (4) 

and ( 6) is identically zero. The heat flow rate contains convective and conductive terms 

(7) 

where h is enthalpy and "' is thermal conductivity. 

Equations (1), (2), (3), (6), and (7) make up a set of six coupled first-order partial 

differential equations for six unknowns (or primary variables). In single-phase regions Sg 

is constant, so Qw, Q0 , Qe, Pg, X/, and T may be taken as the primary variables. In 

two-phase regions T depends on Pg and X through the saturation curve, so Qw, Qa , 

Qe , Pg , X/, and S9 become the primary variables. All other thermophysical properties 

can be expressed as functions of the primary variables, as described in Appendix A. 

Note that by substituting equations (6) and (7) into equations (1), (2), and (3) we 

could obtain a set of three second-order differential equations for three unknowns: Pg, 

X9°, and T in single-phase regions, and Pg, X/, anc;l Sg in two-phase regions. While this 

set of equations may seem simpler than a set of six first-order equations, for numerical 

integration purposes it is preferable to treat first-order equations. 

- - -The uniform initial conditions are given by Qw =Qa =Qe = 0, Pg = Po, Xua=X 0 , 

and S9 = S 0 for all r . The boundary conditions as r- 0 are no mass flow ( Qw = 0, 

Qa = 0) and constant heat flow ( Qe = Qe0/2n Qeo• where Qeo is the heat source 

strength per unit length). The boundary conditions as r- oo are unchanged from the 

initial values: Pg = Po, X/= X 0, and Sg = S 0. 

Following O'Sullivan [3) we introduce a similarity variable rJ=r /Vt and rewrite 

the governing equations as 
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'Y/2 dMm dQm - --- + -- = 0 for m =w ,a 
2 dq dq 

(8) 

'Y/2 dMe dQe 
----+--=0 

2 dq dq 
(9) 

form =w ,a (10) 

-m dT E hTQi - K'Y/-
j=l ,g dq 

(11) 

m=w,a 

where liquid and gas phase mobilities have been defined as K1 = kkr1 p1 I f.lt and 

K 9 = kkrg p
9 
I Jlg . Together the initial and boundary conditions become boundary con-

ditions given by 

(12) 

as 'Y/- oo. (13) 

Further simplification is achieved by substituting z =lnq, and replacing Pt with P9 +Pc 

1 dMm -2z dQm - --- + e -- = 0 for m =w ,a 
2 dz. dz 

(14) 

I dAle -:.!z dQe ---- + e -- =0 
2 dz dz 

( I.5) 

dT 
-K-. 

dz 
(I7) 

The boundary conditions become 

as z - -oo (IS) 

X/= X o . 59 = So as z - oo. (I 9) 
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3. Solution of Equations 

Equations (14-17) represent a set of six coupled first-order ordinary differential 

equations (ODE's). Solution of the system is straightforward in principle, by numerically 

integrating from z =-oo to z =oo, but in practice two complications arise that require 

special numerical techniques. One difficulty is posed by the "mixed" boundary condi-

- -tions, equations {18) and {19), which specify flux terms Qw, Qa, and Qe at z =-oo, 

while the thermodynamic functions Pg , ..-'(/, and Sg satisfy boundary conditions at 

z =+oo. Thus no complete set of starting values is available for integration, and an 

iterative approach known as the shooting method [6] must be used (see below). Further 

difficulties arise from the non-linear dependence of the coefficients in equations {14-17) 

upon the thermodynamic parameters, especially in connection with multiphase flow 

effects {relative permeability, etc.) and phas~ change behavior. 

We h~ve achieved a computational solution for a simplified version of the pr~blem 

stated by equations {14-17). The main simplification made is omission of the air com-

ponent, which reduces the dimensionality of the problem from six coupled ODE's to a 

more easily tractable set of four ODE's. A further simplification is the restriction of 

admissible rEllative permeability functions to a mathematically well-behaved class of 

smooth functions. It is recognized that at the potential repository horizon at the Yucca 

Mountain site, significant flow effects will arise both from the presence of air [2] and 

from the extremely non-linear relative permeability relationships characteristic of a 

fractured-porous medium [7]. Our main objective in the present work has been _to 

develop an accurate and computationally efficient implementation of the similarity solu-

tion technique under "mixed" boundary conditions, and to establish some reference cases 

for the behavior of strongly heat-driven flow systems with phase change. Work is under-

way to achieve a more realistic and detailed implementation of the specific conditions 

encountered at Yucca Mountain. 
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Shooting Method 

The first step of the shooting method [6] is to choose trial values for the unspecified 

variables at the lower limit of integration zL =-oo. From the general description of the 

thermohydrologic behavior of the system given in Section 1, we know that at zL =-oo 

(long times; close to the heat source) gas-phase conditions prevail, so the unspecified 

variables are Pg and T, which can be defined to be the components of a vector V. The 

trial values at zL are denoted fi and TL , or collectively V L . The numerical integration 

is then carried out from zL =-oo to zu =oo. We use a fourth-order Runge-Kutta 

scheme, but other numerical integration algorithms could be used. The value of V at 

the upper limit of integration zu is denoted V u; it can be viewed as a function of VL. 

When air is not included in the analysis, liquid-phase conditions prevail at zu =oo (ini-

tial time; far from the heat source) so the primary variables are Pg and T, and V u has 

components Pu and. Tu. Boundary conditions are specified at zu for each component of 

V, so we can define a discrepancy vector F, as the difference between V u and the 

specified boundary conditions at zu. The goal is to find an improved value of V L, 

denoted V L•, that reduces the absolute value ofF below an acceptable limit. We accom­

plish this via Newton-Raph;o~- iter~ti~n;-tha.t is, we solv-e the-following equation for VL* --

(20) 

where R is the .Jacobian matrix, with components Rij {£ ,j =1,2) given by 

R·· I} (21) 

The components of the matrix R are obtained by numerical differentiation. This 

requires two additional numerical integrations each using a modified value for one com-

ponent of VL, denoted VLi +8VLj. The partial derivatives of equation (21) are then 

approximated by 

(22) 
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In general, because the equations are non-linear, a numerical integration initialized with 

vL• will not yield a zero value for F, so the procedure must be repeated. lter~tion ~on-

tinues until I Fi I <1 I Vui I, and I VLi *- VLi I <1 I VLi I for £ =1,2, where 1 

represents the desired accuracy for V L and V u. 

In a numerical procedure, using truly infinite integration limits is impossible; 

infinity must be approximated by suitably large finite values. (As will be seen later, due 

to the nature of the present problem the solution is insensitive to the values of the 

integration limits if they are beyond a certain range.) 

To use the shooting method, we need to express the governing equations in terms of 

derivatives of the primary variables with respect to the similarity variable. This is done 

through use of the chain rule for partial derivatives. Recall that different sets of primary 

variables are applicable for single- and two-phase conditions. 

When air is not included in the analysis only the m =w terms of equations (14-17) 

are needed, since xa and Qa are equal to zero for all z. In the following, the super-

script w is omitted when no ambiguity results. 

ODE's for Single-phase Regions 

The distinction between Pg and A is not meaningful when only one phase exists, so 

the pressure is referred to simply as P in single-phase regions, and the chain rule takes 

the form 

tL dP a dT a -=--+--
dz dz ap · dz aT 

(:!3) 

and equations (l·l-1 i) become 

-- --- + --- + e -- = 0 
1 [ aMw dP aAlw dT l -2.: dQw 
2 a P dz a T dz dz 

(24) 

1 [ aMe dP aMe dT l -2= dQe - - --- + --- + e -- = 0 
2 a P dz aT dz dz 

(2.5) 
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Q =-K· dP 
w 1 dz {26) 

- dP dT 
Qe =- h·K·- -IC-. 1 1 dz dz 

{27) 

The subscript j is g for the gas phase and I for the liquid phase, labeled zones 1 and 4, 

respectively, in Figure 1. Capillary pressure ~ is constant in single-phase regions, so 

d~ I dz =0. The accumulation terms simplify to 

{28) 

{29) 

We would like to rearrange equations {24-27) to isolate the z -derivative terms on the 

left-hand-side. Equation {26) can be trivially solved for dPI dz, which can then be substi-

tuted into {27) to yield an expression for dTidz. Equations {24) and {25) can be easily 

solved for dQw I dz and dQe I dz, respectively, in terms of dPI dz and dTI dz. Altogether 

we obtain the following set of equations to integrate for zones 1 and 4 

-=---
dz Ki 

dT 
dz 
1' 
dQw = e 2z [ aA4w dP + aA1w dT l 

dz 2 a P dz a T dz 

ODE's for Two-phase Regions 

For two-phase regions the chain rule takes the form 

d dPg a dS9 a 
- = ---- + ----
dz dz aPg dz asg 

{30) 

{31) 

{32) 

{34) 
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and equations (14-17) become 

_ _!_[ aMw df>g + aMw dSg ) + e-Zz dQw = O 
2 aPg dz asg dz dz 

(35) 

_ _!_ [ aMe df>g + a Me dS9 ) + e -zz dQe = 0 
2 aPg dz asg dz dz 

(36) 

(37) 

(38) 

Here we have neglected vapor pressure lowering effects, so that in equation (38) there is 

no a TlaS9 term, and the a TlaPg term is replaced by dTI dP9 • This reflects the simple 

dependence of temperature on pressure through the saturation curve. Note from eq:ua-

tions ('I) and (5) that the accumulation terms Afw and Me contain terms p1 , p9 , u1 , u9 '· 

and 4> that depend on pressure both explicitly, and implicitly through temperature, since 

As in the single-phase region, we would like to rearrange (35-38) to explicitly obtain 

dPg I dz and dS9 I dz from equations (37) and (38), so that the remaining unknowns 

- -dQw I dz and dQe I dz can be found by simple substitution into (35) and (:36). To accom-

plish this it is necessary to divide by [(1 , which is proportional to the liquid relative per-

meability, krl. By definition, krt >0 when 51 >S1r, where S1r is the residual liquid 

saturation. In the present work, to avoid the complications arising from K 1 = 0 for 

51 S:_S1r, we only consider cases where S1r = 0, so kr1 >0 throughout the two-phase zone, 

and there is never a problem dividing by K1 . A two-phase region with a mobile liquid 

phase is shown as zone 3 in Figure 1. In future work we plan to address the situation 

where !:Y/r >0 and a two-phase zone with an immobile liquid phase develops (zone 2 in 

Figure 1). 
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With the condition K 1 >0, equations (37) and (38) can be solved for dPg / dz and 

dSg / dz. Equations (3.5). and (36) can be solved for dQw / dz and dQe / dz, respectively, 

in terms of dPg / dz and dSg / dz. Altogether we obtain the following set of equations to 

integrate for zone 3 

- -
df>g Qe - h1 Qw 
-- =- ---------

dz dT 
(hg -h, )Kg + K-p 

d g 

dQw = ~[ 8Mw df>g + 8Mw dSg l 
dz 2 8Pg dz asg dz 

dQe = e ::!z [ 8Me df>g + 8Me dS9 l· 
dz 2 8Pg dz asg dz 

Transit£ons Between Zones 

(39) 

(.to) 

( 41) 

(42) 

In order to make the transition m primary variables required at phase changes, at 

each step in the numerical integration the current phase conditions are checked. For the 

gas-phase (zone 1), as equations (30-33) are being integrated, the temperature T is com-

pared to the saturation temperature for the pressure, T,at(P ). If T > T,at+E, where 

E~lo-8 , the gas-phase/two-phase transition has not been reached yet. The integration 

step is accepted, and the integration proceeds, still in zone 1. If T < T,at-E, the integra-

tion has gone beyond the phase change point. The step is then rejected and attempted 

again using a smaller step size. If T,at-E < T < T,at+E, the phase change point has been 

reached, and the transition to two-phase conditions (zone 3) is made, with gas-phase 

saturation S
9 

replacing T as the primary variable, and equations (39-42) replacing (30-

3:3) in the integration. At the zone 1/zone 3 transition, Su is initialized as 1-51 min, 



- 15-

where S1 min IS the mm1mum liquid saturation for which liquid relative permeability 

krl >€. The value of S1 min depends on the form of the relative permeability function. 

At each step in zone 3, as equations (39-42) are being integrated, T is set to 

Tsal?u) and S
9 

is compared to zero. If S9 >€, the two-phase/liquid transition has not 

been reached yet; the step is accepted, and the integration proceeds, still in zone 3. If 

S
9 

<-€, the phase change point has been passed. The step is then rejected and repeated 

using a smaller step size. If -€<59 <€, the phase change point has been reached, and 

the transition to zone 4 is made, with T becoming the primary variable, and equations 

(30-33) replacing (39-42) in the integration. 

The parameter € is chosen to be very small compared to the numbers it is added to 

or multiplied by, but large enough to be treated accurately by a finite-precision com­

puter. We take €=10-n, where n is half the· number of significant figures the computer 

uses to express real numbers. The present work was done on a Cray X-MP at the 

National Magnetic Fusion Energy Computer Center, Lawrence Livermore National 

Laboratory, which expresses real numbers with approximately 16 significant figures, so 

€=10-8. 

Step-size Control 

At each step m the numerical integration, the results are compared with results 

obtained by splitting the step into two half-steps. If the results agree within a specified 

criterion, the step is accepted and step size is increased for the next step; if they do not, 

the step is rejected and repeated using a smaller step size. 
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4. Computational Procedure 

As an example of the application of the similarity solution, we consider a heat 

source of strength Qe0=200 W /m emplaced in a porous medium with material properties 

and characteristic curves given in Table 1, with initial conditions Po=0.1013 MPa and 

10=26 o C. For the most part the properties and functions described in Table 1 are 

representative of a laboratory sand pack used to study steady-state heat-pipe behavior 

[8]. The intrinsic permeability k has been decreased by a factor of 10, and the rock 

compressibility !3. =(1/¢)8¢/BP increased by a factor of 10 to create a more computa-

tionally efficient example. Neither change is necessary for the method to work in gen-

eral; the effects of the changes are described later in this section. 

The first step when applying the similarity solution is to choose Z£ and zu, the 

limits of integration, and trial values for T and P at zL , which are denoted T ( Z£ )= TL 

and P ( zL )=Jl . Some clues are provided by examining the much simpler problem of a 

heat source emplaced in a medium in which all heat transfer is conductive. For constant 

thermal conductivity "-c and heat capacity Cc this problem has ~n analytical solution 

given in terms of the exponential integral [14] 

( 43) 

( 44) 

F'igure 2 shows the temperature and heat-flow profiles for thermal properties correspond-

ing to liquid water ("-c =l.l:l W jm o C, Cc =2.9 MJjm3 
o C) and water vapor ("-c . 0.582 

W /m o C, Cc =1.3 MJjm3 ° C) saturating a medium with thermal properties given in 

Table l. Appropriate limits of integration for this problem would be zL <-11 and 

zu >-5, beyond the region of changing heat flow. Anticipating variations in fluid flow 

as well as heat flow, we arbitrarily extend the limits in both direction to obtain zL =-1.5 

and zu =-3 as tentative limits for the similarity-solution integration. For a vanishingly 
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short heat p1pe, that is, a direct transition from gas to liquid phase, TL would fall 

between the T (zL) values for the liquid and gas curves shown in Figure 2, 252 o C and 

468 o C. Thus, we take TL =(252+468)/2=360 o C as an initial guess for the tempera­

ture boundary condition. If the heat-pipe region turns out to be substantial, this value 

of TL will be too high. The conduction solution does not provide any information on 

pressure so we take fL =Po=0.1013 MPa. 

The numerical integration from zL =-15 to zu =-3 results in Tu =45.6 o C and 

Pu =0.0509 MPa (Table 2). For this "first shot", Tu and Pu are not very close to T0 or 

Po, which is not surprising in view of the simplistic initial guesses used. The Newton­

Raphson iteration requires that the integration be repeated twice for each shot, using a 

modified value of PL, PL +8f£, in one case, and a modified value of TL, TL +8TL, in the 

other. The values chosen for 8fi and 8TL must be small enough to yield an accurate 

approximation for the partial derivatives given in equation {22), but large compared to 

the errors generated in the numerical integration. By comparing Pi;-Po and Tu-To for 

the three integrations, improved values of fL and TL are obtained for the second shot. 

After three shots the solution converges, as shown in Table 2. Figure 3 shows the tem­

perature and pressure profiles for each shot. (In all figures, pressure shown in the two­

phase region is Pg .) Each integration takes about 420 steps; the whole procedure uses 20 

seconds of CPU time on a Cray X-MP computer. 

Sometimes an initial guess may be too poor to allow the numerical integration to be 

completed. For example, if TL is too small, temperatures drop below 0 ° C and the equa­

tions of state for liquid water and vapor are not applicable. Without values of Tu and 

Pu, the Newton-Raphson iteration cannot be done. Other times the integration can be 

completed, but the Tu and Pu values are so far from T0 and Po that the Newton­

Raphson iteration diverges. In practice, the usual procedure is to perform a numerical 

integration with an initial guess for TL and fi, plot the resulting T and P profiles, and 

choose improved values of TL and PL based on general features of the profiles. After 
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one or two repetitions of this procedure, the profiles should be close enough to the true 

solution to allow efficient use of Newton-Raphson iteration. 

Figure 4a shows the pressure, temperature, and saturation profiles for the con­

verged solution, while the solid lines in Figure 4b show the liquid, gas, water (liquid plus 

gas), and heat flow-rate profiles. The lower limit of integration, zL, is beyond the region 

where fluid or heat flow vary, but at zu =-3, Q1 is still changing, so the integration 

should be continued. Both T and P are nearly constant around z =-3, so extending 

the integration will not require additional Newton-Raphson iterations. The dashed line 

shows Q,, Q9 , and Qe values obtained by continuing the integration from zL =-3 to 

zu =-1.4. This part of the integration requires 6780 steps, significantly more than the 

420 required to integrate between Z£ =-1.5 and zu =-3. The form of equations (32) and 

(33) dictates that as z increases, step size decreases. This decrease becomes significant 

for z >-.5, and overwhelming for z >-1. 

Note from the definition of the similarity variable that Figure 4 represents both a 

spatial distribution at a given time, with distance from the heat source increasing from 

left to right, and a time sequence at a given point in space, with time increasing from 

right to left. The signature of the heat pipe is the large liquid-vapor counterflow shown 

in Figure 4b, with net water flow nearly zero, and the corresponding nearly isothermal 

zone shown in Figure 4a. The larger temperature gradient and constant pressure within 

the vapor zone (z <-11.8 ) indicate that conduction is the dominant heat-transfer 

mechanism there. In the liquid zone (z >-9.6) there are two domains. Just beyond the 

two-phase zone there is a region with a linear temperature gradient and small mass flow, 

indicating a conductive regime. Beyond the leading edge of the heat flow front ( z ::=::::::-7), 

there is a liquid flow away from the heat source, with attendant small sensible heat tran­

sport, that arises because the water vapor forming at the heat pipe is much less dense 

than the liquid water it replaces. 
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5. Comparison with Numerical Simulations 

The numerical model TOUGH [15] has been used to verify the similarity solution. 

TOUGH (Transport Of Unsaturated Groundwater and Heat) calculates the two-phase 

flow of air and water in gaseous and liquid phases together with heat flow using the 

governing equations shown in Section 2. Material properties vary with pressure, tem­

perature, and saturation as described in Appendix A. TOUGH uses an integral finite 

difference method that is applicable for one-, two-, or three-dimensional flow problems in 

porous or fractured porous media. The governing mass- and energy-balance equations 

are strongly nonlinear and are solved simultaneously, using Newton-Raphson iteration. 

A one-dimensional radial calculational mesh with 90 elements is used to calculate 

pressure, temperature, and saturation in a porous medium surrounding a heat source of 

strength Qe
0
=200 W jm. Material properties and mesh dimensions are given in Table 

3. Initial conditions everywhere are P = 0.1013 MPa, T = 26 o C, and S1 = 1. The 

innermost element of the mesh includes the heat source; at the outermost element P 

and T are held constant. This approximate implementation of the similarity-solution 

boundary conditions for z =-oo and z =oo is unavoidable with a numerical model, 

which is necessarily of finite extent. 

A simulation for 10,000 years takes 475 time steps and requires 8.6 minutes of CPU 

time on a Cray X-MP. Figure 5, which shows temperature, pressure, and saturation (.Sa) 

and heat, mass, liquid, and gas flows (.5b) versus radial distance for a series of times, 

illustrates the development of the heat pipe and its migration away from the heat 

source. Figure 6 shows the same variables plotted as a function of z =ln(r /Vt ), with 

profiles for 21 different times displayed. The close agreement between the profiles for 

different times verifies the use of the similarity concept for this problem. The small 

spread between the profiles can be understood from the observation by Schroeder et a!. 

[16], that for a numerical solution calculated on a finite-difference grid, there is only an 

approximate invariance with respect to the similarity variable, due to the finite grid 
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spacmg. Data from the innermost and outermost mesh elements are not included in Fig­

ure 6 because grid effects are most pronounced where boundary conditions are imple­

mented. The greater spread between the profiles at the inner limit of the heat pipe 

results from early-time profiles, when the heat source is close to the heat pipe. Later­

time profiles, when the heat pipe has moved further from the heat source, are more accu­

rate. At still later times, the liquid flow away from the heat source reaches the 

constant-pressure boundary at the outer limit of the mesh, so the mesh no longer 

represents an infinite medium properly, causing the liquid flow profiles to diverge. Fig­

ure 7 compares an intermediate-time profile, for which mesh effects are minimal, and the 

similarity solution. The match is excellent. 
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6. Illustrative Examples 

In this section we examine significant features of the response of a porous medium 

to emplacement of a strong heat source in one-dimensional radial geometry. In particu­

lar, the dependence of system behavior upon major thermal and hydrologiC parameters is 

illustrated by way of calculated examples. 

Relative Permeability Functions 

Five different relative permeability functions are described in Table 4, and plotted 

m Figure 8a as a function of liquid saturation S1 . The linear, cubic [11, 12], and Corey 

[17] functions are commonly encountered in the petroleum literature, the Verma et a!. 

[18] function was developed from laboratory experiments on liquid-vapor water flow, and 

the van Genuchten _[19] liquid relative permeability function comes from the soil sciences. 

As is traditional in the soil-science approach to fluid flow, no gas-phase relative permea­

bility function is presented in the van Genuchten work [19], so we take krg =1-krl. For 

the parameter >- we use 0.45 [20]. Figure 8b shows the temperature, pressure, and 

saturation profiles calculated with the different relative permeability functions, using the 

other values from Table 1. A large variation in heat-pipe length is seen. The cubic and 

Corey curves (Figure 8a) are quite similar, and yield similar profiles (Figure 8b ), with 

relatively short heat pipes. The linear and Verma curves (Figure 8a) are similar for krg, 

but quite different for kr1 . The corresponding saturation profiles (Figure 8b) are similar 

for large values of 51 , but very different for 51 <0.2.5, resulting in very different length 

heat pipes. The van Genuchten krg curve is quite different from all the others, and the 

resulting saturation profile is also distinct, but the heat-pipe length is similar to that for 

the linear curves. Note that the linear and van Genuchten curves share the property 

that krl +krg =1 (for the other cases krl +krg <I) and that the heat-pipe length is 

significantly greater for these cases. 

The effect of the relative permeability function can be predicted qualitatively by 

examining equation ('10) for dSg / dz. To facilitate comparison with the figures, which 
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show S1 rather than S
9 

, we replace dS9 / dz with -dS1 / dz 

(45) 

When heat-pipe effects are significant, as m the examples shown in Figures 4a, 4b, and 

8b, equation (4.5) can be simplified. Figure 4b shows that in the two-phase region net 

water flow Qw is zero and heat flow Qe is constant. Furthermore, ape /8Pg is generally 

small, and ~edT/ dPg is small compared to (h 9 -h1 )K9 if conduction is small compared to 

convection, that is, if the heat-pipe region is nearly isothermal. Thus an approximate 

version of equation ( 45) may be written 

( 46) 

where K 9 =kkrgPg/JLg and K 1 =kk,1 ptfJL1 • Under the nearly constant~temperature 

constant-pressure conditions of the heat-pipe regiOn, p9 , ·p1 , JLg, and JLt are approxi-

mately constant, and can be combined into a parameter /3, defined as the ratio of the 

kinematic viscosities of the liquid and gas. 

J.lt I Pt !3 = -.,..----
J.lg I Pg 

For Pg ~ 0.1 MPa and T ~100" C, /3~0.01. Equation (·16) may then be written 

---~-ep_c _k_p_
9
_ [-k~-, + :, l 

(hg -h, )-a-s--,-
g r-g 

(47) 

( 48) 

Thus dS1 / dz is con trolled by the smaller of k,9 and k,1 /,!3. For large values of 51 , k,9 is 

the controlling factor. Figure 8a shows that the value of krg for the van Genuchten 

function is far larger than the rest, while the cubic and Corey functions are similar and 
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very small, and the linear and Verma functions are similar and of intermediate magm­

tude. This variation is reflected in the upper portion of the saturation profiles in Figure 

8b, where the van Genuchten S1 profile has the smallest slope, the cubic and Corey 

profiles are steepest, and the linear and Verma profiles are in between. For small values 

of S1 , krl is the controlling factor. Figure 8a shows that the values of krl for the linear 

and Verma functions are very different, leading to the diverging saturation profiles seen 

in Figure 8b. The kr1 curves for the cubic and Corey functions are similar, so the 

saturation profiles remain close together. The Verma and cubic functions use the same 

krt curve, as evidenced by the parallel saturation profiles for small values of S1 • All the 

krt curves except the linear one become vanishingly small as, S1 approaches zero, leading 

to the sharp downturn in saturation profile characteristic of all cases except the linear 

one. 

Intrinsic Permeability 

Figure 9 shows the temperature, pressure, and saturation {Figure 9a), and the 

liquid, gas, water, and heat flow (Figure 9b) profiles calculated for three rather large 

values of intrinsic permeability, k =10-12
, 10-13, and 10-14 m2, using the Verma eta!. [18] 

relative permeability functions (Table 4), and the other values from Table 1. The most 

striking feature of Figure 9a is the large decrease in heat-pipe length with decreasing 

permeability. Additionally, both heat-pipe temperature and temperature gradient 

increase with decreasing permeability, because a larger pressure gradient is needed to 

drive fluid flow. and temperature depends on pressure through 'fsat(Fg ). Conduction 

increases in the heat-pipe region as it becomes less isothermal. Figure 10 shows the same 

profiles for lower values of intrinsic permeability, k :_IQ- 15 and w- 17 m2, again using the 

Verma relative permeability functions and the other values from Table 1. In the heat­

pipe region, conduction becomes increasingly important relative to convection as permea­

bility decreases, until for k =10- 17m2 there is virtually no heat-pipe effect seen in Figure 

lOa. Because the saturation profile is quite sharp, the temperature profile for this case is 
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very similar to the conduction-only profiles shown in Figure 2; the liquid T profile is fol-

' 
lowed while S1 >0, and a transition is made to the gas T profile at S1 =0. In Figures 9b 

and lOb, the Q9 and Q1 profiles illustrate the decrease in heat-pipe counterflow for 

decreasing permeability. When permeability is large (Figure 9b, k =10-12 and 10-13 m2), 

the counterflow is large enough to transfer all heat convectively and an extended region 

of constant Q9 and Q1 develops, corresponding to the isothermal zone seen in Figure 9a. 

Fork =10-14 m2, this region disappears. For smaller values of permeability (Figure lOb), 

there is no region of constant Qg and Q1 , and the peak flow decreases in magnitude and 

shifts to more negative values of z. Despite the very different fluid flow patterns seen in 

Figures 9b and lOb, the heat flow profile remains unchanged. 

Heat Source Strength 

Figure 11 shows temperature and pressure (Figure lla), liquid, gas, and water flow 

(Figure llb), and heat flow (Figure llc) profiles calculated for heat source strength 

values of Qeo =100, 200, 500, and 1000 W /m using the Verma relative permeability 

functions and the other values from Table 1. Figure lla shows that larger values of Qeo 

yield a shorter heat pipe, and steeper conduction gradients, which shift the heat pipe to 

larger values of z. The overall pressure increase does not change very much with vana-

tions in Qeo• so the heat-pipe temperature remains nearly constant. 

Figures llb and lie show that the magnitude of the liquid-vapor counterflow is 

directly proportional to Q", demonstrating that heat transfer is convection-dominated. 

In the liquid region beyond the heat pipe, liquid flow away from the heat source 

increases in magnitude with increasing Qeo· Recall from the definition of z that a shift 

in heat-pipe location to larger values of z represents a heat pipe moving away from the 

heat source more rapidly, indicating more vapor formation, thus requiring larger flow of 

liquid away from the heat source. 

,o 
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For low values of Qeo (100 and 200 W /m) the heat-pipe regiOn (with liquid flow 

toward the heat source) and outer liquid-flow region (with liquid flow away from the 

heat source) are well separated, but as Qeo increases and the conduction gradients 

become steeper, these two zones begin to overlap, resulting in a net decrease in the mag­

nitude of liquid flow. Since vapor flow does not similarly decrease, there results a non­

zero water (liquid plus vapor) flow in the heat-pipe region, and a corresponding increase 

in heat flow, as shown in Figure lie. Further, for higher values of Qeo• the heat pipe 

occurs at such large values of z, that the Qe profile has already begun to decrease when 

the heat pipe begins, lea-ding to an oscillation in Qe. 

Capillary Pressure Function 

As is the case with relative permeability functions, a variety of capillary pressure 

functions have been used to describe fluid flow through porous media. Unlike relative 

permeabilities, which always vary between zero and one, the magnitude of the capillary 

pressure depends on other physical properties of the system, making it difficult to isolate 

the influence of capillary pressure function. Equation (48) shows that saturation-profile 

slope is inversely proportional to a~ /BS9 . However, we have seen that this slope is 

controlled by the liquid relative permeability function when S1 is small. Hence capillary 

pressure functions that vary over the entire range of S1 , rather than primarily near S1r, 

tend to produce longer heat pipes. 

Rock Compressibility 

The value of rock compressibility, f3r =10-7 Pa-1, used in the above examples is an 

order of magnitude greater than typical values found in nature. A calculation for the 

problem described in Table l, using a more realistic value of f3r =10-8 Pa-1 yields identi­

cal results to those shown in Figure 4, except that the outer liquid flow extends to larger 

values of z. As noted previously, small integration steps are necessary for large values 

of z, so extending the limits of integration to large z requires increased computational 

effort. As long as the rock compressibility used is small relative to gas-phase and two-
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phase water compressibilities it will only affect the solution in the liquid zone. 

Initial Conditions 

Initial temperature, 'JQ, and pressure, Po, greatly influence the fluid and heat flows 

that occur in response to a heat source. For a heat pipe to develop the fluid must be 

volatile, that is, near its saturation temperature, which is determined by Po- For par­

tially saturated media, T0 increases with depth while Po and therefore saturation tem­

perature remain essentially constant. Thus the transition from zone 4 to zone 3 (see Fig­

ure 1), which happens when T';:::;:;l'sat> occurs at larger values of TJ (earlier times) for 

deeper heat sources. For fully saturated media, both T0 and Po increase as depth 

increases, with l'sat(Po) growing faster than T0 . Thus the zone 4/zone 3 transition occurs 

at smaller values of TJ (later times) for deeper heat sources. Equation (44) for the 

conduction-only temperature distribution may be used to determine T/sat> the largest 

value of TJ for which T = l'sat· For a given radial distance, 'lsat determines the earliest 

time after waste emplacement when saturation temperature is reached, denoted t sat· 

Table 5 shows t sat for various heat-source depths, calculated using equation (44), and a 

value of r =0.25 m. It is apparent that Po plays the dominant role in controlling t sat· 

Allowing for the heat-source strength decline with time charaCteristic of nuclear waste 

repositories, it is unlikely that saturation temperature will ever be reached for the fully 

saturated cases in Table 5. 

Table 6 shows t sat for some proposed repository conditions. As expected, t sat is 

smallest for the partially saturated Yucca Mountain site. The vah1e oft sat is also quite 

small for the Stripa site, despite the large value of Po, due to the high heat flow rate, 

Qe0=1385 W /m. Similarly, the large value of t sat for the Mol-Dessel site is largely due 

to the low heat flow rate Qe
0
=300 W jm. 

The Po values in Table 6 assume that the initial repository pressure is equal to the 

ambient pressure. For repositories in fully saturated media, this is not a good 
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assumption if the repository is ventilated with atmospheric air, or if backfill pressure is 

less than ambient pressure. In this case, non-uniform initial conditions preclude use of 

the similarity transformation and the results presented in this paper are not applicable. 

Although two-phase conditions may.evolve, heat-pipe development is not expected under 

these circumstances, because a heat pipe requires a driving force for gas-phase flow away 

from the heat source, which is absent if the pressure at the heat source is less than the 

ambient pressure . 
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7. ·Summary and Conclusions 

The mass and energy transport equations for one-dimensional radial flow in a 

homogeneous porous medium depend on time t and distance r only through the similar­

ity variable rJ=r /Vt. If initial and boundary conditions can be written as functions of 

TJ, then the entire flow problem admits a solution in terms of the similarity variable. A 

practically important case where this is possible is for a constant-rate line source at 

r =0, and uniform initial conditions. 

We have applied the similarity variable concept to solve an idealized version of the 

problem of fluid and heat flow near high-level nuclear waste packages emplaced in geolo­

gic media. The cylindrical waste package is approximated by a linear heat source at 

r =0. By means of the similarity transformation, the partial differential equations for 

fluid and heat Row are converted to a set of ordinary differential equations in TJ. These 

can be efficiently solved with the iterative "shooting method". The accuracy and 

efficiency of the similarity solution approach has been demonstrated by comparison with 

numerical finite-difference simulations. Illustrative examples have been presented to 

show the dependence of fluid and heat flow patterns and heat pipe conditions on relative 

and absolute permeability, and other parameters of interest. 

The most important application of the approach developed m this paper is for the 

evaluation of thermohydrologic conditions that will develop near high-level nuclear waste 

packages emplaced in the partially saturated fractured tuffs at Yucca Mountain. A real­

istic appraisal will require solving the full equation system, including air, and making 

provisions for dealing with the extremely non-linear relative permeability relationships 

characteristic of a fractured-porous medium [7). This appears quite feasible and is 

currently under development. A peculiar issue in nuclear waste disposal arises from the 

decline of heat output with time. However, the consta,nt-rate solution obtainable from 

the similarity method will give an acceptable approximation for the early-time period 

(tens of years) when thermal effects in the host rock are strongest. Long-time 

" 
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predictions from a constant-rate heat source are also useful because they provide conser­

vative limits for thermohydrologic effects. The similarity solution can also serve as a 

benchmark for testing the accuracy of complex numerical simulators for multiphase fluid 

and heat flow. 
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Appendix A: Thermophysical Properties 

The constitutive relationships used to define the thermodynamic parameters m 

terms of the primary variables are taken from the numerical model TOUGH [15], 

described in Section 5. 

Steam tables, given by the International Formulation Committee [25], provide 

closed-form expressions for p, u , h, JL, and r7 (used in ~) as functions ofP and T. 

Relative permeabilities krt and krg and capillary pressure Pc are functions of liquid 

and gas saturation 81 and Sg ; examples are shown in Table 1 and Table 4. Thermal 

conductivity K also varies with liquid saturation, as given by [9, 10] 

(A1) 

where ,;
9 

and K 1 are the values of thermal conductivity for dry and liquid-saturated 

rock, respectively. 

Porosity d·epends on pressure and temperature 

¢ = ¢oexp [er(P-Po) + ar(T-1Q)] (A2) 

where !3r and ar are constant rock compressibility and rock expansivity, respectively, 

and ¢0 is the value of porosity for Pg =Po and T = T0 . 

Intrinsic permeability k, rock density Pr, and rock specific heat cr are assumed to 

be constants. The relationships needed for two-component systems including air are not 

included here, but may be found in the description of TOUGH [15]. 
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Table 1. Material properties, characteristic curves, and boundary conditions used for the 
similarity-solution results shown in Figures 3 and 4. 

Material Properties 

intrinsic permeability k 1. X 10-13 m2 

initial porosity t/>o 0.40 
rock compressibility f3r 1. X 10-7 Pa-1 

rock expansivity ar 0 K-1 

rock density Pr 2580 kg/m3 

rock specific heat Cr 840 Jjkg K 
thermal conductivity [9, 101 

liquid~saturated rock li.t 1.13 W/m K 
gas-saturated rock li.g 0.582 Wjm K 

Characteristic Curves 

relative permeability [11, 12] 
liquid krl 513 
vapor krg 5 3 

g 

capillary pressure [l3] Pc -u(T)yff! 

f =1.4175g -2.125/+ 1.2635/ 

Boundary Conditions 

z --+-00 Qwo 0 

Qeo 200 W/m 
z -+oo Po 101325 Pa 

To 26 ° c 
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Table 2. Details of the shooting· method for the results shown in Figure 3. 

Shot Increment fl (MPa) TL ( o C) Pu (MPa) Tu ("C) 

1 0.10133 360.00 0.05088 45.62 
8fl 0.10033 360.00 0.04982 45.23 

8TL 0.10133 354.00 0.05090 42.76 

2 0.14864 279.86 0.10064 22.11 
8fl 0.14764 279.86 0.09960 21.82 

8TL 0.14864 273.86 0.10065 19.07 

3 0.14929 287.19 0.10133 25.99 
Converged 

Increments: 8PL =-0.001 MPa, 8TL =-6.0 o C (Comparable results are obtained for incre­
ment values in the range 10-6 < I 8PL I <0.02 and 0.006< I8TL I <24.) 

Accuracy: ')'=0.01 
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Table 3. Material properties, characteristic curves, and mesh spacmg used for the 
TOUGH simulation. 

Material Properties 

intrinsic permeability k 1. X 10-15 m2 

initial porosity l/Jo 0.40 
rock compressibility f3r 1. X 10-8 Pa-1 

rock expansivity O'r 0 K-1 ' 
rock density Pr 2600 kg/m3 

rock specific heat Cr 700 Jjkg K 
thermal conductivity [9, 10] 

liquid-saturated rock Kt 1.13 W/m K 
gas-saturated rock Ka 0.582 Wjm K 

Characteristic Curves 

relative permeability 
liquid krl s, 
vapor krg sll 

capillary pressure [13] Fe -u(T)Vf! 

f =1.417 S0 - 2.12S/ + 1.263S/ 

Mesh Spacing 

Element Size Comments 

1 Ar 1=0.016 m Contains 200 W /m heat source 
2 Ar 2=0.010 m 

i' i =3,90 Ari =a Ari-1 a =1.138 
Center of element 90 is 6755 m, 
Pg and T are held fixed there. 
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Table 4. Relative permeability functions shown in Figure 8a. 

Function 

Linear 

Verma eta!. [18] 

Cubic [11, 12] 

Corey [17] 

van Genuchten [19] 

S/ 
sl"a 
sl"a 
s"~ 

F. rl-(1-S//>-)>-. r, >..=0.45 

1-S1" 
.. ..2 

1.259-1.761551 +0.508951 

(1-St")3 

(1-S/)2(1-S/
2

) 

1-krl 

Note: S/ is reduced liquid saturation, defined in terms of irreducible liquid and gas 
saturations in various ways for the different relative permeability functions. For the 
present work, we assume all irreducible saturations to be zero, that is, neither liquid nor 
gas phase is ever immobile under two-phase conditions, so S/=S1 . 
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Table 5. Values of t sat• the earliest time at which T = Taat• for various initial conditions, 

calculated from equation { 44). { Qe0=500 W /m, ICc =2.2 W /m o C, Cc =2.4 MJ /m3 
o C, 

r =0.25 m) 

Depth Pot To+ ~at( Po) t sat 

(m) (MPa) CC) CC) (years) 

Partially 100 0.1013 13 100 0.117 

Saturated 300 0.1013 19 100 0.084 

600 0.1013 28 100 0.051 

Fully 300 3 19 234 137 

Saturated 600 6 28 276 846 

900 9 37 303 2392 

1200 12 46 325 4722 

t Atmospheric pressure for partially saturated cases, hydrostatic for fully saturated cases. 

:t\7 T =30 ° C/km with T =10 o C at zero depth. 
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Table 6. Values of r •• ,. the earliest time at which T=J;.,, for various proposed repository sites, calculated from equation {44) with 
r=0.25m. 

Geologic Setting Repository Ja 10 Ts.,(Ja) Kc Cc Age of Qeo tsal 

(Example Site) Depth (MPa) eq (OC) (W/m0 C} (MJ/m3oq Waste (W/m) (years) 
(m) (years) 

Partially saturated tuff [20] 348 0.1013 24 100.0 2.3 2.4 8 63611 0.029 
(Yucca Mountain, USA) 
Granite [21, 22] 340 2 10 212.4 3.2 2.1 5 1385 0.21 
(Stripa, Sweden) 
Basalt [23] 900 9 33 303.3 2.3 2.7 10 691 85 
(Hanford, USA) 
Clay [24] 220 2.2 16 217.2 1.7 2.8 50 30QII 2456 
(Mol-Dessel, Belgium) 

11 Not given in reference, estimated from information on areal loading, age of waste, and emplacement configuration. 
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XBL 8611-127388 

Figure 1. Schem:1.tic of the conditions :1chieved :1.t some time :l.fter waste emplacement 
(not to scale). W:1.ter is primarily in the liquid phaae in zone 4, bec:1.use T <~at; two­
phase conditions prevail in zones 2 a.nd 3, with T ~ ~"; fluid in zone 1 is in the gas 
phase, with T > T,". 
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Figure 2. Conduction-only temperature and heat-Bow profiles for liquid-saturated and 
gas-saturated media . 
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Figure 3. Temperature and pressure profiles illustrating the shooting method. 
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Figure -4. Temperature, pressure, and saturation profiles (-ta) and heat, ma.ss, liquid, and 
gas flow profiles ( -tb) for the problem described in Table l. 
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Figure 5. TOLJGH simulation for temperature, pressure, a.nd saturation (5a) a.nd hea.t, 
m::l.iS, liquid, a.nd ga.s flows (5b) a.s a function of radia.l distance f?r a. series of times. 
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Figure 6. TOUCH simulation for temperature, pressure, and saturation (6a.) a.nd hea.t, 
mass, liquid, a.nd g:~S flows (6b) 3S a. function or z =ln(r ;JT ), with profiles from ~1 
different times included. 
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Figure i. A comparison between the 200-year TOUCH result and the similarity solution 
for temper:l.ture, pressure, and satur:l.tion profiles {ia) and he:it, m:l.'Ss, liquid, and g:l.'S 
!low profiles {ib ). 
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Figure 8. V:1.rious relative permeability functions (Sa.) and the temperature, pressure. 
a.nd saturation profiles calculated using them (Sb). The relative permeability functions 
a.re described in Table -t. 
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Figure 9. Temperature, pressure, and saturation profiles (9a) and heat, mass. liquid. a.nd 
gas flow profiles (9b) for several intrinsic permeability values. 
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Figure 10. Temperature, pressure, and saturation profiles (lOa.) and heat, mass. liquid, 
and gas flow profiles (lOb) for low intrinsic permeability values. 
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Figure ll. The effect of heat source strength on a) temperature and pressure profiles, b) 
ma.ss, liquid, and g38 flow profiles, and c) heat flow profile. 
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