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Algorithmic assessment of shoulder 
function using smartphone video 
capture and machine learning
David M. Darevsky 1,2,3,4,5,6,7,8, Daniel A. Hu 4,6,8, Francisco A. Gomez 4,6, Michael R. Davies 4,6, 
Xuhui Liu 4,6 & Brian T. Feeley 4,6*

Tears within the stabilizing muscles of the shoulder, known as the rotator cuff (RC), are the most 
common cause of shoulder pain—often presenting in older patients and requiring expensive advanced 
imaging for diagnosis. Despite the high prevalence of RC tears within the elderly population, there is 
no previously published work examining shoulder kinematics using markerless motion capture in the 
context of shoulder injury. Here we show that a simple string pulling behavior task, where subjects 
pull a string using hand-over-hand motions, provides a reliable readout of shoulder mobility across 
animals and humans. We find that both mice and humans with RC tears exhibit decreased movement 
amplitude, prolonged movement time, and quantitative changes in waveform shape during string 
pulling task performance. In rodents, we further note the degradation of low dimensional, temporally 
coordinated movements after injury. Furthermore, a logistic regression model built on our biomarker 
ensemble succeeds in classifying human patients as having a RC tear with > 90% accuracy. Our results 
demonstrate how a combined framework bridging animal models, motion capture, convolutional 
neural networks, and algorithmic assessment of movement quality enables future research into the 
development of smartphone-based, at-home diagnostic tests for shoulder injury.

Chronic pain and musculoskeletal (MSK) injuries are the most common cause of disability in the USA1. Prior 
to referring patients for either operative or non-operative interventions, patients are first triaged based on their 
exact MSK pathology, which not only requires an in-person physical exam but also often demands costly and 
resource-intensive imaging, such as an MRI scan. Unfortunately, the elderly, patients in rural communities, and 
groups historically underrepresented in medicine face the greatest demographic and socioeconomic barriers2,3 
to seeking in-person care, thus accounting for significant deficits in quality-of-life4. These groups are therefore 
hindered in the diagnosis of their MSK injuries and regular follow-up to track recovery. One method to improve 
healthcare access within underserved communities is developing a technological framework to remotely track 
joint health and evaluate recovery from MSK pathology using inexpensive tools such as motion capture and 
algorithmic assessment of movement quality.

To develop such technology, we focused on the shoulder joint, which is one of the most commonly injured 
joints in the human body in part because its extensive range of motion (ROM) relies on complex muscular and 
soft tissue supports5–8. Movement across the shoulder’s ROM is accomplished through the synergistic action of 
two muscle groups: those that move the shoulder through its ROM and those that stabilize the shoulder joint 
during movement8. These latter muscles, collectively known as the “rotator cuff ” (RC), are commonly injured 
resulting in > 30% population prevalence of symptomatic RC pain with advancing age5,4,6. RC tears progressively 
worsen across time, which leads to considerable physical disability and limitations in activities of daily living due 
to pain, range of motion loss, and deficits in neuromuscular control of the shoulder5,4,6.

Animal models allow for precise control over both the temporal specificity and severity of rotator cuff injury 
thus allowing for standardized assay development prior to translational validation on human patients. Thus, we 
used a mouse model of RC injury known to recapitulate the histopathological features of chronic human RC 
tears9,10 to develop a machine learning-driven pipeline for quantifying motion quality as it relates to shoulder 
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function. In contrast to other preclinical studies of rodent shoulder kinematics, which rely on quadruped gait 
analysis that is not translatable to bipedal humans, we introduced a novel preclinical model of shoulder function 
that builds upon the string pulling behavior task—a bimanual, oscillatory forelimb movement (Fig. 1) where 
mice rope-in a string like a sailor pulling cables on a sail ship11. Critically, string pulling task performance is 
conserved across the animal kingdom thus raising the intriguing possibility of applying our algorithmic pipeline 
for assessing shoulder health in rodents directly to humans12.

Previous methods for automated assessment of shoulder function in humans relied on expensive marker- or 
sensor-based techniques13–18. Moreover, prior work on using either motion capture or smartphones to assess the 
shoulder has focused on comparing range-of-motion measurements calculated by those tools versus a conven-
tional goniometer19–26. Instead, we capitalized on recent advances in markerless motion capture using machine 
learning to dynamically calculate multi-dimensional biomarkers of shoulder health during naturalistic arm 
movements27. We first developed our video-based biomarkers of shoulder function using a rodent model for RC 
tears and then validated concordance of our pre-clinical biomarkers in human patients with rotator cuff pathol-
ogy previously diagnosed using MRI scans. Here we found a striking cross-species concordance in biomarkers 
associated with RC injury. These results provide preliminary validation of our methodology for assessing move-
ment quality using an inexpensive assay (see Supp. Table 1 for list of material costs). In the future, our technology 
may be used as a tool to track recovery of kinematics after shoulder injury or surgery, and, following rigorous 
comparison with current diagnostic techniques, as a screening test for shoulder pathology.

Figure 1.   Overview of string pulling behavior and video pre-processing. (a) String pulling behavior. Mice 
pull on a piece of string, held in a reproducible location across trials with a 3D printed string holder, using 
hand-over-hand motions similar to a sailor pulling cables on a sail ship. (b) Experiment timeline. Mice 
(n = 12) were pre-trained three times per week for two weeks on the task before a preinjury video recording 
was completed. Mice were then given a rotator cuff injury via surgical transection of the supraspinatus and 
infraspinatus tendons along with transection suprascapular nerve. Half the mice received immediate repair of 
the injured tendons while the other half received no repair. Mice were allowed to recover for one week prior 
to the commencement of weekly recordings. (c) Top row: schematic showing labeling of video frames using a 
pretrained ResNet50 deep convolutional neural network. Bottom row, left: Example decay in root mean square 
error loss across neural network training. Bottom row, right: After two refinement steps, average Euclidean 
error on a held out test set drops from 40.16 to 9.21 pixels. (d) Kinematic trajectory filtering. Example of worst 
case scenario jitter in trajectory labels (data shown for right hand in the Y (vertical)-axis). Highpass followed 
by lowpass Butterworth filtering eliminates low frequency drift and high frequency jitter in trajectory labeling, 
respectively.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19986  | https://doi.org/10.1038/s41598-023-46966-4

www.nature.com/scientificreports/

Results
Behavioral apparatus and data collection methodology
To standardize recordings of string pulling behavior in mice, a 3D printed string holder was placed over the 
behavior box to maintain a consistent position of the string across animals and behavioral trials (Fig. 1a). The 
position of the video camera relative to the behavior box was also standardized across recordings by using an 
alignment jig, and all videos were recorded at 59.64 frames per second (FPS).

Mice were first acclimated to a plexiglass behavior box for two days prior to the start of string pulling train-
ing. Following acclimation, mice (n = 12) received two weeks of string pulling training conducted three times 
per week (Fig. 1b). A Cheerio attached to the end of the string served as a reward for trials in which the mouse 
pulled the string all the way into the behavior box. The initial training period was followed by a preoperative 
baseline behavioral recording where each mouse was recorded pulling a 0.75 m long string for a total of two 
trials (~ 20 to 30 s of data per animal; see Supplementary Movie 1 for representative baseline string pulling 
behavior). Animals then underwent surgery with combined supraspinatus (SS)/infraspinatus (IS) tendon tran-
section and denervation of the right shoulder; half of the animals (n = 6 mice) received immediate repair of the 
SS/IS tendons9,10. After animals recovered for one week, string pulling behavior was recorded for an additional 
four weeks. During each behavior session, we recorded three videos of each mouse performing a discrete bout 
of string pulling; these technical replicates were collected in order to minimize potential bias in the results due 
to mice approaching the string at different angles.

After completion of data collection, we used DeepLabCut, a package for training deep convolutional neural 
networks for automated image segmentation27, to extract locations and labels of the right and left hands (Fig. 1c, 
top). In brief, 50 video frames were extracted from each recorded video and labeled by manual curation. These 
videos were then used for supervised transfer learning of a ResNet50 deep convolutional neural network (CNN) 
that was pre-trained on ImageNet (Fig. 1c, middle top). Feed forward inference was then performed on all video 
frames in the dataset to automatically label the right and left hands (Fig. 1c, right top). After an initial round 
of CNN training and inference, we extracted frames where the labels for at least one of the hands jumped by a 
Euclidean distance of 20 or more pixels. These frames were relabeled and the CNN retrained; this refinement 
step reduced the mean Euclidean error in label prediction from 40.16 to 9.21 pixels on a randomly selected 
5% set of held-out test images (Fig. 1c, bottom). On rare occasions, a mouse’s hands would be occluded by the 
string causing brief oscillations in the labeling (see Fig. 1d, “Raw Data” trace for a worst-case scenario example). 
We thus filtered the hand trajectories first with a 0.75 Hz 1st-order Butterworth high pass filter (to remove any 
contributions from low frequency postural changes), followed by 9 Hz 3rd-order Butterworth low pass filter 
(to remove any oscillations in hand labeling secondary to hand occlusion). Filter frequencies and orders were 
selected to minimize distortion of the kinematic trajectory.

Post‑processing of string pulling trajectories
Figure 2a demonstrates the overlay of 10 cycles of string pulling behavior for an example mouse prior to injury 
(right arm in blue, left arm in red). We found that the oscillatory nature of the behavior resulted in movement 
trajectories that occurred predominately in the vertical Y-axis. Temporally unrolling the Y-axis trace revealed 
that reach epochs evolved faster than pull epochs as the latter required mice to apply downward force as they 
advance the string (Fig. 2b, every other reach/pull epoch labeled for visualization purposes only). For each reach 
and pull epoch, we calculated its duration (in number of video frames divided by frame rate) and amplitude 
(measured in number of pixels). At baseline, Pearson correlations of the filtered kinematics traces for the right 
versus left hand in the X and Y axes revealed a high correlation in side-to-side (X-axis) movements of the arms 
(Median r = 0.7660, Q1 = 0.6245, Q3 = 0.8239, IQR = 0.1994) while movements in the Y-axis (Median r = 0.0496, 
Q1 = − 0.1381, Q3 = 0.4331, IQR = 0.5712) were uncorrelated, which is expected given that the arms oscillate 
out of phase as mice alternate reach and pull epochs to advance the string (Fig. 2c). After iatrogenic injury to 
the SS/IS tendons, we observed qualitative changes to the shape of the Y-axis string pulling waveform including 
decreased velocity of pulls as well as “rounding” of the waveform peak at each reach-to-pull transition (Fig. 2d, 
same mouse as in Fig. 2a). In order to quantify the coordination across the reach-to-pull transition, we calculated 
the full-width at half maximum (FWHM) of each peak in the waveform (Fig. 2e, example FWHM calculation, 
black lines, shown in the top trace). We also calculated the velocity and acceleration of the arms by taking the first 
and second derivatives of the Y-axis kinematic trace data, respectively (Fig. 2e, example instantaneous velocity, 
green lines, shown in bottom trace).

Rotator cuff injury impairs movement coordination and dynamic range
We initially were interested in determining if immediate repair of the rotator cuff after iatrogenic injury would 
accelerate healing. Analyzing the FWHM measure (Fig. 2f) for the right hand (light blue background) and the 
left hand (light red background) revealed no statistically significant differences in waveform shape for animals 
with and without immediate rotator cuff. We thus collapsed the repair and no-repair groups together for all 
further analysis. Examining the FWHM between the Baseline and Week 1–4 recordings reveals a striking post-
injury rightward shift in the values suggesting that animals progress slower across the reach-to-pull transition 
(Fig. 3a). In contrast to changes in FWHM, the distribution of the velocity values for the injured arm exhibited 
a smaller relative change in mean (Fig. 3b). Specifically, we observed reduced probability density over negative 
velocity values, which is consistent with qualitative observations of reduced slope over the pull epoch (Fig. 2d) 
and suggests that the pull phase is especially affected by decreased slope magnitude. Despite this shift in density, 
a two-way ANOVA reveals no change in the central tendency of the mean for velocity based on injury, time, 
or the interaction between both. However, a Levene’s test for equality of variance found statistically significant 
differences in the variance of the velocity distribution when comparing the uninjured and injured arms at each 
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Figure 2.   Post-processing kinematic trajectories to extract biomarkers of shoulder function. (a) Representative 
mouse with 10 cycles of string pulling overlaid. Right arm in blue, left arm in red. Raw kinematic trajectories 
with no filtering shown in this example. (b) Same data as in (a) but unrolled across time for the Y-axis. Green 
boxes represent reach epochs, purple boxes represent pull epochs. Every other epoch labeled for clarity. 
Amplitude and time are extracted for each reach and pull epoch. Data is highpass and lowpass filtered in (b) 
and all further plots. (c) Pearson correlation coefficients for X/Y-axis traces, right and left arms pooled. Points 
represent individual videos from each animal. (d) Same mouse as in (a). Pre-injury Y-axis kinematic trajectory 
shown as a solid line, post injury trajectory shown as a dashed line. (e) Expansion of frames 35–75 in (b) 
showing calculation of full width at half maximum (black lines) and velocity (first derivative, green lines). (f) No 
difference was noted in quantitative analyses of waveform shape across mice with rotator cuff repair or no repair. 
Thus mice from both groups were pooled for all further analyses. All statistics are given in Supplementary 
Table 2.

Figure 3.   Quantitative measures of waveform shape do not recover after injury. (a) Histogram of FWHM 
values for the right (injured) and left (control) arms across all mice and all waveform peaks (n = 12 mice). (b, c) 
Same as (a) only for velocity and acceleration. *< 0.05; **< 0.01; ***< 0.001, two-way ANOVA, Tukey multiple 
comparison corrected post-hocs. & < 0.05; &&< 0.01; &&&< 0.001, Levene’s Test for equality of variance. All 
statistics are given in Supplementary Table 2.
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weekly time point after baseline. Similar to velocity, we noticed a drop in the density of negative acceleration 
values (Fig. 3c). This finding again suggests that, after undergoing rotator cuff injury, mice were unable to gener-
ate rapid arm motions, especially in the downward direction. However, in contrast to velocity, where there was 
no change in central tendency of the mean, acceleration exhibited a significant change in mean value across the 
experiment with both a main effect of arm (injured versus control) as well as time. Moreover, a Levene’s test 
for equality of variance found statistically significant differences in the variance of the acceleration distribution 
when comparing the uninjured and injured arms at each weekly time point. We also found that neither FWHM, 
velocity, or acceleration recovered across the four post-operative weeks, suggesting lasting deficits in end-effector 
control secondary to rotator cuff injury.

Kinematic synergies are disrupted by injury and gradually recover across time
Previous work has found that movements of high-dimensional effectors performing everyday tasks can be 
expressed using a weighted combination of a few kinematic postures28,29, or “movement synergies.” Synergies 
may reflect an innate adaptation of the central nervous system used to simplify coordination of movement across 
joints with high degrees of freedom28,30. Here we used principal component analysis (PCA, implemented using 
singular value decomposition) to identify covariation patterns in the X-/Y-axis movement traces of the right and 
left arms into kinematic synergies that are expressed as low dimensional principal components.

After running the PCA algorithm on the X-/Y-axis movement traces of the right and left arms from each 
video, we next analyzed the cumulative variance explained by PCs 1 through 4. Here, we found that the cumula-
tive variance explained by PCs 1 and 2 across all time points accounted for about 90% of the variability in the 
data (Supp. Fig. 1). Thus, we chose to focus our analyses only on the first two PCs. In general, the higher the 
variance explained by a smaller number of PCs, the lower dimensional the movement synergy (and the more 
temporally coordinated the movement across time). In Fig. 4a, we show the variance explained by PC1 and PC2 
individually. After RC injury, the variance explained by PC1 decreased from its peak at baseline before increas-
ing again at four week’s recovery (Variance explained by PC1, Mean ± SEM, n = 12 mice: Baseline 0.707 ± 0.007, 
Week 1 0.624 ± 0.019, Week 2 0.616 ± 0.029, Week 3 0.600 ± 0.015, Week 4 0.645 ± 0.021). Meanwhile, the vari-
ance explained by PC2 increased from its minimum value at baseline (variance explained by PC2, Mean ± SEM, 
n = 12 mice: Baseline 0.229 ± 0.007, Week 1 0.289 ± 0.017, Week 2 0.265 ± 0.017, Week 3 0.310 ± 0.011, Week 4 
0.267 ± 0.018). There was a statistically significant main effect of time on variance explained by PC1 for Baseline 
versus all weeks, except Week 4. For PC2, there was a statistically significant difference between the variance 
explained by PC2 for Baseline versus Weeks 1 and 3 but not for Weeks 2 or 4.

While quantifying the percent variance explained by the first two PCs provides insight into the dimensionality 
of the kinematic synergy governing movements of the right and left arms, it does not provide insight into how 
the right and left hands are individually contributing to the synergy. By examining the eigenvectors of the PCA 
decomposition, we can gain insight into the magnitude and direction with which each of the four kinematic 
variables (Right arm X-axis (RX), Right arm Y-axis (RY), Left arm X-axis (LX), and Left arm Y-axis (LY) trajec-
tories) contribute to each PC. The inset plot in Fig. 4b shows a stem plot of the eigenvector weights for PC1 for 
a representative animal at baseline (see Supp. Fig. 2 for plots of absolute eigenvector weights for all four PCs). 
Here, we found that at baseline movements of the right and left arms in the Y-axis were similar in magnitude 
but opposite in sign—as expected given that the arms oscillate out of phase during the string pulling behavioral 
cycle. Since the sign of an eigenvector is relative, we took the absolute value of the eigenvector weights for RY 
and LY to compare changes in weights across time (Fig. 4b). At Baseline, both RY and LY had similar magnitudes 
before diverging on Weeks 1–3. This divergence was followed by a convergence of weights on Week 4. Together, 
these results suggest that after injury the uninjured hand contributes more strongly towards coordinated activity 
within PC1 as compared to the injured arm; recovery of eigenvector weights on Week 4 further suggests that 
PCA may be useful in identifying reestablishment of coordinate kinematics during recovery.

In our PCA analysis we have thus far focused on analyzing variance explained and eigenvector weights, which 
provide insight into the dimensionality of movement coordination as well as the contribution of individual 
variables to each dimension, respectively. However, neither of these metrics provide temporal information as to 
patterning of principal component activation. To understand the temporal evolution of each principal compo-
nent across each video recording, we analyzed the right singular vectors generated as part of the PCA algorithm 
(Fig. 4c, time series of PC1-4 activation for a representative mouse). In a representative example at baseline, 
we noticed clear 2–4 Hz coupling between the right singular vectors of PC1 and PC2 (Fig. 4c, top and second 
from the top traces)—in other words, for every one oscillatory cycle of PC1, PC2 exhibits two-to-four oscilla-
tory cycles. Thus, to quantify the relationship between the right singular vectors of PCs 1 and 2, we performed 
a bispectral coherence analysis31. Bispectral coherence quantifies cross-frequency coupling between two time 
series; we found strong coupling between PCs 1 and 2 during the pre-injury baseline (Fig. 4d, mean bispectral 
coherence values shown across n = 12 animals). Following injury, the crisp cross-frequency coupling seen during 
the Baseline recordings degraded between PC1 and PC2 during post-injury weeks 1 and 2 (Fig. 4d, Week 1 and 
Week 2 heatmaps) only to reemerge during post-injury weeks 3 and 4 (Fig. 4d, Week 3 and Week 4 heatmaps). 
To better quantify change in bispectral coherence, we measured the maximal bispectral coherence values in the 
2–4 Hz range for each animal and for each video during the recording timeline. Here we found a clear decrease in 
maximal bispectral coherence values for Week 2. However, a one-way ANOVA with a main effect of time found 
only a trend towards statistical significance. Together, these results show that injury results in only transient 
temporal decoupling between PCs 1 and 2, which perhaps suggest rapid central or peripheral adaptation of end 
effector control to reengage movement synchrony over recovery.
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Rotator cuff injury results in lasting compensation by the contralateral arm
Our waveform shape analysis revealed lasting deficits in the reach-to-pull transition while our kinematic synergy 
analysis showed that while injury caused the temporary emergence of a higher dimensional movement state 
space, this dimensionality reverted to baseline at the end of four week’s recovery. How then can we reconcile 
these two competing findings? Analyzing movement amplitude (Fig. 5a) showed a striking decrease in move-
ment amplitude of the right arm after rotator cuff injury between Baseline and Week 1. Over the ensuing three 
weeks of recovery (Week 2 through Week 4), movement amplitude for the right injured arm recovered back to its 
Baseline while movement amplitude for the left control arm exceeded that of the pre-injury baseline, suggesting 
that mice continue compensating with their left arms even after right arm kinematics recovers. This effect was 
seen symmetrically across both reaching (Fig. 5a, solid lines) and pulling (Fig. 5a, dotted lines) epochs. A three-
way ANOVA with main effects of time, arm (injured versus uninjured), and movement epoch (reach versus pull) 
plus an interaction term of time and arm was fit to the amplitude data. We found statistically significant main 
effect of time plus a significant effect of the interaction between time and arm, but there was no significant main 
effect of arm. As expected, there was no significant effect of movement epoch. A Tukey multiple comparison 
corrected post-hoc analysis showed statistically significant differences in the interaction term when comparing 
Baseline relative to post-injury Week 1 for the injured arm, but not for Baseline versus Weeks 2–4 and for the 
uninjured arm for Baseline versus Weeks 3 and 4. These statistical findings further reinforce how, after just one 
week’s recovery time, the right arm movement amplitude returns back to its pre-injury baseline while the left 
arm exhibits persistent compensation.

In parallel with quantifying movement amplitude, we also quantified movement time for reach and pull 
epochs (Fig. 5b). Here, we noticed a clear difference between movement epoch with pulls universally taking 

Figure 4.   Changes in kinematic synergies track shoulder injury and recovery. (a) Quantification of variance 
explained by the first two PCs. #< 0.05; ##< 0.01; ###< 0.001, Tukey multiple comparison corrected post-hocs 
comparing PC1 variance explained relative to Baseline. &< 0.05; &&< 0.01; &&&< 0.001, Tukey multiple 
comparison corrected post-hocs comparing PC2 variance explained relative to Baseline. (b) Quantification 
of the absolute magnitude of Y-axis Eigenvector weights for right hand (injured) and left hand (uninjured). 
Inset stem plot shows Eigenvector weights for the video recording from the example mouse in Fig. 2a. .< 0.1; 
*< 0.05; **< 0.01, Tukey multiple comparison corrected post-hocs comparing injured versus uninjured arms. 
(c) Representative plot of right singular vectors from a singular value decomposition (i.e., principal component 
analysis, PCA) of X and Y kinematic trajectories of the right and left arms for same mouse as shown in Fig. 2a. 
(d) Mean bispectral coherence cross-coupling between PC1 and PC2; note deterioration of cross-frequency 
coupling during post-injury weeks 1 and 2 followed by reemergence of coupling during weeks 3 and 4. All 
statistics are given in Supplementary Table 2.
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longer than reaches (Fig. 5b, pull times shown as dotted lines and reach times shown as solid lines). At Baseline 
both reach and pull times are highly symmetrical. This symmetry is followed by an overall trend to longer reach 
times for the right arm after rotator cuff injury. Pull times also lengthen, albeit more symmetrically, for both 
the right and left arms before reaching a peak at Week 2 and then declining for the remaining two weeks. We 
hypothesize that the parallel increase in pull times is attributable to different mechanisms for the injured and 
uninjured arms—the former because injury slows movement and the latter because of compensation which 
requires the execution of higher amplitude movements. We fit a three-way ANOVA with main effects of time, 
arm (injured versus uninjured), and movement epoch (reach versus pull) plus an interaction term of time and 
arm onto the time data. We found statistically significant main effects of time and movement epoch, plus a trend 
towards a statistically significant effect of the interaction between time and arm. There was no significant effect 
of injured versus uninjured arm. Tukey multiple comparison corrected post-hoc analysis showed statistically 
significant differences in the main effect of time for Baseline versus Week 1–4.

Human patients with rotator cuff injuries recapitulate the kinematic phenotype seen in 
rodents
Having used the precise temporal control over injury afforded by a rodent model to develop a clear set of kin-
ematic measures that differentiate injured versus uninjured shoulders, we next sought to validate our biomarkers 
on human patients with known RC tears (n = 6, see Supp. Table 3 for patient demographic information) as well 
as healthy controls with no shoulder pathology (n = 6). We tracked the position of both the hands and elbows 
for our human subjects (Fig. 6a, three cycles of string pulling in a representative control subject). Unrolling the 
kinematic trace in the Y (vertical)-axis across time reveals striking qualitative similarities in waveform shape 
across rodents (Fig. 2b) and humans (Fig. 6b, same representative control subject as in Fig. 6a with the entire 
video unrolled across time in the Y-axis): reaches exhibit faster rises as compared to pulls, and both arms oscil-
late out of phase with respect to each other.

We next proceeded to validate whether waveform shape quantitatively differs across injured versus uninjured 
shoulders. As in mice, we only used data for hand movements and found that patients with injured shoulders 
exhibited increased FWHM values of the Y-axis string pulling waveform peaks (Fig. 6c, data from control 
shoulders irrespective of laterality shown in grey. Data from injured shoulders shown in light gold. Inset pro-
vides zoomed view on histogram values on the interval from [0, 100]. See Supp. Fig. 4 for FWHM histograms 
of individual study participants). In parallel with analyzing waveform shape, we also took the first and sec-
ond derivatives of the waveform trajectories to analyze velocity and acceleration, respectively (Fig. 6d). Just 
as in rodents, a histogram of velocity (in pixels/second) revealed an increased concentration of values around 
zero (Mean ± SEM; control: 7.853 ± 28.661) for both the injured shoulder (injured: 2.207 ± 13.970) and, curi-
ously, the contralateral uninjured shoulder (contralateral uninjured: 3.782 ± 17.398) in patients with rotator 
cuff tears. In fact, a one-way Kruskal–Wallis test found a statistically significant main effect of arm on velocity. 
A Bonferroni-corrected Mann–Whitney U test as a post-hoc analysis showed statistically significant differences 
in velocity between Control versus Injured, Control versus Contralateral Uninjured, and Injured versus Con-
tralateral Uninjured. When analyzing acceleration values (in pixels/second2), we do not observe as a striking 
of a difference between patients and controls (Mean ± SEM; control: − 153.278 ± 6.921, injured: − 77.339 ± 2.916, 
contralateral uninjured: − 97.407 ± 4.463). However, a Kruskal–Wallis test still reached statistical significance. 
Follow-up Bonferroni-corrected Mann–Whitney U test as a post-hoc analysis showed statistically significant 

Figure 5.   String pulling movement amplitude and time show evidence of compensation. (a) Amplitude 
(in pixels) of reach (solid lines) and pull (dashed lines) for right (injured) and left (control) arms. *< 0.05; 
**< 0.01; ***< 0.001, Tukey multiple comparison corrected post-hocs comparing amplitude for injured arm 
versus Baseline. &< 0.05; &&< 0.01; &&&< 0.001, Tukey multiple comparison corrected post-hocs comparing 
amplitude for uninjured arm versus Baseline. (b) same as (a) only for reach and pull times. #< 0.05; ##< 0.01; 
###< 0.001, Tukey multiple comparison corrected post-hocs comparing the main effect of time for both arms 
relative to Baseline. All statistics are given in Supplementary Table 2.
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differences in velocity between Control versus Injured or Contralateral Uninjured, but not for Injured versus 
Contralateral Uninjured.

In contrast to our findings in rodents, PCA decomposition of lowpass filtered, mean-centered X/Y posi-
tion data of the hands and elbows did not reveal a statistically significant difference in dimensionality between 
control versus rotator cuff tear groups (Supp. Fig. 5). However, there was a trend towards statistical significance 
in our analysis of absolute Eigenvector magnitudes (Fig. 6e) for Y-axis movements of the hands across control 
shoulders (Mean ± SEM; 0.583 ± 0.036), injured shoulders (0.570 ± 0.030), and contralateral uninjured shoulders 
(0.681 ± 0.029).

When longitudinally testing injured mice on the string pulling task, we notice persistent compensation by the 
contralateral, uninjured extremity that persists even as the kinematics of the injured extremity recovers (Fig. 5a). 
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Here we analyzed the same metrics of amplitude and time for our human subjects. We found that there was no 
statistically significant difference in movement amplitude (Fig. 6f) for reach and pull epochs across all control, 
injured, and contralateral uninjured shoulders nor was there a statistically significant interaction between reach/
pull epochs and arm. There was, however, a statistically significant main effect of arm on amplitude. A Tukey 
multiple comparison corrected post-hoc analysis showed statistically significant differences in the main effect 
of group for Control versus Injured or Contralateral Uninjured, but not for Control versus Contralateral Unin-
jured. Together, these results confirm that patients with rotator cuff injury have reduced movement amplitude 
of the injured extremity.

When analyzing the timing of reach and pull epochs (Fig. 6g, outlier points > 4 s removed for clarity. See Supp. 
Fig. 4 for plot with all data points shown), we notice that pulls (dashed line) generally take longer than reaches—a 
replication of the phenomenon that we see in our rodent data (Fig. 5b dashed lines). Mean time in seconds ± SEM 
for control group (reach: 0.601 ± 0.026, pull: 0.993 ± 0.055), injured (reach: 1.383 ± 0.118, pull: 1.788 ± 0.152), 
and contralateral uninjured (reach: 1.087 ± 0.081, pull: 2.169 ± 0.216). A two-way ANOVA revealed a statisti-
cally significant main effect of epoch as well arm; the interaction between epoch and arm was also statistically 
significant. Curiously, we notice that the contralateral uninjured arm pull time is greater than the contralateral 
uninjured arm reach time. The divergence in these two measures is striking given the downward trend in reach 
times for the contralateral uninjured arm versus both reach and pull times for the injured arm. While difficult to 
ascertain with certainty, we suspect that this may be a manifestation of compensation where, in order to advance 
the string by an equivalent distance during reach and pull epochs (Fig. 6f), patients are recruiting scapular or 
thoracic motions thus prolonging the movement cycle.

We next compared the dynamic range ratio, computed by taking the ratio of standard deviation values of the 
lowpass filtered, mean-centered Y-axis kinematic trajectory between ipsilateral hand:elbow pairs across all study 
participants (Fig. 6h). Here we were interested in determining whether rotator cuff injury predisposes patients to 
adopting a movement regime where the string is advanced by rotating the humerus around its longitudinal axis 
versus engaging the entire arm in reaching & pulling motion (see Supp. Fig. 6 for example kinematic traces of 
control versus RC tear subject demonstrating reduced elbow excursion). In other words, we expect the dynamic 
range ratio to increase for patients that predominately advance the string by moving their hands using rotational 
(rather than translational reaching) movements while keeping the elbow stationary. Indeed, we notice a statisti-
cally significant increase in the movement dynamic range ratio for injured shoulders. The mean dynamic range 
ratio ± SEM across groups was 1.665 ± 0.069 for control extremities, 3.224 ± 0.525 for injured extremities, and 
2.613 ± 0.373 for contralateral uninjured extremities.

As a final analysis, we used regularized binary logistic regression (see Materials and Methods for further details 
of model design) to build a predictive model for whether a given patient had a rotator cuff tear in at least one of 
their shoulders. After running stratified K-fold cross-validation, we found that using string pulling metrics as 
predictors resulted in an area under the curve (AUC) of 0.944 +/− 0.051 (Mean +/− Std. Dev.) for our classifier. 
We further noted a mean sensitivity and specificity of 1.0 and 0.806 averaged across the K-fold cross validations, 
respectively. Even though our sample sizes are relatively small (n = 6 shoulders with RC tears), these results pro-
vide preliminary validation for the clinical utility of our movement assessment methodology.

Discussion
Previous animal models of rodent tendon injury and repair have invariably drawn inferences about upper or 
lower extremity function using quadruped gait tasks32–37. While these methods have demonstrated functional 
differences between subtypes of RC tendon injury33 or RC tendon repair strategies36,37, no study has ever analyzed 
shoulder function in rodents using bimanual forelimb movements that are analogous to regular human motion 
patterns. The string pulling assay has multiple advantages over quadruped gait tasks: (1) it allows for the kin-
ematic assessment of each arm independently, which allows for a within-animal control using the contralateral 

Figure 6.   Biomarkers calculated on string pulling kinematic traces directly translate to human subjects with 
shoulder injury. (a) Representative control subject with three cycles of string pulling superimposed. Elbows 
were labeled in addition to hands for the human patients given the ready visibility of human elbows. (b) Same 
subject as in (a), data shown for one full trial. Note similarity of kinematic trajectories for the hands between 
human and rodent subjects (Fig. 2b). (c) FWHM measurements for control (n = 12) and injured shoulders 
(n = 6). Inset shows zoomed view for FWHM values between 0 to 100. *** < 0.001, Kolmogorov-Smirnoff test. 
(d) Left, histogram of velocity values (calculated on the Y-axis kinematic trajectories of the hands) for control 
(n = 6), injured (n = 6), and contralateral uninjured (n = 6) shoulders. Right, same as left only for acceleration 
values. ***< 0.001, Kruskal–Wallis test. (e) Quantification of absolute Eigenvector weights for the first PC (data 
shown for Y-axis Eigenvector weights of the hands). Gray lines show change between injured and contralateral 
uninjured shoulders for each trial recorded per subject. *< 0.1, one-way ANOVA (f, g) Amplitude and time 
of reach (solid line) and pull (dashed line) epochs. Individual amplitude/time values for every cycle of string 
pulling shown for reaches and pulls with circles and triangles, respectively. (h) Ratio of standard deviation 
values between ipsilateral hand:elbow pairs calculated for each subject on their hand/elbow Y-axis kinematic 
trajectories. Gray lines show change between injured and contralateral uninjured shoulders for each trial 
recorded per subject. *< 0.05; **< 0.01; ***< 0.001, two-way ANOVAs, Tukey multiple comparison corrected 
post-hocs for all other statistical analyses unless stated otherwise. (i) Receiver operating characteristic (ROC) 
curve for a binary logistic regression model fitted to predict a patient as either having no RC tear or having an 
RC tear in one of their shoulders. Maroon line shows mean ROC across threefold stratified cross-validation, 
gray outline plots ± 1 Std. Dev. uncertainty in the mean ROC estimate. All statistics are given in Supplementary 
Table 2.
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extremity, (2) it includes a significant overhead motion component which is frequently impaired in patients with 
RC tears7, (3) it decouples movements of the lower extremities and the arms, and (4) it offers strong kinematic 
concordance between rodents and humans38.

Although we observed clear differences in string pulling movement speed and amplitude between injured 
and uninjured extremities in both rodents and humans (Figs. 5 and 6), the oscillatory nature of the behavior 
allows for application of time series analysis techniques. Here we analyzed FWHM for waveform peaks of Y-axis 
string pulling kinematic trajectories to analyze the reach-to-pull transition as it (1) captures overhead reaching 
movements that require the supraspinatus muscle and (2) it highlights the transition from a concentric to an 
eccentric RC muscle contraction regime. Importantly, FWHM is not simply co-linear with movement duration: 
note both injured and uninjured arms have prolonged pull durations in Fig. 5b after injury yet the distribution 
of FWHM undergoes a rightward shift only for those animals with RC injury (Fig. 3a).

Prior human research suggests that the temporal evolution of complex movements across joints with high 
degrees of freedom (hDOF) such as the hand occurs via the coordinated activation of a low-dimensional kin-
ematic basis set28,39,40. The shoulder joint occupies a high dimensional anatomic space with 6° of freedom and 18 
different muscles controlling its articulation. Intriguingly, for human string pulling behavior, only two principal 
components are sufficient to explain > 90% of the variance in the data (see Supp. Fig. 5). This suggests that despite 
the requirement placed upon the body to efficiently generate a smooth, sinusoidal movement, string pulling 
behavior manifests itself as a predominately low-dimensional activity. In rodents, where we have ready access 
to longitudinal data, we notice an increase in the dimensionality of the kinematic state-space after injury which 
recovers back to baseline at the end of four weeks’ recovery. The cross-frequency coupling between PC1 and 
PC2 undergoes a similar pattern. Curiously, we saw no statistically significant differences in the dimensionality 
of string pulling behavior in humans with or without RC tears; future work may elucidate if such changes are 
restricted only to cases of acute RC injury.

Limitations and future directions
While our initial validation in human patients holds promise, a number of limitations restrict the clinical utility 
of our findings. Firstly, it remains unknown if our methods are sufficiently sensitive to discern between a variety 
of shoulder pathologies such as RC tear, osteoarthritis, biceps tendinosis, or shoulder instability. Future work 
should focus on the analysis of string pulling kinematics across patients with different etiologies of shoulder 
pain. Secondly, our use of logistic regression provides a binary outcome for the presence of RC pathology. Future 
studies should expand this approach by also returning a continuous, or categorical, measure of injury sever-
ity (e.g., partial, complete, or massive RC tear). Lastly, transformation of our biomarkers into a patient-facing 
smartphone application for the diagnosis of shoulder pain will require clinical trials with much larger sample 
sizes, astute attention to user interface design, and careful cross-correlation of kinematic measures with physical 
exam findings and advanced imaging across differing diagnoses and disease severity grades. However, given the 
ubiquity of smartphones in modern society, we remain optimistic that our new paradigm will eventually allow 
patients with less access to in-person care to receive quick and affordable snapshots of their shoulder health using 
tools they are likely to already have at home.

Materials and methods
Animal training protocol and behavioral box apparatus
All in-vivo animal procedures and experiments were previously approved by the San Francisco Department of 
Veterans Affairs Institutional Animal Care and Use Committee and all experiments were performed in accord-
ance to all the relevant guidelines and regulations. Sample size was based on previous studies and no randomi-
zation of animals (or blinding of researchers to group/animal identity) was performed. Specifics with regards 
to each experiment and statistical analysis are described throughout the paper in accordance to the ARRIVE 
guidelines (https://​arriv​eguid​elines.​org). 12 adult male wild-type mice (C57/L6J, Jackson Laboratory inc.) were 
trained on a string-pulling task in an acrylic box as described by Blackwell et al.11. After 2 weeks of training, 
the mice were split into two surgical groups. Mice were placed in a plexiglass box with dimensions (5 by 6 by 
9 inches) for training and video recording of string pulling behavior. 3D printed string holders were used to 
standardize string placement in each box.

Iatrogenic rodent rotator cuff injury
One group (n = 6 mice) underwent a right supraspinatus (SS) and infraspinatus (IS) tendon transection and 
denervation (TTDN) while another group (n = 6 mice) underwent right SS and IS TTDN with immediate repair 
of the torn tendons as described by Wang et al36. String pulling behavior was recorded for all mice at their pre-
operative baseline and at postoperative weeks 1, 2, 3 and 4. Prior to each recording on the postoperative weeks 
1–4, mice were given a brief string pulling training session as a reminder of the task requirements. This record-
ing timeline was based on prior work from our lab36 correlating a four-week time window as sufficiently long to 
witness the emergence of clear histological changes in rotator cuff muscle quality.

Rodent video recordings
A 1920 × 1080 HD video camera recording at 59.94 frames-per-second was used to acquire string pulling videos. 
The location of the camera relative to the behavior box was fixed across sessions using a tripod positioned at 
the center of the box and set 20 cm away from the front pane of plexiglass. Video recordings (which were ~ 15 
to 30 s in length for each pulling trial) were then trimmed with ffmpeg v4.4.2 to contain only the string pulling 
behavior. Each day’s recording sessions involved collecting 3 technical replicates (i.e. separate string pulling 
videos) from each mouse.

https://arriveguidelines.org
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Kinematic segmentation
The X/Y coordinates of each hand were acquired with DeepLabCut (DLC) v2.2.0 using a ResNet50 deep convo-
lutional neural network model. Two DLC models were built across the experiment: (1) a pilot cohort of 3 mice 
and (2) a full model that included data from all 13 mice pooled together (including mice in the pilot experiment). 
The locations of the right and left hands were labeled for 320 and 1080 video frames across the pilot and full 
models, respectively. After initial training, an extra 160 and 1440 frames were extracted as outliers (based on a 
criteria of ≥ 10 pixel jumps in Euclidean distance between consecutively labeled points across video frames) for 
the pilot and full models, respectively. Each iteration of the ResNet50 model was trained for 200,000 iterations 
and the resultant mean Euclidean error in label location (determined on a held-out set of test images consisting 
of 5% of the frames in each training set) was calculated using the built-in DLC function evaluate_network (data 
shown in F1Civ). A total of 27 videos were used for neural network training; all training was performed using 
an NVIDIA 2080 Ti GPU with default image augmentation enabled.

String pulling trajectory trace post‑processing
Once the X/Y coordinates of each hand were segmented using DLC, the resulting traces were highpass filtered 
with a first-order 0.75 Hz Butterworth filter (to remove trajectory drift from minor postural changes across the 
pulling cycle) and then lowpass filtered with a third-order 9 Hz Butterworth filter (to remove occasional jitter in 
trajectory segmentation). All subsequent analyses are performed using filtered data. After filtration, the peaks/
troughs in the Y-axis (vertical direction) hand trajectory trace were labeled using SciPy’s find_peaks function.

Calculation of amplitude and time for reach/pull epochs
Reach epochs were defined as the time between each trough and its successive peak in the Y-axis kinematics tra-
jectory; pull epochs were defined as the time between each peak and its successive trough in the Y-axis kinematics 
trajectory. For every reach/pull, we measured the amplitude (in pixels) between each successive trough-to-peak 
and peak-to-trough epoch corresponding to every reach and pull, respectively. Reach/pull time was measured 
in number of videos frames, divided by the video framerate, between each successive trough-to-peak and peak-
to-trough epoch corresponding to every reach and pull, respectively.

Calculation of the full width at half maximum
In order to quantify the shape of the string pulling waveform across the experimental timeline, the full width at 
half maximum (FWHM) was calculated as a hybrid measure of movement fluency during the period of behavior 
covering both reaching and pulling. To calculate the FWHM, the Y-axis kinematics trace for the right and left 
hands was mean-centered and the periods of the pulling trajectory between the signals’ negative-to-positive and 
positive-to-negative zero-crossing was extracted for analysis. Each epoch was interpolated using a 100 point 
2nd-degree univariate spline, and the FWHM was calculated as the width (in fractional video frame number) 
of each peak at ½ its vertical amplitude. See Fig. 2E for example FWHM values (black lines) overlaid on a rep-
resentative string pulling waveform.

Calculation of velocity and acceleration
To calculate velocity and acceleration of the right and left hands across the transition from reaching to pulling, the 
Y-axis kinematics trace for the right and left hands was processed as described in the section on calculating the 
full width at half maximum of the signal. After extracting the interpolated signal, the first and second derivates 
were taken as measures of velocity and acceleration, respectively. See Fig. 2E for example velocity values (green 
lines) overlaid on a representative string pulling waveform.

Correlation in hand movement
To measure the consistency of string pulling behavior across the right and left hands, we calculated Pearson’s 
correlation coefficients by correlating Xright with Xleft and Yright with Yleft kinematic traces (all correlations were 
run after data was high pass and low pass filtered). All correlations were run within animal and within day.

Quantifying kinematic synergies using principal component analysis
The shoulder is a complex joint that allows for multiplanar motion across arm flexion, extension, abduction, 
adduction, internal rotation, and external rotation. Moreover, shoulder motion is intimately tied to scapular and 
thoracic mobility as both contribute to stabilization of the upper extremity across its full range of motion; in 
total, about 20 skeletal muscles contribute to shoulder motion8. Prior research on the human hand, has shown 
significant biomechanical and temporal linking across joints during various hand movements thus suggesting that 
the biomechanical and neural representations of the hand are significantly lower dimensional than the degrees 
of freedom conferred by individual muscles and joints would imply28,29.

Here we studied kinematic synergies by performing singular value decomposition (SVD) independently on 
each string pulling epoch from individual mice across weeks. In brief, the filtered kinematics trace containing 
data for the right hand X-axis movement, right hand y-axis movement, left hand x-axis movement, and left 
hand y-axis movement were mean-centered and then concatenated into a matrix T ∈ R4xt with t representing 
the number of video frames in each video recorded from a given mouse on a given week.

The matrix T was decomposed using SVD into the matrices U ∈ R4x4 , S ∈ R4x4 , and VT
∈ R4xt . The columns 

(i.e., principal components) of U capture the covariation patterns between the four tracked kinematic variables, 
with the individual weights of each column capturing both the magnitude and direction with which each kin-
ematic variable contributes to that particular component. The absolute value of the weights in the first principal 
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component were used to capture the magnitude of these kinematic variables for right and left hand Y-axis 
movement in Fig. 4e. The percent variance explained by each principal component is calculated by squaring 
the singular values in matrix S and then dividing each squared singular value by the sum of all squared singular 
values (reported in Fig. 4d for the first two PCs). The variance explained by each PC has previously been shown 
to correlate with the dimensionality of the kinematic synergies, with lower variances explained by each indi-
vidual PC corresponding to a higher dimensional kinematic synergy as more PCs are required to reach the same 
cumulative proportion of explained variance. Lastly, each row of the matrix VT captures the relative temporal 
contribution of each principal component across each video recording.

Bispectral coherence (bicoherence) analysis
In order to understand the temporal relationship between activation of PC1 and PC2, we used bicoherence to 
measure the cross-frequency coupling between the right singular vectors corresponding to PCs 1 and 2. In brief, 
we used the scipy ‘spectrogram’ function to take the time–frequency decomposition of right singular vectors of 
PCs 1 and 2 using an FFT window length of 2 s with 1 s of overlap. The bicoherence analysis was then performed 
as described elsewhere31. Because individual videos contained behavioral epochs of differing lengths, the resulting 
bicoherence values were linearly interpolated between 0-15 Hz in 0.1 Hz increments for each subject.

Human data recordings
All patients gave their written informed consent to participate in the study. All protocols and procedures were 
performed in accordance to guidelines and regulations set forth by the University of California, San Francisco 
(UCSF) Committee on Human Research and with prior approval from the UCSF Institutional Review Board 
(IRB). Control and rotator cuff injury patients were recruited through convenience sampling at the UCSF Ortho-
pedic Institute. Study participants were given minimal instruction on how to perform the string pulling task by 
the lead study author (D.D.) and then allowed to string pull at their own preferred rhythm and kinematic prefer-
ence. Video was recorded using a tripod-mounted smartphone camera (iPhone 13 Pro Max) set two meters (2 m) 
away from the front edge of the chair that each subject sat in. Video was recorded in HD resolution (1920 × 1080) 
at 59.94 frames per second. The resulting videos were subsequently processed in DeepLabCut using 968 train-
ing frames and two successive refinement steps (outlier frames were defined as those frames with a Euclidean 
distance between two successively labeled points of ≥ 20 pixels). We labeled both the hands and the elbows for 
the human recordings as the elbows were readily visible in our subjects versus rodents where the elbows are 
hidden by a layer of fur. For subjects in the injury cohort, the arm with the rotator cuff tear was labeled as in the 
“injured” extremity while the contralateral arm was labeled as the “uninjured extremity.”

Human data pre‑processing
In order to ensure best performance for the detection of peaks/troughs in our analysis of string pulling amplitude 
& time, the Y-axis kinematic trajectory for the hands was highpass-filtered at 0.1 Hz with a 1st order Butter-
worth filter followed by a 7th order Butterworth 7 Hz lowpass filter. The peaks/troughs of this signal were than 
extracted and analyzed analogously as for rodents, described in the section “Calculation of Amplitude and Time 
for Reach/Pull Epochs” above. For all other analyses (including calculation of the full width at half maximum, 
velocity, acceleration, and PCA decomposition) we did not highpass filter the X/Y kinematic trajectories for the 
hands and elbows instead only performing lowpass filtering as the human data was less noisy when compared 
to the rodent data. Methods for calculating the full width at half maximum, velocity, acceleration, and PCA 
decomposition of the signals were performed analogously to our methods used for analyzing rodent data (see 
sections “Calculation of the Full Width at Half Maximum”, “Calculation of the Velocity and Acceleration”, and 
“Quantifying Kinematic Synergies Using Principal Component Analysis” above).

Movement dynamic range ratio
Because we are able to track the position of both the hands and the elbows in our human subjects, we calculated 
a Movement Dynamic Range Ratio that quantified the relative contribution of hand versus elbow movements 
in the string pulling behavior. The Movement Dynamic Range Ratio was calculated by first taking the standard 
deviation of the lowpass filtered Y-axis kinematic trajectories for each subject’s hands and elbows. We then took 
the within-subject ipsilateral ratio between the two standard deviation values (e.g. Std.Dev.RightHandStd.Dev.RightElbow ) across the 
right/left hand and elbow. These values were then reported as mean +/− SEM in Fig. 6h. As intuition, if subjects 
predominantly moved the arm from the shoulder as the main pivot point, the elbows and the hands would exhibit 
roughly the same vertical displacement in space (i.e. the Movement Dynamic Range Ratio would be close to 1; 
see Fig. 6h, control shoulders). On the other hand, if subjects immobilize the shoulder and instead move the 
arm through rotation of the humerus around its longitudinal axis, we would expect a the vertical displacement 
of the hands to exceed the vertical displacement of the elbows (i.e. the Movement Dynamic Range Ratio would 
be greater than 1; see Fig. 6h, injured shoulders).

Logistic regression classifier
In order to determine if the biomarkers calculated from the string pulling waveform can serve as predictors for 
shoulder injury, we built a binary logistic classifier using the LogisticRegression class from the scikit-learn package. 
For the right and left arm of each participant’s video we included as independent variables: mean reach time, 
mean pull time, mean reach amplitude, mean pull amplitude, mean FWHM, mean velocity, symmetry ratio 
(right:left arm) for mean reach amplitude and time, symmetry ratio (right:left arm) for mean pull amplitude and 
time, and the dynamic range ratio. The optimal L2 norm regularization parameter (C, 0.001) was determined via 
K-fold cross-validation using the GridSearchCV method. In order to calculate the receiver operator characteristic 
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(ROC) curve and the area under the curve (AUC), we used scikit-learn’s stratified K-fold cross-validation helper 
function StratifiedKFold (n = 3 folds), and all models were fit using the saga solver.

Statistics
One-, two-, and three-way ANOVAs were used as omnibus tests for differences in means across groups. Tukey 
multiple comparison corrected post-hoc tests were used as follow-up if an ANOVA revealed a statistically sig-
nificant main effect (or interaction term for two-way and three-way ANOVAs). Levene’s test was used to test for 
statistical differences in variance. Other statistical tests were performed as noted in the text and figure legends. 
All data is presented as the Mean ± Standard Error of the Mean (SEM) unless otherwise noted. All statistical 
analyses were performed using Python v3.10.5 in either the statsmodels or scipy packages.

Data availability
The data and custom code that support the rodent findings in this study are available from the Senior Author 
(Brian T. Feeley, brian.feeley@ucsf.edu) upon reasonable request. Human subjects data is not available for dis-
tribution because study participants did not consent to such sharing.
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