
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Identifying Dancers and Style from Motion Capture Data Using ResNet

Permalink
https://escholarship.org/uc/item/37d4f5b6

Author
Alarie, Alicia

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/37d4f5b6
https://escholarship.org
http://www.cdlib.org/


Identifying Dancers and Style from Motion Capture Data Using ResNet

By

ALICIA B. ALARIE
THESIS

Submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA,
DAVIS

Approved:

Michael Neff, Chair

Kwan-Liu Ma

Yong Jae Lee

Committee in Charge

2021



© 2021 Alicia B. Alarie



TABLE OF CONTENTS

Page

LIST OF FIGURES iii

LIST OF TABLES iv

ACKNOWLEDGMENTS v

VITA v

ABSTRACT OF THE THESIS v

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Motion Capture Data Sets . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Neural Network Architecture and Data Pipeline . . . . . . . . . . . . 8

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Dancer Identification Results . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Classification of Emotional Affect . . . . . . . . . . . . . . . . . . . . 15

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Bibliography 19

Appendix A Appendix Title 23

ii



LIST OF FIGURES

Page

1.1 This image shows skeletons from motion capture data overlaid with one an-
other in the Dance choreography data set. There are ten Dancers total who
each perform the same choreograph. Small differences in their timing and
poses can be observed from this frame. . . . . . . . . . . . . . . . . . . . . . 7

1.2 Example of motion capture sub-clip that is input to neural network for clas-
sification. For each pixel of the image, the row corresponds to the joint of the
skeleton (e.g., left shoulder, right elbow, etc.) and the column corresponds to
the progression of the joint angle over time. The color of the pixel is created
by assigning the Roll, Pitch, and Yaw angle values to the R, G, and B channels
of the color image. The change in color of some rows illustrates a movement
of some joints, either synchronously or in a particular succession. . . . . . . . 9

1.3 Residual learning block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 A flow diagram showing data that is fed into the residual network which

predicts style labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Normalized Confusion Matricies for identifying Dancers with different motion

capture data representations. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Learning Curves for Identifying Dancers with Different motion capture data

representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Learning Curve for Positional Data Prediction on Single Frame . . . . . . . . 15
1.8 Learning Curve for Prediction on Single Frame of Euler Angle Representation

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.9 Normalized Confusion Matrix for Style Identification . . . . . . . . . . . . . 17
1.10 Learning Curve for Style Identification . . . . . . . . . . . . . . . . . . . . . 18

iii



LIST OF TABLES

Page

1.1 Comparison of F1 Score for Dancer Identification task using different repre-
sentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 F1 Score for Dancer Identification task using a single frame for predictions. . 13
1.3 Comparison of human subject performance to our network performance for

the style identification task using the data set from Xia et al. The number of
questions for each style in the human study is included as number identified
correctly and incorrectly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iv



ABSTRACT OF THE THESIS

Identifying Dancers and Style from Motion Capture Data Using ResNet

This work aims to apply advancements in deep learning for image classification to improve

the recognition of movement style in motion capture data. A RESNET architecture is used

to classify individual dancers based on clips of their movement and to predict style based

on clips of various motions in 7 different style categories -angry, childlike, depressed, proud,

etc. Motion capture clips from trained dancers at George Mason University performing the

same choreographic sequence several different times were used for a dancer identification

task. A data set of actions performed with different labeled styles such as proud, depressed,

angry, old, and childlike created by [39] was used for a style identification task. Results were

compared using Quaternion, scaled positional coordinates, and Euler angle representations

of the motion capture clips supplied to the network for learning.
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Chapter 1

Introduction

Motion capture technology has allowed for very realistic motions of animated characters.

The capability to string together multiple clips of motion capture movement for a seamless

effect can save animators lots of time. But efficient techniques for labeling and indexing

these clips within large databases has been a challenge. Often it’s helpful to be able to

search for multiple motion clips of a similar style (sitting down, happy, depressed, child

character) when composing a scene. But it can be difficult to tag and classify these motions

in an automated way because motions that seem similar to the human eye may not have

numerically similar coordinates for each pose in 3d space. For example, with a raw 3d space

coordinate representation, the action of reaching forward with one’s arm would not be the

same numerically as reaching forward after a 90 degree rotation of the entire body.

To this end, many techniques have been explored as a means to identify similarities in style

of movement with motion capture, including machine learning. With the rise in popularity of

machine learning, a variety of different neural network techniques and architectures have been

applied to the problem of identifying similar movement with motion capture data. Many

advancements in machine learning architecture have come through applications of these

networks to image classification and segmentation problems, and residual networks (ResNets)

have recently been shown to achieve better performance in these tasks. Advancements in deep
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learning have allowed for higher performance in image classification by solving the vanishing

gradient problem, and allowing the use of deeper architectures [12]. Residual networks have

also improved performance by implementing “shortcut connections” that fit residuals rather

than full functions [13] . These methods have resulted in much higher performance in image

classification and image segmentation tasks, and have recently been applied to problems in

the field of animation.This work explores whether they can achieve better performance than

non residual network architectures in tasks of identifying similar motion capture.

This work applies a ResNet deep learning architecture to motion capture data for two dif-

ferent classification tasks on motion capture data.The classification accuracy of the ResNet

model is compared to that of a human performing the same task. In addition, this work

compares the performance of neural networks on motion capture data in joint angle repre-

sentation vs in quaternion representation, and finds similar performance using each type of

representation.

Specifically, this work uses data-driven methods for identifying style of individuals during

dance motion and style of movement on two different data sets using a ResNet network.

The network is trained to predict labels for each individual and for each movement style

by learning its own representations of similarity within label groups. A 50-layer ResNet

architecture is used for these two different style classification tasks. The first task is to

identify individual dancers and the second task is to classify motion styles (angry, childlike,

depressed, old, proud, etc.). The tasks are performed on two different data sets. The data

set for identifying individual dancers consists of ten trained dancers performing the same

choreography on ten different training runs. The data set for identifying style of motion

consists of clips created by [39] containing many different actors performing a variety of

actions (walking, jumping, punching) in 7 different style categories (angry, proud, childlike,

old, etc.). Smith [33] used deep neural networks for efficient real-time motion style transfer.

As part of his work, a human subject study was conducted to test how easily each style could

be identified by a person, and how clear each affect was to the human eye. This human
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subject study is shown in this work as a comparison to the performance of our network on

the same data set. The purpose of this is to gauge the performance of the network vs human

performance.

An investigation into motion capture representations is also done. Positional and joint

angles representations are compared. As well as Euler angle and Quaternion representations

of joint angles. Raw motion capture data can consist of one point for each joint in the

skeletal model with x, y, and z coordinates in space over time for each joint. Another way

of representing motion capture data is using joint angles, which only convey information

about the angle of each joint relative to each other and do not have information about

distance traveled in space directly. Both Euler Angles and Quaternions have been used to

represent joint angles, however, Euler angles inherently can have more discontinuities in the

representations, which motivates our comparison of the two representations.

1.1 Background

Much work has been done on identifying similar movements in motion capture data. This

is a fruitful field of research for animators as it allows for automation of some parts of

the process of creating animated motion endowed with the style of a particular character,

emotional emotional affect, or action. Once the features of a style are identified, motion

retrieval and style transfer techniques allow for efficiently retrieving and stringing together

motions in that style. Motion retrieval aims to retrieve a sequence of motion capture data in

a certain style in order to generate animated movement by connecting sequences of movement

that already exist in memory and share the desired characteristics of action or style. Styles

can be similar in action (running), emotional affect (happy), or individual performer. Style

transfer allows for editing/controlling affect in a clip of motion, such as walking, to transform

it, for example, from a neutral walk to a happy or sad walk. Both of these methods avoid

hours of labor costs for animators, and similar motion identification is a key building block
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that’s necessary to accomplish both of these tasks.

However, identifying similar motions can be difficult because often motions that look

similar to a human observer may not be similar numerically on a skeleton representation.

Data-driven methods have found success for this reason, as they are better able to identify

similar motions even if the motions have some transform applied to them such as rotation,

translation in space or are performed at slightly different speeds. One popular data-driven

method of style representation is to use deep auto-encoders, which can create efficiently

compressed representations of style. Wang used deep auto-encoders to create a 20-bit repre-

sentation of features that show similarity in the action being performed and/or the style of

movement [36]. Holden also used deep auto-encoders to identify create style representations

[14]. Earlier motion retrieval works used shallower networks in PCA or ICA to identify

features that could be used to identify similarity of motions [23] [11], but deeper networks

were able to better identify motions that are similar to the eye but may not be numerically

similar [36].

Prior to these techniques, many non-machine learning techniques were developed. Rather

than using representations for similarity, some authors such as Kovar and Keogh used raw

motion data in either positional or joint angle format to manually compute similarity via

Euclidean Distance [19, 17] or weighted distance [27]. Other works identified motion by

movement from separate body parts [38, 9, 22] or dynamic time warping to compare similarity

on different time scales.

Other papers have been published using neural networks for a variety of tasks, such as

pose estimation, with motion capture data, however none to current knowledge have used the

ResNet architecture for style identification. Mehta and Xiao used ResNet as a performance

baseline for the task of learning skeletal pose from images containing people [26, 40]. Xiao,

Chen, and Papandreou have also used ResNet for pose estimation [41, 6, 28].

One goal of this work is to see if a neural network with improved performance on image

classification and pose estimation (ResNet) can provide better performance in classifying
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similar styles of movement in motion capture data. In 2015, deeper neural networks were

made feasible by solving the vanishing gradient problem using “Relu” activation functions

[12]. And the ResNet architecture achieved even better performance than regular deep

networks in image classification tasks on COCO and ImageNet data sets in 2016 using

“shortcut connections” to fit residual functions rather than attempting non-linear fitting

without breaking the fit down into residual blocks [13].

The first style recognition task in this work is identifying individual dancers based on

their movement in motion capture. Work on identification of people has been done for

security/surveillance purposes as early as 1977 [8]. Research in this area continues today

with the use of data-driven methods to achieve more accurate results [3]. Many works

have been able to use motion capture specifically of gait to identify individuals [20] [2].

Carlson focused on individual identification during dancing activity specifically, but this was

a “free dancing” activity, so movements were not choreographed [5] . Instead, each person

moved in their own chosen way. Thus, the classification was based on each individual’s

personal embodiment of the music. In contrast, this work identifies individual dancers who

are performing the same choreography (movements) at the same time.

The second task the network is trained to do is identify the style of motion (such as

“happy”,“depressed”,“childlike”,“strutting”). Early work in style classification was algo-

rithmic in nature. Laban Movement Analysis is a system for determining emotional affect in

movement that was created prior to 1958 [21]. Russell’s Circumplex model classifies emotion

on a 2D spectrum [31] and was used by [1]. Early work in being able to create a quantifiable

feature space to represent emotional affect is discussed by Pollick [30]. Hsu used a linear

time-invariant model to characterize movement style for style translation of human motion

[15] .

More recent works have used machine learning methods for identifying emotional affect.

Holden, Du and Wang use auto-encoder architectures to learn these features, along with

broader style features [14, 10, 36]. Loghmani uses RNN’s [24]. Karumuri used a 3-layer
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CNN to classify emotional affect/style [16]. Xia uses a mixtures of auto-regressive models to

capture relationships between styles of movement [39] . Kim uses independent component

analysis to model the emotional affect or style of different parts of the body [18] . However,

the ResNet architecture has not been applied to style classification. This work attempts a

simple classification task of predicting the style labels on clips of motion.

One challenge with this task is that when we look at an animated character, depending

how subtle the movement is, it can sometimes be difficult even for a human to identify

the style of motion or emotional affect. One person may think someone is “excited” and

someone else could categorize them as a high-energy person who is just “happy”. This

ambiguity, to even the human eye, can make it difficult to validate the results of style

classification. Some studies have focused on the basic question of whether emotional affect

was able to be reliably identified by humans. Walbott and Crane studied this topic, and

concluded that emotional affect during walking was recognizable by humans and was able

to be elicited in a laboratory setting [35, 7]. However, they did not achieve full accuracy

of human classification of affect. Some studies have also attempted to predict permanent

personality traits of individuals from motion capture. Wang assesses the impact of hand

motion on virtual character personality [37]. Smith focuses on the impact of animated gesture

performance on personality perceptions and showed that people’s judgments of character

personality mainly fall in a 2D subspace rather than independently impacting the full set of

traits in the standard Big Five model of personality [34]. Carmurri showed that free dancing

movement style can be indicative of personality traits in the Big Five such as extroversion

and empathy [4]. This motivates the comparison of results from this work to a human study

that uses the same data.

This work also investigates how well different representations of motion capture data

perform when used for machine learning applications. Pavllo found that quaternion repre-

sentations of joint angles in motion capture data were able to achieve more accurate results

in motion prediction problems using recurrent neural networks (RNNs) [29]. This work tests

6



the accuracy of Euler Angle vs Quaternion representations of joint angles as well as accuracy

of raw and scaled positional representations.

1.2 Methods

1.2.1 Motion Capture Data Sets

As mentioned previously, there are two separate data sets used for two separate identification

tasks. The first data set from [25] has clips from ten dancers trained at George Mason

University School of Dance. Each dancer was recorded performing the same choreography

(set of movements) during ten different training runs and the data is labeled by individual

dancer ID. The task performed on this data set is the identification of dancer ID. The

complete choreography is about 1 minute long, so the total data set is about 100 minutes of

motion capture data. A frame from this data set is shown below in 1.1.

Figure 1.1: This image shows skeletons from motion capture data overlaid with one another
in the Dance choreography data set. There are ten Dancers total who each perform the same
choreograph. Small differences in their timing and poses can be observed from this frame.
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The second data set from [39] consists of actors performing several different types of

actions (walk, fast walk, running, jumping, punching, fast punching, kicking, transitions)

in a variety of labeled styles including “angry”, “depressed”, “old”, “childlike”, “proud”,

“sexy”, and “strutting”. The task performed for this data set is identifying the style of

movement.

1.2.2 Data Pre-processing

Several different representations of motion capture data exist and are tested for accuracy

and biases including positional representations, Euler angle representations, and Quaternion

representations. As mentioned previously raw motion capture data can consist of one point

for each joint in the skeletal model with x, y, and z coordinates in space over time for each

joint. Whereas joint angles only convey information about the angle of each joint relative

to each other and do not have information about distance traveled in space directly. Both

Euler Angles and Quaternions can be used to represent joint angles, however, Euler angles

inherently can have discontinuities in the representations whereas Quaternions have less

discontinuities. All types of representations undergo the same pre-processing.

To format the data in each representation for ingestion into the neural network, clips

were broken down into quarter second sub-clips, and re-formatted into image format shown

below in Figure1.2. The image was constructed as in [16] so that each row of the image

corresponds to the joint angle of a particular joint in the skeleton, and each column is the

time progression of the angle of the joint. The roll, pitch, and yaw of the joint angle are

represented by the red, green, and blue channels of the image (rgba was used for quaternion

data). The resulting images track in detail the movement of each joint.

1.2.3 Neural Network Architecture and Data Pipeline

The network architecture for our neural network is shown in Figure 1.3 below [12] [32]. The

architecture is composed of ResNet blocks. This architecture was chosen due to its success
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Figure 1.2: Example of motion capture sub-clip that is input to neural network for classifi-
cation. For each pixel of the image, the row corresponds to the joint of the skeleton (e.g.,
left shoulder, right elbow, etc.) and the column corresponds to the progression of the joint
angle over time. The color of the pixel is created by assigning the Roll, Pitch, and Yaw angle
values to the R, G, and B channels of the color image. The change in color of some rows
illustrates a movement of some joints, either synchronously or in a particular succession.

in image classification. In 2016, the ResNet model outperformed non-residual deep CNN

models in image classification and segmentation tasks. This architecture is used due to it’s

potential for good performance compared to earlier methods that used deep or shallow CNN

architectures. The residual network adds an identity shortcut that allows the network to

create an initial “fit” for a task and then to also fit smaller and smaller residual functions to

come up with a more accurate overall fit for the task at hand. This architecture is shown in

figure 1.3.
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Figure 1.3: Residual learning block

Figure 1.4: A flow diagram showing data that is fed into the residual network which predicts
style labels.

1.3 Results

This section outlines the results of experiments with each data set. The Dance data exper-

iment tries to identify individual Dancers, and the Style data experiment aims to identify

style of motion when performing a variety of tasks such as jumping, walking, and running.

Each experiment uses the same pre-processing methods.

1.3.1 Dancer Identification Results

This section compares results for identifying individual dancers based on motion capture

data. There are several options for representation of motion capture data, and different

representations are compared here to test if one results in less accuracy or increased biases

compared to others. The representations tested include Euler Angles, Quaternions, and po-
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sitional formatted data. Euler Angles and Quaternions represent joint angles of a person’s

skeletal model, and positional data represents x,y,z coordinates in space. One concern with

Euler Angle representation is discontinuous jumps that can occur inherently with this rep-

resentation. Quaternions also represent joint angles, but are able to represent variation in

joint angle continuously, avoiding the discontinuities with Euler Angles. Thus, the network

was expected to be able to learn better from a Quaternion Representation.[29] were able

to achieve better motion prediction results using Quaternion representations of joint angles.

Positional representations differ from joint angle representations in that the joint angle repre-

sentations do not include information about the Dancer’s position in space, only information

about the movement of their joints is preserved. The results for positional data thus have

more information for the network to learn from and are expected to be more accurate. One

concern with the positional representation is that the network would be able to learn to dif-

ferentiate individuals based on their differences in height and limb length. For this reason,

a representation was created that mapped the positional coordinates for each dancer onto

the same skeleton model for all Dancers. The skeletal model was created by averaging all

the joint offsets for each Dancer to find the average height and limb length skeletal model.

This was done to minimize as much as possible any errors with the projection such as foot

sliding.

Table 1.1 shows the comparison of accuracy for positional formatted motion capture

data (x,y,and z over time), Uniform skeleton model positional formatted motion capture

data, Euler Angle representation of joint angles (roll, pitch, and yaw), and Quaternion rep-

resentation of joint angles. From the table, it appears that the positional data representation

outperforms angular representations when the positional skeleton model for each dancer is

not scaled to a uniform size, and that the Quaternion representation does perform 1 percent

better than the Euler Angle representation of joint angles. The F1 Score of 1.0 for the un-

scaled positional representation also suggested that the presence of differences in the skeletal

proportions of each dancer had a strong effect on predictions. Figure 1.6 shows the learning

11



Representation Average Accuracy (F1 Score)
Positional 1.0
Positional Scaled 0.82
Euler Angle 0.85
Quaternion 0.86

Table 1.1: Comparison of F1 Score for Dancer Identification task using different representa-
tions.

curves for each representation. The “train loss” and “val loss” are the curves for training

and validation loss, and the “train acc” and “val acc” show curves for training accuracy and

validation accuracy.

The Confusion Matrix for each representation is shown in Figure 1.5 to show whether

some Dancers are easier to distinguish than others. “Dancer 10” appears to be confused the

most for other Dancers, especially “Dancer 6” and “Dancer 7”. It should be noted that the

“Dancer 10” data was missing one training run of data. For confusion matrix results that

are not normalized, refer to the appendix.

Dancer Identification with Single Frame vs Multiple Frames

Table 1.2 below shows that with the positional data, it’s possible to predict based on single

frames/poses, whereas the angular representation is not able to predict based on a single

pose. One possible reason for this could be because the angular representation only shows

relative pose information and is more independent of height and physical proportions of each

individual. If it is predicting on a single pose, this likely means it is using the size of the

dancer as factor in it’s predictions. Figures 1.7 and 1.8 show the learning curves for each

case. When supplied pose data without absolute positional data, the network is not able

to learn and classify dancers correctly. This suggests the positional representation includes

biases from the dimensions of the dancers. The confusion matrix for each case is included in

the appendix.
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(a) EulerAngleRepresentation (b) QuaternionRepresentation

(c) PositionalRepresentation (d) ProjectedPositionalRepresentation

Figure 1.5: Normalized Confusion Matricies for identifying Dancers with different motion
capture data representations.

Representation Average Accuracy (F1 Score)
Positional 0.98
Euler Angle 0.13

Table 1.2: F1 Score for Dancer Identification task using a single frame for predictions.
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(a) EulerAngleRepresentation (b) QuaternionRepresentation

(c) PositionalRepresentation (d) ProjectedPositionalRepresentation

Figure 1.6: Learning Curves for Identifying Dancers with Different motion capture data
representations.
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Figure 1.7: Learning Curve for Positional Data Prediction on Single Frame

1.3.2 Classification of Emotional Affect

This section shows results of training the network to identify style of a motion capture clips.

As mentioned before, there are 6 styles in this data set, “angry”, “childlike”, “depressed”,

“neutral”, “old”, “proud”, “sexy”, and “strutting”. The database and styles were created by

[39]. Since this task can also be tough for humans to do, the results are compared to results

from a human study in [33] which asked humans to identify style of motion for the same data

set. A Quaternion representation was used for this data set. The overall average accuracy

of our model in discerning style from the data set in [39] is .63. Accuracy for each style is

shown in Figure 1.9. Relatively higher accuracy was achieved for the “old” and “strutting”

styles, and lower accuracy was achieved for childlike” and “sexy” styles of movement. The

overall avg F1 score for this model was lower than the F1 score for the dancer identification

data set. This could be due to the small training data size of this data set which has 79829

total frames with 6 classes of styles (including a “neutral” style). The dancer identification

data set was composed of approximately 384,000 frames.

Compared to the human subject study from [33], results are similar for many affect types.

However, our network did a better job at identifying “Strutting”, and the human subjects

did a better job at identifying ”Depressed”. Overall, the performance seems comparable to
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Figure 1.8: Learning Curve for Prediction on Single Frame of Euler Angle Representation
Data

human ability.

1.4 Conclusion

This work focused on measuring the ability of a ResNet architecture to identify individuals

during dance motion and to identify style of movement during non-dance motions. The same

neural network was used for both tasks. For the dance motion data set, an investigation

was also performed as to whether joint angle representation makes a difference in accuracy

of the model, and whether using positional data introduces biases due to differing heights of

dancers. It was found that the Quaternion representation was 1 percent more accurate than

an Euler angle joint angle representation, potentially due to the absence of discontinuities

in the quaternion representation. It was also found that using positional representations

without scaling for differences in height may introduce biases due to the differing skeletal

models of each dancer with unique skeletal proportions. An attempt was made to reduce

these biases by mapping the positions for each dancer onto an average skeleton to remove

differences in frame. However, this resulted in a slightly less accurate model than the joint

angle representation, and is thought to have introduced foot sliding errors. This could be an
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Figure 1.9: Normalized Confusion Matrix for Style Identification

area for future research.

The same network was trained to identify style from a data set containing a variety of

actions such as running and jumping in 6 different style categories. The accuracy of this

model is compared to a study that asked humans to identify the same styles on the data set.

It was found that the model performed better than human subjects in some categories and

worse than the human subjects in other categories.

The network may have performed better on the task of Dancer Identification than on the

task of style classification due to the larger training data size of the Dancer Identification

data set.

Future work could compare accuracy of using ResNet blocks in auto-encoder networks

for style encoding in motion retrieval to regular deep neural network auto-encoders.
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Figure 1.10: Learning Curve for Style Identification

Human Subject Study on Classification of Emotional Affect (Xia Dataset)

Affect
Identified

(Human Study)
Misidentified

(Human Study)
% Correct

(Human Study)
% Correct

Our Network
angry 34 31 .52 .5

childlike 32 23 .58 .4
depressed 47 8 .85 .5
neutral - - - -

old 38 17 .69 .6
proud 22 33 .40 .5
sexy 7 48 .13 .4

strutting 24 31 .44 .6

Table 1.3: Comparison of human subject performance to our network performance for the
style identification task using the data set from Xia et al. The number of questions for each
style in the human study is included as number identified correctly and incorrectly.
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Appendix Title

A.1 Additional Figures
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(a) EulerAngleRepresentation (b) QuaternionRepresentation

(c) PositionalRepresentation (d) ProjectedPositionalRepresentation

Figure A.1: Non-normalized Confusion Matricies for identifying Dancers with different mo-
tion capture data representations.
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